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ABSTRACT

Graph Neural Networks (GNNs), despite their success, are fundamentally limited
to learning a correlational mapping. We theoretically demonstrate that this limita-
tion is inherent to the neighborhood aggregation paradigm of GNNs. This inability
to distinguish true causality from spurious shortcut patterns leads to poor gener-
alization ability. To bridge this gap, we introduce the Principle of Causal Align-
ment, a novel learning paradigm for GNNs, designed to empower GNNs with
causal invariance without altering their architectures or compromising inference
efficiency. We then present CausGNN, an instantiation of this principle. It em-
ploys a teacher-student strategy where a teacher GNN learns to compute the inter-
ventional distribution via backdoor adjustment, and then distills this causal logic
into the student GNN, compelling it to learn invariant representations. Extensive
experiments show that CausGNN not only improves the performance of various
classic GNNs on node-level tasks but also exhibits superior robustness against
noise and Out-Of-Distribution (OOD) challenges. The source code is available at:
https://anonymous.4open.science/r/CausGNN/.

1 INTRODUCTION

Graph Neural Networks (Gori et al., 2005; Scarselli et al., 2008) have become a dominant paradigm
for machine learning on graph-structured data (Duvenaud et al., 2015; Bronstein et al., 2017; Monti
et al., 2017). Their power stems from the neighborhood aggregation (or message-passing) scheme,
where nodes iteratively update their representations by aggregating information from their local
neighbors. This fundamental mechanism allows GNNs to learn powerful representations of complex
relational data, leading to outstanding performance across a wide array of applications (Tang et al.,
2009; Wu et al., 2019; Yang et al., 2023).

Within this paradigm, a key evolution involves refining aggregation strategies (Kipf, 2016; Hamil-
ton et al., 2017; Veličković et al., 2017; Brody et al., 2021). This progression ranges from early
models like GCN (Kipf, 2016), which uses fixed, structure-based weights, to more powerful ap-
proaches. For instance, GraphSAGE (Hamilton et al., 2017) generalizes aggregation with various
pooling functions (e.g., mean, max, or LSTM ((Hochreiter & Schmidhuber, 1997), while the Graph
Attention Network (GAT) (Veličković et al., 2017) introduces an attention mechanism to weigh
neighbors. However, the attention rankings in GAT are considered “static” as they are independent
of the querying node. GATv2 (Brody et al., 2021) addresses this specific limitation by modifying
the order of internal operations in GAT, creating a truly dynamic and more expressive mechanism.

Despite their great success, we argue that standard GNNs built upon the neighborhood aggregation
paradigm share a fundamental limitation: from a probabilistic perspective, the learning process of a
GNN approximates the observational conditional probability P (Y |X), which means that it merely
captures statistical correlations, regardless of the underlying causal structure. From a mechanistic
perspective, the neighborhood aggregation process effectively functions as a sensor, perceiving and
encoding a node’s immediate local environment. Since these local environments are often rich with
statistically prominent patterns, the model readily learns to exploit them to fulfill its optimization
objective.

Let us consider a practical example from ogbn-products(Hu et al., 2020), a real-world dataset repre-
senting the co-purchase network of products on Amazon. The task is to classify a “battery” product.
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Its intrinsic causal features, derived from its title and description (e.g., “Alkaline”, “1.5V”), unam-
biguously place it in the “Accessories” category. However, they are frequently co-purchased with
items like “electric toys” and “electronic watches” (i.e., its neighbors). A standard GNN is easily
swayed by this neighborhood context, incorrectly predicting the batteries as “Electrics” category.
We refer to this behavior of exploiting the environment for prediction as an environmental shortcut,
and the dominant contextual information is termed shortcut features.

This reliance on environmental shortcuts is a general vulnerability present across various task set-
tings. On in-distribution data, as the example shows, it leads to incorrect predictions in cases of
contextual mismatch. Even in aligned cases where the shortcut appears to work, the learned patterns
are inherently fragile. For instance, in noisy scenarios (e.g., with erroneous edges), the integrity
of the environmental information is directly compromised. This vulnerability is amplified in Out-
Of-Distribution (OOD) scenarios, as the statistical relevance of previously learned shortcut features
becomes obsolete on the new distribution.

To address this limitation, inspired by invariant learning (Arjovsky et al., 2019; Krueger et al., 2021;
Chang et al., 2020), we argue that a robust GNN requires learning patterns that remain stable across
different environments. This will encourage the model to learn the true mapping between intrinsic
node features and labels, ensuring it is not susceptible to shortcut features. In other words, we aim
for the model to focus more on uncovering causal relationships (Pearl, 2009; Bühlmann, 2020) rather
than merely relying on statistical correlations.

To achieve this goal, we propose a novel learning principle for GNNs, i.e., the Principle of Causal
Alignment. This principle posits that a GNN can be guided to learn invariant causal relationships
by forcing its predictions to align with a constructed, causally-debiased distribution. Building upon
this, we then introduce CausGNN, a general teacher-student framework that provides an effective
instantiation of this principle. The core idea of CausGNN is to learn cross-environment invariant
representations using causal reasoning tools. Specifically, we exploit the do-calculus on the teacher
model by constructing intervention pairs based on a backdoor adjustment criterion. It encourages the
teacher model to learn invariant relationships between causal patterns and predictions by learning to
approximate P (Y |do(X)), regardless of changes in the shortcut feature distribution. Subsequently,
the teacher’s learned causal logits are distilled into a student GNN. This process acts as a causal
regularizer, compelling the student to acquire environmentally invariant representations without al-
tering its architecture. During inference, the student GNN is employed standalone, which allows our
framework to be seamlessly applied as a “plug-and-play” enhancement without sacrificing inference
efficiency. Extensive experiments highlight that CausGNN consistently boosts the causal reasoning
abilities of established GNNs (e.g., GCN, GrapphSAGE and GAT), yielding superior results not
only on standard tasks such as node classification and link prediction, but also in the challenging
regimes of noisy and OOD scenarios. Our key contributions are outlined below:

• A Causal Perspective on GNN Limitations. We theoretically demonstrate that GNNs
based on the neighbor aggregation paradigm are fundamentally limited to learning correla-
tional mappings P (Y |X) (please see the Section 3).

