
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FOURIER HEAD: HELPING LARGE LANGUAGE MODELS

LEARN COMPLEX PROBABILITY DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

As the quality of large language models has improved, there has been increased
interest in using them to model non-linguistic tokens. For example, the Decision
Transformer recasts agentic decision making as a sequence modeling problem,
using a decoder-only LLM to model the distribution over the discrete action space
for an Atari agent. However, when adapting LLMs to non-linguistic domains, it
remains unclear if softmax over discrete bins captures the continuous structure of
the tokens and the potentially complex distributions needed for high quality token
generation. We introduce a neural network layer, constructed using Fourier series,
which we can easily substitute for any linear layer if we want the outputs to have
a more continuous structure. We perform extensive analysis on synthetic datasets,
as well as on large-scale decision making and time series forecasting tasks. We
also provide theoretical evidence that this layer can better learn signal from data
while ignoring high-frequency noise. All of our results support the effectiveness of
our proposed Fourier head in scenarios where the underlying data distribution has
a natural continuous structure. For example, the Fourier head improves a Decision
Transformer agent’s returns by 46% on the Atari Seaquest game, and increases a
state-of-the-art times series foundation model’s forecasting performance by 3.5%
across 20 benchmarks unseen during training.

Fourier Head Learns Higher Quality Densities

Figure 1: We task an MLP with learning to approximate a continuous bimodal density using a
categorical distribution and a cross entropy objective. We observe that a standard linear classification
head fails to distinguish between the two modes, and overfits to high-frequency noise in the training
set. In contrast, our proposed Fourier head learns a smoother, more accurate categorical distribution.

1 INTRODUCTION

Human language can be viewed as a discretization for a continuous, often probabilistic represen-
tation of the world that is construed in our mind (Spivey, 2008). The continuous structure can be
partially captured by language models with their token embeddings, where “nearby” tokens are em-
bedded to have latent representations with high cosine similarities. The embeddings themselves are
acquired as a result of the data-driven learning process. Can we, based on rich prior knowledge
about the continuous world, inform the language model about the underlying continuity of its in-
puts, like the fact that the word “emerald” is more similar to “shamrock” than “pine” when they are
used to describe different shades of green? As large language models (LLMs) have evolved into
“foundation models” that are adapted to a diverse range of tasks, tokens that are a priori continuous
are more essential than ever, for example for arithmetic computations (Liu et al., 2023), decision
making with continuous or discrete actions (Chen et al., 2021), future anticipation and time-series
forecasting (Ansari et al., 2024), or simply drawing random numbers given a probability distribu-
tion (Hopkins et al., 2023).
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We view the problem of informing LLMs to utilize the continuity prior from the perspective of prob-
ability density estimation. For simplicity, we adopt the standard next token prediction framework
whose training objective is softmax cross entropy. Assuming non-overlapping vocabulary, continu-
ous values can be discretized via binning (Ansari et al., 2024). On one hand, the linear head adopted
by LLMs independently projects each token into probabilities, and has the expressive power to flex-
ibly approximate arbitrary probability density functions subject to the “quantization” errors. The
linear head however does not consider any continuous structure that resides among the tokens (i.e.
a random re-shuffle of the tokens in the vocabulary would not change the predictions). On the other
hand, a head based on a parameterized distribution (e.g. Gaussian or Gaussian Mixtures) naturally
incorporates the continuous structure, but is often too simple (and overly “smooth”) to account for
multi-modal distributions for future prediction or decision making. Can we design a head that is
both expressive and incorporates continuous structures?

We introduce the Fourier head, motivated by Fourier series as universal function approximators. The
Fourier head learns a continuous probability density function, and returns a discrete approx-
imation of it. Intuitively, returning a discretization of a continuous density in this way allows the
classification head to better model the low-frequency signals from the training data, because overfit-
ting to high-frequency noise is explicitly penalized by the Fourier head’s built-in regularization. At
a high level, the Fourier head inputs x ∈ Rn, uses a linear layer to learn the coefficients for a Fourier
series with N frequencies over [−1, 1], and quantizes the interval [−1, 1] into m equal bins. Then,
the Fourier head evaluates the learned Fourier PDF at those m bin center points, and returns those
m likelihoods as a categorical distribution.

Our first contribution is to reveal the underlying principle on the trade-off between the Fourier head’s
expressive power and the “smoothness” of the predicted distributions. We have proven a theorem
which demonstrates a scaling law for the Fourier head. Namely, as we increase the quantity of
Fourier coefficients that the Fourier head learns, the layer is able to model increasingly more com-
plicated distributions; however, the Fourier head will necessarily fit to more high-frequency noise,
thereby outputting categorical distributions which are less smooth.

Our second contribution is to propose a practical implementation of the Fourier head that allows us
to handle sequential prediction tasks by modeling complex multi-modal distributions. Alongside our
implementation, we propose strategies to improve the layer’s performance, including Fourier coef-
ficient norm regularization, weight initialization, and the choice of how many Fourier frequencies
to use. We demonstrate the effectiveness of the Fourier head on two large scale tasks, where intu-
itively a continuity inductive bias over the output dimensions ought to help the model’s generation
performance. In the first task, an offline RL agent which uses a decoder-only transformer to model
the next-action distribution for an Atari game, we improve returns by 46%. And in the second, we
outperform a state-of-the-art time series foundation model on zero-shot forecasting by 3.5% across
a benchmark of 20 datasets unseen during training. We commit to open source our models and code.

2 FOURIER HEAD

2.1 FOURIER HEAD: MOTIVATION

When practitioners apply LLMs to model complex probability distributions, a standard technique is
to quantize the latent space into m tokens and learn a conditional categorical distribution over those
tokens. We share two examples here:

• The Decision Transformer (Chen et al., 2021) models an Atari agent’s behavior in the
Seaquest game by learning a categorical distribution over the 18 possible actions (move
left, move right, shoot left, etc.). They use an encoder-only transformer architecture.

• The Chronos time series foundation model (Ansari et al., 2024) models the distribution of
next numerical values by quantizing the closed interval [−15, 15] into 4096 bins, and learn-
ing a categorical distribution over those bins. They use an encoder-decoder transformer.

In a pure language modeling task, token ID 1000 and token ID 1001 likely represent unrelated
words. However, in a task where the token IDs represent numerical values, the token ID 1000 and
1001 would represent numbers that are close together.
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The final layers of an LLM for such a task are generally a linear layer, followed by softmax, fol-
lowed by cross entropy loss. We hypothesize that in scenarios where nearby token IDs encode
similar items, an inductive bias that encourages them to have similar probabilities will improve per-
formance. A generic linear layer learns an unstructured categorical distribution and thereby allows
more arbitrary probabilities. In this work, we propose to give the model this inductive bias by
letting the classification head learn a categorical distribution as the discretization of a contin-
uous learned function from a suitably flexible class. In this paper, we consider the very flexible
class of truncated Fourier series with N frequencies. These are functions of the form

f(x) = a0 +

N∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
. (2.1)

Fourier series are a classical tool for solving quantitative problems (Stein & Shakarchi, 2003) be-
cause functions like Equation 2.1 are universal function approximators, with the approximation
improving as N increases.

