
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPENESTIMATE: EVALUATING LLMS ON REASONING
UNDER UNCERTAINTY WITH REAL-WORLD DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world settings where language models (LMs) are deployed—in domains span-
ning healthcare, finance, and other forms of knowledge work—require models to
grapple with incomplete information and reason under uncertainty. Yet most LM
evaluations focus on problems with well-defined answers and success criteria. This
gap exists in part because natural problems involving uncertainty are difficult to
construct: given that LMs have access to most of the same knowledge as humans,
it is non-trivial to design questions for which LMs will struggle to produce correct
answers, but which humans can answer reliably. As a result, LM performance on rea-
soning under uncertainty remains poorly characterized. To address this gap, we intro-
duce OPENESTIMATE, an extensible, multi-domain benchmark for evaluating LMs
on numerical estimation tasks that require models to synthesize significant amounts
of background information and express predictions as probabilistic priors. We assess
these priors for accuracy and calibration. Across six frontier models, we find that LM-
elicited priors are worth the equivalent of about five samples from the underlying data
distribution, and that posteriors computed using LM priors tend to be more accurate
than those computed using a naive prior. At the same time, the relationship between
model accuracy and confidence is weak across the board, indicating the value of
developing new methods to improve calibration. The OPENESTIMATE benchmark
thus offers a challenging evaluation for frontier LMs and a platform for developing
models that are better at probabilistic estimation and reasoning under uncertainty.

1 INTRODUCTION

Language models (LMs) have demonstrated strong performance across a broad range of reasoning
tasks. However, most existing evaluations are largely confined to problems with clearly defined
answers that assume access to complete, unambiguous information. In contrast, many real-world
applications in which LMs are deployed are characterized by open-endedness and uncertainty.

For example, consider a financial analyst assessing the total addressable market of a potential
early-stage investment. To perform this task, they must integrate information about comparable
companies, the overall industry dynamics, and the specific business to form an informed initial
estimate. Since this setting is characterized by uncertainty (at the early stage, no product has been
built, and the customer base is virtually nonexistent), beliefs about the market are best expressed as
a probability distribution over possible outcomes–in Bayesian terms, as a prior– rather than as a point
estimate. Generating such a prior requires not only probabilistic reasoning skills, but also the ability
to synthesize heterogeneous, noisy, and sometimes opaque sources of evidence into a structured format
for downstream inference. This use case is not unique in these requirements—a parallel set of problems
exists across a variety of domains, including healthcare, public policy, and scientific discovery.

Despite the ubiquity of these applications, existing benchmarks seldom test models on their ability
to generate accurate and well-calibrated Bayesian priors in realistic contexts. Some past work (Xia
et al., 2024; Wong et al., 2025) has studied procedures for eliciting probabilistic models from LMs, but
most specify the task as a mathematical exercise with fully specified inputs (Paruchuri et al., 2024), or
as forecasting questions that are time-bounded and whose outcomes eventually leak into training data
(Karger et al., 2024). To faithfully assess this capability, a good evaluation must be grounded: it must
make use of the LLM’s background knowledge from pretraining in prior formation. At the same time,
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information leakage must be avoided: eliciting the model’s priors about topics for which the “right
answer” already exists in the training data would test memorization rather than true reasoning skills.

To address this gap, we introduce an evaluation procedure based on derived conditional random
variables which are systematically generated using existing public, observational datasets. We use this
procedure to create OPENESTIMATE, a benchmark designed to evaluate LMs on complex probabilistic
estimation tasks that take the form of the aforementioned financial analysis example.

Concretely, each task in OPENESTIMATE involves estimation of a quantity derived from public
health, finance, or labor economics datasets, such as average funding raised by non-tech companies
outside the US with more than 10 people from the Pitchbook dataset (PitchBook Data, 2024), or the
average weight of US adults with diabetes and with blood mercury levels within a prespecified range
from the NHANES government survey (Centers for Disease Control and Prevention, 2018). In total,
OpenEstimate consists of 178 variables across these three domains, and can be easily extended to
new ones without a labor-intensive data collection process.

In OPENESTIMATE, models are given natural language descriptions of these variable and are asked
to make predictions about their true value in the of of Bayesian priors. These priors are then evaluated
in terms of (i) accuracy—whether predicted distributions concentrate near the ground truth—and (ii)
calibration—whether stated confidence levels align with observed frequencies.

Using OPENESTIMATE, we evaluate the quality of estimates elicited from frontier LMs, and find that
these models are far from omniscient: in terms of accuracy and calibration, they often perform no
better—and often worse—than estimates derived from only a handful of samples from the underlying
population. At the same time, these priors could still prove to be useful in practice, since posteriors
computed using LM priors tend to be more accurate than those computed using uninformative priors.

Further, no model family stands out as being the best performing across domains, although
unsurprisingly, large reasoning models tend to perform the best comparatively.

Finally, the relationship between model accuracy and confidence is consistently weak across model
families, suggesting there is value in developing new methods to improve calibration. The OPENES-
TIMATE benchmark thus offers a challenging evaluation for frontier LMs and a platform for developing
models that are better at probabilistic estimation and reasoning under uncertainty. To support future
research and reproducibility, we release our code, benchmark dataset, and evaluation framework.

2 THE OPENESTIMATE BENCHMARK

In this section, we describe the design of the OPENESTIMATE benchmark. We begin by defining
estimation targets as variables derived from large-scale datasets in labor economics, finance, and public
health (Section 2.1). We then explain how models are prompted to specify their priors as parameterized
distributions from natural language prompts (Section 2.2). Finally, we outline the evaluation metrics
used to assess the accuracy and calibration of these priors (Section 2.3).