• A Novel Framework. We propose the Principle of Causal Alignment and provide a model
instance CausGNN, a general framework that empowers any existing GNN with causal
reasoning capabilities.

• Extensive Empirical Validation. Extensive experiments validate that our framework ef-
fectively enhances a wide range of GNNs. This enhancement is demonstrated by con-
sistently superior performance on node classification and link prediction tasks, and more
critically, by substantially improved robustness and generalization under challenging noisy
and OOD scenarios.

2 PROBLEM FORMULATION

2.1 PRELIMINARIES ON GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008) are a class of deep learning
models designed to learn a function F that maps the graph structure and node features to low-
dimensional node representations, H ∈ RN×D. Most GNNs follow a message-passing scheme,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

where each node iteratively aggregates information from its local neighborhood to update its own
representation.

2.2 PRELIMINARIES ON CAUSAL INFERENCE

A central goal of causal inference (Pearl, 2009; Bühlmann, 2020) is to distinguish causality from
mere statistical correlation. While standard probability theory describes the observational distribu-
tion, P (Y |X), which represents the probability of Y given that we have observedX , causal analysis
seeks to determine the interventional distribution, P (Y |do(X)).

The do-calculus, i.e., do(X = x), denotes a hypothetical intervention where a variable X is forced
to take a specific value x. This operation simulates an ideal randomized experiment by conceptually
severing all causal links that point into X , thereby isolating the causal effect of X on other variables
from confounding influences.

Pearl (Pearl, 2009) provides a formal framework for computing such interventional distributions
from observational data. A key tool within this framework is the backdoor adjustment formula
1. If a set of variables Z satisfies the backdoor criterion(Rumelhart et al., 1986) (i.e., Z blocks all
backdoor paths betweenX and Y ), the causal effect ofX on Y can be calculated from observational
probabilities as follows:

P (Y |do(X = x)) =
∑
z∈Z

P (Y |X = x, Z = z)P (Z = z). (1)

2.3 A CAUSAL VIEW ON GNN LEARNING

Figure 1: The illustrating causal graph that
describes the dependencies among node fea-
tures X , node labels Y , and the unobserved
environment Z. The latent environment Z
acts as a confounder, creating a backdoor
path X ← Z → Y , which can be blocked
by the do-calculus operator.

Let us take a causal look at the GNN modeling and
construct a Structural Causal Model (SCM) (Pearl
et al., 2016) in Figure 1. We argue that the node’s
features X and its label Y are jointly influenced by
an unobserved, latent variable Z, which we term as
the environment. Z acts as a common cause, creat-
ing a confounding backdoor path. The causal rela-
tionships in this SCM are defined as follows:

• Z → X . This link, described by the conditional
probability P (X|Z), signifies that the distribution of
observable node features (X) is a direct function of
the latent environment (Z). For instance, researchers
in the AI industry (Z) are more likely to exhibit spe-
cific behavioral attributes (X), such as frequently
posting about “PyTorch” or “Transformers”.

• Z → Y . This path represents the impact of the environment on the label. For instance, if a user’s
social network predominantly consists of individuals in the AI industry (Z), its likelihood of being
labeled “AI scientist” (Y ) will increase.

• X → Y . This is the genuine causal pathway that we aim to isolate and learn. It represents the
stable, invariant mechanism where a node’s intrinsic properties (X) cause its label (Y ).

A standard GNN model, trained by minimizing an empirical risk over observational data, learns a
mapping that approximates the observational conditional probability P (Y |X). Due to the existence
of the backdoor path X ← Z → Y , the learned probability is a confounded mixture of the true
causal effect from X and the spurious correlation induced by Z. We exploit the do-calculus on the
variable Z to remove the backdoor path by estimating P (Y |do(X)), as shown in Figure 1.

2.4 TASK DEFINITION

To overcome the aforementioned limitation, we aim to develop a general framework that can em-
power any standard GNN model, denoted by a function Fθ with parameters θ, to learn invariant
representations. Given a graph G, node features X, and corresponding labels Y drawn from the ob-
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servational distribution P (X,Y), the goal is to learn an optimal set of parameters, θ∗, by minimizing
the empirical risk over the training data.

However, simply minimizing the empirical risk often leads to models that exploit spurious corre-
lations induced by shortcut features. Our task, therefore, is not merely to fit the data, but to do so
in a way that reveals the underlying causal structure. This can be formalized as solving a regular-
ized optimization problem, where we supplement the standard supervised objective with a term that
enforces a causal inductive bias. We express this objective formally as:

θ∗ = argmin
θ

E(X,Y)∼P (X,Y)[Lsup(Fθ(X),Y)] +Rcausal(Fθ), (2)

where Lsup is the standard supervised loss, which ensures the model fits the observed data. The
crucial component is Rcausal(Fθ), a conceptual causal regularizer that forces the model to focus on
causally invariant patterns.