2.2 FOURIER HEAD: DEFINITION

We now propose a replacement for the generic linear layer token classification head, built using
Fourier series. We call our replacement the Fourier Series Classification Head, or the Fourier
head for short. The Fourier head inputs any vector x ∈ Rn, and outputs a categorical distribution
in Rm. For a high level summary of how it works–the Fourier head inputs x ∈ Rm, uses a linear
layer to extract the coefficients for a Fourier series over [−1, 1], quantizes the interval [−1, 1] into
m equal bins, evaluates the learned Fourier PDF at those m bin centerpoints, and returns those
m likelihoods as a categorical distribution. We formally define this layer in Algorithm 1, and we
present a concrete low-dimensional demonstration of the Fourier head in action in Section 2.3.

Algorithm 1 Fourier head

Hyperparameters: the input dimension n, output dimension m, number of frequencies N
Initialization: define a linear layer A : Rn → R2(N+1) // maps input to autocorrelation coefficients

Step 1: INPUT x = (x1, . . . , xn) ∈ Rn

Step 2: (α0, β0, . . . , αN , βN )← Ax
Step 3: ak ← αk + iβk ∈ C, for every k = 0, . . . , N // compute autocorrelation coefficients
Step 4: ck ←

∑N−k
ℓ=0 aℓa

∗
ℓ+k ∈ C, for every k = 0, . . . , N // compute Fourier coefficients

Step 5: p(z) = 1
2 + ℜ

(∑N
k=1

ck
ℜ(c0)

exp(ikπz)
)

// define Fourier PDF over [−1, 1]
Step 6: ωk ← (−m+ 1 + 2k)/m, for every k = 0, . . . ,m− 1 // define m bin centerpoints
Step 7: yk ← p(ωk)∑m−1

j=0 p(ωj)
, for every k = 0, . . . ,m− 1 // evaluate PDF at m bin centerpoints

Step 8: OUTPUT (y1, . . . ym) ∈ Rm // by design, we know that each yi ≥ 0, and
∑m

k=1 yk = 1

2.3 FOURIER HEAD: MOTIVATING EXAMPLE

To illustrate a simple problem setting where the design of the Fourier head is appropriate, we use it as
a drop in replacement for a linear classification head in the Audio Spectrogram Transformer (Gong
et al., 2021). We consider the task of beats per minute (BPM) classification for metronome-like
audio samples within the tempo range {50, 51, . . . , 210}. While this task is not difficult, we use this
audio classification task to illustrate some of the design choices one can make when using the Fourier
head. In this case, it is natural to group the BPMs into contiguous bins {[50, 54], [55, 59], . . . } and
use the Fourier head to classify them. These bins have a natural continuous structure, which is where
the Fourier head performs well. We also expect that the categorical distribution over possible BPMs
for a given audio clip ought to be unimodal and therefore require few frequencies to approximate.
In fact, our best performing model for this example uses only one frequency.

We initialize the Audio Spectrogram Transformer with pretrained weights from AudioSet (Gem-
meke et al., 2017), and we train two different models–one with a standard linear classification head,
and one with the Fourier head. The Fourier head outperforms the linear classification head by an
F1 score improvement of +118%. We attribute this success to inductive bias of continuity that the
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Fourier head imparts. In Figure 2 we present the learned probability masses of both heads on the
same input sample. This graph illustrates that the Fourier head learns smoother PMFs than the linear
head, a concept which we will later formalize and explore.

Audio Classification Task: Learned Linear vs. Fourier PMFs

Figure 2: Comparison between the PMF learned by the linear head, and the Fourier head with
2 frequencies, for the toy BPM classification task, on a single audio example. We observe that
the Fourier head learns a smoother categorical distribution over its predicted values, and is better
centered around the ground truth label. We also note the small mini-sine wave artifacting on the left
side of the Fourier model, which tends to occur when using few frequencies.

2.4 FOURIER HEAD: DETAILS FOR USING IT DURING TRAINING

We highlight the main design choices for a user when applying the Fourier head in practice.

Training objective: The Fourier head inputs a signal x ∈ Rn and extracts from that signal an
intermediate representation of a probability distribution p(x) defined over [−1, 1]. This probability
distribution has a closed formula equal to a Fourier series. In our experiments, we optimize the
parameters of the Fourier PDF by discretizing it over the latent space and training using cross entropy
loss. However, we should note that the Fourier layer allows MLE training directly on continuous
values, by evaluating the Fourier PDF directly on the ground truth value in the latent space. But for
consistency of comparison, and to demonstrate how easy it is to swap the Fourier head with a linear
layer, we use softmax cross-entropy loss as the objective.

Choice of hyperparameter N : The Fourier head has one crucial hyperparameter–namely, the num-
ber of frequencies. How should one choose this in practice? We offer Theorem 3.3 as guiding
principle beyond simple trial and error. This result provides a scaling law which formalizes the
smoothness-expressive power trade-off in choosing the number of frequencies. In general, using
more frequencies leads to more expressive power, and generally better success metrics, but at the
cost of a learning less smooth densities, as well as more model parameters.

Fourier regularization: A generic Fourier series such as Equation 2.1 has Fourier coefficients
which decay quickly enough for the infinite series to converge absolutely. For example, for the class
of Fourier series which have continuous second derivatives, the Fourier coefficients decay on the
order of 1/n2. To impose this regularity assumption on the learned Fourier densities, we follow
(De la Fuente et al., 2024) and add a regularization term to the loss to prevent higher order Fourier
coefficients from growing too large during training. This helps ensure that the learned Fourier PDF
doesn’t overfit to noise in the data, and therefore has a bias towards learning smoother densities. In
the notation from Algorithm 1, this means adding a regularization term of γ · 2π

2

m

∑m
k=1 k

2|ck|2 to
the loss function, where γ is a hyperparameter. When picking regularization strength, we find that
in the low-frequency domain (e.g. frequencies in the single digits) using γ = 0 works best, and in
the high-frequency domain (e.g. greater than 10 frequencies), using γ = 10−6 works best.

Binning strategy: The choice of how we bin the data can affect performance significantly. As we
already discussed, we should only apply the Fourier head when nearby bins are “similar” in some
sense. This means we should order our bins in a semantically meaningful ordering. Further, in the
case where the bins represent quantized numerical values over a continuous latent space, it can be
helpful to use a “mixed-precision” binning strategy. For instance, if we want to model all values
from [−15, 15], but we find that most values lie in the range [−1, 10], then we should allocate a
higher proportion of bins to the dense data interval. Specifically, if we would like to use m total
bins to quantize the data, then we control the allocation of bins using a hyperparameter d ∈ [0, 1),

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ⌊d · m⌋ uniformly spaced bins are allocated to the sparse data interval while the remaining
m− ⌊d ·m⌋ bins are allocated to the dense range (estimated from training data). This is motivated
and supported by the Fourier theory as well, since by increasing precision in the dense data range we
are effectively de-localizing the quantized data distribution, which leads to a more localized Fourier
spectrum. This lets us obtain a quicker decay of higher frequency content, which ensures that we can
more effectively learn the same distribution with lower-frequency Fourier heads. We also note that
(De la Fuente et al., 2024) proposes an optional re-parametrization step that replaces the periodic
domain [−1, 1] with the real line, although we don’t use that in this work.

Weight initialization: The learned parameters for the Fourier head consist of the learned linear layer
which extracts autocorrelation parameters. In PyTorch, the linear layers uses the He initialization
(He et al., 2015) by default, which ensures that the linear layer outputs values close to zero in
expectation. Similarly, it’s better for the learning dynamics for the Fourier densities to be initialized
to uniform p(z) ≈ 1/2. We accomplish this by dividing the weights and biases by a large number,
such as 1000, after He initialization; this guarantees that the linear layer outputs very small values,
so that Fourier coefficients output from the autocorrelation step are very small as well.