2.1 DEFINING ESTIMATION TARGETS

To evaluate LM probabilistic estimation skills, we must define variables that are unlikely to appear
in LMs’ pretraining data yet estimable with background knowledge. Crucially, we need access to
the ground-truth values of these variables in order to measure performance. Because much of human
knowledge is already contained in pretraining corpora, creating variables that meet these criteria
typically requires collecting new data experimentally, which is often costly and time-consuming. As
an alternative, the core of OPENESTIMATE is instead a procedure for constructing complex, derived
variables: quantities that can be computed directly from large-scale observational datasets that do
not correspond to well-documented facts likely to appear in pretraining corpora.

We begin by selecting existing data sources, chosen to span three broad areas: social sciences
(Glassdoor1, labor economics), industrial settings (Pitchbook(PitchBook Data, 2024), finance), and
medicine (NHANES(Centers for Disease Control and Prevention, 2018), public health). Next, we
construct a collection of variables from each dataset. The variables we sample from these datasets

1https://www.kaggle.com/datasets/thedevastator/jobs-dataset-from-glassdoor
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Domain Dataset # marginal # 1 cond # 2 cond # 3 cond Total Example

Labor Economics Glassdoor 1 16 20 6 43 Midpoint salary
Finance Pitchbook 4 17 20 20 61 Total funding
Human Health NHANES 14 20 20 20 74 Total cholesterol

Table 1: Distribution of benchmark variables across domains. Columns indicate the number of
marginal variables and conditional variables with one, two, or three conditioning attributes.

come in two forms. Some are marginal statistics, aggregated across an entire dataset (for example,
the mean salary of data scientists, the median deal size of venture-backed companies, or the mean
weight of US adults). Others are conditional statistics, restricted to subgroups defined by up to three
auxiliary attributes (for instance, the mean salary of data scientists in Virginia, the median deal size
of venture-backed companies in the technology sector, or the mean weight for adults with a diabetes
diagnosis who take medication for depression and have cholesterol above a certain range).

We generate conditional statistics by sampling auxiliary attributes at random from empirically
observed values in the data. To avoid trivial or redundant subgroups, we draw on Xia et al. (2024)
in requiring that each additional conditioning attribute alters the target statistic by at least 5%. This
constraint ensures that derived quantities reflect meaningful variation across subgroups rather than
minor fluctuations due to sampling noise.

The variable generation procedure is described in Algorithm 1 and depicted in Figure 1. Statistics
for the number of questions in each domain are reported in Table 1. The resulting dataset contains
a total of 178 variables involving up to three conditions, providing a large number of estimation tasks
of varying difficulty.

Algorithm 1: Sampling Nk marginal (k = 0) and conditional (k = 1, 2, 3) variables

Input: data D, auxiliary attributesA, counts {Nk}3k=0, threshold τ , n minimum sample size
Output: set V of variables
V ← ∅, S ← ∅ // S tracks which attributes have already been used
for k ∈ {0, 1, 2, 3} do

while number of variables in V with k attributes < Nk do
sample k distinct attributes ak ⊂ A // ak is a set of k attributes
D′ ← filter D by ak // keep rows matching attributes in ak
if |D′| < n then

continue // skip if filtered sample is too small

µ∗ ← mean[dv : d ∈ D′] // estimate mean on D′

se∗ ← SE(µ∗;D′) // estimate standard error on D′

µ0 ← mean[dv : d ∈ D] // unconditional mean on full D
if |µ∗ − µ0| > τ and |µ∗ − µ0| > se∗ and ak /∈ S then

add (ak, µ
∗, se∗) to V // store valid variables

add ak to S // store attributes to avoid reuse

return V

While some variables of this kind may overlap with information already present in pretraining corpora
(e.g., widely reported statistics such as overall diabetes prevalence in the United States), many others
are far less likely to have been explicitly documented. In particular, conditional variants of these
quantities—such as the mean weight of adults with diabetes who are over 40, have elevated cholesterol,
and take medication for depression, or the median deal size for companies in a specific sector with
a given number of employees—represent fine-grained combinations of attributes that are almost never
reported in textual sources. By systematically varying the conditioning attributes, we generate a large
set of estimation targets that remain grounded in real-world observational data yet are empirically
difficult for LMs to predict.

2.2 SPECIFYING ESTIMATES AS BAYESIAN PRIORS

How should we elicit LM estimates about the likely values of these variables? One simple approach
would be to prompt LMs to produce point estimates, then evaluate the accuracy of these point estimates
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Figure 1: Variable generation and prior elicitation pipeline. We construct derived variables from large-
scale observational datasets (e.g., PitchBook), specify them as statistical targets (e.g., Gaussian means),
and prompt language models to provide Bayesian priors in the form of distributional parameters.

by reporting the distance (e.g. squared error) between these estimates and the ground-truth value in the
data. However, as previously discussed, evaluation of point estimates leaves out much of what is nec-
essary for such predictions to be useful in the real world: with such estimates, it is not possible to distin-
guish predictions that are right by chance from those that are right as a result of an accurate reasoning pro-
cedure; or conversely between predictions that are wrong but confident and predictions that are wrong
but highly uncertain. Thus, rather than measuring predictions in the form of point estimates, OPEN-
ESTIMATE requires predictions to be specified as probability distributions on the variable of interest.