3 THE LIMITATION OF GNNS

Our argument is that standard GNNs (Kipf, 2016; Hamilton et al., 2017; Veličković et al., 2017;
Brody et al., 2021) are limited to learning the observational distribution P (Y |X), which is not lim-
ited to a single architecture but applies to the entire neighborhood aggregation paradigm. The core
of this paradigm is to update a node’s representation by aggregating messages from its neighbors,
typically via a weighted summation. We can express this universal aggregation step for a node vi as:

h′
i = σ

 ∑
j∈Ni∪{i}

wij ·Whj

 , (3)

where h′
i is the updated representation, and wij is the aggregation weight. The key insight is that

different GNNs are simply different instantiations of this weighting scheme wij :

• For GCN, wij is a static, pre-defined normalization constant based on node degrees: wij =
1/
√

deg(i) deg(j).
• For GraphSAGE (with mean aggregation), wij is a uniform average: wij = 1/|Ni|.
• For GAT and GATv2, wij is a dynamic, learnable attention coefficient αij . Both archi-

tectures learn a function fattn(hi,hj) to score neighbor importance, differing only in the
function’s implementation to enhance expressiveness. This score is then normalized via
softmax to produce the final weight:

wij = αij = softmaxj(fattn(hi,hj)). (4)

.

From a probabilistic perspective, this universal weighting scheme wij serves as the model’s mecha-
nism for approximating the conditional probability P (Ni|Xi)—that is, which neighborhood context
is important given the central node. The subsequent layers (the predictor) then model the distribu-
tion P (Yi|Xi,Ni). In end-to-end training, the model must learn a single function that maps X
to Y . This process forces the model to marginalize out the specific neighborhood context, which
mathematically collapses the learning objective to the observational probability P (Y |X). The full
derivation is as follows:∑

Ni

P (Yi|Xi,Ni)P (Ni|Xi) =
∑
Ni

P (Yi, Xi,Ni)
P (Xi,Ni)

· P (Xi,Ni)
P (Xi)

=
1

P (Xi)

∑
Ni

P (Yi, Xi,Ni)

=
P (Yi, Xi)

P (Xi)
= P (Yi|Xi).

(5)

However, the neighborhood context Ni is not always benign. It sometimes serves as a proxy for the
unobserved environmental confounder Z. The marginalization process compels the model to absorb
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and internalize all observed statistical relationships between neighborhoods and labels. If a spurious
correlation exists, it will be incorporated into the distribution P (Y |X).

Consequently, the learned P (Y |X) is a confounded mixture of the true causal effect (X → Y ) and
the spurious correlation induced by the latent confounder Z through the backdoor path (X ← Z →
Y ). The model is unable to distinguish the genuine signal from the shortcut features, rendering it
vulnerable to spurious patterns and leading to poor generalization.

4 METHODOLOGY

To address the challenge of learning causal relationships from confounded graph data, we present
our solution in a structured manner. We begin by formally introducing the Principle of Causal Align-
ment, which serves as the theoretical foundation of our work. Subsequently, we present CausGNN,
a concrete framework that operationalizes this principle within an efficient teacher-student architec-
ture.

4.1 THE PRINCIPLE OF CAUSAL ALIGNMENT

Our core idea is to guide a standard GNN to learn invariant causal relationships by forcing its predic-
tions to align with a constructed, causally-debiased distribution. We formalize this idea as follows:
Definition 4.1. (Principle of Causal Alignment) A GNN model Fθ satisfies the Principle of Causal
Alignment if it satisfies the following two criteria:

1. minimizes the empirical risk on observational data;

2. aligns its predictive output with an ideal, causally-debiased distribution P ∗(Y |X).

Guided by this principle, we design the learning strategy as a joint optimization problem over the
target GNN’s parameters θ and the parameters ψ of the interventional distribution approximator:

min
θ,ψ
L = E(X,Y )[Lsup(Fθ(X), Y )] + λ · EX [DKL([Pψ(Y |X)] ∥ Pθ(Y |X))], (6)

where the ideal distribution P ∗(Y |X) is approximated by a learnable distribution Pψ(Y |X), which
is parameterized by ψ. Inspired by causal inference (Pearl, 2009; Bühlmann, 2020), in practice, we
obtain Pψ(Y |X) by learning to compute the interventional distribution P (Y |do(X)) via Equation
1. Lsup is the standard supervised loss (e.g., cross-entropy) for Fθ,DKL(·||·) is the Kullback-Leibler
divergence (Kullback & Leibler, 1951) and λ is a hyperparameter balancing the two objectives. The
second term, which we term the Causal Alignment Regularizer, forces Pθ(Y |X) to be aligned with
the learnable causal target Pψ(Y |X).

Justification. The capacity of our principle to discover invariant relationships is theoretically justi-
fied in Appendix B. The intuition is that if our constructed target distribution P ∗(Y |X) is inherently
invariant to environmental shifts, then by aligning Pθ(Y |X) and this stable target, our objective
function effectively discourages reliance on shortcut features and thereby incentivizes the learning
of causal representations.

4.2 MODEL INSTANCE

In this section, we give a model instance based on the Principle of Causal Alignment, denoted as
CausGNN. The overall framework is shown in Figure 2.

4.2.1 TEACHER: CONSTRUCTING THE CAUSAL TARGET VIA INTERVENTION

The first step in implementing the Principle of Causal Alignment is to construct the learnable causal
distribution Pψ(Y |X), which we regard as the output of the teacher model. The teacher model is
designed to generate environmentally invariant representations. This is achieved by learning to com-
pute the interventional distribution P (Y |do(X)), which involves three main actions: first, explicitly
modeling and marginalizing the influence of the latent confounder Z; then constructing intervention
pairs to simulate diverse environments.

5
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Figure 2: An overview of the CausGNN framework, which consists of a teacher GNN and a student
GNN. The teacher provides a causally-debiased signal by approximating the interventional distribu-
tion, while the student learns to mimic this causal logic. During inference, only the student GNN is
employed.

Modeling Confounders (Z). Since the confounder Z is unobserved, we propose to model its dis-
crete states using a learnable environment codebook, denoted by C = {c1, . . . , cK} ⊂ RDe . Each
vector ck serves as a prototype representing one of the K latent environments, and De is the dimen-
sion of these prototypes. For each node vi, we first extract an environment-aware representation hei
from its initial features xi (e.g., via a GNN).

