
Under review as submission to TMLR

Gaussian mixture layers for neural networks

Anonymous authors
Paper under double-blind review

Abstract

The mean-field theory for two-layer neural networks considers infinitely wide networks
that are linearly parameterized by a probability measure over the parameter space. This
nonparametric perspective has significantly advanced both the theoretical and conceptual
understanding of neural networks, with substantial efforts made to validate its applicability
to networks of moderate width. In this work, we explore the opposite direction, investigating
whether dynamics can be directly implemented over probability measures. Specifically, we
employ Gaussian mixture models as a flexible and expressive parametric family of distributions
together with the theory of Wasserstein gradient flows to derive training dynamics for such
measures. Our approach introduces a new type of layer—the Gaussian mixture (GM) layer—
that can be integrated into neural network architectures. As a proof of concept, we validate
our proposal through experiments on simple classification tasks, where a GM layer achieves
test performance comparable to that of a two-layer fully connected network. Furthermore,
we examine the behavior of these dynamics and demonstrate numerically that GM layers
exhibit markedly different behavior compared to classical fully connected layers, even when
the latter are large enough to be considered in the mean-field regime.

1 Introduction

Deep learning architectures are compositions of basic trainable layers, and many major milestones of
deep learning models can be traced back to innovations for these fundamental components. For example,
convolutional neural networks are based on convolution layers and pooling layers; residual neural networks
are based on layers with skip connections (He et al., 2016); and more recently, the striking feats of large
language models stem from the use of attention layers (Vaswani et al., 2017). Yet without guiding principles
to map out the potential design space, the development of successful new layers has been largely elusive.

Whereas the vast majority of works on the theory of deep learning focus on understanding and explaining the
behavior of existing architectures, in this paper we take the approach of applying the theory to propose new
ones. In particular, we incorporate insights from the recent literature on the mean-field theory for neural
networks (Chizat & Bach, 2018; Mei et al., 2018; 2019; Sirignano & Spiliopoulos, 2020; Chizat, 2022; Nitanda
et al., 2022; Rotskoff & Vanden-Eijnden, 2022) in order to propose a new type of layer, which we call the
Gaussian mixture (GM) layer.

According to mean-field theory, which we briefly review in Section 2, the training dynamics of a fully connected
2-layer neural network converges, under a natural scaling and in the limit of infinite width, to a Wasserstein
gradient flow in the space of probability measures. Here, the probability measure represents the distribution
of weights in the fully connected layer and thereby shifts our perspective from the evolution of individual
neurons to the evolution of the collection thereof. This framework has been successful at making nuanced
and verifiable predictions about the training of certain simple neural networks (Mei et al., 2018; Abbe et al.,
2023; Berthier et al., 2024), but thus far the mean-field limit has mostly been used as a tool for analysis.
Indeed, it is not practical to actually implement the Wasserstein gradient flow, since doing so would require
prohibitively large widths.

In this work, we explore the consequences of a prescriptive mean-field rather than a descriptive one. This
proposal results in manipulating infinite dimensional objects—distributions over Rd— and to implement it,

1

Under review as submission to TMLR

we restrict the distribution over weights to a parametric Gaussian mixture whose parameters are trained via
standard optimization routines. The use of mixture modelling can also be motivated on grounds of clustering
phenomena for neurons but we do not explore this question here.

Although our GM layer is proposed as a replacement for a wide fully connected layer, the parametrization and
restriction of the distribution of neurons to the class of finite Gaussian mixtures leads to markedly different
training dynamics. We demonstrate this behavior through numerical experiments in Section 5 on the MNIST
database, which also serve as a proof of concept for the incorporation of GM layers into neural network
architecture design. Our initial results are promising and show that a GM layer attains comparable test
performance to a 2-layer fully connected network. However, we stress that our goal is not to demonstrate
superiority of the GM layer over existing architectures which would necessitate going beyond the simple
two-layer architecture for which the mean-field theory applies. As a result, while we demonstrate that the
GM layer is modular and can be integrated into deep architectures, we leave a detailed investigation to future
research as it would require substantial engineering developments that are beyond the scope of this proposal.

Contributions. Our primary contribution is our Gaussian layer proposal, which we detail in Section 3.
We also show that whereas the Wasserstein gradient flow over empirical measures is implemented via the
Euclidean gradient flow over the locations, the gradient flow over Gaussian mixtures—equipped with a certain
natural geometry—is implemented via the Euclidean gradient flow over the means and the square roots of the
covariances (Theorem 1).

In Section 4, we suggest an efficient parametrization scheme to speed up implementation.

We conduct numerical experiments in Section 5 on the MNIST and Fashion-MNIST datasets, which serve as
a proof of concept and provide some insights into the training dynamics of GM layers. First, we show that
GM layers can achieve comparable performance as a 2-layer fully connected network. This is despite the fact
that the two exhibit quite different training dynamics (see Figure 4).

We also check that GM layers exhibit “feature learning”—as is expected in the mean-field regime—in the
sense that the distribution over first layer weights moves substantially away from initialization. Finally, we
exhibit performance gains obtained by going deeper (i.e., composing multiple GM layers).

Other related work. In recent years, Wasserstein gradient flows have been applied to numerous probabilistic
problems, such as sampling and variational inference. A common bottleneck for these applications is
implementation of the flow, which can be achieved via stochastic dynamics in the case of sampling (Jordan
et al., 1998) but remains challenging in general. The mean-field theory reviewed in Section 2 shows that
the empirical distributions of the weights of a neural network along training indeed follow a Wasserstein
gradient flow, but our goal in this work to maintain an evolution of a continuous distribution over the weights.
The strategy we take here is to restrict the gradient flow to a parametric family, which was introduced in
the context of variational inference for the family of Gaussians or mixtures of Gaussians (Lambert et al.,
2022; Diao et al., 2023) and later applied to filtering (Lambert et al., 2023) and mean-field variational
inference (Ghosh et al., 2022; Jiang et al., 2023; Lacker, 2023; Yao & Yang, 2023).

2 Review of mean-field theory

We briefly review the mean-field theory for 2-layer fully connected neural networks. A width-m neural network
computes a function hω,β : Rd → R of the form

hω,β(x) = 1
m

m∑
j=1

ωj (⟨βj , x⟩) ,

where : R → R is the activation function—taken to be the ReLU function (z) = max(0, z) for the rest
of this paper—and (ωj , βj) ∈ R×Rd are trainable weights, for each neuron j ∈ [m]. Here and throughout, we
use boldface to denote a collection of parameters. The 1/m scaling above is characteristic of the mean-field
regime and enable the following perspective. Let ρ(m) denote the empirical distribution of the weights,
ρ(m) = m−1∑m

j=1 δ(ωj ,βj), then we can write hω,β(x) =
∫

ω (⟨β, x⟩) ρ(m)(dω, dβ). In this formulation,

2

Under review as submission to TMLR

however, we can make sense of this expression even when ρ(m) is no longer an empirical measure, and we can
view h as being parameterized by a probability measure ρ:

hρ(x) =
∫

ω (⟨β, x⟩) ρ(dω, dβ) . (1)

Consider a loss1 objective L and minimize the objective L (hω,β) by following the gradient flow for the
weights {ωj , βj}j∈[m]. This gives rise to a curve of parameters (ω(t), β(t))t≥0, and corresponding empirical
measures ρ(m)(t) = m−1∑m

j=1 δ(ωj(t),βj(t)). The insight of mean-field theory is that the evolution of the
empirical measures can be described as the (time-rescaled) gradient flow of the loss function ρ 7→ L (hρ) over
the space of probability measures, equipped with the Wasserstein metric from optimal transport, initialized
at ρ(m)(0). We refer to Villani (2003); Ambrosio et al. (2008); Villani (2009); Santambrogio (2015) for
background on optimal transport and Wasserstein gradient flows.

The advantage of this reformulation is that it admits a well-defined limit as m → ∞: if ρ(m)(0) → ρ(0), then
the curve of measures (ρ(m)(t))t≥0 converges to the Wasserstein gradient flow of ρ 7→ L (hρ), initialized at
ρ(0). This mean-field limit is, in some cases, easier to study than the original dynamics over the weights, and
leads to predictions about the behavior of wide neural networks.

To summarize: the training dynamics of a finite-width neural network correspond to a Wasserstein gradient
flow, initialized at (and remaining through its trajectory) an empirical measure, but the Wasserstein gradient
flow picture is more general because it allows for flows of continuous measures. Unfortunately, in the latter
case, the Wasserstein gradient flow does not readily lend itself to tractable implementation. The mean-field
theory described above shows that it is well-approximated by a gradient flow started at an empirical measure,
but this approximation often requires prohibitively large width. In the next section, we take the familiar
approach from statistics of restricting the measures to a parametric family, namely, the set of finite Gaussian
mixtures.

