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ABSTRACT

Decisions in the real world rely on noisy, limited data. Language models (LMs),
with broad pretrained knowledge, can help decision-makers by offering informed
Bayesian priors that guide better choices. However, the extent to which LMs can
provide reliable priors remains poorly understood. We introduce OPENESTIMATE,
a benchmark that asks LMs to express beliefs as Bayesian priors over real-world
quantities from labor economics, private markets, and public health. We assess
these priors for both accuracy and calibration, benchmarking them against statistical
baselines built by sampling from the true distribution. Across six frontier LMs,
LM-elicited priors are often inaccurate and overconfident: they seldom beat
posteriors formed from five real observations. Performance improves modestly
depending on how uncertainty is elicited from the model, but is largely unaffected
by changes in temperature, reasoning effort, or system prompt. Given LMs’ weak
performance, OPENESTIMATE offers an important foundation for building systems
that can reason under uncertainty and know when to doubt themselves.

1 INTRODUCTION

What is the average total funding raised by venture-backed companies outside the United States?
Even finance experts struggle to answer this without first stitching together heterogeneous sources
of evidence. Many deals go undisclosed, reporting is noisy, and sample sizes are often small. As a
result, analysts must reason under uncertainty, blending background knowledge, intuition, and limited
data to form probability distributions over plausible values rather than precise point estimates. Similar
probabilistic estimation problems arise in domains such as public health and labor economics, where
consequential decisions—how to allocate capital or which policies to adopt—hinge on quantities that
are inherently uncertain.

In such settings, decisions are guided by Bayesian priors: probability distributions that capture initial
beliefs about unknown quantities. Well-calibrated priors make downstream inference more reliable,
while poorly calibrated ones can distort conclusions even when more data arrive. Language models
(LMs), pretrained on vast corpora, are natural candidates for supplying such priors. Their broad
background knowledge across domains could, in principle, be distilled into structured probability
distributions that humans or statistical models then update with real-world data.

Assessing this potential requires benchmarks that directly test LMs’ ability to generate well-calibrated
distributions over uncertain quantities in realistic settings. Existing benchmarks rarely probe this skill:
some focus on deterministic problem-solving with single correct answers (Hendrycks et al.|[2021)),
others on forecasting questions whose outcomes eventually leak into training data, and another set
on structured “guesstimation” methods such as Xia et al.[(2024) that emphasize intermediate modeling
rather than direct distributional estimation.

To fill this gap, we introduce OPENESTIMATE, a benchmark designed to evaluate LMs on complex prob-
abilistic estimation tasks. Each task specifies a real-world variable derived from public health, finance,
or labor economics datasets, such as average total funding raised by companies outside the US or the
average weight of US adults with diabetes. Models are asked to parameterize explicit probability dis-
tributions (Gaussians for continuous quantities and Betas for proportions) over these variables. Perfor-
mance is evaluated in terms of both (i) accuracy—whether predicted distributions concentrate near the
ground truth—and (ii) calibration—whether stated confidence levels align with observed frequencies.
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Domain Dataset  Variable +1 +2 +3 Total Example Marginal Variable
Labor Economics  Glassdoor 1 16 20 6 43 Midpoint salary
Finance Pitchbook 4 17 20 20 61 Total funding

Human Health NHANES 14 20 20 20 74 Total cholesterol

Table 1: Distribution of benchmark variables across domains. Columns indicate the number of
marginal variables and conditional variables with one, two, or three conditioning attributes. Each
additional condition increases contextual specificity.

Using OPENESTIMATE, we evaluate quality of Bayesian priors elicited from frontier LMs. We find that
these models are far from omniscient: in terms of accuracy and calibration, they often perform no better—
or even worse—than just five random draws from an empirical distribution. Further, no model stands out
as particularly accurate or well-calibrated across domains. However, models still demonstrate an ability
to assign systematically higher likelihoods to true outcomes. This indicates that while models may
struggle with absolute accuracy, their probabilistic estimates nonetheless capture non-trivial domain
structure. This latent signal suggests that, while current priors are weak, they hold potential as a founda-
tion for methods that refine or adapt LMs into trustworthy tools for probabilistic estimation. To support
future research and reproducibility, we release our code, benchmark dataset, and evaluation framework.