3 THEORY

3.1 “SMOOTHNESS”: A METRIC FOR HIGH FREQUENCY CONTENT

In this subsection, we propose a smoothness metric which inputs a categorical disribution y =
(y1, . . . , ym) ∈ Rm, and assigns a numerical value depending on how smooth it is. The score will
output 0 if y is the smoothest possible categorical distribution, and larger values if y is less smooth.
We will first specify what we mean by “smooth”:
Heuristic 3.1. We say a function is smooth if it contains very little high-frequency information.

For example, the uniform categorical distribution contains no high-frequency information, so it is
the smoothest possible function, and should get a smoothness score of 0. In contrast, a categorical
distribution containing samples from sin(100πx) contains lots of high frequency information, so it
should get a smoothness score greater than 0. We seek to define a metric which measures smoothness
according to Heuristic 3.1.

We will first develop a smoothness metric in the general case of a function f : [a, b] → R, then
specialize to case of the discrete categorical distribution that we consider in the paper. If we let
ασ ∈ R be weights satisfying

∫∞
0

ασdσ = 1, and D be some measure of discrepancy such as L2,
and let gσ(x) ∗ f(x) denote the convolution of f(x) with a Gaussian kernel of standard deviation σ,
then it is reasonable to define the smoothness of f to be the quantity

s(f) :=

∫ ∞

0

∫ b

a

ασD[f(x), gσ(x) ∗ f(x)]dxdσ. (3.1)

In this expression, the discrepancy D[f(x), gσ(x) ∗ f(x)] measures how different f(x) is from a
Gaussian-smoothed version of itself. Because the Gaussian is a low-pass filter, we can interpret
Equation 3.1 as saying, at a high level, that a function is “smooth” if it doesn’t change that much
when you remove high frequency content from it.

In our experiments, we consider discrete categorical distributions, and wish to evaluate how smooth
they are in a numerically tractable way. Accordingly, we define a specific case of this as follows.
Definition 3.2 (Smoothness metric for categorical distributions). Suppose y = (y1, . . . , ym) ∈ Rn

is a categorical distribution, so every yk ≥ 0 and
∑m

k=1 yk = 1. Denote by gσ(x) the discrete
Gaussian kernel with zero-padding of standard deviation σ. Define the weights ασ = 6/π2σ2. Then
we define the smoothness of y to be the constant

s(y) :=

∞∑
σ=1

ασ∥f(x)− (gσ ∗ f)(x)∥2 (3.2)

We direct the curious reader to Appendix B, where we conduct additional experiments to justify this
choice of smoothness metric for our experiments.
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3.2 A SCALING LAW FOR THE FOURIER HEAD, IN FREQUENCY-ASPECT

In this subsection, we share a theorem that analyzes the quality of the Fourier head as the quantity of
frequencies changes. We refer to this as the Fourier head scaling law as it quantifies the trade-off
between modeling capacity and smoothness as the number of frequencies increases. On one hand, it
is a celebrated result from Fourier analysis that a Fourier series with a greater number of frequencies
models a larger class of functions; but on the other hand, we show that increasing frequencies also
incurs loss in smoothness. This is to be expected, as we designed our smoothness metric with the
intention of identifying a distribution as less smooth if it contains more high-frequency information.

Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output
dimension m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn,
and denote by fx : [−1, 1] → R the optimal conditional distribution that we would like
the Fourier head to approximate for this input. We assume that fx is twice continuously
differentiable, and that its Fourier coefficients decay on the order of 1/k2. Denote by fx,N
the truncation of fx to its first N frequencies, and denote by y(N) a discretized version of
fx,N into m bins. Then, there exist constants C1, C2 > 0 such that

s(y(N)) ≈
√
mC1 −

√
mC2

N3
+O(1/N4). (3.3)

Note that the smoothness scaling law asymptotic in Equation 3.3 shows that as N increases, so
does s(y(N)). In part (2), since fx is at least twice continuously differentiable, we already know its
Fourier coefficients corresponding to the k-th frequency are in O(1/k2) (Stein & Shakarchi, 2003,
Ch.2, Cor. 2.4). Thus, our assumption that the Fourier coefficients decay quadratically is reasonable
and our Fourier quadratic weight decay regularization helps toward ensuring that this condition is
met in practice as well. We include a full proof of this result in Appendix A.

4 TOY EXAMPLE: LEARNING A CONTINUOUS CONDITIONAL DISTRIBUTION

We demonstrate the advantage of using the Fourier head to learn a probability distribution for a
simple task: learning the conditional distribution of the third number in the sequence given the first
two. Here we will use q(z) to denote the quantization of z.

Dataset: We create 3 synthetic datasets, which we name Gaussian, GMM-2, and Beta. Each
dataset consists of 5000 quantized triples {(q(x), q(y), q(z))} ⊆ [ − 1, 1]3. Crucially, z is sampled
from a distribution which is conditioned on x and y, and we have an explicit closed formula for this
distribution. By design, the Gaussian dataset is unimodal in z, whereas the more challenging GMM-
2 and Beta datasets are not unimodal. Full details about the datasets can be found in Appendix C.

Task: Predict the conditional distribution of q(z) given the quantized tuple (q(x), q(y)).

Model architecture: Our model is an MLP with ReLU activations and one hidden layer, which
maps R2 → R64 → R32 → R50. The output of the model has dimension 50 because we quantize
into 50 bins. We consider two baselines alongside the Fourier model. For the first baseline, the
classification head is a linear layer; for the second baseline, the classification head is a Gaussian
model mixture classification layer with two Gaussians, where the means and standard deviations
are learned; for the Fourier model, the classification head is the Fourier head. We sweep over
frequencies N = 2, 4, . . . , 20, and consider regularization γ ∈ {0, 10−6}. We train those models
via cross entropy loss. We also consider a regression-based model, trained using MSE.

Model evaluation: We use three metrics for evaluation. Our first metric is the average KL di-
vergence DKL(q(P(x, y))||M(q(x), q(y))), where P(x, y) is the fixed conditional distribution of z
given (x, y); q(P(x, y)) is the quantized approximation of P(x, y), obtained by evaluating the den-
sity function of P(x, y) at the bin centers, multiplying by the bin width, and finally scaling by the
sum of the likelihoods; and M(q(x), q(y)) denotes the predicted categorical conditional distribution
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of q(z). Our second metric is smoothness. And our third metric is MSE, where we consider the
expected value of q(z) under the learned categorical distribution as a prediction for q(z).

Results: The metrics for the best performing model on each dataset are reported in Table 1. Figure
3 presents sample visualizations of the learned conditional distributions alongside the true densities.
And in Appendix C, we present the results of a study on the impact of number of frequencies and
Fourier regularization. Notably, this study provides empirical evidence for the Fourier head scaling
law in Theorem 3.3, as it demonstrates that for all datasets, as frequency decreases, the smoothness
degrades, and model performance improves until it reaches a saturation point. Crucially, we observe
that the Fourier head flexibly learns all three distributions better than the linear baseline does. We
note that the Fourier head outperforms the linear head on MSE as well; we include a complete
comparison with both Linear and GMM head baselines in Appendix C.

Figure 3: Comparison between the PMFs learned by the linear head, GMM head, and the Fourier
head, for each of the datasets in the toy example. We observe that the Fourier head learns a smoother
categorical distribution than the linear head over its predicted values. Furthermore, the Fourier head
better fits the true conditional PDF; this is reflected in the KL divergence and smoothness metrics.