3 A mean-field theory over the space of Gaussian mixtures

We now introduce the Gaussian Mixture (GM) layer, beginning with the case of a single GM layer (corre-
sponding with the mean-field theory described in Section 2). Here, we restrict the measure ρ in (1) to be a
Gaussian mixture with K components:

ρ = ρµ,Σ := 1
K

K∑
k=1

N (µk, Σk) , µk ∈ Rd+1 , Σk ∈ R(d+1)×(d+1) . (2)

Thus, the measure ρ is now parameterized by a set of means and covariances for the components of the
Gaussian mixture. We use the short-hand notation hµ,Σ := hρµ,Σ . With this restriction, we can now train the
GM layer by minimizing L (hµ,Σ) with respect to the parameters (µ, Σ). For example, in a regression task
with a labeled dataset {xi, yi}i∈[n], we might take the squared loss defined by L (h) :=

∑n
i=1(yi − h(xi))2.

The use of mixture modelling to model the distribution over neurons is motivated by the empirical observation
that for many problems, the neurons tend to cluster (e.g., Papyan et al., 2020; Chen et al., 2023). Given this
ansatz, the use of Gaussian mixtures emerges as a natural model for ρ, although other alternatives could be
explored.

As discussed in Section 2, it is well-known from mean-field theory that the Wasserstein gradient flow restricted
to empirical measures is implemented, up to time rescaling, by the Euclidean gradient flow with respect
to the locations of the particles. When we move to Gaussian mixtures, we effectively replace the particles
θj = (ωj , βj) with “Gaussian particles” N (µk, Σk), which are themselves distributions over θ but can be
viewed simply as (µk, Σk) pairs. In the case K = 1 of a single Gaussian particle, it turns out that the
Wasserstein gradient flow restricted to Gaussian measures is implemented simply by evolving the parameters
(µ, C) via the (Euclidean) gradient flow, where Σ = CC⊤. This is usually known as the Bures–Wasserstein
gradient flow (see Appendix A).

1The loss typically depends on a training set, but this is irrelevant for our discussion here so it is omitted.

3

Under review as submission to TMLR

In the case K ≥ 2, it is no longer possible to follow the Wasserstein gradient flow restricted to Gaussian
mixtures. Indeed, the latter is not explicit, since the space of Gaussian mixtures is not a geodesically convex
subset of the Wasserstein space. However, we can instead follow a Wasserstein gradient flow for the mixing
measure ν := 1

K

∑K
k=1 δ(µk,Σk) over the Bures–Wasserstein space, see Appendix A for details. This geometric

structure was previously introduced in Chen et al. (2019); Delon & Desolneux (2020) and further exploited
in Lambert et al. (2022) in the context of variational inference. We prove that this flow does admit a simple
implementation.
Theorem 1 (Informal). Let L be a loss function over the space of probability measures. Then, the Gaussian
mixture gradient flow for L is equivalent to the Euclidean gradient flow of the objective L(hµ,Σ) with respect
to the parameters (µ, C), where Σk = CkC⊤

k for each k ∈ [K].

In other words, compared to ordinary neural networks, training GM layers is accomplished by simply
incorporating gradient steps for the square roots of the covariances.

4 Implementation

In this section, we enhance the flexibility and tractability of GM layers by allowing for vector-valued outputs
(needed for multi-class classification), reduced parametrization, and composition.

4.1 Multi-class classification and vector-valued outputs

Consider a multi-class classification problem with L + 1 labels denoted {0, . . . , L}. Suppose we are given a
dataset {xi, yi}i∈[n], where each xi ∈ Rd and yi ∈ {0, 1, . . . , L}. It suffices to describe how to parameterize a
vector-valued function h : Rd → RL, since we can then apply the logistic loss

L (h) := −
n∑

i=1

{ L∑
ℓ=1

h(xi)ℓ1yi=ℓ − log
(
1 +

L∑
ℓ=1

exp(h(xi)ℓ)
)}

.

The most straightforward way to parameterize the function h : Rd → RL is via (1) and (2), where now
(ω, β) ∈ RL × Rd, i.e., the Gaussian mixture ρµ,Σ is a distribution over Rd+L. In other words,

hµ,Σ(x) = K−1
∑

k∈[K]

E(ω,β)∼N (µk,Σk)[ω (⟨β, x⟩)] . (3)

However, the number of parameters becomes Θ((d + L)2 K), which is prohibitively large.

4.2 Reducing the number of parameters

To reduce the number of parameters, we propose to incorporate sparsity into the model by considering only
diagonal covariance matrices for β: β ∼ N (µβ , diag(σ2)) where diag(σ2) is a diagonal matrix whose entries
are given by the vector σ2 = σ ⊙ σ ∈ Rd. Moreover, for jointly Gaussian (ω, β), the conditional mean of ω
given β is affine: E[ω | β] = Uβ + v. Since (3) only requires to know the conditional expectation E[ω | β], we
model each component of the Gaussian mixture as

β ∼ N (µβ , diag(σ2)) , E[ω | β] = Uβ + v .

The trainable parameters for such a component are µβ ∈ Rd, σ ∈ Rd, U ∈ RL×d, and v ∈ RL. Hence, the
parameters for the full Gaussian mixture are θ := (µβ , σ, U , v) = {(µβ

k , σk, Uk, vk)}k∈[K]. This leads to

hθ(x) = K−1
∑

k∈[K]

Eβ∼N (µβ
k

,diag(σ2
k

))[(Uβ + v) (⟨β, x⟩)] . (4)

This use of (4) cuts down the number of parameters to Θ(dKL), a substantial savings when L ≪ d
(as is typical). An additional benefit is that parametrization by σ automatically maintains the positive
semidefiniteness of the covariances during training, without recourse to costly projection steps.

4

Under review as submission to TMLR

To summarize, for multi-class classification, we train the parameters θ via an optimization algorithm (in our
experiments, we use vanilla stochastic gradient descent) on the objective L (hθ), where L is the multi-class
logistic loss and hθ is given in (4).

4.3 Stacking GM layers

In the previous subsection, we showed how to parameterize a function h : Rd → RL as a GM layer. Since the
input and output dimensions are arbitrary, this construction can be readily composed with other types of
layers—including GM layers themselves—in order to build up deep neural network architectures. Indeed, as
depicted in Figure 1, the GM layer can be dropped in as a replacement for an (infinitely wide) fully connected
layer.

We leave the question of designing and optimizing deep architectures that integrate the GM layer to future
research. Instead, we focus on a single GM layer, and call it a GM network.

x

· · ·(β⊤
1 x) (β⊤

mx)

h1(x) · · · hL(x)

β1 βm

ω1,1 ωL,m ∫
ωℓ (β⊤x) ρ(dω, dβ) (1 ≤ ℓ ≤ L)

x

ρ

Figure 1: A GM layer (right) can act as a replacement for a fully connected layer (left).

5 Experiments

Dataset. We test the performance of neural networks with GM layers on multi-class classification on two
widely used datasets: MNIST (LeCun & Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017). Both datasets
consist of 60,000 training examples and 10,000 test examples, where each example is a 28 × 28 grayscale
image, associated with a label from one of 10 classes. Each image is vectorized and normalized to have zero
mean and unit standard deviation. Throughout this section, test error refers to the misclassification error
evaluated over the test set.

Setup. The number of components K is a hyperparameter: larger K enables more expressive GM layers,
while smaller K speeds up computation. We consider K ∈ {5, 10, 20} for different experiments. For a GM
layer with parameters µβ , σ, U , and v, we initialize the entries of µβ , U and v i.i.d. from N (0, γ2), and the
entries of σ all equal to γ, for some γ > 0. For most of the experiments we fix γ = 1/2 unless otherwise
mentioned. We train the network using SGD with batch size 64 and fixed learning rate 1 for the parameter σ
and 0.1 for all other parameters.

Test error. For both datasets, we test the performance of a network with one GM layer, where the number
of components K takes values in {5, 10, 20}. The results are presented in Figure 2. As we can see, a single
GM layer with 20 components achieves a test error of ≈ 2.77% for MNIST, and ≈ 12.13% for Fashion-MNIST.
Increasing K leads to better performance, but the marginal improvement is very small after K exceeds 10,
suggesting that in practice one may choose K between 10 and 20 to strike a balance between expressive power
and computational efficiency.

We also compare the test error of the GM network with the 2-layer fully connected network. We set the width
of the latter network m to be 1000 (in fact the test error curve is almost the same for m ∈ {100, 500, 1000},
so we just present the result for m = 1000 for simplicity). We use two different methods to initialize the

5

Under review as submission to TMLR

0 20 40 60 80 100
number of epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

te
st

 e
rro

r

MNIST
K=5
K=10
K=20

0 20 40 60 80 100
number of epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

te
st

 e
rro

r

Fashion-MNIST
K=5
K=10
K=20

Figure 2: Test error (with error bars) for a GM Network with K = 5, 10, 20 number of components vs. the
number of epochs. The left (resp. right) panel shows the result for MNIST (resp. Fashion-MNIST) dataset.
The error bars are computed over 5 independent trials.