2 THE OPENESTIMATE BENCHMARK

In this section, we describe how we built the OPENESTIMATE benchmark. We begin by defining
estimation targets as variables derived from large-scale datasets in labor economics, finance, and
public health (Section[2.T). We then explain how models are asked to specify their priors as Gaussian
or Beta distributions parameterized from natural language prompts (Section[2.2). Finally, we outline
the evaluation metrics used to assess the accuracy and calibration of these priors (Section[2.3)).

2.1 DEFINING ESTIMATION TARGETS

To evaluate LM probabilistic estimation skills, we must define variables (like average funding amount
for companies outside of the US) that are unlikely to appear in LMs’ pretraining data yet estimable
with background knowledge. Crucially, we need access to the ground-truth values of these variables
in order to measure performance. Because much of human knowledge is already contained in
pretraining corpora, creating variables that meet these criteria typically requires collecting new data
experimentally, which is often costly and time-consuming.

To address this challenge, we design a variable generation procedure to create derived variables:
quantities that can be computed directly from large-scale observational datasets where ground truth
is available but that do not correspond to well-documented facts likely to appear in pretraining corpora.
We sample these variables from Glassdoorﬂ Pitchbook (PitchBook Datal [2024), and NHANES (for
Disease Control & Prevention|2018]) datasets, which cover topics spanning across labor economics,
private markets, and human health.

The variables we sample from these datasets come in two forms. Some are marginal statistics,
aggregated across an entire dataset (for example, the mean salary of data scientists, the median deal
size of venture-backed companies, or the mean weight of US adults). Others are conditional statistics,
restricted to subgroups defined by up to three auxiliary attributes (for instance, the mean salary of
data scientists in Virginia, the median deal size of venture-backed companies in the technology sector,
or the mean weight for adults with a diabetes diagnosis and high cholesterol). The full breakdown
of variable types across domains is shown in Table[T}

We generate conditional statistics by sampling auxiliary attributes at random from empirically observed
values in the data. To avoid trivial or redundant subgroups, we follow Xia et al.|(2024) in requiring that
each additional conditioning attribute alters the target statistic by at least 5%. This constraint ensures
that derived quantities reflect meaningful variation across subgroups rather than minor fluctuations
due to sampling noise. The full sampling algorithm is described in Algorithm][T]

1https ://www.kaggle.com/datasets/thedevastator/jobs—-dataset-from-glassdoor


https://www.kaggle.com/datasets/thedevastator/jobs-dataset-from-glassdoor
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Algorithm 1: Sampling Ny marginal (k = 0) and conditional (k = 1, 2, 3) variables

Input: data D, auxiliary attributes A, counts { NV, k}zzo’ threshold 7, n minimum sample size
Output: set V of variables

V0,850 // 8 tracks which attributes have already been used
for k € {0,1,2,3} do

while number of variables in V with k attributes < IV, do
sample k distinct attributes a, C A // ar is a set of k attributes
D’ « filter D by ay, // keep rows matching attributes in aj
if |D’| < n then
Lcontinue // skip 1if filtered sample is too small
i+ mean(Y | D) // estimate mean on D’
se + SE(j; D) // estimate standard error on D’
o < mean(Y | D) // unconditional mean on full D
if |fo — po| > 7and |4 — po| > seand ay, ¢ S then
add (ag, fi, se) to V // store valid variables
Laddak toS // store attributes to avoid reuse
return )V

While some variables of this kind may overlap with information already present in pretraining corpora
(e.g., widely reported statistics such as overall diabetes prevalence in the United States), many others
are far less likely to have been explicitly documented. In particular, conditional variants of these
quantities—such as the mean weight of adults with diabetes who also have elevated cholesterol, or
the median deal size for companies in a specific sector with a given number of employees—represent
fine-grained combinations of attributes that are almost never reported in textual sources. By
systematically varying the conditioning attributes, we generate a large set of estimation targets that
remain grounded in real-world observational data yet are unlikely to be memorized facts. This design
allows us to evaluate whether models can combine background knowledge with probabilistic reasoning,
rather than relying on surface-level recall.