KL Divergence (↓) Smoothness (↓)
Dataset Linear Fourier Linear Fourier
Gaussian 0.170 ± 0.052 0.116 ± 0.043 0.116 ± 0.049 0.057 ± 0.011
GMM-2 0.238 ± 0.032 0.146 ± 0.033 0.068 ± 0.022 0.038 ± 0.007
Beta 0.234 ± 0.032 0.191 ± 0.016 0.127 ± 0.044 0.076 ± 0.021

Table 1: We compare metrics between the linear head, and the Fourier head with 12 frequencies and
no regularization, for every dataset in our toy example. We observe that the Fourier head outperforms
the linear head across all metrics. Notably, using Fourier head improves the KL divergence (the
primary success metric) on average by approximately 40%. We aggregate metrics over 4 different
seeds and report the standard deviation.

5 LARGE-SCALE STUDY: OFFLINE REINFORCEMENT LEARNING

The Decision Transformer (Chen et al., 2021) casts the problem of reinforcement learning as se-
quentially modeling rewards, states, and actions. Here, we study the performance of the Decision
Transformer on the Seaquest game in the Atari (Bellemare et al., 2013) benchmark. The Seaquest
game contains 18 actions, with two groups of eight actions that have a natural “closeness” metric
defined on them: move left, up left, up, up right, right, down right, down, down left; as well as
shooting in those eight directions. In their architecture, a decoder-only language model (Radford
et al., 2018) encodes the context and then maps it through a linear layer, outputting a categorical
distribution over the 18 possible actions. In our study, we replace that linear classification head with
a Fourier head. Intuitively, this ought to give the model the prior that actions like “move left” and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

“move up left” are semantically similar, and therefore should have similar likelihoods. Our study
confirms that the Fourier head outperforms the linear head in returns obtained by as much as 46%,
in the reward conditioned setting considered in the paper, using identical training hyperparameters.

Task: In the Seaquest game, the agent moves a submarine to avoid enemies, shoot at enemies,
and rescue divers. The Seaquest game contains 18 actions: move left, up left, up, up right, right,
down right, down, down left; as well as shooting in those eight directions; as well as no move, and a
generic fire move. We consider this task in the Offline RL setting. The agent observes the past states,
actions, and rewards, as well as the return-to-go, and attempts to predict the action that matches what
an agent operating like the dataset would likely do. We also consider three other Atari games with
the same action space: BankHeist, DoubleDunk, and Gravitar.

Dataset: We use the same dataset from the original Decision Transformer implementation (Chen
et al., 2021). This dataset consists of 500k transitions experienced by an online deep Q-network
agent (Mnih et al., 2015) during training on each of the games.

Model architecture: (Chen et al., 2021) used the GPT-1 model (Radford et al., 2018) to autoregres-
sively encode the context, which is then fed through a linear layer of dimension 18, and the model
ultimately optimizes the cross entropy loss between the action logits and the ground truth action
from the dataset. We refer to this model as the linear baseline. To create our Fourier-n version, we
simply replace the linear head with a Fourier head.

Normalized Returns for Decision Transformer Agent

Atari Game
Classification Head BankHeist DoubleDunk Gravitar Seaquest
Linear head −0.09± 0.05 −72.72± 33.08 1.32± 0.17 2.53± 0.63
Fourier head 0.92± 0.33 45.45± 36.36 4.98± 0.93 3.70± 0.47

Table 2: We present returns obtained by the Decision Transformer agent using the linear baseline,
and the Fourier head, across the four Atari games. We compute the returns (mean and standard
deviation) by averaging over four seeds. Across all these games, the Fourier head significantly
improves the normalized returns obtained by the agent.

Figure 4: We present empirical results for how the quantity of Fourier frequencies impacts returns
and smoothness for the imitation learning task. For normalized returns, higher is better; for smooth-
ness, lower is better. We can see that the Fourier agent achieves higher normalized returns than
the linear baseline agent when sufficiently many Fourier frequencies are used, while still learning
smoother next-action distributions.

Model evaluation: We present results for the linear baseline, as well as the Fourier-n head, for
n = {2, 4, 6, 8, . . . , 30, 32}, across the four Atari games. We present mean reward totals for rollouts
for each of these for the best epoch across 4 seeds. In Table 2, our results demonstrate that the
Fourier head increases agent returns significantly. For example, for the Seaquest game, normalized
returns increase by as much as 46.2%, and for Gravitar, normalized returns increase by as much as
300%. In Figure 4, we can see that the Fourier head is able to perform better in the Seaquest game
as the number of frequencies grows. We can also see that as we increase the quantity of frequen-
cies, learned PMFs become less smooth, in accordance with Theorem 3.3. Qualitatively, we can
also see that in Figure 12 (Appendix) the PMFs learned by the Fourier head are smoother. In Fig-
ure 13 (Appendix), we also include results for the remaining three games, BankHeist, DoubleDunk,
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and Gravitar. Across all these games, the results show that the Fourier agent consistently achieves
higher normalized returns than the linear baseline agent, while still learning smoother next-action
distributions. And in Figure 9 (Appendix), we demonstrate that the regression model simply re-
gresses to the mean of the conditional distribution. Accordingly, the regression model performs
extremely well for the unimodal Gaussian dataset, and it performs poorly for the bimodal datasets
GMM-2 and Beta.

Ablations: We analyze whether model size has any effect on the relative performance of the Linear
head and the Fourier head. The results in Figure 10 (Appendix) demonstrate that, across model
sizes, the Decision Transformer with a Fourier head is better at learning high-quality next action
distributions than the Decision Transformer with a Linear head. We also analyze whether dataset
size has any effect on the relative performance of the Linear head and the Fourier head, and obtain a
similar result. In Figure 11 (Appendix) we show that, across dataset sizes, the Decision Transformer
agent with the Fourier head achieves larger returns than the agent with a linear head.

6 LARGE-SCALE STUDY: PROBABILISTIC TIME SERIES FORECASTING

The Chronos time series foundation models (Ansari et al., 2024) “learn the language of time series”.
They do this by approaching time series forecasting as language modeling–tokenizing the quantized
number line, learning token embeddings for each of those quantized values, and finally learning a
categorical distribution to decide what the next value ought to be. This model is built on top of
the encoder-decoder T5 model (Raffel et al., 2020). In particular, this model normalizes time series
values to the range [−15, 15] and quantizes this interval into 4096 tokens. As usual for language
modeling, the final layer is a linear map which learns a categorical distribution over next tokens. In
particular, we observe that token i represents a number very close to tokens i−1 and i+1. However,
we note that there is no inductive bias in the T5 architecture which pushes their likelihoods to be
similar. This is not a hypothetical problem; in Figure 14 (Appendix), we can see that the linear
next-token prediction PMFs fit to the noise, and appear very jagged. Here, the motivation for
replacing the linear head with the Fourier head is to “smooth” out this distribution, to help
the forecasting model better learn the signal, and ignore the noise. In Figure 14, we can see that
the Fourier head accomplishes this successfully.

In this section, we study how performance of the Chronos time series foundation model changes
when we pre-train using the Fourier head, instead of the linear head. For all of the frequencies that
we consider, the Fourier head outperform the Chronos linear baseline on the MASE metric, while
learning next token multinomials which are 8x smoother, with fewer parameters than the baseline.

Dataset: We use the same training dataset for large-scale pretraining that Ansari et al. (2024) used.
We gather an evaluation benchmark of 20 time series datasets which were not seen during training.
These 20 come from the zero-shot eval from (Ansari et al., 2024). The reader can check Appendix E
for details on the training and evaluation datasets we used.