0 20 40 60 80 100
number of epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

te
st

 e
rro

r

MNIST
NN: PyTorch default init
NN: random init from GM
GM Net: random init (= 1/2)

0 20 40 60 80 100
number of epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40
te

st
 e

rro
r

Fashion-MNIST
NN: PyTorch default init
NN: random init from GM
GMM Net: random init (= 1/2)

Figure 3: Test error (with error bars) for a 2-layer fully connected network using two different initialization
schemes vs. the number of epochs. The left (resp. right) panel shows the results for the MNIST (resp. Fashion-
MNIST) dataset. The error bars are computed over 5 independent trials.

parameters of a fully-connected layer: PyTorch’s default method (Kaiming uniform (He et al., 2015)), and
random initialization drawn i.i.d from the initial distribution we used in training the GM network with
K = 20 components (for a fair comparison with the GM network). The results are presented in Figure 3.
We can see that although in the end all curves converges to comparable test errors, the number of epochs
required to achieve low test are different: the GM network performs better than fully connected network
with random initialization, but worse than that with PyTorch’s default initialization. This observation calls
for future investigation on better initialization schemes for GM layers.

Evolution of Gaussian components. In order to visualize the evolution of the Gaussian mixture
(ρt)t≥0 during the training phase, we train the network for T = 200 epochs, compute the top 2 principal
subspace of the final Gaussian mixture distribution ρT (marginalized over β), and project the entire training
trajectory (ρt)0≤t≤T (marginalized over β) onto this 2-dimensional subspace. Figure 4 depicts the evolution
of this 2-dimensional distribution across 200 epochs for K = 5, using two types of initialization schemes
γ ∈ {1/2, 1/256}. As we can see, the means of the five Gaussian components move far away from their
initializations (even when they are initialized near zero, which is the case when γ = 1/256), and the covariance

6

Under review as submission to TMLR

10 5 0 5 10

5

0

5

10

MNIST (= 1/2)

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Fashion-MNIST (= 1/2)

6 4 2 0 2 4 6 8

6

4

2

0

2

4

6

8
MNIST (= 1/256)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

8

6

4

2

0

2

4

6

Fashion-MNIST (= 1/256)

Figure 4: The evolution of the Gaussian components (marginalized over β) and weights βj of the neurons,
projected onto the top 2 PCs of the final GM distribution, across 200 epochs of training. The number of
components for the GM net (resp. number of neurons in the 2-layer neural network) is K = 5. The projected
Gaussian components are represented by their covariance ellipses centered at their means, while the projected
weights of the neurons are depicted as dots. We use the same color for the evolution of the same Gaussian
component and neuron, with increasing opacity as the number of epochs increases. The left (resp. right) plots
show results for MNIST (resp. Fashion-MNIST), while the top (resp. bottom) plots use initialization scale
γ = 1/2 (resp. γ = 1/256).

matrices also become non-isotropic quickly. This also shows that the training dynamics of networks with GM
layers are not sensitive to initialization.

We also train a fully-connected 2-layer neural network with width m = K to compare the training dynamics
of networks with a GM layer and a fully-connected layer. To make the comparison fair, we initialize the
neurons at βk = µk and ωk = Uβk + v for 1 ≤ k ≤ K where {µk}1≤k≤K , U and v are the parameters of
the initial Gaussian mixture distribution. We train the neural network using the same SGD algorithm with
learning rate 0.1. The evolution of these neurons (projected onto the same 2-dimensional subspace) across
200 epochs is also shown in Figure 4. We can see that they exhibit drastically different training dynamics
from that of the GM network. For example, when initialized at scale γ = 1/2, the Gaussian components of
the GM layer tend to move far away from zero, while the neurons of the fully-connected layer do not exhibit
this trend.

Mean field vs. “NTK” regime. We design a simple experiment to inspect whether the training of a
network with a single GM layer is in the neural tangent kernel (NTK) a.k.a “lazy training” regime (Jacot
et al., 2018; Chizat et al., 2019; Du et al., 2019; Bartlett et al., 2021), or the mean-field regime. Indeed, since
the presence of feature learning is a powerful motivation for the mean-field regime, it is important to check
that this intuition also carries over to GM layers. Although lazy training is not formally defined for GM

7

Under review as submission to TMLR

0 2 4 6 8 10
number of epochs

0.2

0.4

0.6

0.8
te

st
 e

rro
r

MNIST
Random beta
Trained beta

0 2 4 6 8 10
number of epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 e
rro

r

Fashion-MNIST
Random beta
Trained beta

Figure 5: Test error (with error bars) for training with or without updating the marginal distribution over β
vs. the number of epochs. The left (resp. right) panel shows the result for the MNIST (resp. Fashion-MNIST)
dataset. The error bars are computed over 5 independent trials.

0 2000 4000 6000 8000 10000
number of neurons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

te
st

 e
rro

r

MNIST
Fully-Connected layer
GM layer benchmark

0 2000 4000 6000 8000 10000
number of neurons

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

te
st

 e
rro

r

Fashion-MNIST
Fully-Connected layer
GM layer benchmark

Figure 6: Test error (with error bars) for fully connected 2-layer networks constructed via subsampling
vs. width. The neurons are sampled from a trained GM layer, whose test error is also plotted as a benchmark.
The left (resp. right) panel shows the result for the MNIST (resp. Fashion-MNIST) dataset. The error bars
are computed over 5 independent trials.

layers, we can loosely take it to be the case when the distribution over the “first layer weights” β does not
significantly move away from its initialization.

We fix the marginal distribution over β at its initialization (which can be achieved by setting the learning
rates for µβ and σ to be 0) and only update U and v for each Gaussian component. Figure 5 compares the
performance of training the network with fixed β vs. the network with trained β. If we fix the marginal
distribution over β, the trained network can only achieve a test error of ≈ 40% for both the MNIST and
Fashion-MNIST datasets. This suggests that “feature learning” is indeed crucial for the performance of GM
layers.

Monte Carlo reduction to fully connected layers. After training a network with a GM layer, which
gives a distribution jointly over (ω, β), one natural question is whether it is possible to construct a fully
connected 2-layer network with similar performance by sampling a reasonable number of neurons from this
Gaussian mixture distribution. To answer this question, we first train a network with a GM layer with K = 20

8

Under review as submission to TMLR

0 2 4 6 8 10
number of epochs

0.2

0.4

0.6

0.8
te

st
 e

rro
r

MNIST
one GM layer
two GM layers

0 2 4 6 8 10
number of epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 e
rro

r

Fashion-MNIST
one GM layer
two GM layers

Figure 7: Test error (with error bars) for networks with one or two GM layers vs. the number of epochs. The
left (resp. right) panel shows the result for the MNIST (resp. Fashion-MNIST) dataset. The error bars are
computed over 5 independent trials.

components and 20 epochs on MNIST. Then we construct fully connected 2-layer networks by sampling m
neurons (i.e., (ω, β) pairs) from the trained Gaussian mixture distribution, and evaluate their test errors
without training. The results reported in in Figure 6 are indicating of the classical 1/

√
m convergence rate of

Monte Carlo approximation. Unfortunately, this convergence is to slow from the perspective of test error:
even for m = 104 there is still a gap between the performance of the GM network and its Monte Carlo
approximation. This is a consequence of the high-dimensional nature of the space of parameter: we sample,
on average 104/20 = 500 points per component, and this is not sufficient to estimate accurately a Gaussian
integral in dimension 28 × 28 = 784.

Stacking multiple GM layers. In the previous experiments, we used networks with a single GM layer. In
this experiment, we demonstrate that stacking GM layers can improve classification performance. Specifically,
we stack a GM layer with an input dimension of 784 and an output dimension of L′ = 100 with a second
GM layer with an input dimension of L′ = 100 and an output dimension of L = 9, both layers utilizing
K = 10 Gaussian components. This configuration yields a lower test error compared to a single GM layer
with the same number of Gaussian components, as shown in Figure 7. Our primary objective is to provide a
straightforward example illustrating the benefits of stacking multiple GM layers. We have not optimized
hyperparameters such as the number of components K and the width of the middle layer m for optimal
performance. Additionally, constructing a deeper architecture to achieve competitive performance on classic
benchmark tasks like image classification would necessitate the integration and optimization of convolutional
layers. This would shift the focus to secondary aspects that are beyond the scope of this paper.

6 Conclusion

In this paper, we have introduced GM layers as a novel layer type for neural network architectures, offering
a fresh perspective that bridges concepts from mean-field theory and variational inference. This approach
opens up a wealth of unexplored possibilities for layer design, suggesting new avenues for incorporating
diverse “variational families” to model ρ beyond Gaussian mixtures, and for optimizing with respect to various
geometries within the variational family. For instance, while our current model restricts to Gaussian mixtures
with equal weights, this limitation can be addressed by optimizing over Gaussian mixtures with unequal
weights via the Wasserstein–Fisher–Rao geometry (Liero et al., 2016; Chizat et al., 2018; Liero et al., 2018;
Lu et al., 2019; Yan et al., 2023), as demonstrated in Lambert et al. (2022, Appendix H). Such advancements
may also inspire alternatives for other types of layers, including convolutional and attention layers.

9

Under review as submission to TMLR

A notable limitation of our work is the preliminary nature of our experiments. Further empirical investigation
is required to refine our design choices and compare them with existing architectures. For example, the sparse
parametrization in Subsection 4.2 is quite drastic, suggesting the need to explore alternatives like low-rank
factorization of the covariance matrix. Moreover, developing effective initialization and training strategies for
GM layers remains an open question. We anticipate that addressing these challenges will pave the way for
more robust and versatile neural network architectures in the future.