Models are provided with a brief natural language description of the variable of interest and instructed
to select and parameterize the functional form of the target distribution accurately. (Some of our
experiments investigate other strategies for eliciting parameters.) For all experiments in this paper,
models specified the target distributions as a Gaussian, Beta, or log-normal distribution:

X ∼ N (µ, σ2), X ∼ Beta(α, β), or X ∼ LogNormal(µ, σ2),

depending on whether the target variable is continuous or a proportion. We hypothesize that these
three forms are chosen by LMs because they arise frequently in our domains of interest—Gaussians for
continuous, symmetric quantities like wages; Betas for proportions like disease rates; and log-normals
for right-skewed quantities like startup valuations. (The benchmark itself is agnostic to the choice
of parameterization.)

We refer to these distributions as priors to emphasize the fact that they’re not derived directly from
examples of the distribution in question from the dataset, and that they can be combined with such
samples to produce real posteriors.

2.3 EVALUATION METRICS

Given a prediction from the LM in the form of a probability distribution, how should we evaluate its
quality? We focus on two complementary dimensions of performance:

• Accuracy: The degree to which the model assigns high probability density to regions close
to the empirical ground-truth value.

• Calibration: The consistency between the model’s stated uncertainty and empirical frequen-
cies. A model is well-calibrated if events assigned probability p occur with long-run frequency
p, such that nominal coverage levels of prediction intervals match their realized coverage.

2.3.1 ACCURACY

To assess accuracy, we ask the question: does the model place the mean of its distribution close to
the ground-truth statistic?

To quantify this, we first compute the mean absolute error (MAE) between the mode of the predicted
distribution, p̂i(µ), and the empirical ground-truth value µ∗

i estimated from the full dataset for each
of the n variables in the dataset:

MAELLM =
1

n

n∑
i=1

|µ∗
i −mean(p̂i)| .

To interpret these errors across variables with different units, we report LM predictions relative to a
statistical baseline derived from small empirical samples. Starting from naı̈ve flat priors (α = 1, β = 1

4
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for Beta distributions; µ = 0, σ2 = 105 for Gaussians), we draw a random sample D̃ of size |D̃| = 5
from the relevant sub-population (D′ in Algorithm 1, corresponding to a sample of e.g. 5 patients
or 5 job postings), from which we can compute a posterior p̃i(µ | D̃).

We then compute the statistical baseline MAE as the expected error across such samples:

MAEbaseline = ED̃|µ
∗
i −mean(p̃i(· | D̃))| .

We summarize performance using the error ratio, defined as the LM’s MAE relative to this baseline:

Error Ratio =
MAE LLM

MAEbaseline
.

An error ratio below one indicates that the LM’s prediction is more accurate than a small, noisy sample
from the population whose properties are being estimated.

We also consider the win rate of the LLM prior to the statistical baseline, which is the percentage
of the time that the model’s estimate is closer to the ground truth than the statistical baseline:

Win Rate (LLM prior > baseline) =
1

N

N∑
i=1

1{MAELLM, i < MAEbaseline, i} .

In addition to the N = 5 baseline used for computing MAEs, we report win rates against baselines
with varying numbers of samples.

Finally, we evaluate the usefulness of these priors in combination with data by computing an LLM
posterior:

ˆ̃p(µ | D̃) ∝ p̂(µ) p(D̃ | µ) (1)

(as in the statistical baselines, but replacing the naı̈ve prior with p̂). As with priors, we evaluate the
win rate of these posteriors relative to statistical baselines.

Together, these two dimensions provide a more complete picture of accuracy: the error ratio tests
the average error of models relative to the statistical baselines whereas the win rate determines how
consistently the LLMs are outperforming these same baselines.

2.3.2 CALIBRATION

A model is well-calibrated if the probabilities it assigns correspond to empirical frequencies: events
predicted to occur with probability p should occur about p of the time. In our setting, this means that
the ground-truth value should fall into each predicted quantile with the correct long-run frequency.

To measure this, we partition each model’s predictive distribution into quartiles and record how often
the ground-truth values fall into each bin. For a perfectly calibrated model, each quartile should contain
the ground truth 25% of the time. Deviations from this ideal reflect miscalibration.

Let Qij be the j-th quartile bin of p̂i. We define q̂j = 1
n

∑n
i=1 1{µ∗

i ∈ Qij}. Formally, we compute
the quartile expected calibration error (ECE) as:

ECE =

4∑
j=1

|q̂j − 0.25| .

Lower values indicate better calibration, with ECE = 0 corresponding to perfect calibration (at
quartile granularity).

As a complementary metric, we compute the continuous ranked probability score (CRPS), which pe-
nalizes both miscalibrated predictions and overly dispersed distributions. CRPS measures the distance
between the predicted cumulative distribution function F and the ground truth y without binning:

CRPS(F, y) =
∫ ∞

−∞
(F (x)− I(x ≥ y))

2
dx

where I(x ≥ y) is the indicator function. Lower values indicate better predictive performance.
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As with MAE, we compare LM performance to a statistical baseline computed from small samples,
where p̃i(· | D̃) is the posterior distribution obtained from a sample D̃ of size |D̃|:

CRPSbaseline = ED̃

[
1

n

n∑
i=1

CRPS(p̃i(· | D̃), µ∗
i )

]

We then report the CRPS ratio:

CRPS Ratio =
CRPSLLM

CRPSbaseline

3 EVALUATION

Our evaluation is divided into two parts. In Section 3.1, we evaluate the zero-shot performance of current
language models under standard inference settings, using a consistent elicitation protocol without fine-
tuning or prompt engineering. In Section 3.2, we take a deeper look at the best-performing models by an-
alyzing how changes to the system prompt, temperature, and elicitation strategy affect prediction quality.