Model architecture: We use the Chronos model, which is built using the T5 architecture (Raffel
et al., 2020). The original model has a linear classification head. For our study, we will replace this
with a Fourier head with frequencies N = 64, 128, 256, 550. We use mixed precision binning; this
is informed by an analysis of the Fourier spectrum of the next-token distribution, as described in
Section 2.4). We also use Fourier quadratic weight decay regularization. For the task, the model
learns to input time series context of length 512, and output a probabilistic forecast of length 64.

Model evaluation: We have two sets of metrics: model performance from (Ansari et al., 2024)
(MASE measures the accuracy of median forecast, and WQL measures the quality of the proba-
bilistic forecast), as well as our smoothness metric. Our Fourier metrics in Table 3 demonstrate that
every Fourier model outperforms the linear baseline for MASE and Smoothness. Furthermore, for
the largest Fourier model that we consider, Fourier outperforms linear on WQL as well.

Ablations: The results in Table 7 (Appendix) show that mixed precision binning and regularization
improve the MASE and smoothness for the Fourier head.

9
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Chronos Time Series Model MASE ↓ WQL ↓ Smoothness ↓
Linear 0.883 0.750 0.1236 ± 0.0712
Fourier-64 0.875 0.798 0.0027 ± 0.0012
Fourier-128 0.872 0.767 0.0053 ± 0.0030
Fourier-256 0.859 0.755 0.0101 ± 0.0072
Fourier-550 0.852 0.749 0.0203 ± 0.0176

Table 3: We present large-scale experiments on Chronos time series forecasting. Notably, every
Fourier model outperforms the linear baseline on MASE and smoothness metrics. Within the Fourier
model class, decreasing the number of frequencies lets you trade off the continuity of the learned
probability mass functions (smoothness) for the quality of the forecasts (MASE, WQL).

7 RELATED WORK

LLMs outside of natural language domains: LLMs are often adapted to domains beyond natural
language, as general purpose sequence models. For example, they have been used in protein syn-
thesis (Madani et al., 2023), time series forecasting (Ansari et al., 2024; Das et al., 2024; Jin et al.,
2024; Nate Gruver & Wilson, 2023; Requeima et al., 2024; Jia et al., 2024; Zhou et al., 2023; Wang
et al., 2024), music generation (Dhariwal et al., 2020; Agostinelli et al., 2023; Copet et al., 2023;
Yuan et al., 2024), and as well as in decision making (Li et al., 2022; Chen et al., 2021).

We consider three categories to adapt LLMs to non-language domains: when the output of a
language-trained LLM is used as a feature for some out-of-domain task; when a language-pretrained
LLM is fine-tuned on a domain-specific task; and when an LLM architecture is trained on a domain-
specific dataset from scratch. Our work directly considers the latter method of LLM adaptation,
particularly in settings where the outputs approximate continuous values. We note that using LLMs
to model numerical functions has seen success in continuing sequences (Mirchandani et al., 2023)
but has been challenging for modeling samplers for probability distributions (Hopkins et al., 2023).
In a related direction, Razeghi et al. (2022) found that model performance on numerical reason-
ing tasks is correlated with the frequency of specific numbers in its corpus. Further, some have
re-framed continuous regression as a descretized classification problem to leverage LLMs in numer-
ical modeling contexts (Song et al., 2024). While even frozen LLMs with no further training show
interesting empirical results as regressors (Vacareanu et al., 2024), there is a conceptual mismatch
between the downstream task and model construction because tokenized numerical values trained
using cross-entropy loss does not explicitly enforce numerical relationships between the tokens.

Fourier series in neural networks: Many works leverage the Fourier transform as a data pre-
processing step or a deterministic transformation within the network, or use Fourier analysis to
motivate design choices. It is far less common to learn the Fourier series directly. De la Fuente
et al. (2024) learned marginal univariate densities parameterized using a Fourier basis; our work
extends their Fourier Basis Density model to multivariate settings with an autoregressive scheme.
Our method learns conditional univariate densities using a Fourier basis, where the coefficients of
the Fourier density model are input dependent. Sitzmann et al. (2020) proposed sinusoidal activation
functions, which can be seen as learning the frequencies of a Fourier series; in contrast, we seek to
fix the frequencies to the canonoical choice {1, 2, . . . , N}, and learn the amplitudes. This allows the
Fourier head to more directly benefit from approximation results from Fourier analysis.

8 CONCLUSION

We propose the Fourier head and demonstrate its positive impact on performance on several tasks.
We prove scaling laws that characterize the trade-off between the model’s expressivity and the
smoothness of its output distribution. The Fourier head is a modular architecture that can be easily
added to existing models that would benefit from the continuity inductive bias that the head imparts.
The Fourier head extends the already extensive reach of LLMs into more diverse, numerical, and
probabilistic domains. Future work includes exploring alternative training objectives that do not
depend on discretizing probability density functions, and incorporating the Fourier head in general-
purpose LLM training, where the head can be adaptively employed when needed.
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9 REPRODUCIBILITY STATEMENT

We have made efforts to ensure reproducibility. In Algorithm 1 we provide all the mathematical
details that one needs to reproduce the Fourier head. In Appendix E we prove our scaling law,
Theorem 3.3, in full detail, and we list all assumptions in the statement of the theorem. Additionally,
we release the research code in the supplemental section on OpenReview.
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A MATHEMATICAL DETAILS

In this section we prove Theorem 3.3, the Fourier head scaling law. To do this, we must first discuss
the Nyquist-Shannon Sampling Theorem. This result states that in order to avoid distortion of a
signal (such as aliasing) the sampling rate must be at least twice the bandwidth of the signal. In the
setting of the Fourier head, our sampling rate is m/2 because we have m bins uniformly spaced in
(−1, 1), and the bandwidth is N/2 because the frequency of sin(πNx) is N/2. Thus the Nyquist
Theorem requires us to have

m/2 ≥ 2 · (N/2) = N

in order for the higher order frequency content learned by our model to not be fallacious when we
are learning from only m bins.

We now present a theorem that provides a scaling law for the Fourier head. This result quantifies the
trade-off between modeling capacity and smoothness as the number of frequencies increases. In or-
der to prove this, we assume that the underlying function being learned is at least twice continuously
differentiable, which implies that the Fourier coefficients corresponding to the k-th frequency of fx
are in O(1/k2) (Stein & Shakarchi, 2003, Ch.2, Cor. 2.4). Thus, our assumption that the Fourier
coefficients decay quadratically is reasonable, and our Fourier quadratic weight decay regularization
helps ensure that this condition is met in practice as well.
Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output
dimension m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn,
and denote by fx : [−1, 1] → R the optimal conditional distribution that we would like
the Fourier head to approximate for this input. We assume that fx is twice continuously
differentiable, and that its Fourier coefficients decay on the order of 1/k2. Denote by fx,N
the truncation of fx to its first N frequencies, and denote by y(N) a discretized version of
fx,N into m bins. Then, there exist constants C1, C2 > 0 such that

s(y(N)) ≈
√
mC1 −

√
mC2

N3
+O(1/N4). (3.3)

Proof. We first prove part (2). Let bj = −1 + 2j+1
m , 0 ≤ j < m be the center points of the m bins

in (−1, 1). Let aj(x) ∈ C,−N ≤ j ≤ N denote the the Fourier coefficients of fx corresponding to
the first N frequencies. In other words,

fx,N (y) =

N∑
j=−N

aj(x)e
πijy (A.1)

is the function the Fourier head is learning. By our assumption, there exists a constant cx such that
|ak(x)| ≈ cx/k