References
Emmanuel Abbe, Enric Boix-Adserà, and Theodor Misiakiewicz. SGD learning on neural networks: leap

complexity and saddle-to-saddle dynamics. In Gergely Neu and Lorenzo Rosasco (eds.), Proceedings of
Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pp.
2552–2623. PMLR, 7 2023.

Jason M. Altschuler, Sinho Chewi, Patrik R. Gerber, and Austin J. Stromme. Averaging on the Bures–
Wasserstein manifold: dimension-free convergence of gradient descent. Advances in Neural Information
Processing Systems, 34:22132–22145, 2021.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint. Acta
Numer., 30:87–201, 2021.

Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural networks.
arXiv preprint 2303.00055, 2024.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures–Wasserstein distance between positive definite
matrices. Expo. Math., 37(2):165–191, 2019.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Math. Program., 95(2):329–357, 2003. Computational semidefinite
and second order cone programming: the state of the art.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: how gradient noise
attracts SGD dynamics towards simpler subnetworks. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
35027–35063. Curran Associates, Inc., 2023.

Yongxin Chen, Tryphon T. Georgiou, and Allen Tannenbaum. Optimal transport for Gaussian mixture
models. IEEE Access, 7:6269–6278, 2019.

Lénaïc Chizat. Mean-field Langevin dynamics: exponential convergence and annealing. Transactions on
Machine Learning Research, 2022.

Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models
using optimal transport. Advances in Neural Information Processing Systems, 31, 2018.

Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. An interpolating distance
between optimal transport and Fisher–Rao metrics. Found. Comput. Math., 18(1):1–44, 2018.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Julie Delon and Agnès Desolneux. A Wasserstein-type distance in the space of Gaussian mixture models.
SIAM J. Imaging Sci., 13(2):936–970, 2020.

10

Under review as submission to TMLR

Michael Z. Diao, Krishnakumar Balasubramanian, Sinho Chewi, and Adil Salim. Forward-backward Gaussian
variational inference via JKO in the Bures–Wasserstein space. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 7960–7991. PMLR, 7 2023.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations, 2019.

Soumyadip Ghosh, Yingdong Lu, Tomasz Nowicki, and Edith Zhang. On representations of mean-field
variational inference. arXiv preprint 2210.11385, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: convergence and generalization
in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Yiheng Jiang, Sinho Chewi, and Aram-Alexandre Pooladian. Algorithms for mean-field variational inference
via polyhedral optimization in the Wasserstein space. arXiv preprint 2312.02849, 2023.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker–Planck
equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

Daniel Lacker. Independent projections of diffusions: gradient flows for variational inference and optimal
mean field approximations. arXiv preprint 2309.13332, 2023.

Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational inference via
Wasserstein gradient flows. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022.

Marc Lambert, Silvère Bonnabel, and Francis Bach. Variational Gaussian approximation of the Kushner
optimal filter. In Geometric science of information. Part I, volume 14071 of Lecture Notes in Comput. Sci.,
pp. 395–404. Springer, Cham, 2023.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport in competition with reaction:
the Hellinger–Kantorovich distance and geodesic curves. SIAM J. Math. Anal., 48(4):2869–2911, 2016.

Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport problems and a new
Hellinger–Kantorovich distance between positive measures. Invent. Math., 211(3):969–1117, 2018.

Yulong Lu, Jianfeng Lu, and James Nolen. Accelerating Langevin sampling with birth-death. arXiv, 2019.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer
neural networks. Proc. Natl. Acad. Sci. USA, 115(33):E7665–E7671, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the
Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pp.
2388–2464. PMLR, 6 2019.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as submission to TMLR

Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Convex analysis of the mean field Langevin dynamics. In
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of the 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pp. 9741–9757. PMLR, 3 2022.

Vardan Papyan, Xiaoyan Han, and David L. Donoho. Prevalence of neural collapse during the terminal phase
of deep learning training. Proc. Natl. Acad. Sci. USA, 117(40):24652–24663, 2020.

Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: an
interacting particle system approach. Comm. Pure Appl. Math., 75(9):1889–1935, 2022.

Filippo Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear
Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. Calculus of variations,
PDEs, and modeling.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: a central limit
theorem. Stochastic Process. Appl., 130(3):1820–1852, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2003.

Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuling Yan, Kaizheng Wang, and Philippe Rigollet. Learning Gaussian mixtures using the Wasserstein–
Fisher–Rao gradient flow. arXiv preprint arXiv:2301.01766, 2023.

Rentian Yao and Yun Yang. Mean-field variational inference via Wasserstein gradient flow. arXiv preprint
2207.08074, 2023.

A Interpretation as a Wasserstein gradient flow

The gradient flows that we consider in this paper are closely related to Wasserstein gradient flows, as we
describe in detail here.

Bures–Wasserstein gradient flows. We first consider the case K = 1, so that ρ = N (µ, Σ) is simply a
Gaussian measure. The space of non-degenerate Gaussian measures over RD, which is naturally identified
with Rd × Sd

++, can be equipped with the Wasserstein metric and is then known as the Bures–Wasserstein
space (Bhatia et al., 2019). We denote this space by BW(RD). The Riemannian structure of the Wasserstein
space endows BW(RD) with a Riemannian metric, called the Bures–Wasserstein metric.

Given a functional L over the Wasserstein space, we can restrict it to a functional L : BW(RD) → R via
L(µ, Σ) := L(N (µ, Σ)). If ∇µ, ∇Σ denote the usual Euclidean gradients of L w.r.t. µ and Σ respectively, it is
known that the gradient flow of L over BW(RD) is given by

µ̇ = −∇µL(µ, Σ) , and Σ̇ = −2
(
Σ ∇ΣL(µ, Σ) + ∇ΣL(µ, Σ) Σ

)
. (5)

See, e.g., Altschuler et al. (2021, Appendix A) or Lambert et al. (2022, Appendix B.3). On the other hand, if we
parameterize Σ = UU⊤ where U ∈ RD×D and we follow the Euclidean gradient flow of (µ, U) 7→ L(µ, UU⊤),

12

Under review as submission to TMLR

it is straightforward to see that it coincides with (5). This parametrization also has the advantage of
maintaining the positive semidefiniteness of Σ along the optimization without the need for projections, which
is convenient for implementation and can also be used to enforce low-rank factorizations (Burer & Monteiro,
2003). In Appendix B, we derive the Bures–Wasserstein gradient flows for our problems of interest, keeping
in mind that they can also be implemented as Euclidean gradient flows via the parametrization Σ = UU⊤.

Gaussian mixture gradient flows. For K > 1, the Wasserstein geometry over the space of Gaussian
mixtures is not explicit, and we instead follow the geometry defined in Chen et al. (2019); Delon & Desolneux
(2020). This geometry can be interpreted as the Wasserstein geometry over the curved manifold (BW(RD), W2),
see Lambert et al. (2022, Appendix F) for details.

B Exact derivations

In this section, we record exact expressions for the Gaussian mixture gradient flows. These expressions were
used to validate the correctness of our GM layer implementations in PyTorch and could be useful for future
investigations.

We consider the following two problems.

• Regression. We are given a dataset {(xi, yi)}i∈[n] where each xi ∈ Rd and yi ∈ R. We consider the
squared loss

L (h) = 1
n

n∑
i=1

(
yi − h(xi)

)2
.

• Multi-class classification. We are given a dataset {(xi, yi)}i∈[n], where each xi ∈ Rd and
yi ∈ {0, 1, . . . , L} and L denotes the number of classes. For this problem, we consider the multi-class
logistic loss

L (h) = − 1
n

n∑
i=1

{ L∑
ℓ=1

h(xi)ℓ1yi=ℓ − log
(

1 +
L∑

ℓ=1
exp
(
h(xi)ℓ

))}
,

where h : Rd → RL.

For regression, we derive exact expressions for the gradient flows for the case of K = 1 (i.e., the Gaussian
mixture is simply a Gaussian) and for the case K > 1 for the full parametrization (3). For multi-class
classification, we focus on the case K > 1 with the diagonal parametrization (4).

Notation. For θ = (ω, β), we use the shorthand notation f(x, θ) := ω (⟨β, x⟩). We write ϕ(· | µ, Σ) for
the density of N (µ, Σ). We also use L to denote a loss over the space of probability measures (whereas L
denotes a loss over the space of functions).

B.1 Regression

B.1.1 Gaussians

We first restrict ρ to be a single Gaussian, namely

RD ∋ θ =
[
ω
β

]
∼ ρ = N (µ, Σ) = N

([µω

µβ

]
,

[
Σω Σω,β

Σβ,ω Σβ

])
,

where D = d + 1. Then we can write the objective function as

min
ρ=N (µ,Σ)

L(ρ) := 1
n

n∑
i=1

(
yi −

∫
f(xi, θ) ρ(dθ)

)2
. (6)

The Bures–Wasserstein gradient flow for minimizing L is characterized by the following theorem.

