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ABSTRACT

Anomaly detection presents a unique challenge in machine learning, due to the
scarcity of labeled anomaly data. Recent work attempts to mitigate such problems
by augmenting training of deep anomaly detection models with additional labeled
anomaly samples. However, the labeled data often does not align with the target
distribution and introduces harmful bias to the trained model. In this paper, we
aim to understand the effect of a biased anomaly set on anomaly detection. We
formally state the anomaly detection problem as a supervised learning task, and
focus on the anomaly detector’s recall at a given false positive rate as the main
performance metric. Given two different anomaly score functions, we formally
define their difference in performance as the relative scoring bias of the anomaly
detectors. Along this line, our work provides two key contributions. We estab-
lish the first finite sample rates for estimating the relative scoring bias for deep
anomaly detection, and empirically validate our theoretical results on both syn-
thetic and real-world datasets. We also provide extensive empirical study on how
a biased training anomaly set affects the anomaly score function and therefore the
detection performance on different anomaly classes. Our study demonstrates sce-
narios in which the biased anomaly set can be useful or problematic, and provides
a solid benchmark for future research.

1 INTRODUCTION

Anomaly detection (Chandola et al., 2009; Pimentel et al., 2014) trains a formal model to identify
unexpected or anomalous instances in incoming data, whose behaviors differ from normal instances.
It is particularly useful for detecting problematic events such as digital fraud, structural defects, and
system malfunctions. Building accurate anomaly detection models is a well-known challenge in
machine learning, due to the scarcity of labeled anomaly data. The classical and most common
approach is to train anomaly detection models using only normal data1, i.e., first train a model using
a corpus of normal data to capture normal behaviors, then configure the model to flag instances with
large deviations as anomalies. Researchers have also developed deep learning methods to better
capture the complex structure in the data (Ruff et al. (2018); Wang et al. (2019a); Zhou & Paffenroth
(2017)). Following the terminology introduced by Chandola et al. (2009), we refer to these models
as semi-supervised anomaly detection.

Recently, a new line of anomaly detection models proposes to leverage available labeled anomalies
during model training, i.e., train an anomaly detection model using both normal data and additional
labeled anomaly samples as they become available (Ruff et al. (2020b); Yamanaka et al. (2019);
Ruff et al. (2020a); Hendrycks et al. (2019a)). Existing works show that these new models achieve
considerable performance improvements beyond the models trained using only normal data. We
hereby refer to these models as deep supervised2 anomaly detection (Chandola et al., 2009).

When exploring these models, we found that when the labeled anomalies (used to train the model) do
not align with the target distribution, they could introduce harmful bias to the trained model. Specif-
ically, when comparing the performance of a supervised anomaly detector to its semi-supervised

1Existing literature has used different terms to describe this type of models: some using semi-supervised
anomaly detection (Chandola et al., 2009) and others using unsupervised anomaly detection (Ruff et al., 2018).

2Some works termed these models as semi-supervised anomaly detection (Ruff et al., 2020b; Yamanaka
et al., 2019; Ruff et al., 2020a; Hendrycks et al., 2019a) while others termed them as supervised anomaly
detection (Chandola et al., 2009).

1



Under review as a conference paper at ICLR 2021

version, the performance difference varies significantly across test anomaly data, some better and
some worse. That is, using labeled anomalies during model training does not always improve model
performance; instead, it may introduce large variance (or bias) in anomaly detection outcomes.

In this paper, we aim to understand the effect of a biased training set on deep anomaly detection
models. We formally state the anomaly detection problem, focusing on the anomaly detector’s
recall at a given false positive rate as the main performance metric. We factor the contribution of
the labeled anomalies by the detector’s anomaly scoring function, and show that different types
of labeled anomalies produce different anomaly scoring functions. Next, given any two different
anomaly scoring functions, we formally define their difference in performance as the relative scoring
bias of the anomaly detectors. Our novel notion of scoring bias for anomaly detection aligns with the
notion of bias in the classical supervised learning setting, with the key difference being the different
performance metric—we target recall at a given false positive rate, the metric used by real-world
anomaly detection tasks (Li et al., 2019; Liu et al., 2018).

Along this line, we establish the first finite sample rates for estimating the relative scoring bias for
deep anomaly detection. We empirically validate our assumptions and theoretical results on both
synthetic and three real-world datasets (Fashion-MNIST, Statlog (Landsat Satellite), and Cellular
Spectrum Misuse (Li et al., 2019)).

Furthermore, we provide an empirical study on how a biased training anomaly set affects the
anomaly score function and therefore the resulting detection performance. We consider the above
three real-world datasets and six deep-learning based anomaly detection models. Our study demon-
strates scenarios in which the biased anomaly set can be useful or problematic, and provides a solid
benchmark for future research.

In this paper, we introduce a formal analysis on the effect of a biased training set on deep anomaly
detection. Our main contributions are the following:

• We discover the issue of large performance variance in deep anomaly detectors, caused by the use
of the biased anomaly set as training data.