3.1 ZERO-SHOT EVALUATION

In this section, we focus on zero-shot performance under standard inference settings. We do not
apply fine-tuning, retrieval augmentation, or prompt engineering beyond directly asking the model
to parameterize the distribution of a variable. To contextualize the LMs’ performance, we compare to
four statistical baselines that use N ∈ [5, 10, 20, 30] examples that are computed using the procedure
described in Section 2.3.1.

We evaluate six state-of-the-art language models, including three reasoning models 2: Meta Llama
3.1 8B, Meta Llama 3.1 70B (Grattafiori et al., 2024), OpenAI GPT-4 (Achiam et al., 2023), OpenAI
o3-mini (OpenAI, 2025a), OpenAI o4-mini (OpenAI, 2025b), and Qwen3-235B-A22B (Yang et al.,
2025). We exclude Llama 3.1 8B after it fails to correctly interpret units. We evaluate each model
at a medium temperature or reasoning effort—corresponding to 0.5 for GPT-4, “medium” for o3-mini
and o4-mini, 0.5 for Llama 3.1 70B Instruct Turbo, and 0.6 for Qwen3-235B-A22B. We use a standard
system prompt and prior elicitation prompt which are described in full in Appendix A.1.

Domain Sample Size % Prior Better % Posterior Better
Glassdoor 5 37.0% 71.4%

10 21.7% 69.0%
20 13.0% 68.1%
30 8.7% 70.5%

Pitchbook 5 50.8% 69.6%
10 50.8% 76.5%
20 49.2% 80.1%
30 50.8% 81.6%

NHANES 5 74.3% 70.4%
10 59.5% 65.1%
20 47.3% 56.6%
30 37.8% 50.4%

Table 2: Win rate of the LLM prior relative to an N -sample statistical baseline, and win rate of an LLM
posterior (LLM prior + N samples) relative to a statistical baseline (uninformative prior + N samples).

Accuracy. We compare the win rates of LLM priors against statistical baselines computed using
N ∈ {5, 10, 20, 30} data points sampled from the true distribution. We fix the model family to o4-mini
for this comparison. We also evaluate LLM posteriors, which are formed by updating the LLM prior

2Here, reasoning models are defined as models that have undergone a dedicated training step that involves
reinforcement learning for chain-of-thought.
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Figure 2: MAE error ratio of LLM prior to a naive statistical baseline computed using a uninformative
prior and five examples from the true distribution. Most models are no better than five examples; some
are significantly worse. There isn’t a statistically significant gap in performance between most model
families.

Figure 3: Expected calibration error (in percentage points) across domains and model families. The best
model varies by domain, with reasoning models performing the best in Pitchbooik and NHANES but not
in Glassdoor. Again, most model families are not statistically different from each other in performance.

with the same N examples used to compute each baseline, and compare their win rates against the
corresponding statistical baselines. The LLM prior vs. statistical baseline win rate addresses the
question: “how many data samples is the LLM prior equivalent to?” The LLM posterior vs. statistical
baseline win rate indicates whether incorporating LLM priors yields better posteriors than starting
from an uninformative prior.

Results are shown in Table 2. We find that in general, the standalone LLM priors outperform the
five-sample baseline in 40-70% of cases, with win rates rapidly dropping off with larger numbers
of samples. However, even though these priors are often inaccurate in isolation, they can be effectively
combined with data, outperforming or matching baselines with naive priors.

Next, we compare the accuracy of different model families across domains, as defined by MAE relative
to the five-sample statistical baseline. The results are shown in Figure 2. We find relatively little
variation between most models (with the exception of Llama-70B), and that again, most models have
average errors that are no better than five examples; some are significantly worse. This suggests that
while the LM priors are often consistently better than the statistical baseline, they are worse in terms
of average absolute error. On the whole, these results suggest that OPENESTIMATE is challenging
for frontier models. Calibration. Next, we assess model calibration.3 First, we consider the overall
expected calibration error (ECE) (as defined in Section 2.3.2) of each model family. Results are shown
in Figure 3. Larger models and reasoning models tend to outperform smaller, non-reasoning models,
but again, no single model family consistently outperforms the rest; specific rankings are domain
dependent. The gap between model families is less than 10% across domains with the exception of
Llama-3-8b in the Glassdoor domain.

3We exclude the statistical baselines from Figure 4 in this analysis because the baselines derive their posteriors
from the same dataset used to compute the ground-truth values. Therefore, larger sample sizes produce extremely
tight distributions centered on the ground-truth mean, which leads the ground truth to almost always fall in the
middle quartiles (e.g., second or third).
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Model Glassdoor NHANES Pitchbook
GPT-4o 3.31 1.86 1.10
Llama-3-70B 4.56 2.76 1.13
Llama-3-8B 10.56 19.17 2.74
Qwen3-235B 2.50 1.65 1.04
o3-mini 3.17 1.35 0.99
o4-mini 2.42 1.17 1.01

Table 3: CRPS Ratio by Model Family Across Domains (vs. 5-Sample Baseline)

Table 3 presents CRPS ratios comparing each model family to the 5-sample baseline and reveals more
nuanced differences than ECE. Reasoning models (o3-mini and o4-mini) achieve the best overall per-
formance. Performance varies considerably by domain: in Pitchbook, all models perform comparably
to the baseline, while in NHANES, smaller models struggle significantly: Llama-3-8B performs 20
times worse than the baseline. Overall, model size and reasoning capabilities appear most critical
in the NHANES domain, while even smaller models achieve reasonable performance in Pitchbook.