13

Under review as submission to TMLR

Theorem 2. The Bures–Wasserstein gradient flow (ρt)t≥0 for minimizing L in (6) is given by ρt = N (µt, Σt)
that evolves according to the ODE system

µ̇t = 2
n

n∑
i=1

(
yi − Eρt

f(xi, θ)
)
Eρt

∇θf(xi, θ) ,

Σ̇t = 2
n

n∑
i=1

(
yi − Eρt

f(xi, θ)
)
Eρt

[∇θf(xi, θ) ⊗ (θ − µt) + (θ − µt) ⊗ ∇θf(xi, θ)] .

Proof. The loss function L for the regression problem (6) can be written as

L(ρ) = 1
n

n∑
i=1

(
yi −

∫
f(xi, θ) ρ(dθ)

)2

= 1
n

n∑
i=1

y2
i − 2

n

n∑
i=1

yi

∫
f(xi, θ) ρ(dθ) + 1

n

n∑
i=1

(∫
f(xi, θ) ρ(dθ)

)2

= ℓ0 + 2
∫

V (θ) ρ(dθ) +
∫∫

U(θ, θ′) ρ(dθ) ρ(dθ′) ,

where ℓ0 = n−1∑n
i=1 y2

i is some constant that does not depend on ρ, and the two functions V : RD → R and
U : RD × RD → R are given by

V (θ) := − 1
n

n∑
i=1

yif(xi, θ) and U(θ, θ′) := 1
n

n∑
i=1

f(xi, θ) f(xi, θ′) . (7)

By (5), it suffices to compute the Euclidean gradients w.r.t. the variables µ and Σ. We first compute ∇µL(ρ)
as follows:

∇µL(ρ) = 2 ∇µ

∫
V (θ) ϕ(θ | µ, Σ) dθ + ∇µ

∫∫
U(θ, θ′) ϕ(θ | µ, Σ) ϕ(θ′ | µ, Σ) dθ dθ′

(i)= 2
∫

V (θ) ∇µϕ(θ | µ, Σ) dθ +
∫∫

U(θ, θ′) ∇µ[ϕ(θ | µ, Σ) ϕ(θ′ | µ, Σ)] dθ dθ′

(ii)= 2
∫

V (θ) ∇µϕ(θ | µ, Σ) dθ + 2
∫ [∫

U(θ, θ′) ∇µϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(iii)= −2
∫

V (θ) ∇θϕ(θ | µ, Σ) dθ − 2
∫ [∫

U(θ, θ′) ∇θϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(iv)= 2
∫

∇θV (θ) ϕ(θ | µ, Σ) dθ + 2
∫ [∫

∇θU(θ, θ′) ϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

= 2
∫ [

∇θV (θ) +
∫

∇θU(θ, θ′) ϕ(θ′ | µ, Σ) dθ′
]

ϕ(θ | µ, Σ) dθ (8)

Here, step (i) uses the Leibniz integral rule (since U and V are continuous and ϕ is sufficiently smooth);
step (ii) follows from the chain rule and the fact that U(θ, θ′) = U(θ′, θ); step (iii) follows from (15) in
Appendix B.3; and step (iv) follows from integration by parts. Following similar steps, we can compute

14

Under review as submission to TMLR

∇ΣL(ρ) as follows:

∇ΣL(ρ) = 2
∫

V (θ) ∇Σϕ(θ | µ, Σ) dθ + 2
∫ [∫

U(θ, θ′) ∇Σϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(a)=
∫

V (θ) ∇2
θϕ(θ | µ, Σ) dθ +

∫ [∫
U(θ, θ′) ∇2

θ ϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(b)= −
∫

∇θV (θ) ⊗ ∇θϕ(θ | µ, Σ) dθ

−
∫ [∫

∇θU(θ, θ′) ⊗ ∇θϕ(θ | µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(c)=
∫

∇θV (θ) ⊗ (θ − µ) ϕ(θ; µ, Σ) dθ Σ−1

+
∫ [∫

∇θU(θ, θ′) ⊗ (θ − µ) ϕ(θ; µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′ Σ−1

(b’)= −
∫

∇θϕ(θ | µ, Σ) ⊗ ∇θV (θ) dθ

−
∫ [∫

∇θϕ(θ | µ, Σ) ⊗ ∇θU(θ, θ′) dθ
]

ϕ(θ′ | µ, Σ) dθ′

(c’)= Σ−1
∫

(θ − µ) ⊗ ∇θV (θ) ϕ(θ; µ, Σ) dθ

+ Σ−1
∫ [∫

(θ − µ) ⊗ ∇θU(θ, θ′) ϕ(θ; µ, Σ) dθ
]

ϕ(θ′ | µ, Σ) dθ′

Here, step (a) follows from (16) in Appendix B.3; steps (b) and (b’) both follow from applying integration by
parts to the formula following step (a); whereas steps (c) and (c’) both follow from (14) in Appendix B.3.
According to (5), the Bures–Wasserstein gradient flow for minimizing L is given by ρt = N (µt, Σt), t ≥ 0,
where

µ̇t = −∇µL(ρt),
Σ̇t = −2 ∇ΣL(ρt) Σt − 2 Σt ∇ΣL(ρt) .

In order to derive a closed-form expression, we compute

∇θV (θ) = − 1
n

n∑
i=1

yi ∇θf(xi, θ) = − 1
n

n∑
i=1

yi

[
(β⊤xi)

ω ′(β⊤xi) xi

]
, and (9)

∇θU(θ, θ′) = 1
n

n∑
i=1

∇θf(xi, θ) f(xi, θ′) = 1
n

n∑
i=1

f(xi, θ′)
[

(β⊤xi)
ω ′(β⊤xi) xi

]
. (10)

where ′(x) = 1{x ≥ 0} is the derivative of ReLU at any x ̸= 0.2 Hence, we arrive at

µ̇t = −∇µL(ρt) = −2
∫ [

∇θV (θ) +
∫

∇θU(θ, θ′) ϕ(θ′ | µt, Σt) dθ′
]

ϕ(θ | µt, Σ) dθ

= 2
n

n∑
i=1

(
yi − Eρt

f(xi, θ)
)
Eρt

∇θf(xi, θ)

2In general, the Wasserstein gradient at a measure µ is an element of L2(µ) and therefore is only defined almost everywhere;
see Ambrosio et al. (2008, Chapter 8) for details.

15

Under review as submission to TMLR

and

Σ̇t = −2 ∇ΣL(ρt) Σt − 2 Σt ∇ΣL(ρt)

= −2
∫

∇θV (θ) ⊗ (θ − µt) ϕ(θ | µt, Σt) dθ

− 2
∫ [∫

∇θU(θ, θ′) ⊗ (θ − µt) ϕ(θ | µt, Σt) dθ
]

ϕ(θ′ | µt, Σt) dθ′

− 2
∫

(θ − µt) ⊗ ∇θV (θ) ϕ(θ | µt, Σt) dθ

− 2
∫ [∫

(θ − µt) ⊗ ∇θU(θ, θ′) ϕ(θ | µt, Σt) dθ
]

ϕ(θ′ | µt, Σt) dθ′

= 2
n

n∑
i=1

(
yi − Eρtf(xi, θ)

) (
Eρt [∇θf(xi, θ) ⊗ (θ − µt)] + Eρt [(θ − µt) ⊗ ∇θf(xi, θ)]

)
.

This completes the derivation.

Although Theorem 2 derives equations for the Bures–Wasserstein gradient flow, the expressions involve
expectations which must also be computed. We now proceed to show that these expectations can be computed
in closed form for ReLU activations, which allows for exact implementation in software. The following
derivations are tedious, but the resulting equations are readily programmed.

We need to compute

Eρf(xi, θ) = Eρ[ω (β⊤xi)] , Eρ∇θf(xi, θ) = Eρ

[
(β⊤xi)

ω ′(β⊤xi) xi

]
, and

Eρ[∇θf(xi, θ) ⊗ θ] = Eρ

[
ω (β⊤xi) (β⊤xi) β⊤

ω2 ′(β⊤xi) xi ω ′(β⊤xi) xi ⊗ β

]
.

Basically, we need to compute, for each 1 ≤ i ≤ n,

Ai = Eρ (β⊤xi) , Bi = Eρ[ω ′(β⊤xi)] ,

Ci = Eρ[ω (β⊤xi)] , Di = Eρ[ω2 ′(β⊤xi)] ,

and for each 1 ≤ j ≤ d,

Pi,j = Eρ[(β⊤xi) βj] , Qi,j = Eρ[ω ′(β⊤xi) βj] .

Then we can express

Eρ∇θf(xi, θ) =
[

Ai

Bixi

]
, Eρf(xi, θ) = Ci ,

and

Eρ[∇θf(xi, θ) ⊗ (θ − µ)] =
[

Ci [Pi,j]1≤j≤d

Dixi xi ⊗ [Qi,j]1≤j≤d

]
−
[

Ai

Bixi

]
⊗ µ .

Therefore, the update rule looks like

µt+1 = µt + ηgt and Σt+1 = Σt + ηGt

where

gt = 2
n

n∑
i=1

(yi − Ci)
[

Ai

Bixi

]

16

Under review as submission to TMLR

and

Gt = 2
n

n∑
i=1

(yi − Ci)
{[Ci [Pi,j]1≤j≤d

Dixi xi ⊗ [Qi,j]1≤j≤d

]
−
[

Ai

Bixi

]
⊗ µ

}
+ 2

n

n∑
i=1

(yi − Ci)
{[

Ci Dix
⊤
i

[Pi,j]1≤j≤d [Qi,j]1≤j≤d ⊗ xi

]
− µ ⊗

[
Ai

Bixi

]}
.