• We model the effect of biased training as relative scoring bias, and establish the first finite sample
rates for estimating the relative scoring bias of the trained models.

• We conduct empirical experiments to verify and characterize the impact of the relative scoring
bias on six popular anomaly detection models, and three real-world datasets.

To the best of our knowledge, our work is the first to formally study the effect of a biased anomaly
training set on deep anomaly detection. Our results show both significant positive and negative
impacts of these biases, and suggest that model trainers must treat anomalies with additional care.
We believe this leads to new opportunities for improving deep anomaly detectors and deserves more
attention from the research community.

2 RELATED WORK

Anomaly Detection Models. While the literature on anomaly detection models is extensive,
the most relevant to our work are deep learning based models. Following the terminology used
by Chandola et al. (2009), we consider two types of models:

• Semi-supervised anomaly detection refers to models trained on only normal data, e.g., Ruff et al.
(2018); Sakurada & Yairi (2014); Zhou & Paffenroth (2017);

• Supervised anomaly detection refers to models trained on normal data and a small set of la-
beled anomalies, e.g., Pang et al. (2019); Daniel et al. (2019); Yamanaka et al. (2019); Ruff et al.
(2020a;b).

One can also categorize models by their architecture: hypersphere (Ruff et al., 2018; 2020a;b) and
autoencoder (or reconstruction) based models (Zhou & Paffenroth, 2017; Yamanaka et al., 2019).

Another line of recent work proposes to use synthetic or auxiliary anomalies to train anomaly de-
tection models (Golan & El-Yaniv (2018); Hendrycks et al. (2019c); Lee et al. (2018); Hendrycks
et al. (2019b)), “forcing” the model to learn a more compact representation of the normal data.
While the existing work has shown empirically that the choice of abnormal data in training can help
detect some unseen abnormal distributions, it does not offer any theoretical explanation for the phe-
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nomenon, nor does it consider the counter-cases when additional abnormal data in training hurt the
detection performance.

Bias in Anomaly Detection. To the best of our knowledge, we are the first to identify the presence
of bias caused by an additional labeled anomaly set in deep anomaly detection models, especially
when there exists a mismatch between the anomalies present in training and those encountered in
testing (as shown in Section 5). Existing work has explored the presence of bias in semi-supervised
anomaly detection models when there exists defective normal data in training, like outliers and
simple-to-reconstruct examples (Tong et al., 2019), or examples with background noise (Liu &
Ma, 2019). There is also literature on the bias-variance tradeoff for ensembles of semi-supervised
anomaly detection models (Aggarwal & Sathe, 2015; Rayana et al., 2016). But little or no work
has been done on the bias of anomaly detection in the supervised setting (i.e., models trained on
both normal data and some labeled anomalies). Finally, another line of work in transfer learning
has identified the value of additional labeled data in training (Kpotufe & Martinet, 2018; Hanneke
& Kpotufe, 2019) and the performance bias on target data by transferring knowledge from a less
related source (Wang et al., 2019b; Wu et al., 2020). Yet most work only considered the cases of
classification models.

PAC guarantees for Anomaly Detection. Despite significant progress on developing theoret-
ical guarantees for classification tasks (Valiant (1984); Kearns et al. (1994)), little has been done
for anomaly detection tasks. Siddiqui et al. (2016) first establishes a PAC framework for anomaly
detection models using the notion of pattern space; however, it is hard to apply such pattern spaces
to deep learning models with complex latent spaces. Liu et al. (2018) proposes a model-agnostic
approach to provide the PAC guarantee for anomaly detection performance, by analyzing the con-
vergence for the cumulative distribution of anomaly scores. We follow the basic setting from this
line of work to address the convergence of the relative scoring bias. In contrast to prior work, our
proof relies on a novel adaption of the key theoretical tool from Massart (1990), which allows us to
extend our theory to characterize the notion of scoring bias as defined in Section 3.2.

3 PROBLEM FORMULATION

We now formally state the anomaly detection problem. Consider a model class Θ for anomaly
detection, and a (labeled) training set D sampled from a mixture distribution D over the normal and
anomalous instances. In the context of anomaly detection, a model θ maps each input instance x to
a continuous output, which corresponds to anomaly score sθ(x). The model further uses a threshold
τθ on the score function to produce a binary label for input x.

For a given threshold value τθ, we can define the False Positive Rate (FPR) of the model θ on
the input data distribution as FPR(sθ, τθ) = P [sθ(x) > τθ | y = 0], and the True Positive Rate
(TPR, a.k.a. Recall) as TPR(sθ, τθ) = P [sθ(x) > τθ | y = 1]. The FPR and TPR are competing
objectives—therefore, a key challenge for anomaly detection algorithms is to identify a configuration
of the score, threshold pair (sθ, τθ) that strikes a balance between the two performance metrics.
W.l.o.g.3, in this paper we focus on the following scenario, where the objective is to maximize TPR
subject to achieving a target FPR. Formally, let q be the target FPR; we define the optimal anomaly
detector as4