Next, we analyze the specific patterns of over- and under-estimation by model family. The results
are shown in (Figure 4). All model families exhibit a tendency towards systematic overestimation.
In Pitchbook, overestimation is compounded by high rates of underestimation as well, with both tails
overweighted.

Next, we examine the cumulative distribution of ground-truth values relative to the predicted priors (Fig-
ure 5) to understand how tightly models concentrate their uncertainty. We find the best models cover 80%
of the ground truth values within two to three standard deviations of the mean. However, performance is
domain-dependent: in Glassdoor and NHANES, the best models cover over 80% of ground-truth values
within two standard deviations, while in Pitchbook, three standard deviations are required. This suggests
that even the strongest models vary substantially in how they express uncertainty across domains.

Finally, we analyze whether model-reported uncertainty is a reliable guide to predictive accuracy
(Figure 6) by comparing the standard deviation ratio to the error ratio. Ideally, models are low error
and well-calibrated. In the Glassdoor domain, models appear reasonably well-calibrated relative to
the five-sample statistical baseline, but are consistently less accurate than this baseline. In contrast,
models in Pitchbook are consistently more confident and less accurate than this baseline. Results in
NHANES fall in between these extremes: models generally achieve lower error than in Glassdoor,
but their uncertainty estimates are less well-calibrated, with several models exhibiting either under-
or over-dispersion. Taken together, these results indicate that the relationship between uncertainty
and accuracy is once again strongly domain-dependent.

Figure 4: Heatmap describing the deviations from perfect calibration of each approach. Bolded
values are statistically significant according to a per-quartile binomial test (p < 0.05). All approaches
systematically overestimated across domains (Quartile 1 is greater than 25%). In some instances, there
was high rates of both over and under-estimation (Quartile 1 and 4 are greater than 25%).
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Figure 5: Cumulative distribution function displaying the percentage of ground truth values that fall
within nσ standard deviations away from the mean of the prior, where σ is the standard deviation of the
prior. The dashed line represents perfect calibration for a Gaussian. The best performing models have
80% of the ground truths within 1-2.5 standard deviations from the prior mean. There is overconfidence
in Pitchbook and NHANES but underconfidence in Glassdoor.

We also assess whether predictive uncertainty aligns with accuracy by examining the rank correlation
between the two for each model family. A stronger correlation between predictive uncertainty and
accuracy would indicate that uncertainty is a good indicator of accuracy. However, the reality is mixed:
uncertainty is a good indicator of accuracy in NHANES but not necessarily in Pitchbook or Glassdoor.

Figure 6: Relationship between uncertainty and accuracy across domains. Each point shows a model’s
error ratio versus its standard deviation ratio relative to the N = 5 baseline. Colors indicate the
Spearman correlation between predictive uncertainty and accuracy within a single model’s predictions,
addressing the question of whether a given model tends to be comparatively more confident when
it’s more accurate. These correlations differ more so by domain than by model.

3.2 ABLATIONS

We investigate how inference-time settings influence the quality of elicited priors, focusing on three
factors: (i) temperature or reasoning effort, (ii) system prompt, and (iii) elicitation protocol. To
isolate their effects, we evaluate both a reasoning model (OpenAI o4-mini) and a non-reasoning model
(OpenAI gpt-4o). The full set of results is shown in Appendix A.2. None of the settings tested has
a consequential impact on performance, indicating that more sophisticated approaches to improving
accuracy and calibration are needed.

4 RELATED WORK

Our work intersects with three major lines of language model research: evaluating probabilistic reason-
ing as a mathematical skill, structuring probabilistic reasoning for better estimation, and applications
to forecasting. Evaluating probabilistic reasoning. One line of research examines how well LMs
perform at problem-solving tasks involving structured probabilistic models. For example, Paruchuri

9
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et al. (2024) evaluate models’ probabilistic reasoning given simple idealized distributions; Nafar et al.
(2025) tests models’ ability to provide probabilistic estimates given a Bayesian network; and Jin et al.
(2023) examine the models’ causal reasoning given probabilities. Collectively, these studies frame prob-
abilistic reasoning as a mathematical exercise with clearly defined inputs and well-specified outputs. By
contrast, our benchmark targets real-world estimation problems, where the relevant information must be
inferred rather than provided and the ground truth itself may be ambiguous or unavailable. Structuring
probabilistic reasoning. Another line of work proposes structures for LM-based probabilistic reason-
ing to improve performance. Using “guesstimation” questions similar to ours, Xia et al. (2024) prompt
LMs to propose relevant random variables and moment constraints, and then fits a log-linear distribution
that satisfies these constraints. Feng et al. (2024) take a similar approach, and evaluate a multi-step
process in which LMs brainstorm relevant factors, make coarse probabilistic assessments, and construct
an approximate Bayesian network for inference. Huynh et al. (2025) use LLMs to generate synthetic
counterfactual outcomes by sampling pseudo-observations, constructing empirical distributions. These
approaches extend beyond single-variable reasoning by introducing latent structure and explicit in-
termediate steps. However, the focus for Xia et al. (2024) and Feng et al. (2024) is answering discrete
multiple-choice questions, while Huynh et al. (2025) focuses on augmenting small datasets for down-
stream causal inference tasks rather than directly evaluating the quality of LLM-generated distributions.