Prompt: What is the average total
funding raised by venture-backed
companies outside the United States?

Observational Dataset: Pitchbook
Derived Variable:

Company | Funding | Location | Average Total Funding of
. . . VC-Backed Companies Outside
of the US

- -
o aio

Response: <Chain of Thought>
Normal(u,0) Mu = $10M, Sigma = $2M

Figure 1: Variable generation and prior elicitation pipeline. We construct derived variables from large-
scale observational datasets (e.g., PitchBook), specify them as statistical targets (e.g., Gaussian means),
and prompt language models to provide Bayesian priors in the form of distributional parameters.

Give a mu and sigma corresponding to
your Bayesian prior on the value of this

variable.

2.2  SPECIFYING ESTIMATES AS BAYESIAN PRIORS

How do we ask LL.Ms to give their estimates about the likely values of these variables? One simple
approach would be to evaluate models on the accuracy of their point estimates by reporting the distance
(e.g. squared error) between these estimates and the ground-truth value in the data.

However, evaluation of point estimates leaves out much of what is necessary for such predictions to be
useful in the real world: with simple point estimates, it’s not possible to distinguish predictions that are
right by chance from those that are right as a result of an accurate reasoning procedure; or conversely
between predictions that are wrong but confident and predictions that are wrong but highly uncertain.
Thus, rather than measuring predictions in the form of point estimates, OPENESTIMATE requires
predictions to be specified as probability distributions or Bayesian priors on the variable of interest.

In this paper, predictions are specified via the parameters of a Gaussian or Beta distribution:

X ~N(u,0%) or X ~ Beta(a, ),

depending on whether the target variable is continuous or a proportion.
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These two forms are chosen because they arise frequently in our domains of interest— Gaussians for
continuous, symmetric quantities like wages, and Betas for proportions like disease rates. In all cases,
we provide the model with a brief natural language description of the variable that we want a prior
distribution on, and nothing else. We tell the model which distributional form we want its prior to
take on and ask it to parameterize the prior accordingly.

2.3  EVALUATION METRICS

Given a prediction from the LM in the form of a Gaussian or Beta distribution, how should we evaluate
its quality? We focus on two complementary dimensions of performance:

* Accuracy: The degree to which the model assigns high probability density (or mass) to
regions close to the empirical ground-truth value.

* Calibration: The consistency between the model’s stated uncertainty and empirical frequen-
cies. A model is well-calibrated if events assigned probability p occur with long-run frequency
p, such that nominal coverage levels of prediction intervals match their realized coverage.

2.3.1 ACCURACY

To measure accuracy, we look at: (i) central tendency, assessed by the mean absolute error (MAE)
of the distribution’s mode relative to the empirical ground-truth statistic, and (ii) distributional fit,
assessed by the scale-adjusted log-probability that the model assigns to the ground truth.

Our first measure assesses central tendency: does the model place the mode of its distribution close to the
ground-truth statistic? To quantify this, we compute the mean absolute error (MAE) between the mode
of the predicted distribution, &;, and the empirical ground-truth value =* estimated from the full dataset:

1 n
MAE = -~ 3 [¢; — ]
P |#; — ]|

To interpret these errors across variables with different units, we benchmark LM predictions against
statistical baselines derived from small empirical samples. Starting from naive flat priors (a« = 1,5 =1
for Beta distributions; u = 0,02 = 100,000 for Gaussians), we update with N random draws from
the relevant subgroup to obtain a posterior distribution.

In addition, we construct an LM-informed baseline by performing a conjugate Bayesian update of
the LM-elicited prior with the same N samples. This baseline tests not only the quality of the LM’s
prior in isolation but also its usefulness when combined with real data to assess the practical role of
LMe-elicited priors in Bayesian inference.