2. We want to study

s(y(N)) =

∞∑
σ=1

ασ

m−1∑
j=0

|(fx,N − gσ ∗ fx,N )(bj)|2
1/2

. (A.2)

Let dj(x) be the Discrete Fourier transform of (fx,N −gσ ∗fx,N )(bj) for 0 ≤ j < m. By Parseval’s
Theorem for the DFT, we have

m−1∑
j=0

|(fx,N − gσ ∗ fx,N )(bj)|2 =
1

m

m−1∑
k=0

|dk(x)|2 . (A.3)

Since fx is supported only on (−1, 1), the convolution gσ ∗ fx,N is the same as (gσI(−1,1)) ∗ fx,N ,
where I(−1,1) is the indicator function for (−1, 1). Treating gσI(−1,1) as a function on (−1, 1), let
hσ,n be the Fourier coefficients of gσI(−1,1). Note that by the Convolution Theorem, we have

(fx,N − gσ ∗ fx,N )(bn) =

N∑
j=−N

aj(x)(1− hσ,j) · eπijbn . (A.4)
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Thus, using the definition of DFT along with Equation A.4, we get

dk(x) =

m−1∑
n=0

(fx,N − gσ ∗ fx,N )(bn) · e−2πikn/m (A.5)

=

m−1∑
n=0

N∑
j=−N

aj(x)(1− hσ,j)e
πijbn · e−2πikn/m (A.6)

=

N∑
j=−N

aj(x)(1− hσ,j)

m−1∑
n=0

eπij(−1+ 2n+1
m ) · e−2πikn/m (A.7)

=

N∑
j=−N

aj(x)(1− hσ,j)e
πij(1−1/m)

m−1∑
n=0

e2πi(j−k)n/m. (A.8)

Note that
m−1∑
n=0

e2πi(j−k)n/m =

{
0 if j ̸≡ k (mod m)

m else.
(A.9)

We therefore have

dk(x) =


m · ak(x)(1− hσ,k)e

πik(1−1/m) if 0 ≤ k ≤ N

m · ak−m(1− hσ,k−m)eπi(k−m)(1−1/m) if m−N ≤ k ≤ m− 1

0 otherwise.
(A.10)

Using this in A.3, we obtain
m−1∑
j=0

|(fx,N − gσ ∗ fx,N )(bj)|2 =
1

m

N∑
k=0

∣∣∣m · ak(x)(1− hσ,k)e
πik(1−1/m)

∣∣∣2 (A.11)

+
1

m

m−1∑
k=m−N

∣∣∣m · ak−m(1− hσ,k−m)eπi(k−m)(1−1/m)
∣∣∣2
(A.12)

= m

N∑
k=0

|ak(x)(1− hσ,k)|2 +m

m−1∑
k=m−N

|ak−m(1− hσ,k−m)|2 ,

(A.13)

where in the last step we used that
∣∣eπik(1−1/m)

∣∣ = 1 =
∣∣eπi(k−m)(1−1/m)

∣∣ since they are both
complex exponentials. Now, since gσI(−1,1) is a real and even function, we know that hσ,k is
real. Further, since the truncated Gaussian gσI(−1,1) is infinitely differentiable, we also know that
hσ,k = O(1/k2). Thus, using that |ak(x)| ∼ cx/k

2, we see

|ak(x)(1− hσ,k)|2 = |ak(x)|2 (1− 2hσ,k(x) + h2
σ,k) ∼

c2x
k4

+O(1/k6) +O(1/k8). (A.14)

From A.14, it is clear that since we are interested in only the dominant asymptotic, we can safely
ignore the higher order terms coming from the hσ,k. As a result,

m−1∑
j=0

|(fx,N − gσ ∗ fx,N )(bj)|2 ≈ ma0(x)
2 +m

N∑
k=1

c2x
k4

+m

m−1∑
k=m−N

c2x
(k −m)4

(A.15)

= ma0(x)
2 +m

N∑
k=1

c2x
k4

+m

−1∑
k=−N

c2x
k4

(A.16)

= ma0(x)
2 +m

N∑
k=1

c2x
k4

+m

N∑
k=1

c2x
k4

(A.17)

= ma0(x)
2 + 2m

N∑
k=1

c2x
k4

. (A.18)
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We can approximate the dominant terms of the sum using an integral:
N∑

k=1

1

k4
=

∫ N

1

1

x4
dx+

1

2

(
1 +

1

N4

)
+O(1/N4) =

1

3

(
1− 1

N3

)
+

1

2

(
1 +

1

N4

)
+O(1/N4).

(A.19)

Substituting the estimate into A.18, we obtain
m−1∑
j=0

|(fx,N − gσ ∗ fx,N )(bj)|2 ≈ m

(
C2(x)− 2c2x

3N3
+O(1/N4)

)
, (A.20)

where C(x) =
√
a0(x)2 +

5
3c

2
x is a constant depending upon x.

Using the Taylor expansion (1 + x)1/2 = 1 + x
2 +O(x2) about 0 and using that N ≫ 1,(

mC2(x)− 2m

3N3
+mO(1/N4)

)1/2

≈
√
mC(x)

(
1− 2c2x

3C(x)N3
+O(1/N4)

)1/2

(A.21)

= mC(x)

(
1− 1

2
· 2c2x
3C(x)N3

+O(1/N4)

)
(A.22)

=
√
m

(
C(x)− c2x

3N3
+O(1/N4)

)
. (A.23)

Putting it all together in A.2, we get

s(y(N)) ≈
√
m

(
C(x)− c2x

3N3
+O(1/N4)

) ∞∑
σ=1

ασ (A.24)

=
√
m

(
C(x)− c2x

3N3
+O(1/N4)

)
, (A.25)

as claimed. This completes the proof of part (2).

The proof of part (1) is more straightforward. For any function f on [−1, 1] that is at least twice
continuously differentiable, we know that the Fourier series of f converges uniformly and absolutely
to f (Stein & Shakarchi, 2003, Ch. 2, Cor. 2.4). In other words, the function fN being learnt by
the Fourier head converges uniformly and absolutely to f , which is precisely the statement of part
(1).

B SMOOTHNESS METRIC

We will examine how the proposed smoothness metric Equation 3.1 behaves in a toy example setting
to gain intuition for its behavior. Consider a square wave, which can be expressed as an infinite sum
of odd integer harmonics that decay in amplitude proportional to their frequency:

f(x) =
4

π

∞∑
n=1,3,5,...

1

n
sin

(nπx
L

)
. (B.1)

Here, the wavelength is 2L (Weisstein, 2024).

We construct a truncated version of the square wave with a finite and fixed number of frequencies.
The waveform will slowly approach its jagged, square shape as more sine waves are added. We
frame these increasingly jagged waves as discretized multinomial densities to simulate the output of
the Fourier head. To do this, we simply set the height to zero when the wave crest becomes negative
and normalize the sum to 1. The output of this transformation for a few representative waveforms is
pictured in Figure 5.

Intuitively, the truncated square wave with a single sine wave ought to be the smoothest. Thus our
metric in this context should be smallest at that point, and increase monotonically as we add more
sine waves. The plot in 6 demonstrates that this is indeed the case.
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Figure 5: Truncated square waves framed as densities and their smoothness.

Figure 6: Values of the smoothness metric Equation 3.2 on our square-wave-like multinomials as
we increase the number of sine waves. We desire the value of this metric to be close to zero when
there are few sine waves, and be monotonically increasing with each additional wave, indicating that
adding more high frequency content results in a less smooth distribution.