Like our approach, Selby et al. (2025) elicit parametric Bayesian priors from LLMs. However, they
evaluate priors by comparing them to human expert elicitation in existing psychology studies or to
historical observational data in specific settings (e.g., precipitation and temperature in particular cities
in December). By contrast, we specifically construct derived variables—complex aggregations and
cross-sections of tabular data—across diverse domains; we directly evaluate accuracy and calibration
relative to estimated ground truth; and we systematically evaluate how model family and inference-time
settings impact results.

Language model-based forecasting. Recent studies have also evaluated LMs’ forecasting capabilities
(Karger et al., 2024; Halawi et al., 2024; Ye et al., 2024; Chang et al., 2024; Schoenegger et al., 2025).
These works also test whether models can synthesize heterogeneous evidence into well-calibrated
estimates, but they focus on making predictions about real-world future events. In contrast to our
benchmark, the outcomes of forecasting questions are, by design, highly likely to appear in LMs’
training data after they resolve; they thus perpetually become “stale” and must be replaced with
new questions, as noted by Karger et al. (2024). By focusing on questions that require reasoning
about fine-grained cross of tabular datasets, rather than future events, OPENESTIMATE questions are
designed to remain challenging over time.

5 LIMITATIONS AND FUTURE WORK

While OPENESTIMATE provides a first step toward evaluating uncertainty in open-domain estimation,
several limitations remain that point to directions for future work. Ground truth values in OPENES-
TIMATE were estimated from finite samples, and therefore might exhibit estimation error. Moreover,
while OPENESTIMATE was constructed to reduce systematic information leakage, leakage still can
occur to varying degrees. In terms of scope, the current benchmark is limited to variables derived
from three datasets across three domains; expanding to new domains would lead to a more thorough
evaluation of priors. In terms of evaluation, we focus our attention on zero-shot methods without
retrieval or fine-tuning; studying training-time interventions for uncertainty awareness and domain
adaptation would be a complementary next step in future work.

6 CONCLUSION

We introduced OPENESTIMATE, a benchmark and evaluation framework for assessing language
models on open-ended probabilistic estimation with real-world tabular data. The benchmark (i) defines
a realistic task where models must express beliefs as full probability distributions, (ii) elicits priors
through several protocols, and (iii) evaluates performance along accuracy and calibration against
statistical baselines that use only a handful of true samples. By focusing on cross-sectional quantities
from domains such as public health, labor economics, and finance, OPENESTIMATE probes reasoning
under uncertainty while limiting direct lookup and information leakage.

10
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A APPENDIX A

A.1 ZERO-SHOT ESTIMATION

We tested Llama 3 8B but excluded it from our analysis because it incorrectly followed instructions
pertaining to units and had an average error that was orders of magnitude larger than the other models
due to this mistake.

System Prompt.

Glassdoor

You are a helpful assistant that can answer questions about the labor market.

Pitchbook

You are a helpful assistant.

NHANES

You are a helpful assistant that can answer questions about human health.

13
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A.2 ABLATIONS

Elicitation Protocol.

Direct

You are a statistical
expert tasked with constructing a prior distribution for a variable. Your goal
is to choose the most appropriate distribution type and estimate its parameters.

Your estimates should reflect uncertainty about
the population-level parameter, not the variation across individual observations.

Here is the variable you need to model:

{{variable}}

{{units_description}}

Available Distribution Types: Normal (Gaussian), Lognormal, Beta

Instructions:

1. Reasoning: First, provide detailed reasoning
explaining how you arrived at your specific parameter values. Address: What range
do you expect the population parameter to fall in and why? How certain/uncertain
are you about this parameter? How do your chosen parameter values translate
to meaningful quantities in the original scale (e.g., median, mean, quantiles,
credible intervals)? Why is this distribution type appropriate for this variable?

2. Output: After your reasoning, provide
your answer using EXACTLY these XML tags based on which distribution you choose:

If you choose Normal:
<distribution_type>Normal</distribution_type>
<mu>value</mu>
<sigma>value</sigma>

If you choose Lognormal:
<distribution_type>Lognormal</distribution_type>
<mu>value</mu>
<sigma>value</sigma>

CRITICAL: mu and sigma are parameters in LOG-SPACE, not real-space!

Key relationships to real-space values:
- MEDIAN (real-space) = exp(mu)
- MEAN (real-space) = exp(mu + sigmaˆ2/2)
- MODE (real-space) = exp(mu - sigmaˆ2)

How to set mu: First decide what you think
the MEDIAN value should be (in the original units), then set mu = ln(median).
Examples: If median should be 30 dollars, then mu = ln(30) = 3.4 approximately.
If median should be 100 employees, then mu = ln(100) = 4.6 approximately.
If median should be 1000 dollars, then mu = ln(1000) = 6.9 approximately.

How to set sigma:
sigma controls the spread in log-space (typical values: 0.2 to 1.0). sigma = 0.3
gives roughly a 95 percent credible interval of [exp(mu-0.6), exp(mu+0.6)]. sigma
= 0.5 gives roughly a 95 percent credible interval of [exp(mu-1.0), exp(mu+1.0)].

Common mistake to avoid:
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WRONG: Setting mu = 30 when you
mean the value is 30 dollars (This gives median = exp(30) = 10 trillion dollars!)