We summarize performance using the error ratio, defined as the LM’s MAE relative to a statistical
baseline:

MAE LLM
MAE Statistical Baseline

Error Ratio =

An error ratio below one indicates that the LM’s prediction is more accurate than simply drawing five
samples from the ground truth distribution.

While this measure captures whether the distribution is centered appropriately, it ignores how
much probability mass is actually assigned to the ground-truth value. We therefore also evaluate
distributional fit using scale-adjusted log-probabilities. Specifically, we compute the log-probability
of the ground-truth value under the model’s distribution, with a correction term from the Jeffreys prior
to ensure invariance to scale and parameterization (4 log(p(1 — p)) for Betas; log(c) for Gaussians).
This measure reflects whether the model regards the true value as “likely” under its stated uncertainty.

Together, these two dimensions provide a fuller picture of accuracy: the error ratio tests whether models
outperform simple empirical sampling in terms of central tendency, while the log-probability assesses
whether the ground truth lies in a region of high probability mass under the model’s stated beliefs.
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2.3.2 CALIBRATION

A model is well-calibrated if the probabilities it assigns correspond to empirical frequencies: events
predicted to occur with probability p should occur about p of the time. In our setting, this means that
the ground-truth value should fall into each predicted quantile with the correct long-run frequency.

To measure this, we partition each model’s predictive distribution into quartiles and record how often
the ground-truth values fall into each bin. For a perfectly calibrated model, each quartile should contain
the ground truth 25% of the time. Deviations from this ideal reflect miscalibration. Formally, we
compute the expected calibration error as:

4
1
ECE =, Z; Ipi — 0.25|

where p; is the empirical proportion of ground-truth values that fall into the ¢-th quartile of the predicted
distribution across all evaluation instances. Lower values indicate better calibration, with ECE = 0
corresponding to perfect calibration.

3 EVALUATION

In this section, we focus on zero-shot performance under standard inference settings. We do not
apply fine-tuning, retrieval augmentation, or prompt engineering beyond directly asking the model
to parameterize the distribution of a variable. To contextualize the LMs’ performance, we compare
to the four statistical baselines described in Section2.3.11

We evaluate six state-of-the-art language models, including three reasoning models: Meta Llama

3.1 8B, Meta Llama 3.1 70B (Grattafiori et al.}[2024), OpenAl GPT-4 (Achiam et al.}[2023)), OpenAl
03-mini (OpenAl[20254), OpenAl 04-mini (OpenAlL[2025b), and Qwen3-235B-A22B

[2025). We exclude Llama 3.1 8B after it fails to follow basic answer specification. We evaluate each
model at a medium temperature or reasoning effort — corresponding to 0.5 for GPT-4, “medium” for
03-mini and o4-mini, 0.5 for Llama 3.1 70B Instruct Turbo, and 0.6 for Qwen3-235B-A22B. We use
a standard system prompt and prior elicitation prompt which are described in full in the Appendix[A~T]
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Figure 2: Accuracy and calibration of LMs compared to the statistical baseline of N = 5 samples
(dotted line). (a) Accuracy is reported as the error ratio of model predictions relative to the baseline.
(b) Calibration is reported as expected calibration error (ECE). Across domains, models are at best
comparable to the five-sample baseline and often worse.

Accuracy. We first evaluate the accuracy of the central tendency of each model’s estimates by reporting
its mean absolute error as a multiple of the mean absolute error of a statistical baseline computed
using an uninformative prior, as described in We find that models hardly perform better than the
N = 5 statistical baseline, as shown in Table[2l Therefore, we use the N = 5 baseline as a common
point of comparison across results.