Environment Stratification and Prior Estimation (P (Z)). To eliminate the influence of con-
founder Z as much as possible, we need to account for all its stratifications. We compute the prob-
ability that a node vi belongs to environment k using a soft assignment mechanism based on the
distance between its representation hei and each prototype ck:

qik = P (Z = k|vi) =
exp(−∥hei − ck∥22/τ)∑K
j=1 exp(−∥hei − cj∥22/τ)

, (7)

where τ is a temperature hyperparameter. Next, we estimate the global prior probability of each
environment, P (Z = k), by averaging the assignment probabilities qik over all nodes in a training
batch B.

pk = P (Z = k) ≈ Ej∈B[qjk] =
1

|B|
∑
j∈B

qjk. (8)

Approximating the Interventional Prediction (P (Y |do(X))). With the environment priors pk
estimated, we can now construct the final intervened representation for each node vi. For each of the
K possible environments, we will perform the do-calculus. Note that hei is an environment-aware
representation, designed to capture contextual signals for environment matching. In contrast, we
now require an environment-agnostic representation, denoted as hxi , to capture the node’s intrinsic
features. This could be the raw features xi, or features passed through a simple MLP projection to
avoid neighborhood contamination. Specifically, we simulate conditioning on Z = k by concatenat-
ing the node’s intrinsic causal features hxi with the corresponding environment prototype ck. This
pair is then fed into a classifier to produce an environment-specific prediction logit mik.

mik = MLPmsg(concat(hxi , ck)). (9)

This step models the conditional term P (Y |X,Z = k) in Equation 1. Finally, we compute the
causally-intervened representation h′

i by taking the weighted average of these environment-specific
logits, using pk as weights. This process can be formally expressed as:

h′
i =

K∑
k=1

pk ·mik =

K∑
k=1

P (Z = k) ·MLPmsg(concat(hxi , ck)). (10)

The resulting representation h′
i is, by construction, debiased, as the influence of the confounder Z

has been explicitly marginalized out. The final teacher’s predictive distribution, Pψ(Y |Xi), is then
obtained by applying a softmax function to h′

i. The parameters of the teacher module (the codebook
C, the encoders, and the classiflier) are collectively denoted by ψ.

6
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4.2.2 STUDENT: LEARNING INVARIANCE VIA CAUSAL ALIGNMENT

The “student” is any standard GNN model, Fθ, that we aim to empower. It processes the graph
G and features X as usual to compute node embeddings hi = Fθ(A,X)i. These embeddings are
then fed into a classifier to produce the student’s own predictions, ŷi, and its predictive distribution,
Pθ(Y |Xi) = Softmax(ŷi).

4.2.3 OVERALL LEARNING OBJECTIVE

The CausGNN framework is trained end-to-end by optimizing the joint objective L as defined in
Equation 6. At inference time, the teacher module is discarded, and predictions are made solely
using the trained student GNN, Fθ, incurring no additional computational cost.

5 EXPERIMENT

In this section, we conduct extensive experiments to validate the effectiveness and versatility of
our proposed CausGNN framework. We aim to answer the following research questions: (RQ1)
Can CausGNN consistently improve the performance of various standard GNNs on fundamental
graph learning tasks? (RQ2) Does our framework enhance the model’s robustness against out-of-
distribution challenges and structural noise?

5.1 EXPERIMENTAL SETUP

Our empirical validation is conducted on a diverse suite of large-scale OGB benchmark datasets (Hu
et al., 2020), including ogbn-arxiv, ogbn-products, ogbn-mag, ogbn-proteins for node classification,
ogbl-collab, ogbl-citation2 for link prediction, and specialized OOD benchmarks (Wu et al., 2024)
such as arxiv-ood and twitch-ood. We evaluate the performance of our framework by applying
it to several widely-used GNN architectures—GCN (Kipf, 2016), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2017), and GATv2 (Brody et al., 2021)—and comparing the enhanced
models against their original versions. We report the mean and standard deviation over multiple
runs for all experiments to ensure reliable conclusions. The primary evaluation metric is accuracy
for classification tasks and Hits@K for link prediction. Full details regarding dataset statistics,
baselines, and hyperparameter settings can be found in Appendix C.

To answer our research questions, we structure our experiments into three main parts. First, we
evaluate the performance of CausGNN on standard, in-distribution benchmarks for node classifi-
cation and link prediction (RQ1). Second, we assess the framework’s generalization capability on
specialized OOD datasets (RQ2). Third, we conduct a robustness analysis by introducing varying
levels of structural noise to the training data (RQ2).

5.2 MAIN RESULTS ON STANDARD BENCHMARKS (RQ1)

Node Classification. Table 1 presents the node classification accuracy on four large-scale OGB
datasets, where the results of the baselines are taken from GATv2 (Brody et al., 2021). The results
provide strong evidence for the effectiveness of our CausGNN framework. A key observation is the
universality of performance enhancement: across all four diverse datasets and all four baseline GNN
architectures, the “CausGNN(*)” variant significantly outperforms its original counterpart.

This improvement is particularly pronounced on complex, heterogeneous graphs like ogbn-mag,
where CausGNN(GATv2) improves upon the baseline by over 1.3%. We attribute this to the fact
that such graphs often contain more subtle and varied community structures, which act as powerful
confounders. Standard GNNs are prone to latching onto these spurious structural correlations. By
compelling the model to align with a causally-debiased teacher, CausGNN effectively regularizes
the learning process, steering the model away from these shortcut features and towards more gen-
eralizable, content-based features. Even on a relatively homogeneous graph like ogbn-arxiv, the
consistent gains (e.g., GCN improves from 71.74% to 72.42%) suggest that latent confounders are
pervasive and that our method successfully mitigates their negative impact, leading to a more robust
predictive model even in standard in-distribution settings.
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Table 1: Node classification accuracy (%) on large-scale OGB datasets. Mean and standard deviation
over multiple runs are reported. Results for models enhanced by our framework are highlighted in
gray.