In addition, the objective function

L(ρt) = 1
n

n∑
i=1

(yi − Ci)2 .

Let us first compute a universal rule. Let X = ω , Y = β⊤xi and Z = βj . We haveX
Y
Z

 ∼ N

(µ1
µ2
µ3

 ,

 σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3

) , (11)

where µ1
µ2
µ3

 =

 µω

x⊤
i µβ

e⊤
j µβ

 ,

 σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3

 =

 (σω)2 Σω,βxi Σω,βej

x⊤
i Σβ,ω x⊤

i Σβxi x⊤
i Σβej

e⊤
j Σβ,ω e⊤

j Σβxi e⊤
j Σβej

 .

We know that

cov(X − αY, Y) = ρ1,2σ1σ2 − ασ2
2 = 0 when α = ρ1,2

σ1

σ2
, and

cov
(
Z − β (X − αY) − γY, Y

)
= ρ2 3σ2σ3 − γσ2

2 = 0 when γ = ρ2,3
σ3

σ2
, and

cov
(
Z − β (X − αY) − γY, X − αY

)
= cov(Z, X − αY) − β var(X − αY) = 0

when

β = ρ1,3σ1σ3 − αρ2,3σ2σ3

σ2
1 − 2αρ1,2σ1σ2 + α2σ2

2
.

Therefore X − αY , Y , and Z − β (X − αY) − γY are mutually independent. We first compute Ai and Bi.
By direct computation,

Ai = Emax{Y, 0} = µ2 + σ2 Emax
{Y − µ2

σ2
, −µ2

σ2

}
= µ2 + σ2

∫ ∞

−µ2/σ2

x√
2π

e−x2/2 dx − µ2 Φ
(
−µ2

σ2

)
= µ2 − σ2

∫ ∞

−µ2/σ2

1√
2π

de−x2/2 − µ2 Φ
(
−µ2

σ2

)
= µ2 + σ2 ϕ

(
−µ2

σ2

)
− µ2 Φ

(
−µ2

σ2

)
and

Bi = E[X1Y >0] = E[(X − αY)1Y >0] + E[αY 1Y >0]
= E[X − αY]P(Y > 0) + αEmax{Y, 0} = EiFi + αAi ,

where we further define

Ei := E[X − αY] = µ1 − αµ2 and Fi := P(Y > 0) = 1 − Φ
(
−µ2

σ2

)
.

17

Under review as submission to TMLR

We then compute

Ci = E[X max{Y, 0}] = E[(X − αY) max{Y, 0}] + E[αY max{Y, 0}]
= E[X − αY]E[max{Y, 0}] + αE[Y max{Y, 0}] = AiEi + αGi

where we define, for Y ∼ N (µ2, σ2
2),

Gi := E[Y max{Y, 0}] = E[Y 2
1Y >0] =

∫ ∞

0

x2
√

2πσ2
e−(x−µ2)2/(2σ2

2) dx

=
∫ ∞

−µ2/σ2

(µ2 + σ2y)2
√

2π
e−y2/2 dy by change of variable y = x − µ2

σ2

= µ2
2

∫ ∞

−µ2/σ2

1√
2π

e−y2/2 dy + 2µ2σ2

∫ ∞

−µ2/σ2

y√
2π

e−y2/2 dy +
∫ ∞

−µ2/σ2

σ2
2y2

√
2π

e−y2/2 dy

= µ2
2 [1 − Φ(−µ2/σ2)] + 2µ2σ2 ϕ(−µ2/σ2)

− σ2
2

y√
2π

e−y2/2
∣∣∣∞
−µ2/σ2

+ σ2
2

∫ ∞

−µ2/σ2

1√
2π

e−y2/2 dy

= (µ2
2 + σ2

2) [1 − Φ(−µ2/σ2)] + µ2σ2 ϕ(−µ2/σ2) .

We also need to compute

Di = E[X2
1Y >0] = E[(X − αY)2

1Y >0] + α2 E[Y 2
1Y >0] + 2αE[(X − αY)Y 1Y >0]

= FiHi + α2Gi + 2αAiEi

where
Hi := E[(X − αY)2] = σ2

1 − 2αρ1,2σ1σ2 + α2σ2
2 + (µ1 − αµ2)2 .

Then, we compute

Pi,j = E[Z max{Y, 0}] = E[(Z − γY) max{Y, 0}] + E[γY max{Y, 0}]
= E[Z − γY]E[max{Y, 0}] + γ E[Y max{Y, 0}]
= AiMi,j + γGi ,

where we let
Mi,j := E[Z − γY] = µ3 − γµ2 .

Finally, we compute

Qi,j = E[X1Y >0Z] = E[(X − αY + αY)1Y >0 (Z − β (X − αY) − γY + β (X − αY) + γY)]
= E[(X − αY)1Y >0 (Z − β (X − αY) − γY)] + E[αY 1Y >0 (Z − β (X − αY) − γY)]

+ E[(X − αY)1Y >0 β (X − αY)] + E[αY 1Y >0 β (X − αY)]
+ E[(X − αY)1Y >0 γY] + E[αY 1Y >0 γY]

= EiFiNi,j + αAiNi,j + βFiHi + αβAiEi + γAiEi + αγGi ,

where we define
Ni,j := E[Z − β (X − αY) − γY] = µ3 − βµ1 + αβµ2 − γµ2 .

We have provided explicit expressions for all of the terms.

B.1.2 Gaussian mixtures

Consider a K-component Gaussian mixture distribution ρν parameterized by ν:

ρν = 1
K

K∑
k=1

N (µ(k), Σ(k)) , where ν = 1
K

K∑
k=1

δ(µ(k),Σ(k)) .

Here ν is a discrete probability measure over Rd × Sd
++. We start by deriving the Gaussian mixture gradient

flow for a general loss L.

18

Under review as submission to TMLR

Theorem 3. Let L be a functional over the Wasserstein space. The Gaussian mixture gradient flow
(νt)t≥0 for minimizing L initialized at a distribution ν0 = K−1∑K

k=1 δ(µ
(k)
0 ,Σ(k)

0) with K atoms is given by

νt = K−1∑K
k=1 δ(µ

(k)
t ,Σ(k)

t), t ≥ 0, where for each k ∈ [K], the dynamics of (µ(k)
t)t≥0 and (Σ(k)

t)t≥0 are
governed by the ODE system

µ̇
(k)
t = −EN (µ

(k)
t ,Σ(k)

t)∇δL(ρνt
) ,

Σ̇(k)
t = −Σ(k)

t EN (µ
(k)
t ,Σ(k)

t)∇
2δL(ρνt

) − EN (µ
(k)
t ,Σ(k)

t)∇
2δL(ρνt

) Σ(k)
t .

Here, δL = δρL refers to the first variation of L (see Santambrogio, 2015, Chapter 7).

Proof. We refer to Lambert et al. (2022, Appendix F) for background. We calculate the first variation
of ν 7→ L(ρν) in terms of the first variation of L: note that for any δ > 0 and any measure X satisfying∫

BW(Rd) dX = 0 and such that ν + δX for sufficiently small δ > 0, if ξ = (µ, Σ) and pξ denotes N (µ, Σ), we
have

L(ρν+δX) − L(ρν) =
∫

δL(ρν) d(ρν+δX − ρν) + o(δ) =
∫ [∫

δL(ρν) dpξ

]
δX (dξ) + o(δ) ,

which, by the definition of the first variation, shows that

δνL(ρν) : ξ 7→
∫

δL(ρν) dpξ .

Since the Gaussian mixture gradient flow is, by definition, a Wasserstein gradient flow over the Bures–
Wasserstein space, the particle interpretation of Wasserstein gradient flows shows that each (µ(k)

t , Σ(k)
t)

evolves by the Bures–Wasserstein gradient of δνL(ρνt
). It follows from Lambert et al. (2022, Appendix C)

that the Gaussian mixture flow takes the claimed form.

Alternatively, we can derive the gradient flow more explicitly. Noting that ξ = (µ, Σ), we have

∇µδνL(ρν)(ξ) =
∫

δL(ρν) ∇µϕ(θ | µ, Σ) dθ = −
∫

δL(ρν) ∇θϕ(θ | µ, Σ) dθ

=
∫

∇θδL(ρν) ϕ(θ | µ, Σ) dθ

and

∇ΣδνL(ρν)(ξ) =
∫

δL(ρν) ∇Σϕ(θ | µ, Σ) dθ = 1
2

∫
δL(ρν) ∇2

θϕ(θ | µ, Σ) dθ

= 1
2

∫
∇2

θδL(ρν) ϕ(θ | µ, Σ) dθ ,

where we used the expressions in Appendix B.3. Recalling (5), it completes the derivation.

With Theorem 3 in hand, we can now prove Theorem 1.