Choice of L2 Distance over L1 Distance: The proposed smoothness metric Equation 3.1 permits
a general measure of discrepancy D, and we’ve chosen D to be L2 distance as indicated in 3.2. We
empirically observe that L2 distance better preserves monotonicity than the L1 for higher frequency
content, thus motivating this choice. With a sample rate of 2048Hz, the L1 distance exhibits some
undesirable warping when our square-wave multinomial uses over 80 sine waves (see Figure 7). A
Fourier head in a practical setting may possess several more than 80 frequencies; accordingly, we
favor the L2 distance as our discrepancy measure.

Alternative Notions of Smoothness: In validating our choice of smoothness metric, we compare it
to the spectral entropy (Inouye et al., 1991), which has a similar purpose in quantifying the “smooth-

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Values of the smoothness metric 3.2 on our square-wave-like multinomials as we increase
the number of sine waves. On the right, we can see that L1 as a discrepancy measure leads to
non-monotonicity, motivating our choice of L2 distance in measuring our results.

ness” of the frequency content of a signal. Spectral entropy is defined as the Shannon entropy of the
power spectral density of a sampled signal f , which is defined as follows:

H(f ;N) =
∑
n∈N

p(n) log2

(
1

p(n)

)
= −

∑
n∈N

Sn

Stotal
log2

(
Sn

Stotal

)
(B.2)

Here, N is the number of Fourier frequencies and S is the power of a frequency n ∈ N ; Sn is the
power spectrum of the nth frequency, and Stotal is the power of the signal using all N frequencies.
For some frequency at index n, Sn/Stotal is called its relative power and

∑
n∈N

Sn

Stotal
= 1 enables

us to consider each frequency’s power as a probability.

In the discrete case, the maximum entropy distribution is the uniform distribution. Thus, white
noise will have the highest spectral entropy. This has the consequence that power spectral densities
have more high frequency information will have lower entropy than that of white noise, provided
that there is a relationship between amplitude and frequency. More concretely, blue noise, which is
defined by the amplitude increasing proportionally to the frequency, will have lower spectral entropy
than white noise. We sought a metric that always quantified ‘sharper’ signals like blue noise as less
smooth. In Table 4, we frame sampled noises of different types as multinomial distributions to
match our model setting by normalizing their amplitudes to be in [0, 1] and normalizing their sum to
1. Our noise types are defined before normalization, in order of smoothest to sharpest:

• Brown: S ∝ 1
F 2

• Pink: S ∝ 1
F

• White: S ∼ N (0, 1)

• Blue: S ∝ F

where S is the power density and F is the frequency. To obtain samples of each type, we first
generate white noise. We do this by sampling a Gaussian with mean 0 and standard deviation 1
to obtain amplitudes for t samples. We then apply the Fourier transform, and multiply (or divide)
the amplitudes of each component by their frequency, and apply the inverse Fourier transform to
recover the waveform. Finally we adjust the range of amplitudes of the signal to be within [0, 1] and
normalize the sum to 1.

C TOY EXAMPLE DETAILS

Here we provide full details of the datasets used in our toy example of learning a known conditional
distribution.
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Discrepancy Noise Mean ± Std. Deviation Diff Delta Desired Delta
L2 Brown 0.0003 ± 0.0001 n/a n/a n/a
L2 Pink 0.0017 ± 0.0002 0.0014 + +
L2 White 0.0034 ± 0.0003 0.0016 + +
L2 Blue 0.0038 ± 0.0003 0.0005 + +
Spectral Entropy Brown 0.4516 ± 0.0894 n/a n/a n/a
Spectral Entropy Pink 0.3878 ± 0.0603 -0.0638 - +
Spectral Entropy White 0.4266 ± 0.0614 0.0388 + +
Spectral Entropy Blue 0.4191 ± 0.0583 -0.0076 - +

Table 4: Smoothness measurements for four types of noise bootstrap aggregated over 1,000 trials.
The color red emphasizes how the value of Spectral Entropy is undesirably not monotonic increasing
for what we consider increasingly “sharp” noise types.

Dataset: We create a synthetic dataset D = {(q(x), q(y), q(z))} ⊂ R3 as follows. Fix a probability
distribution P1 = P1(x) that is parameterized by one variable and a second distribution P2 =
P2(x, y) parameterized by two variables. Fix an interval I ⊂ R. Sample x uniformly from I ,
sample y ∼ P1(x), and finally sample z ∼ P2(x, y). We can repeat this sampling procedure N
times to obtain a set of N triples for which we know the conditional distribution of z given x and
y. Finally, we quantize this set to a fixed number of uniformly spaced bins in the range [−1, 1] to
obtain the dataset DP1,P2

. We will denote the quantization of z by q(z). We quantize into 50 bins
and our dataset has size 5000, with a 80-20 split between the train and test set. We describe three
choices for the distributions we used to create our datasets. We fix I = [−0.8, 0.8] and σ2 = 0.01
in all of them.

1. Gaussian dataset: P1(x) = N (x, σ2), and P2(x, y) = N (y, σ2).

2. GMM-2 dataset: P1 = Uniform(I), and P2(x, y) is a GMM centered at x and y with
variance σ2.

3. Beta dataset: P1(x) = N (x, σ2), and P2(x, y) ∼ U({±1}) × Beta(100 |x| , 100 |y|),
where U({±1}) denotes the Rademacher distribution supported on {±1} with probability
1/2 each.

Additional results: In Figure 8, we present results from training over a range of frequencies, and for
each frequency we ran experiments with and without Fourier regularization. In Table 6 we present
results on the MSE metric, that show that the Fourier head outperforms the linear classification head.

KL Divergence (↓)
Dataset Linear GMM Fourier
Gaussian 0.170 ± 0.052 0.026 ± 0.011 0.116 ± 0.043
GMM-2 0.238 ± 0.032 0.030 ± 0.006 0.146 ± 0.033
Beta 0.234 ± 0.032 0.407 ± 0.012 0.191 ± 0.016

Smoothness (↓)
Dataset Linear GMM Fourier
Gaussian 0.116 ± 0.049 0.068 ± 0.012 0.057 ± 0.011
GMM-2 0.068 ± 0.022 0.043 ± 0.009 0.038 ± 0.007
Beta 0.127 ± 0.044 0.061 ± 0.003 0.076 ± 0.021

Table 5: KL divergence and Smoothness for the three classification heads (Linear, GMM, and
Fourier) on each of the three synthetic datasets (Gaussian, GMM-2, Beta). As expected, the GMM
head achieves the best KL divergence on the Gaussian and GMM-2 datasets, as their conditional dis-
tributions are Gaussian. However, the Fourier head has the best KL divergence on the Beta dataset.
This demonstrates the flexibility of the Fourier head in modeling non-Gaussian distributions as well.
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Figure 8: We study how the quantity of Fourier frequencies impacts KL divergence and smoothness
for the toy example on each dataset. For both KL divergence and smoothness, lower is better. We
observe that the Fourier models with and without regularization performed similarly to each other,
and outperformed the linear baseline. We also note that the 50% error bars are larger for the linear
baseline model; this indicates that the Fourier models (both with and without regularization) are in
general more stable. This is in contrast to our large scale time series forecasting experiments, where
we find that regularization helps; this is likely because those experiments use an order of magnitude
more frequencies, and their conditional distributions are more complicated. While the GMM head
has better KL divergence on the Gaussian and GMM-2 datasets, which is to be expected, the Fourier
model (both with and without regularization) eventually has the best KL divergence on the Beta
dataset, since it is non-Gaussian. Notice also how on each of the datasets, the smoothness degrades
as frequency increases, in a fashion that follows the asymptotic from our Theorem 3.3.