Model Attn. Heads ogbn-arxiv ogbn-products ogbn-mag ogbn-proteins
GCN 0 71.74 ±0.29 78.97 ±0.33 30.43 ±0.25 72.51 ±0.35

CausGNN(GCN) 0 72.42 ±0.32 79.73 ±0.18 31.97 ±0.39 72.91 ±0.35

GraphSAGE 0 71.49 ±0.27 78.70 ±0.36 31.53 ±0.15 77.68 ±0.20

CausGNN(GraphSAGE) 0 72.19 ±0.49 79.52 ±0.09 32.29 ±0.12 78.44 ±0.11

GAT 1 71.59 ±0.38 79.04 ±0.54 32.20 ±1.46 70.77 ±5.79

8 71.54 ±0.30 77.23 ±2.37 31.75 ±1.60 78.63 ±1.62

CausGNN(GAT) 1 72.83 ±0.17 80.44 ±0.16 32.93 ±1.22 72.02 ±3.37

8 73.06 ±0.22 80.47 ±0.37 32.85 ±0.84 79.27 ±3.52

GATv2 1 71.78 ±0.18 80.63 ±0.70 32.61 ±0.44 77.23 ±3.32

8 71.87 ±0.25 78.46 ±2.45 32.52 ±0.39 79.52 ±0.55

CausGNN(GATv2) 1 73.15 ±0.35 81.72 ±0.33 33.94 ±0.44 78.47 ±1.63

8 73.30 ±0.18 81.53 ±0.31 34.02 ±0.31 80.17 ±2.37

Link Prediction. To verify the applicability of our framework to edge-level reasoning, we evalu-
ate it on two link prediction benchmarks. The results, shown in Table 4, demonstrate that the benefits
of causal regularization extend to this domain. For instance, on the large-scale ogbl-citation2 net-
work, CausGNN(GATv2) improves the link prediction score by nearly one absolute point. This is
significant because link prediction relies heavily on understanding the underlying graph structure.
The improvement suggests that a standard GNN might overfit to incidental or transitive connec-
tions common within a specific research community (a confounder). Our framework encourages
the model to learn a more fundamental notion of relational causality—what truly makes two enti-
ties likely to connect—rather than simply memorizing common structural patterns. This results in a
more accurate model for predicting unobserved graph topology.

5.3 GENERALIZATION AND ROBUSTNESS ANALYSIS (RQ2)

Out-of-Distribution (OOD) Generalization. The core hypothesis of our work is that learning
causal representations directly translates to superior generalization under distribution shifts. We test
this on the arxiv-ood and twitch-ood benchmarks. The results, presented in Table 2, offer compelling
validation for this claim. The performance gap between the “CausGNN(*)” variants and their
baselines is markedly wider in this OOD setting compared to the in-distribution tasks.

Notably, on the twitch-ood benchmark, which simulates temporal shifts in user behavior and com-
munity structure, CausGNN(GATv2) outperforms the vanilla GATv2 by a significant margin of over
1.4% on the OOD-2 split. This is a crucial finding: standard GATv2, despite its dynamic attention,
learns patterns specific to the training “environment” (e.g., popular trends in the training period).
When this environment changes in the test set, these learned patterns become invalid. In contrast,
CausGNN’s teacher branch, through backdoor adjustment, provides a predictive signal that is invari-
ant to these environmental changes. By distilling this invariant logic, the student model learns to rely
on features that are causally linked to the label, ensuring its performance remains stable even when
the background context shifts. This demonstrates the practical value of learning to approximate
P (Y |do(X)).

Robustness to Structural Noise. To empirically validate our framework’s ability to learn invariant
representations, we conducted a robustness analysis against structural noise. This experiment serves
a dual purpose: it directly tests the model’s resilience to perturbations and, more importantly, probes
its capacity to mitigate spurious correlations introduced by the graph structure, which acts as a proxy
for the confounding environment Z. We injecte structural noise by randomly adding non-existing
edges to the graph, varying the noise ratio p from 0.0 to 0.5. The results are presented in Figure 3.
Please see the Appendix D.2 for detailed analysis.
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Table 2: Out-of-distribution generalization accuracy (%) on the arxiv-ood and twitch-ood datasets.

arxiv twitch
Method OOD 1 OOD 2 OOD 3 OOD 1 OOD 2 OOD 3
GCN 54.76 ±0.23 52.05 ±0.14 44.57 ±0.38 64.67 ±0.22 51.07 ±0.36 61.72 ±0.12

CausGNN(GCN ) 56.92 ±0.24 54.25 ±0.49 46.66 ±0.83 67.95 ±0.27 53.53 ±0.02 63.91 ±0.08

GraphSAGE 55.04 ±0.24 52.18 ±0.26 44.45 ±0.14 64.76 ±0.25 51.25 ±0.17 61.86 ±0.12

CausGNN(GraphSAGE) 57.35 ±0.11 54.81 ±0.33 46.89 ±0.37 67.15 ±0.13 53.66 ±0.02 63.80 ±0.06

GAT 55.13 ±0.15 51.94 ±0.33 44.27 ±0.14 65.38 ±0.71 51.14 ±0.17 61.52 ±0.25

CausGNN(GAT) 57.67 ±0.46 54.52 ±0.51 46.09 ±0.58 67.76 ±0.30 53.78 ±0.04 63.65 ±0.08

GATv2 55.20 ±0.74 52.94 ±1.03 44.83 ±0.49 64.30 ±0.23 51.01 ±0.14 61.22 ±0.47

CausGNN(GATv2) 58.10 ±1.22 54.92 ±1.93 47.18 ±0.62 67.62 ±0.74 53.88 ±0.07 63.86 ±0.02