Proof of Theorem 1. Consider the loss function

ℓ(µ, C) ≡ ℓ(µ1, . . . , µK , C1, . . . , CK) := L(ρν)

where

ν = 1
K

K∑
k=1

δ(µk,Σk) with Σk = CkC⊤
k .

Note that for any ∆ ∈ Rd and any ε > 0, we have

lim
ε→0

ℓ(µ1 + ε∆, µ2, . . . , µK , C1, . . . , CK) − ℓ(µ1, . . . , µK , C1, . . . , CK)
ε

= ⟨∇µ1ℓ(µ, C), ∆⟩ .

19

Under review as submission to TMLR

The left-hand side of the above equation can also be expressed as

lim
ε→0

L(ρνε
) − L(ρν)

ε
where νε := 1

K
δ(µ1+ε∆,Σ1) + 1

K

K∑
k=2

δ(µk,Σk) .

By the definition of first variation, we know that

L(ρνε
) − L(ρν) =

∫
δL(ρν) d(ρνε

− ρν) + o(ε)

=
∫ [∫

δL(ρν) dpξ

]
εX (dξ) + o(ε) where X = νε − ν

= 1
K

[∫
δL(ρν) dp(µ1+ε∆,Σ1) −

∫
δL(ρν) dp(µ1,Σ1)

]
+ o(ε) .

Taking the above three relations collectively yields

⟨∇µ1ℓ(µ, C), ∆⟩ = 1
K

〈
∇µ1

∫
δL(ρν) dp(µ1,Σ1), ∆

〉
.

Since the above equation holds for any ∆ ∈ Rd, we know that

∇µ1ℓ(µ, C) = 1
K

∇µ1

∫
δL(ρν) dp(µ1,Σ1) = 1

K
EN (µ1,Σ1)∇δL(ρνt

) ,

where we used the expressions in Appendix B.3 and integration by parts. Therefore the Euclidean gradient
flow w.r.t. µ(k) is given by

µ̇
(k)
t = − 1

K
EN (µ

(k)
t ,Σ(k)

t)∇δL(ρνt) . (12)

Similarly, we can show that

∇Σ1ℓ(µ, C) = 1
K

∇Σ1

∫
δL(ρν) dp(µ1,Σ1) = 1

2K
EN (µ1,Σ1)∇2δL(ρνt

) ,

which then leads to

∇C1ℓ(µ, C) = 2 ∇Σ1ℓ(µ, C) C1 = 1
K

EN (µ1,Σ1)∇2δL(ρνt
) C1 .

Hence the Euclidean gradient flow w.r.t. C(k) is given by

Ċ
(k)
t = − 1

K
EN (µ

(k)
t ,Σ(k)

t)∇
2δL(ρνt

) C
(k)
t ,

therefore Σ(k)
t = C

(k)
t C

(k)⊤
t satisfies

Σ̇(k)
t = C

(k)
t Ċ

(k)⊤
t + Ċ

(k)
t C

(k)⊤
t

= − 1
K

[
EN (µ

(k)
t ,Σ(k)

t)∇
2δL(ρνt)

]
Σ(k)

t − 1
K

Σ(k)
t

[
EN (µ

(k)
t ,Σ(k)

t)∇
2δL(ρνt)

]
. (13)

By comparing (12) and (13) with the ODE system in Theorem 3, we can see that they are equivalent up to a
scaling factor of K.

Then, we specialize to the objective function

min
ν

L(ρν) := 1
n

n∑
i=1

(
yi −

∫
f(xi, θ) ρν(dθ)

)2
.

20

Under review as submission to TMLR

Theorem 4. The Gaussian mixture gradient flow (νt)t≥0 for minimizing L initialized at a distribution
ν0 = K−1∑K

k=1 δ(µ
(k)
0 ,Σ(k)

0) with K atoms is given by νt = K−1∑K
k=1 δ(µ

(k)
t ,Σ(k)

t), t ≥ 0, where for each

k ∈ [K], the dynamics of (µ(k)
t)t≥0 and (Σ(k)

t)t≥0 are governed by the ODE system

µ̇
(k)
t = 2

n

n∑
i=1

(
yi − Eρνt

f(xi, θ)
)
EN (µ

(k)
t ,Σ(k)

t)∇θf(xi, θ) ,

Σ̇(k)
t = 2

n

n∑
i=1

(
yi − Eρνt

f(xi, θ)
)

× EN (µ
(k)
t ,Σ(k)

t)[∇θf(xi, θ) ⊗ (θ − µ
(k)
t) + (θ − µ

(k)
t) ⊗ ∇θf(xi, θ)] .

Proof. The first variation is given by

δL(ρ) : θ 7→ V (θ) +
∫

U(θ, θ′) ρ(dθ′) ,

where U and V are as in (7). Then, we can apply Theorem 3, which is seen to yield the desired equations
after substituting in the definitions of U and V and performing integration by parts.

As before, we write out more explicit expressions for the gradient flow. Thankfully, we can reuse our previous
calculations. Compared to Appendix B.1.1, we only need to compute

C ′
i := Eρν f(xi, θ) = Eρν [ω (β⊤xi)] = 1

K

K∑
k=1

EN (µ(k),Σ(k))[ω (β⊤xi)] = 1
K

K∑
k=1

C
(k)
i .

Then, the update becomes

µ
(k)
t+1 = µ

(k)
t + ηg

(k)
t and Σ(k)

t+1 = Σ(k)
t + ηG

(k)
t

where
g

(k)
t = 2

n

n∑
i=1

(yi − C ′
i)
[

Ai

Bixi

]
and

G
(k)
t = 2

n

n∑
i=1

(yi − C ′
i)
{[Ci [Pi,j]1≤j≤d

Dixi xi ⊗ [Qi,j]1≤j≤d

]
−
[

Ai

Bixi

]
⊗ µ

}
+ 2

n

n∑
i=1

(yi − C ′
i)
{[

Ci Dix
⊤
i

[Pi,j]1≤j≤d [Qi,j]1≤j≤d ⊗ xi

]
− µ ⊗

[
Ai

Bixi

]}
.

B.2 Multi-class classification

While our implementation relies on PyTorch’s Automatic Differentiation engine, we present here exact
computations of gradients for multi-class classification. Their complexity indicates that it is largely preferable
to employ automatic differentiation and that a study of first-order optimality conditions appears challenging.

For this setting, we focus on the parametrization as described in Subsection 4.2, that is, β ∼ N (µβ , Σ)
and E[ω | β] = Uβ + v, where we apply the Euclidean gradient flow to the parameters µβ , U , v, and the
square root of Σ. To simplify the notation, we write µ = µβ . (The sparse parametrization in Subsection 4.2
corresponds to further restricting Σ to be diagonal.)

We first compute the gradients w.r.t. U and v. Write

U =

u⊤
1
...

u⊤
L

 and v =

v1
...

vL

 .

21

Under review as submission to TMLR

The following expectations are understood to be taken over the Gaussian mixture. We have

E∇β

(
(β⊤x) u⊤β

)
= E[∇β (β⊤x) u⊤β+ (β⊤x) u]
= E[u⊤β ′(β⊤x) β] + E[(β⊤x)] u .

The loss function is

L(ρ) = − 1
n

n∑
i=1

{ L∑
ℓ=1

1yi=ℓ

∫
fℓ(xi, θ) ρ(dθ) − log

[
1 +

L∑
ℓ=1

exp
∫

fℓ(xi, θ) ρ(dθ)
]}

where ∫
fℓ(xi, θ) ρ(dθ) = E[(β⊤x) u⊤

ℓ β] + vℓ E (β⊤x) .

We can compute

∇uℓ
L(ρ) = − 1

n

n∑
i=1

{
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L
ℓ′=1 exp

∫
fℓ′(xi, θ) ρ(dθ)

}
E[(β⊤x) β] ,

∇vℓ
L(ρ) = − 1

n

n∑
i=1

{
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L
ℓ′=1 exp

∫
fℓ′(xi, θ) ρ(dθ)

}
E (β⊤x) .

Next, we can compute

∇µL(ρ) = − 1
n

n∑
i=1

{ L∑
ℓ=1

1yi=ℓ∇µ

∫
fℓ(xi, θ) ρ(dθ)

−
∑L

ℓ=1 exp(
∫

fℓ(xi, θ) ρ(dθ)) ∇µ

∫
fℓ(xi, θ) ρ(dθ)

1 +
∑L

ℓ=1 exp
∫

fℓ(xi, θ) ρ(dθ)

}
= − 1

n

n∑
i=1

L∑
ℓ=1

{
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

}
∇µ

∫
fℓ(xi, θ) ρ(dθ)

and similarly,

∇ΣL(ρ) = − 1
n

n∑
i=1

L∑
ℓ=1

{
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

}
∇Σ

∫
fℓ(xi, θ) ρ(dθ) .

We have

∇µ

∫
fℓ(xi, θ) ρ(dθ) = ∇µE[(β⊤x) u⊤

ℓ β] + ∇µvℓ E (β⊤x)

= E∇β

(
(β⊤x) u⊤

ℓ β
)

+ vℓ E∇β (β⊤x)
= E[′(β⊤x) u⊤

ℓ β] x + E[(β⊤x)] uℓ + vℓ E[′(β⊤x)] x .