CORRECT: Setting mu = ln(30) = 3.4 approximately
when you mean the value is 30 dollars (This gives median = exp(3.4) = 30 dollars)

Always verify: Calculate exp(mu). Does this match
your expected median? Calculate exp(mu + sigmaˆ2/2). Does this match your expected
mean? If these are wildly different from what you expect, you have made an error!

If you choose Beta:
<distribution_type>Beta</distribution_type>
<alpha>value</alpha>
<beta>value</beta>

Critical Unit Check: Pay close attention to units. If the variable says in millions
USD, you need to work in millions! For example, I think the typical company
has raised about 3.5 million dollars. In millions, this is: 3.5, NOT 3500000!

Now, please analyze the variable
and provide your reasoning followed by your distribution choice and parameters.

Quantile

You are a statistical expert tasked with constructing a prior distribution
for a variable. Your goal is to choose the most appropriate distribution type and
express your uncertainty about the parameters true value using quantile estimates.

Your estimates should reflect uncertainty about
the population-level parameter, not the variation across individual observations.

Here is the variable you need to model:

{{variable}}

{{units_description}}

Available Distribution Types:

Normal (Gaussian):
For variables that can be positive or negative, symmetric around the mean

Lognormal:
For strictly positive variables, often right-skewed (e.g., prices, sizes, counts)

Beta: For variables bounded between 0 and 1 (e.g., proportions, probabilities)

Instructions:

1. Consider the context of the variable,
including its meaning and any relevant information that informs your beliefs.

2. Choose the
most appropriate distribution type based on: The natural bounds of the variable
(can it be negative? is it bounded between 0 and 1?). The expected shape of
uncertainty (symmetric vs. skewed?). The nature of the quantity being estimated.

3. Estimate the following percentiles of the parameters true
value: 5th percentile (only a 5 percent chance the true value is below this). 25th
percentile. 50th percentile (median, your best estimate of the true value). 75th
percentile. 95th percentile (only a 5 percent chance the true value is above this).
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4. Begin your analysis by showing your thought process inside
<parameter_estimation_process> tags. Include the following elements: Explicitly
state the type of parameter being estimated (e.g., population mean, proportion).
Explain why you chose a particular distribution type. List any known facts or data
points about the variable. Consider and list possible data sources or methods for
estimating this parameter. Brainstorm factors that might influence the parameters
value. Note potential biases or limitations in the available information.
State any assumptions you are making. Consider how the parameter might have
changed over time or across different subgroups. Provide your quantile estimates
with a brief explanation for each. Include relevant facts or context about
the variable. Justify your choices. Emphasize population parameter uncertainty
(not individual variability). Reflect on what your estimate spread indicates
about your certainty. Consider any plausible edge cases or alternative scenarios.

5. After your analysis, provide your final answer in the following format:

<distribution_type>[Normal, Lognormal, or Beta]</distribution_type>
<q5>[5th percentile value]</q5>
<q25>[25th percentile value]</q25>
<q50>[50th percentile (median) value]</q50>
<q75>[75th percentile value]</q75>
<q95>[95th percentile value]</q95>

<justification>
[Brief summary of your reasoning, including why you chose this distribution type]
</justification>

<confidence_level>
[Description of how certain or uncertain you are, and why]
</confidence_level>

Examples:

1. Normal Distribution Example:
Variable: Average temperature in a city during summer
Units: Degrees Celsius

<distribution_type>Normal</distribution_type>
<q5>22</q5>
<q25>24</q25>
<q50>26</q50>
<q75>28</q75>
<q95>30</q95>

<justification>
Normal distribution is appropriate because temperature can

be positive or negative and uncertainty about the mean is approximately symmetric.
Based on historical climate data and considering year-to-year variation.
The spread reflects uncertainty in long-term averages due to climate variability.

</justification>

<confidence_level>
Moderately confident. Climate data is well-documented,

but climate change introduces some uncertainty about current averages.
</confidence_level>

2. Lognormal Distribution Example:
Variable: Average home price in a metropolitan area
Units: Thousands of USD

<distribution_type>Lognormal</distribution_type>
<q5>280</q5>
<q25>350</q25>
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<q50>420</q50>
<q75>520</q75>
<q95>680</q95>

<justification>
Lognormal distribution is appropriate

because home prices are strictly positive and typically right-skewed. Based on
recent market data and regional economic indicators. The asymmetric spread (wider
on the high end) reflects the possibility of higher prices in desirable areas.

</justification>

<confidence_level>
Somewhat uncertain. Housing markets are volatile and

influenced by many factors including interest rates and local economic conditions.
</confidence_level>

3. Beta Distribution Example:
Variable: Proportion of customers who complete a purchase after adding items to cart
Units: Proportion (0 to 1)

<distribution_type>Beta</distribution_type>
<q5>0.55</q5>
<q25>0.62</q25>
<q50>0.68</q50>
<q75>0.74</q75>
<q95>0.80</q95>

<justification>
Beta distribution is appropriate

because this is a proportion bounded between 0 and 1. Based on industry benchmarks
for e-commerce conversion rates and typical cart abandonment patterns. The spread
accounts for variation across different product categories and customer segments.

</justification>

<confidence_level>
Moderately confident. Conversion rates are well-studied

in e-commerce, but can vary significantly by industry and website design.
</confidence_level>

Critical Unit Check: Pay close attention to units. If the variable says in millions
USD, you need to work in millions. For example, I think the typical company
has raised about 3.5 million dollars. In millions, this is 3.5, not 3500000.