Under review as a conference paper at ICLR 2025

Glassdoor Pitchbook NHANES

Baseline (n=all) . Baseline (n=all) I Baseline (n=all) -
Baseline (n=30) I 04 Mini 1 Baseline (n=30) l
Baseline (n=20) } 03 Mini 4 | Baseline (n=20) ]
Baseline (n=10) b GPT 40 'I 03 Mini =

04 Mini [} Baseline (n=30) I Baseline (n=10) H ‘

03 Mini " Baseline (n=20) I GPT 40 >—-

GPT 40 . Qwen3 235B = 04 Mini —

Qwen3 235B ) Baseline (n=10) - Baseline (n=5) —
Baseline (n=5)1 ———— Baseline (n=5)1 ——— Qwen3 235B

Mean Log Probability

Figure 3: Log-probabilities of the ground truth under model priors across domains. Reasoning models
(03 Mini, 04 Mini) consistently allocate higher likelihoods to the true outcome than weak baselines
(e.g., N = b), in some cases rivaling N = 20-30 sample posteriors.

We find that reasoning models tend to perform as well as the statistical baseline, whereas non-
reasoning models tend to perform worse than the statistical baseline (Figure[2a). However, even the
top-performing models did not surpass the accuracy of an estimate derived from five real data points,
suggesting that OPENESTIMATE remains challenging for frontier models.

Domain N % Help Prior Post Base A
5 73.0% 1319 0928  1.000 7.2%
10 48.6% 1319 0840 0712  —17.9%
NHANES o0 10% 1319 0739 0511  —44.4%
30 33.8% 1.319  0.700 0424  —65.0%
5 50.8% 1.768 1208  1.000  —20.8%
. 10 42.6% 1.768  1.075 0743  —44.7%
PitchBook o) 2o, 1768 0944 0550  —71.7%
30 27.9% 1.768  0.873 0433 —101.7%
5 628% 1.800 0980  1.000 2.0%
Glassdoor 10 605% 1800 0.724 0688 —5.2%
20 51.2% 1.800 0478 0432  —10.5%
30 27.9% 1.800  0.347 0291  —19.2%

Table 2: Error ratios relative to a five-sample statistical baseline (/N =5). “Prior” refers to the LM prior
alone; “Post” to the conjugate update to the LLM prior with NV samples; “Base” to the posterior from
flat prior with N samples. A is the % improvement between Post and Base.

Although the models are far from omniscient, they nonetheless exhibit useful structure in how they
allocate probability mass. Examining the log probabilities of the true outcome reveals that their elicited
priors capture non-trivial knowledge by concentrating probability near the correct answer (Figure
B). For example, in Pitchbook, 04 Mini and 03 Mini are able to assign higher likelihoods to the true
outcome to outperform statistical baselines up to N = 30 samples.

Calibration. Next, we assess model calibration}’| We first assess calibration by computing the
expected calibration error (as defined in Section . Models are only as calibrated as five random
samples from the empricial distribution (Figure and display systematic overestimation (Figure

2We exclude the statistical baselines from Figurein this analysis because the baselines derive their posteriors
from the same dataset used to compute the ground-truth values, larger sample sizes produce extremely tight
distributions centered on the ground-truth mean. This leads the ground truth to almost always fall in the middle
quantiles (e.g., second or third).
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M). In Pitchbook, overestimation is compounded by high rates of underestimation as well, with both
tails overweighted. No single model dominates across domains.

Glassdoor Pitchbook NHANES
GPT 40- 18.6 18.6 16.3“ mlll 148 213 m 18.9 16.2 K]
£
L|ama3708m 228 17.2 | 16.7 mn 13.1 344 m 18.9 18.9 ,40(%
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Qwen3 235B- 31.6 205 33.0 - 21.3 n 36.1 - 274 247 12.3 35.6 "
=
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03 Mini 205 18.1 24.2 14.8 26.2 - 342 233 233 19.2 =
-
|
04 Mini - 293 17.2 18.1 16.7 m28.3 - 216 203 203 ,203
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Figure 4: Heatmap describing the deviations from perfect calibration of each approach. Bolded
values are statistically significant according to a per-quartile binomial test (p < 0.05). All approaches
systematically overestimated across domains (Quartile 1 is greater than 25%). In some instances, there
was high rates of both over and under-estimation (Quartile 1 and 4 are greater than 25%).