We also have

∇Σ

∫
fℓ(xi, θ) ρ(dθ) = ∇ΣE[(β⊤x) u⊤

ℓ β + vℓ (β⊤x)] ,

where

∇ΣE[(β⊤x) u⊤
ℓ β] = 1

2 E
[
∇β [(β⊤x) u⊤

ℓ β] ⊗ (β − µ)
]

Σ−1

= 1
2 Σ−1 E

[
(β − µ) ⊗ ∇β [(β⊤x) u⊤

ℓ β]
]

= 1
2 E
[(′(β⊤x) u⊤

ℓ β x+ (β⊤x) uℓ

)
⊗ (β − µ)

]
Σ−1

= 1
2 Σ−1 E

[
(β − µ) ⊗

(′(β⊤x) u⊤
ℓ β x+ (β⊤x) uℓ

)]
22

Under review as submission to TMLR

and

∇ΣE (β⊤x) = 1
2 E[∇β (β⊤x) ⊗ (β − µ)] Σ−1 = 1

2 Σ−1 E[(β − µ) ⊗ ∇β (β⊤x)]

= 1
2 E[′(β⊤x) x ⊗ (β − µ)] Σ−1 = 1

2 Σ−1 E[(β − µ)⊗ ′(β⊤x) x] .

Hence, we have

µ̇ = −∇µL(ρ) = 1
n

n∑
i=1

L∑
ℓ=1

[
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

]
∇µ

∫
fℓ(xi, θ) ρ(dθ)

= 1
n

n∑
i=1

L∑
ℓ=1

[
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L−1
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

]
×
[
E[′(β⊤x) u⊤

ℓ β] x + E[(β⊤x)] uℓ + vℓ E[′(β⊤x)] x
]

= 1
n

n∑
i=1

L−1∑
ℓ=1

[
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L−1
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

]
×
[
u⊤

ℓ E[′(β⊤xi) β] xi + E[(β⊤xi)] uℓ + vℓ E[′(β⊤x)] x
]

and

Σ̇ = −2 ∇ΣL(ρ) Σ − 2 Σ ∇ΣL(ρ)

= 1
n

n∑
i=1

L−1∑
ℓ=1

[
1yi=ℓ −

exp
∫

fℓ(xi, θ) ρ(dθ)
1 +

∑L−1
ℓ=1 exp

∫
fℓ(xi, θ) ρ(dθ)

]
×
{
E
[(′(β⊤xi) u⊤

ℓ β xi+ (β⊤xi) uℓ+ ′(β⊤xi) xi

)
⊗ (β − µ)

]
+ E

[(′(β⊤xi) u⊤
ℓ β xi+ (β⊤xi) uℓ+ ′(β⊤xi) xi

)
⊗ (β − µ)

]⊤}
.

Let
Ai = E (β⊤xi) , Fi = E ′(β⊤xi) , Ri,j = E[′(β⊤xi) βj] ,

and
Pi,j = E[(β⊤xi) βj] , Qi,j,ℓ = E[′(β⊤xi) u⊤

ℓ β βj] , Si,ℓ = E[ωℓ (β⊤xi)] .

We have

µ̇ = 1
n

n∑
i=1

L−1∑
ℓ=1

[
1yi=ℓ − exp Si,ℓ

1 +
∑L−1

ℓ′=1 exp Si,ℓ′

]
[u⊤

ℓ Pi xi + Aiuℓ + vℓ Fixi]

and

Σ̇ = 1
n

n∑
i=1

L−1∑
ℓ=1

[
1yi=ℓ − exp Si,ℓ

1 +
∑L−1

ℓ′=1 exp Si,ℓ′

]
×
[
(xi ⊗ Qi,ℓ + uℓ ⊗ Pi + xi ⊗ Ri − u⊤

ℓ Ri xi ⊗ µ − Aiuℓ ⊗ µ − Fixi ⊗ µ)+
+ (xi ⊗ Qi,ℓ + uℓ ⊗ Pi + xi ⊗ Ri − u⊤

ℓ Ri xi ⊗ µ − Aiuℓ ⊗ µ − Fixi ⊗ µ)⊤] .

We also have

U̇ = −

 ∇u1L(ρ)⊤

...
∇uL−1L(ρ)⊤

 = 1
n

n∑
i=1


1yi=1 − exp Si,1

1+
∑L−1

ℓ′=1
exp Si,ℓ′

...
1yi=L−1 − exp Si,L−1

1+
∑L−1

ℓ′=1
exp Si,ℓ′

⊗ Pi

23

Under review as submission to TMLR

and

v̇ = −

 ∇v1L(ρ)⊤

...
∇vL−1L(ρ)⊤

 = 1
n

n∑
i=1


1yi=1 − exp Si,1

1+
∑L−1

ℓ′=1
exp Si,ℓ′

...
1yi=L−1 − exp Si,L−1

1+
∑L−1

ℓ′=1
exp Si,ℓ′

Ai .

Next, we compute each quantity. As before, we consider (11), except now we define X = u⊤
ℓ β. This time, we

have µ1
µ2
µ3

 =

u⊤
ℓ µ

x⊤
i µ

e⊤
j µ

 ,

 σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3

 =

u⊤
ℓ

x⊤
i

e⊤
j

Σ
[
uℓ xi ej

]
.

Then, as before, we have

Ai = E[max{Y, 0}] , Fi = P(Y > 0) , Ri,j = E[Z1Y >0] ,

and
Pi,j = E[max{Y, 0}Z] and Qi,j,ℓ = E[X1Y >0Z] .

The only new quantity to compute is

Ri,j = E[Z1Y >0] = E[(Z − γY)1Y >0] + E[γY 1Y >0]
= E[Z − γY]P(Y > 0) + γ E[max{Y, 0}]
= FiMi,j + γAi

and
Si,ℓ = E[ωℓ (β⊤xi)] = E[(β⊤xi) u⊤

ℓ β] + vℓ E (β⊤xi) = Ci + vℓAi .

B.3 Auxiliary Gaussian calculus

Recall that ϕ(· | µ, Σ) is the density function of N (µ, Σ). Then we can compute the gradient and Hessian
w.r.t. the variable θ:

∇θϕ(θ | µ, Σ) = ϕ(θ | µ, Σ) ∇θ

(
−1

2 θ⊤Σ−1θ + θ⊤Σ−1µ − 1
2 µ⊤Σ−1µ

)
= −ϕ(θ | µ, Σ) Σ−1(θ − µ) , (14)

∇2
θϕ(θ | µ, Σ) = −Σ−1(θ − µ) [∇θϕ(θ | µ, Σ)]⊤ − ϕ(θ | µ, Σ) Σ−1

= ϕ(θ | µ, Σ) Σ−1(θ − µ)(θ − µ)⊤Σ−1 − ϕ(θ | µ, Σ) Σ−1 .

In addition, we can also compute the gradient w.r.t. the parameters µ and Σ:

∇µϕ(θ | µ, Σ) = ϕ(θ | µ, Σ) ∇µ

(
−1

2 θ⊤Σ−1θ + θ⊤Σ−1µ − 1
2 µ⊤Σ−1µ

)
= ϕ(θ | µ, Σ) Σ−1(θ − µ)
= −∇θϕ(θ | µ, Σ) , (15)

and

∇Σϕ(θ | µ, Σ) = 1√
(2π)d det Σ

∇Σ exp
[
−1

2 (θ − µ)⊤Σ−1(θ − µ)
]

+ exp
[
−1

2 (θ − µ)⊤Σ−1(θ − µ)
]

∇Σ
1√

(2π)d det Σ

= 1
2 ϕ(θ | µ, Σ) Σ−1(θ − µ)(θ − µ)⊤Σ−1 − 1

2 ϕ(θ | µ, Σ) 1
det Σ ∇Σ det Σ

= 1
2 ϕ(θ | µ, Σ) Σ−1(θ − µ)(θ − µ)⊤Σ−1 − 1

2 ϕ(θ | µ, Σ) Σ−1

= 1
2 ∇2

θϕ(θ | µ, Σ) . (16)

24

Under review as submission to TMLR

C Experimental details

The numerical experiments conducted in this paper are implemented with PyTorch in Python, using a 2023
MacBook Pro with Apple M2 Pro chip and 32GM memory. The fully-connected layers are implemented using
PyTorch’s built-in functions. The GM layers are implemented using the derivation in Appendix B (thanks to
PyTorch’s Automatic Differentiation engine, we only need to implement the loss function, and there is no
need to implement the gradients explicitly).

The error bars in Figures 2, 3, 5, 6 and 7 represent one standard error computed over 5 independent trials.
When implementing a two-layer GM network, the output of the first GM layer is normalized to have unit
norm, before being sent to the second layer as input.

25

	Introduction
	Review of mean-field theory
	A mean-field theory over the space of Gaussian mixtures
	Implementation
	Multi-class classification and vector-valued outputs
	Reducing the number of parameters
	Stacking GM layers

	Experiments
	Conclusion
	Interpretation as a Wasserstein gradient flow
	Exact derivations
	Regression
	Gaussians
	Gaussian mixtures

	Multi-class classification
	Auxiliary Gaussian calculus

	Experimental details