6 RELATED WORKS

Graph Neural Networks. The dominant paradigm for GNNs is neighborhood aggregation. Its
evolution has produced a rich family of architectures, from the foundational spectral-based Graph
Convolutional Network (GCN (Kipf, 2016)), to inductive methods like GraphSAGE (Hamilton et al.,
2017), and attention-based models such as GAT (Veličković et al., 2017) and its more expressive
successor, GATv2 (Brody et al., 2021). Further work has explored theoretical expressive limits with
models like GIN (Xu et al., 2018) and developed hierarchical pooling mechanisms for graph-level
tasks (Ying et al., 2018). Our work is orthogonal to architectural design; CausGNN is a general
training framework that can empower any of these GNNs with causal invariance.

Causal Inference on Graphs. Recent efforts to instill causality in GNNs largely focus on improv-
ing OOD generalization for graph-level tasks. A major direction is to disentangle the input graph
into causal and spurious components, often through rationale discovery or attention mechanisms
(Sui et al., 2022; Wu et al., 2022; Fan et al., 2022; Chen et al., 2022). Other approaches either inte-
grate domain-specific models for particular tasks (Wang et al., 2022) or regularize the final output
representations to mitigate confounding (Gao et al., 2024). However, they often introduce complex
architectural designs and are limited to graph-level OOD generalization. In contrast, our framework
is a lightweight, general solution to node-level tasks across in-distribution, OOD, and noisy settings,
requiring no architectural changes and thus not sacrificing inference efficiency. Furthermore, while
prior work (Wu et al., 2022; Sui et al., 2022; Wu et al., 2024) acknowledges shortcut features, our
contribution is foundational: we are the first to trace their origin to the neighborhood aggregation
mechanism and formally prove that this paradigm inherently limits GNNs to learning observational
correlations.

7 CONCLUSION

In this paper, we address a fundamental limitation of existing GNNs: their inherent tendency to
learn spurious correlations rather than true causal relationships. We argue that this vulnerability,
which stems from their probabilistic nature of modeling P (Y |X), leads to poor generalization and
a lack of robustness. To overcome this, we introduce the Principle of Causal Alignment and propose
CausGNN, a general framework that empowers any standard GNN with the ability to learn causally-
invariant representations. By operationalizing the backdoor adjustment criterion, our framework
guides a student GNN to align with a causally-debiased teacher, effectively compelling it to learn
robust, environment-insensitive features without requiring any architectural modifications. Exten-
sive experiments on a wide range of benchmarks demonstrated that CausGNN consistently enhances
the performance of various GNNs on standard node classification and link prediction tasks. More
importantly, our framework yields significant improvements in challenging out-of-distribution gen-
eralization and noise scenarios.
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8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a code implementation of our method via an
anonymous link https://anonymous.4open.science/r/CausGNN/. All datasets used
in our experiments are publicly available from OGB (Hu et al., 2020). Furthermore, the theoretical
proofs for the effectiveness of our proposed method are included in Appendix B.
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A LLM DISCLOSURE STATEMENT

All the content of this paper, including data collection, code implementation, and writing, did not
use any generative AI tools.

B THEORETICAL JUSTIFICATION FOR THE PRINCIPLE OF CAUSAL
ALIGNMENT

In this section, we provide a formal theoretical justification for our proposed Principle of Causal
Alignment. We aim to prove that a model trained under our objective is guaranteed to learn repre-
sentations that are invariant to environmental confounders.

B.1 FORMAL SETUP

Let us first formalize the learning setup. The data is generated from an underlying Structural Causal
Model (SCM) with the joint distribution P (X,Y, Z) = P (Z)P (X|Z)P (Y |X,Z), where Z is the
latent environmental confounder.

We define the environment-specific risk for a model Fθ with parameters θ as the expected loss within
a specific environment z:

R(θ|z) ≜ E(X,Y )∼P (X,Y |Z=z)[Lsup(Fθ(X), Y )], (11)

where Lsup is the supervised loss. A model is considered environment-invariant if its risk is
constant across all environments, i.e., R(θ|z1) = R(θ|z2) for any z1, z2 ∈ Z , which implies
Varz∼P (Z)[R(θ|z)] = 0.

Our proposed learning objective is (from Equation 6 in the main paper):

min
θ,ψ
L(θ, ψ) ≜ E(X,Y )[Lsup(Fθ(X), Y )] + λ · EX [DKL(sg[Pψ(Y |X)] ∥ Pθ(Y |X))]. (12)

B.2 ASSUMPTIONS

Our proof relies on the following standard assumptions:

Definition B.1. (Sufficient Approximator) The model family for the causal approximator (param-
eterized by ψ) is sufficiently expressive, and the optimization is effective, such that at the optimum
ψ∗, its predictive distribution perfectly models the true interventional distribution: Pψ∗(Y |X) =
P (Y |do(X)) =

∑
z∈Z P (Y |X,Z = z)P (Z = z).

Definition B.2. (Sufficient Main Model) The main GNN model family {Fθ} is sufficiently expressive
such that there exists a set of parameters θ′ that can perfectly replicate the optimal approximator’s
distribution: ∃θ′ such that Pθ′(Y |X) = Pψ∗(Y |X).

Definition B.3. (Identifiability) The causal relationship P (Y |X,Z) is identifiable from the data.
We also assume the KL-divergence and the supervised loss are non-negative and are zero if and only
if their arguments are identical.

B.3 PROOF OF INVARIANCE

Definition B.4. Under the stated assumptions, the optimal main model Fθ∗ that minimizes the
Causal Alignment objective is environment-invariant. That is, Varz∼P (Z)[R(θ

∗|z)] = 0.