Remember to tailor
your analysis to the specific variable and units provided, focusing on uncertainty
about the population-level parameter rather than individual variability.

Mean-Variance

You are a statistical expert tasked with constructing
a prior distribution for a variable. Your goal is to choose the most appropriate
distribution type and estimate its parameters using mean and standard deviation.

Your estimates should reflect uncertainty about
the population-level parameter, not the variation across individual observations.

Here is the variable you need to model:

{{variable}}

{{units_description}}

Available Distribution Types:
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Normal (Gaussian):
For variables that can be positive or negative, symmetric around the mean

Lognormal:
For strictly positive variables, often right-skewed (e.g., prices, sizes, counts)

Beta: For variables bounded between 0 and 1 (e.g., proportions, probabilities)

Instructions:

1. Consider the context of the variable, including what it
represents and any relevant information or assumptions that inform your beliefs.

2. Choose the
most appropriate distribution type based on: The natural bounds of the variable
(can it be negative? is it bounded between 0 and 1?). The expected shape of
uncertainty (symmetric vs. skewed?). The nature of the quantity being estimated.

3. Estimate the following quantities:
Best guess (mean): your estimate of the most likely value of the population-level
parameter. Standard deviation: a numerical expression of your uncertainty
about the true value, not the variability across individual observations.

4. Begin your analysis by showing your thought process
inside <parameter_estimation_process> tags. Include the following elements:

Clearly state
the type of parameter being estimated (e.g., population mean, true proportion).
Explain why you chose a particular distribution type. List any known facts, data
points, or previous estimates about the variable. Consider possible data sources,
analogous populations, or related studies that inform your belief. Identify
key factors that might influence the value of the parameter. Note any limitations,
uncertainties, or assumptions in your reasoning. Reflect on how the parameter
might differ across subgroups or change over time. Provide your best guess
(mean) and your estimate of the standard deviation. Justify your choices with
reference to the context, data, and assumptions. Emphasize that your uncertainty
pertains to the population parameter, not individual variation. Reflect on what
the magnitude of your standard deviation implies about your confidence. Consider
plausible edge cases or outliers that helped you calibrate your uncertainty.

5. After your analysis, provide your final answer in the following format:

<distribution_type>[Normal, Lognormal, or Beta]</distribution_type>
<mean>[Best guess for the true value]</mean>
<std_dev>[Standard deviation representing your uncertainty]</std_dev>

<justification>
[Brief summary of your reasoning, including

why you chose this distribution type and what informed your parameter estimates]
</justification>

<confidence_level>
[Explanation of how confident or uncertain you are, and why]
</confidence_level>

Examples:

1. Normal Distribution Example:
Variable: Average height of adult males in a country
Units: Centimeters

<distribution_type>Normal</distribution_type>
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<mean>175</mean>
<std_dev>2.5</std_dev>

<justification>
Normal distribution is appropriate because

height can theoretically take any value and is approximately symmetric around
the mean. Based on global averages, previous studies in similar populations,
and considering factors like nutrition and genetics. The standard deviation
reflects uncertainty due to potential sampling biases and regional variations.

</justification>

<confidence_level>
Moderately confident. While height is

well-studied, variations between regions and over time introduce some uncertainty.
</confidence_level>

2. Lognormal Distribution Example:
Variable: Average annual revenue of small businesses in a region
Units: Thousands of USD

<distribution_type>Lognormal</distribution_type>
<mean>250</mean>
<std_dev>150</std_dev>

<justification>
Lognormal distribution

is appropriate because revenue is strictly positive and typically right-skewed,
with some businesses earning significantly more than the median. Based on industry
reports and regional economic data. The standard deviation reflects substantial
uncertainty due to variation across industries and economic conditions.

</justification>

<confidence_level>
Somewhat uncertain. Business revenue varies widely by industry

and economic conditions, and available data may not be fully representative.
</confidence_level>

3. Beta Distribution Example:
Variable: Proportion of people who prefer tea over coffee in a city
Units: Proportion (0 to 1)

<distribution_type>Beta</distribution_type>
<mean>0.6</mean>
<std_dev>0.05</std_dev>

<justification>
Beta distribution is appropriate because this is a proportion bounded

between 0 and 1. Estimated based on local cultural preferences, limited survey
data, and comparison with similar cities. The standard deviation accounts for
potential biases in available data and variations across different demographics.

</justification>

<confidence_level>
Somewhat uncertain. Beverage preferences can vary significantly based on

factors like age, cultural background, and local trends, which are not fully known.
</confidence_level>

Critical Unit Check: Pay close attention to units. If the variable says in millions
USD, you need to work in millions. For example, I think the typical company
has raised about 3.5 million dollars. In millions, this is 3.5, not 3500000.

Remember: you are
modeling beliefs about the parameter, not the spread of raw data. Your standard
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deviation should reflect how much uncertainty you have about the single true
value that governs the population, not the spread of outcomes across individuals.

Provide your analysis and final answer based on the given variable and
units description. Your final output should consist only of the formatted answer
and should not duplicate or rehash any of the work you did in the thinking block.

Additional Results.

Figure 7: Effect of elicitation protocol (direct, quantile, mean–variance) on error ratio, expected
calibration error (ECE), CRPS ratio, and uncertainty (standard deviation) across reasoning and
non-reasoning models, relative to direct elicitation.

Figure 8: We examine the impact of changing temperature or reasoning effort on accuracy, calibration,
and certainty.

Figure 9: We examine the impact of changing the system prompt or reasoning effort on accuracy,
calibration, and certainty.
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