Next, we examine the cumulative distribution of ground-truth values relative to the predicted priors (Fig-
ure[5)) to understand how tightly models concentrate their uncertainty. We find the best models cover 80%
of the ground truth values within two to three standard deviations of the mean. However, performance is
domain-dependent: in Glassdoor and NHANES, the best models cover over 80% of ground-truth values
within two standard deviations, while in Pitchbook, three standard deviations are required. This suggests
that even the strongest models vary substantially in how they express uncertainty across domains.

Glassdoor Pitchbook NHANES
100 /’//4—— = — S . Wi = —— GPT 40
7 / fﬁ—J iy —— Llama 3 70B
’ / r / 4 o
804 / : i AT 7 03 mini
! 7 ! ~ ! 04 Mini
] ] it ] [ Qwen3 235B
1 1 [ 14 1 ! .
60 i o i / ——- Perfect Calibration
’ g /
201 /) / i
| 1 I/
{ /|
20 { [
J A /
0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Number of Standard Deviations

Figure 5: Cumulative distribution function displaying the percentage of ground truth values that fall
within no standard deviations away from the mean of the prior, where o is the standard deviation of
the prior. The dashed line represents perfect calibration for a Gaussian. The best performing models
have 80% of the ground truths within 1.5-2.5 standard deviations from the prior mean.

Finally, we analyze whether model-reported uncertainty is a reliable guide to predictive accuracy
(Figure[6)) by comparing the standard deviation ratio to the error ratio. Ideally, models are low error and
well-calibrated. In the Glassdoor domain, models appear reasonably well-calibrated but consistently
less accurate than the baseline. In contrast, models in Pitchbook cluster closer to the ideal point with
low error and good calibration, although 03 Mini stands out as markedly overconfident. Results in
NHANES fall in between these extremes: models generally achieve lower error than in Glassdoor,
but their uncertainty estimates are less well-calibrated, with several models exhibiting either under-
or over-dispersion. Taken together, these results indicate that the relationship between uncertainty
and accuracy is once again strongly domain-dependent.

We also assess whether predictive uncertainty aligns with accuracy by examining the rank correlation
between the two. A stronger correlation between predictive uncertainty and accuracy would indicate
that uncertainty is a good predictor of accuracy. However, reality is mixed: uncertainty is a good
predictor of accuracy in NHANES but not necessarily in Pitchbook or Glassdoor.
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Figure 6: Relationship between uncertainty and accuracy across domains. Each point shows a model’s
error ratio versus its standard deviation ratio relative to the N = 5 baseline. Ratios closer to 1 indicate
better alignment: low error and well-calibrated uncertainty. Colors indicate the Spearman correlation
between predictive uncertainty and accuracy.

3.1 ABLATIONS

We investigate how inference-time settings influence the quality of elicited priors, focusing on three
factors: (i) temperature or reasoning effort, (ii) system prompt, and (iii) elicitation protocol. To
isolate their effects, we evaluate both a reasoning model (OpenAl 04-mini) and a non-reasoning model
(OpenAl gpt-40). The full set of results is shown in Appendix[A.2]

Across models and domains, elicitation protocol is by far the most consequential factor, while
temperature and system prompt have negligible effects. Because prior specification is central to our
task, we tested three distinct elicitation strategies. Direct elicitation asks models to provide distribution
parameters without additional structure. Quantile elicitation requests specific percentiles, encouraging
models to reason explicitly about uncertainty ranges. Mean—variance elicitation separates point
estimates from dispersion, prompting reflection on confidence levels.

As shown in Figure[7] direct elicitation consistently yields the best performance for reasoning models,
whereas quantile elicitation is superior for non-reasoning models. We hypothesize that reasoning
models are able to map parameter-level prompts onto coherent distributions, while non-reasoning
models benefit from the scaffolding imposed by percentile queries.