Toy Example: MSE (↓)

Classification Head
Dataset Pointwise Regression Linear GMM Fourier
Gaussian 0.010 ± 0.001 0.013 ± 0.001 0.010 ± 0.001 0.012 ± 0.001
GMM-2 0.121 ± 0.004 0.126 ± 0.004 0.120 ± 0.004 0.123 ± 0.005
Beta 0.275 ± 0.009 0.276 ± 0.008 0.273 ± 0.009 0.275 ± 0.008

Table 6: We compare the MSE between the linear head, GMM head, and the Fourier head with 12
frequencies and no regularization, for every dataset in the toy example. We also include a Pointwise
Regression model baseline, whose base architecture is same as the classification heads, except the
last classification layer is replaced with a dense layer having output dimension 1. We train the
Pointwise Regression model using MSE. For a given dataset, the MSE values across all of the
models is roughly similar. This is because the pointwise regression model tends to regress to the
mean, as does the expected value of each of the classification heads.

D ADDITIONAL DECISION TRANSFORMER EXPERIMENT DETAILS

Following the original Decision Transformer implementation, we trained on 500k transitions ob-
served by a DQN agent during training, for 5 epochs. We trained on the same model size as the
original implementation (a GPT-1 model with approximately 2.012M parameters) which takes about
4 hours on a single GPU. We can see that in Figure 12 that the PMFs learned by the Fourier head
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Toy Example: Ground Truth Conditional Distribution vs. Pointwise Regression Output

Figure 9: We present some examples of the ground truth conditional distribution versus the point
predicted by the Pointwise Regression model. The regression model simply regresses to the mean
of the conditional distribution. Accordingly, the regression model performs extremely well for the
unimodal Gaussian dataset, and it performs poorly for the bimodal datasets GMM-2 and Beta.

are smoother. In Figure 13 we present results for more Atari games. In Figure 10, we present results
from an ablation study of the model size. The results demonstrate that, across model sizes, the Deci-
sion Transformer with a Fourier head is better at learning high-quality next action distributions than
the Decision Transformer with a linear head. And in Figure 11, we present results from an ablation
study of the dataset size, which show that the Fourier head obtains larger returns than the Linear
classification head across dataset sizes.

Figure 10: We present an ablation study on the effect of the model size on the relative performance of
the Fourier head and the Linear head. The results demonstrate that, across model sizes, the Decision
Transformer with a Fourier head is better at learning high-quality next action distributions than the
Decision Transformer with a linear head.

E ADDITIONAL CHRONOS EXPERIMENT DETAILS

In Figure 14 we present a learned next-token PMF from a linear Chronos model, and a next-token
PMF from a Chronos model which uses the linear head. The Fourier head is about 4x smoother.
In Table 7 we present results from an ablation study on the choice of regularization, and binning
strategy. We followed the original Chronos implementation, keeping all hyperparameters the same.
In particular, we trained for 200k steps, on the same model size as the original implementation
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Fourier Head Ablation Study: Dataset Size

Figure 11: In this ablation study, we analyze whether dataset size has any effect on the relative
performance of the Linear head and the Fourier head. Our results show that, across dataset sizes, the
Decision Transformer agent with a Fourier head achieves larger returns than the linear head.

Figure 12: We present example next action distributions for a single step in the Decision Trans-
former. We can see that the Fourier agent with 14 frequenices produces “clumps” of actions that are
semantically meaningful; for example, this agent either wants to move down right, down, or down
left, or else the agent wants to shoot down right, down, or down left, presumably because they need
to move in that general direction to rescue a diver in that direction but there are submarines in the
way. In contrast, there is no indication that the linear agent has learned a cohestive strategy which
relates moving and shooting.

(the T5 model with approximately 20M parameters) and this takes about 48 hours on 8 GPUs. See
Table 8 for the datasets we used to train and evaluate Chronos.

Chronos Time Series Model MASE ↓ WQL ↓ Smoothness ↓
Fourier-550 0.852 0.749 0.0203 ± 0.0176
Fourier-550 (no regularization) 0.861 0.753 0.0204 ± 0.0172
Fourier-550 (uniform precision binning) 0.873 0.747 0.0292 ± 0.0205

Table 7: We present large-scale ablations on Chronos time series forecasting. The best overall
performing Fourier-550 model uses Fourier regularization and mixed precision binning, which are
both techniques informed by Fourier analysis. We observe that both of these interventions improve
the MASE, but have minimal effect on the WQL. We note that the choice of binning strategy doesn’t
affect the performance of the linear baseline.
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Figure 13: We present empirical results for how the quantity of Fourier frequencies impacts returns
and smoothness for additional imitation learning games. For normalized returns, higher is better; for
smoothness, lower is better. We can see that for the BankHeist, DoubleDunk, and Gravitar games,
the Fourier agent consistently achieves higher normalized returns than the linear baseline agent,
while still learning smoother next-action distributions.

Figure 14: We present the next token value distribution for a single forecasted timestep on the
Tourism Monthly dataset. We observe that the Fourier head’s learned conditional distribution is
smoother, fitting signal more robustly, whereas the linear head overfits to the noise, and is therefore
more jagged. We note that the x-axis represents the bins in the latent space [−1, 1]; the x-axis values
for the Fourier head are lower because the linear head uses uniform binning, and the Fourier head
uses mixed precision binning.
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Table 8: All datasets that are used for our time series forecasting experiments. We built our time
series forecasting experiments on top of Chronos (Ansari et al., 2024), and this table is mostly
copied from their paper. The datasets are partitioned according to how they are used for training and
evaluation of models: pretraining-only data is only used for training; evaluation data is not used in
training models, but only for evaluation (final H observations). All of our evaluation datasets came
from the zero-shot evaluation set from Chronos.

Dataset Domain Freq. # Series Series Length Prediction
min avg max Length (H)

Pretraining
Brazilian Cities Temperature nature M 12 492 757 1320 -
Mexico City Bikes transport 1H 494 780 78313 104449 -
Solar (5 Min.) energy 5min 5166 105120 105120 105120 -
Solar (Hourly) energy 1H 5166 8760 8760 8760 -
Spanish Energy and Weather energy 1H 66 35064 35064 35064 -
Taxi (Hourly) transport 1H 2428 734 739 744 -
USHCN nature 1D 6090 5906 38653 59283 -
Weatherbench (Daily) nature 1D 225280 14609 14609 14610 -
Weatherbench (Hourly) nature 1H 225280 350633 350639 350640 -
Weatherbench (Weekly) nature 1W 225280 2087 2087 2087 -
Wiki Daily (100k) web 1D 100000 2741 2741 2741 -
Wind Farms (Daily) energy 1D 337 71 354 366 -
Wind Farms (Hourly) energy 1H 337 1715 8514 8784 -

Evaluation
Australian Electricity energy 30min 5 230736 231052 232272 48
CIF 2016 banking 1M 72 28 98 120 12
Car Parts retail 1M 2674 51 51 51 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M4 (Quarterly) various 3M 24000 24 100 874 8
M4 (Yearly) various 1Y 23000 19 37 841 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4
Traffic transport 1H 862 17544 17544 17544 24
Weather nature 1D 3010 1332 14296 65981 30
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