Proof. Let (θ∗, ψ∗) be the parameters that minimize the objective L(θ, ψ). According to the Suffi-
cient Main Model assumption, there exists a θ′ such that Pθ′(Y |X) = Pψ∗(Y |X). For this θ′, the
KL-divergence term in our objective becomes zero: DKL(Pψ∗(Y |X) ∥ Pθ′(Y |X)) = 0. Since
the overall objective L(θ, ψ) is minimized at (θ∗, ψ∗) and both loss terms are non-negative, the
KL-divergence term at the optimum must also be zero. This implies:

DKL(Pψ∗(Y |X) ∥ Pθ∗(Y |X)) = 0 =⇒ Pθ∗(Y |X) = Pψ∗(Y |X) ∀X. (13)
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This first step shows that our objective successfully forces the optimal main model’s predictive
distribution to be identical to the optimal approximator’s distribution.

Now, from the Sufficient Approximator assumption, we know that Pψ∗(Y |X) = P (Y |do(X)).
Combining these results, we get:

Pθ∗(Y |X) = P (Y |do(X)). (14)

This means the optimal main model has learned to predict according to the true interventional dis-
tribution.

Finally, let’s analyze the environment-specific risk of this optimal model,R(θ∗|z). The loss function
Lsup operates on the model’s predictive distribution. So, we have:

R(θ∗|z) = E(X,Y )∼P (X,Y |Z=z)[Lsup(Pθ∗(Y |X), Y )]. (15)

Substituting the result from the previous step:

R(θ∗|z) = E(X,Y )∼P (X,Y |Z=z)[Lsup(P (Y |do(X)), Y )]. (16)

Let’s expand the expectation over the data distribution P (X,Y |Z = z) = P (Y |X,Z =
z)P (X|Z = z):

R(θ∗|z) =
∫
X,Y

Lsup(P (Y |do(X)), Y )P (Y |X,Z = z)P (X|Z = z)dY dX. (17)

The key insight is that the predictor itself, P (Y |do(X)), has already marginalized out the influence
of the environment Z by its definition. It is a fixed function of X and does not depend on the
specific environment z from which the current data sample (X,Y ) is drawn. As the risk R(θ∗|z) is
an expectation over the data distribution within environment z, and the predictor being evaluated is
invariant to z, the resulting expected loss becomes independent of z.

Therefore, we have:
R(θ∗|z1) = R(θ∗|z2) for any z1, z2 ∈ Z. (18)

This directly implies that the variance of the environment-specific risk is zero:
Varz∼P (Z)[R(θ

∗|z)] = 0, which concludes the proof.

C EXPERIMENTAL DETAILS

C.1 DATASETS

The detailed statistics of these datasets are summarized in Table 3.

Table 3: Statistics for the datasets used in our experiments, categorized by task: node classification,
link prediction, and out-of-distribution generalization.

Dataset # Nodes # Edges # Classes
Node Classification

ogbn-arxiv 169 343 1 166 243 40
ogbn-products 2 449 029 61 859 140 47
ogbn-mag 1 939 743 21 111 007 349
ogbn-proteins 132 534 39 561 252 112

Link Prediction
ogbl-collab 235 868 1 285 465 -
ogbl-citation2 2 927 963 30 561 187 -

Out-of-Distribution Generalization
arxiv-ood 169 343 1 166 243 40
twitch-ood 34 120 892 346 2

13
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Node Classification Datasets. We utilize four large-scale benchmark datasets from the Open
Graph Benchmark (OGB) library (Hu et al., 2020). ogbn-arxiv is a citation network where nodes
are computer science papers and edges represent citations, challenging models to predict the subject
area of each paper. ogbn-products is an Amazon co-purchase network where nodes are products
and edges indicate that two products are frequently bought together; here, the objective is to pre-
dict the product category. ogbn-mag is a heterogeneous academic graph containing papers, authors,
and institutions, where the goal is to predict the venue for each paper. ogbn-proteins is a protein-
protein interaction network where nodes are proteins, and the objective is to determine the presence
of various protein functions based on their biological interactions.

Link Prediction Datasets. We use two OGB datasets for evaluating link prediction capabilities.
ogbl-collab is a collaboration network of authors, with the goal of predicting missing co-authorship
links. ogbl-citation2 is a large-scale paper citation network, where the objective is to predict missing
citation links between papers.

Out-of-Distribution (OOD) Datasets. To evaluate generalization capability under distribution
shifts, we follow the setting of (Wu et al., 2024) and employ two specialized OOD benchmark
datasets. arxiv-ood is a variant of the ogbn-arxiv dataset where the training, validation, and testing
sets are partitioned by publication year. This setup creates a temporal distribution shift, requiring
the model to generalize to future, unseen data distributions. twitch-ood is a social network of Twitch
users. The distribution shift is induced by partitioning users based on their activity levels, simulating
changes in community structure and behavior over time.

C.2 BASELINES

For our baselines, we select a suite of widely used GNN architectures that are the direct targets for
our enhancement framework. These include:

• GCN (Kipf, 2016). As a foundational GNN model, GCN adapts the convolution operation
from images to graph data by simplifying spectral graph theory. In practice, its aggregation
mechanism can be viewed as a weighted average of a node’s and its neighbors’ feature
vectors. The aggregation weights are static, pre-defined normalization constants derived
directly from the graph structure (i.e., node degrees), making it a powerful but non-adaptive
baseline.

• GraphSAGE (Hamilton et al., 2017). GraphSAGE represents a significant step towards
inductive learning on graphs, allowing models to generalize to unseen nodes. Instead of
learning fixed embeddings for each node, it learns aggregator functions (e.g., mean, max-
pooling, or an LSTM-based aggregator) that define how to gather information from a node’s
local neighborhood. This flexible, learnable aggregation makes it a widely used and pow-
erful spatial GNN.