Impact of Prior Elicitation Protocol on Performance

Error Ratio ECE Log Probability
Reasoning Non-Reasoning Reasoning Non-Reasoning Reasoning Non-Reasoning
NHANES | 1000 | 1303 1197 1000 | 0865 0755 10 16 10 06 10 1000 | 1233 = 1400 1000 | 0524 0741
]
& Pitchbook | 1.000 | 1330 1148 1000 | 1326 1101 10 13 16 10 08 14 1638 [EELES 1000 | 0613 | 1396
8
Glassdoor | 1.000 | 1412 = 1197 1000 | 1036 1111 10 15 10 0.4 07 1415 1000 | 0813 1117
& & & & & & & 2 & & @ & & & A2 &
& & & & & & & & & & & > & &
o & & & & & & 3 &

Figure 7: Effect of elicitation protocol (direct, quantile, mean—variance) on error ratio, expected cal-
ibration error (ECE), and log probability across reasoning and non-reasoning models. Direct elicitation
is most effective for reasoning models, while quantile elicitation benefits non-reasoning models.

4 RELATED WORK

Our work intersects with three major lines of language model research: evaluating probabilistic
reasoning as a mathematical skill, structuring probabilistic reasoning for better estimation, and
applications to forecasting.
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Evaluating probabilistic reasoning. One line of research examines how well LMs perform at
problem-solving tasks involving structured probabilistic models. For example, Paruchuri et al.| (2024
evaluate models’ probabilistic reasoning given simple idealized distributions; [Nafar et al.| (2025)
tests models’ ability to provide probabilistic estimates given a Bayesian network; and|Jin et al.|(2023)
examine the models’ causal reasoning given probabilities. Collectively, these studies frame proba-
bilistic reasoning as a mathematical exercise with clearly defined inputs and well-specified outputs.
By contrast, our benchmark targets real-world estimation problems, where the relevant information
must be inferred rather than provided and the ground truth itself may be ambiguous or unavailable.

Structuring probabilistic reasoning. Another line of work proposes structures for LM-based
probabilistic reasoning to improve performance. Using “guesstimation” questions similar to ours,
Xia et al.|(2024) prompt LMs to propose relevant random variables and moment constraints, and then
fits a log-linear distribution that satisfies these constraints/Feng et al.[(2024) take a similar approach,
and evaluate a multi-step process in which LMs brainstorm relevant factors, make coarse probabilistic
assessments, and construct an approximate Bayesian network for inference.

These approaches extend beyond single-variable reasoning by introducing latent structure and explicit
intermediate steps. However, the focus for both of these works is on answering discrete multiple-choice
questions, such as those where the LM must select the most likely explanation or outcome. Our
benchmark, by contrast, emphasizes continuous and potentially open-ended variables: models must
explicitly place probability distributions over possible outcomes. While our evaluation does not impose
an explicit reasoning structure on the LM, future work could explore how structured approaches of
this kind might be adapted to improve performance in our setting.

Language model-based forecasting. Recent studies have also evaluated LMs’ forecasting capabilities
(Karger et al.| 2024} |Halaw1 et al.,[2024; Ye et al.,[2024;|Chang et al.| | 2024; |Schoenegger et al., 2025)).
These works also test whether models can synthesize heterogeneous evidence into well-calibrated
estimates, but they focus on making predictions about real-world future events. In contrast to our
benchmark, the outcomes of forecasting questions are, by design, highly likely to appear in LMs’
training data after they resolve; they thus perpetually become “stale” and must be replaced with
new questions, as noted by [Karger et al.| (2024). By focusing on questions that require reasoning
about fine-grained cross of tabular datasets, rather than future events, OPENESTIMATE questions are
designed to remain challenging over time.