• GAT (Veličković et al., 2017). GAT introduced the self-attention mechanism to the graph
domain, enabling nodes to assign different importance weights to their neighbors during
aggregation. Unlike GCN’s fixed weights, GAT’s attention coefficients are learnable and
dependent on the features of the interacting nodes, which allows the model to focus on
more relevant information.

• GATv2 (Brody et al., 2021). GATv2 is a direct successor to GAT, designed to fix a sub-
tle limitation in the original attention mechanism. It demonstrates that the original GAT’s
attention function is “static” in its expressiveness, meaning the ranking of neighbor impor-
tance is not fully conditioned on the querying node. By modifying the order of operations
within the attention computation, GATv2 achieves a more powerful and truly “dynamic”
attention mechanism.

C.3 EXPERIMENTAL CONFIGURATION

All experiments are conducted on a server equipped with NVIDIA A100 GPUs. Our framework and
all baseline models are implemented using PyTorch (Paszke et al., 2019) and PyTorch Geometric
(PyG) (Fey & Lenssen, 2019).
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Table 4: Link prediction performance (Hits@K) on OGB benchmarks.

Model Attn. Heads ogbl-collab ogbl-citation2
GCN 0 44.75 ±1.07 80.04 ±0.25

CausGNN(GCN ) 0 45.32 ±0.62 80.72 ±0.27

GraphSAGE 0 48.10 ±0.26 80.44 ±0.17

CausGNN(GraphSAGE) 0 48.38 ±0.74 80.93 ±0.14

GAT 1 39.32 ±3.26 79.84 ±0.19

8 42.37 ±2.99 75.95 ±1.31

CausGNN(GAT) 1 40.07±0.23 80.35 ±1.16

8 43.06 ±0.36 78.47 ±0.47

GATv2 1 42.00 ±2.40 80.33 ±0.13

8 42.85 ±2.64 80.14 ±0.71

CausGNN(GATv2) 1 43.15 ±1.05 80.76 ±0.29

8 43.62 ±0.64 81.03 ±0.52

To ensure the reliability and robustness of our results, all experiments are repeated for 10 runs with
different random seeds. The mean and standard deviation of the performance metrics across these
10 runs are reported in all result tables.

C.4 HYPERPARAMETER SETTINGS

The hyperparameter configurations of our experiments are configured as follows:

Baseline GNNs (GCN, GraphSAGE, GAT, GATv2). Our approach to baseline hyperparameters
varied by experimental setting:

• For In-Distribution Tasks: For the standard node classification (Table 1) and link predic-
tion (Table 4) benchmarks, the results for the baselins are adopted directly from the GATv2
paper (Brody et al., 2021) to ensure a fair comparison against established, well-tuned re-
sults.

• For OOD and Noise Robustness Tasks: For the out-of-distribution (OOD) generaliza-
tion (Table 2) and noise robustness (Figure3) experiments, we performe a thorough grid
search to find the optimal hyperparameters for each baseline. The search space is defined
as follows:

– Learning Rate: Searched within {0.01, 0.005, 0.001}.
– Weight Decay: Set to 5× 10−4.
– Number of Layers: Set to 2.
– Hidden Dimension: Set to 128 for all layers.
– Dropout Rate: Tuned within {0.3, 0.5, 0.6, 0.8}.
– Attention Heads (for GAT/GATv2): Set to 1 for OOD/noise experiments.

Our Framework. For all experiments adopting our CausGNN framework (i.e., across all result
tables and figures), we perform a grid search on the following hyperparameters:

• Causal regularizer weights (λ): The weight for the causal regularization term is searched
in the set {0.0, 0.2, 0.5.0.8, 1.0}. We find λ = 0.8 to be a robust choice for most datasets.

• Number of Environment Prototypes (K): The size of the environment codebook is se-
lected from {3, 5, 8, 10, 15}. We find K = 10 to be a robust choice for most datasets.

• Environment Dimension (De): The embedding dimension for the environment prototypes
is set to 128.

• Temperature (τ ): The temperature for the soft assignment in environment stratification is
fixed at 1.0.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LINK PREDICTION

Results for link-prediction are shown in Table 4.

D.2 ROBUSTNESS TO STRUCTURAL NOISE

On the homogeneous ogbn-arxiv dataset (Figure 3a), where the neighborhood is composed of a
single relation type (citations), CausGNN(GAT) maintains a higher accuracy across all tested noise
levels. As the noise ratio p increases from 0.0 to 0.5, the baseline GAT’s accuracy degrades by 5.5%.
The proposed CausGNN(GAT) exhibits a smaller degradation of 4.5%. This result is consistent
with our expectation: by approximating the interventional distribution P (Y |do(X)), the model is
incentivized to learn a mapping that depends on the node’s intrinsic features rather than on the easily
corrupted structural context. The performance gap between the two models widens as the noise ratio
increases, which indicates that the representations learned by CausGNN possess a higher degree of
invariance to structural perturbations.

The superiority of our framework is further underscored on the more challenging heterogeneous
ogbn-mag dataset (Figure 3b). Heterogeneous graphs introduce various structural relationships
(e.g., authors writing papers, papers having topics), resulting in more complex sources of con-
founded factors. Despite this, the performance of CausGNN(GAT) decreased by 3%, which is
relatively mild compared to the baselines. This demonstrates that our framework remains effective
in more complex environments. Collectively, the consistent improvements across both homogeneous
and heterogeneous settings validate the generality and effectiveness of our model..
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Figure 3: Robustness analysis against structural noise. We compare the accuracy of CausGNN(GAT)
with its baseline GAT on (a) ogbn-arxiv and (b) ogbn-mag datasets. The noise ratio on the x-axis
represents the proportion of randomly added non-existing edges relative to the original number of
edges.
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