5 LIMITATIONS AND FUTURE WORK

Our current tasks use primarily Gaussian/Beta parametric forms and a fixed set of domains; expanding
to heavy-tailed, multimodal, and discrete/ordinal targets, as well as structured priors (mixtures,
hierarchies), is an important next step. Ground truths are estimated from finite samples, and while
cross-sectional by design, residual leakage cannot be ruled out. We evaluate zero-shot models without
retrieval or fine-tuning; studying training-time interventions for uncertainty awareness and domain
adaptation is complementary. Methodologically, future evaluations could incorporate proper scoring
rules (e.g., log score, CRPS), Wasserstein distances, and decision-centric metrics that measure the
value of LM priors for downstream choices. Finally, interactive pipelines—retrieval to surface relevant
evidence, multi-pass critique to detect unit/base-rate errors, and posterior-over-prior ensembling—may
turn brittle priors into robust, uncertainty-aware estimates.

6 CONCLUSION

We introduced OPENESTIMATE, a benchmark and evaluation framework for assessing language
models on open-ended probabilistic estimation with real-world tabular data. The benchmark (i) defines
a task where models must express beliefs as full probability distributions, (ii) elicits priors through
several protocols, and (iii) evaluates performance along accuracy, calibration, and uncertainty—against
statistical baselines that use only a handful of true samples. By focusing on cross-sectional quantities
from domains such as public health (NHANES), labor economics (Glassdoor), and private markets
(PitchBook), OPENESTIMATE probes reasoning under uncertainty while limiting direct lookup and
information leakage.
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A APPENDIX

A.1 ZERO-SHOT ESTIMATION
We tested Llama 3 8B but excluded it from our analysis because it incorrectly followed instructions

pertaining to units and had an average error that was orders of magnitude larger than the other models
due to this mistake.

System Prompt.

For Glassdoor, the LM’s system prompt was:

You are a helpful assistant that can answer questions about the labor market.
For Pitchbook, the LM’s system prompt was:

You are a helpful assistant.

For NHANES, the LM’s system prompt was:

You are a helpful assistant that can answer gquestions about human health.

Statistical Baselines.

In the NHANES analysis, the N = all baseline has non-zero MAE because limited effective sample
sizes for some variables prevented the posterior from fully converging to the ground truth estimate,
leaving it partially shrunk toward the flat prior.

Glassdoor Pitchbook NHANES

Baseline (n=5) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline (n=10)- 0.7 0.83 - 079 138

b v B ﬂ...

0.38 O

Condltmn count

Baseline (n=20)

Baseline (n=30)ﬂ

Error Ratio

Baseline (n=a|l)

Figure 8: Error ratios for all statistical baselines as the number of auxiliary attributes increases.

As shown in Figure[9] we find that error ratios do not always increase with the number of auxiliary
attributes: LLMs can be less accurate on simple aggregates (e.g., average cholesterol across all adults)
than on more constrained subgroups, but in other cases, accuracy degrades with added specificity (e.g.,
salaries of data scientists generally vs. within Virginia-based companies of a certain revenue).
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Glassdoor Pitchbook NHANES
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) 1 2 3 0 1 2 3 0 1 2 3

Condition count

Figure 9: Error ratios across domains as the number of auxiliary attributes increases.

A.2 ABLATIONS

Error Ratio Comparisons by Domain and Inference Setting (vs. Default Config)

System Prompt Protocol
Non-Reasoning Reasoning Non-Reasoning Reasoning Non-Reasoning

Temperature
Reasoning

NHANES

e “ = -“ —
ot --- -'
& @ & $

3 S S 5 & N P
& & & &
& & & K & K

1125 1 0940

0.988

1197 0.865 0755

Dataset

Figure 10: We examine the impact of changing temperature, system prompt, and elicitation protocol
on error ratio.

Expected Calibration Error Comparisons by Domain and Inference Setting
Temperature/Reasoning Effort System prompt Protocol

Reasoning Non-Reasoning Reasoning Non-Reasoning i Non-Reasoning

NHANES
-
]
© Pitchbook
E
Glassdoor
& N
¢ (&&é“ &

Figure 11: We examine the impact of changing temperature, system prompt, and elicitation protocol
on expected calibration error.
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Log Probability Multiples Comparisons by Domain and Inference Setting
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Figure 12: We examine the impact of changing temperature, system prompt, and elicitation protocol

on log probabilities.
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