(s∗θ, τ∗θ ) ∈ arg max
(sθ,τθ):θ∈Θ

TPR(sθ, τθ) s.t. FPR(sθ, τθ) ≤ q (3.1)

3.1 A GENERAL ANOMALY DETECTION FRAMEWORK

Note that the performance metric (namely TPR) in Problem 3.1 is statistics that depends on the
entire predictive distribution, and can not be easily evaluated on any single data point. Therefore,
rather than directly solving Problem 3.1, practical anomaly detection algorithms (such as OCSVM
(Schölkopf et al., 1999), Deep SAD (Ruff et al., 2020b), etc) often rely on a two-stage process: (1)

3Our results can be easily extended to the setting where the goal is to minimize FPR subject to a given TPR.
4This formulation aligns with many contemporary works in deep anomaly detection. For example, Li et al.

(2019) show that in real-world anomaly detection problems, it is desirable to detect anomalies with a prefixed
low false alarm rate; Liu et al. (2018) formulate the anomaly detection in a similar way, where the goal is to
minimize FPR for a fixed TPR.
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learning the score function sθ from training data via a surrogate loss, and (2) given sθ from the
previous step, computing the threshold function τθ on the training data. Formally, given a model
class Θ, a training set D, a loss function `, and a target FPR q, a two-staged anomaly detection
algorithm outputs {

ŝθ ∈ arg minsθ:θ∈Θ `(sθ, D)
τ̂θ ∈ arg maxτθ:θ∈Θ TPR(ŝθ, τθ) s.t. FPR(ŝθ, τθ) ≤ q

(3.2)

Note that the first part of Equation 3.2 amounts to solving a supervised learning problem. Here,
the loss function ` could be instantiated into latent-space-based losses (e.g., Deep SAD), margin-
based losses (e.g., OCSVM), or reconstruction-based losses (e.g., ABC (Yamanaka et al., 2019));
therefore, many contemporary anomaly detection models fall into this framework. To set the thresh-
old τ̂θ, we consider using the distribution of the anomaly scores ŝθ(·) from a labeled validation set
Dval ∼ D. Let Dval := Dval

0 ∪ Dval
a where Dval

0 and Dval
a denote the subset of normal data and the

subset of abnormal data of Dval. Denote the empirical CDFs for anomaly scores assigned to x in
Dval

0 and Dval
a as F̂0 and F̂a, respectively. Then, given a target FPR value q, following a similar

argument as Liu et al. (2018), one can compute the threshold as τ̂θ = max{u ∈ R : F̂0(u) ≤ q}.
The steps for solving the second part of Equation 3.2 is summarized in Algorithm 1.

Algorithm 1: Computing the anomaly detection threshold for Problem 3.2

Data: A validation dataset Dval and a scoring function s(·).
Result: A score threshold achieving a target FPR and the corresponding recall on Dval.

1 Get anomaly score s(x) for each x in Dval.
2 Compute empirical CDF F̂0(x) and F̂a(x) for anomaly scores of x in Dval

0 and Dval
a .

3 Output detection threshold τ̂ = max{u ∈ R : F̂0(u) ≤ q}.
4 Output TPR (recall) on Dval

a as r̂ = 1− F̂a(τ̂).

3.2 SCORING BIAS

Given a model class Θ and a training set D, we define the scoring bias of a detector (ŝθ, τ̂θ) to be
the difference in TPR between (ŝθ, τ̂θ) and (s∗θ, τ∗θ ):

bias(ŝθ, τ̂θ) := arg max
(sθ,τθ):θ∈Θ

TPR(sθ, τθ)− TPR(ŝθ, τ̂θ) (3.3)

We call (ŝθ, τ̂θ) a biased detector if bias(ŝθ, τ̂θ) > 0. In practice, due to biased training distri-
bution, and the fact that the two-stage process in Equation 3.2 is not directly optimizing TPR, the
resulting anomaly detectors are often biased by construction. Therefore, one practically significant
performance measure is the relative bias, defined as the difference in TPR between two anomaly de-
tectors, subject to the constraints in Equation 3.2. It captures the relative strength of two algorithms
in detecting anomalies, and therefore is an important indicator for model evaluation and model se-
lection. Formally, given two arbitrary anomaly score functions s, s′ and the corresponding threshold
function τ, τ ′ obtained from Algorithm 1, we define the relative scoring bias between s and s′ as:

ξ(s, s′) := bias(s, τ)− bias(s′, τ ′) = TPR(s′, τ ′)− TPR(s, τ) (3.4)
Note that when s′ = s∗θ , the relative scoring bias (equation 3.4) reduces to the scoring bias (equa-
tion 3.3). We further define the empirical relative scoring bias between s and s′ as

ξ̂(s, s′) := T̂PR(s′, τ ′)− T̂PR(s, τ) (3.5)

where T̂PR(s, τ) = 1
n

∑n
j=1 1s(xj)>τ ;yj=1 denotes the TPR (recall) estimated on a finite validation

set of size n. In the following sections, we will investigate both the theoretical properties and the
empirical behavior of the empirical relative scoring bias for contemporary anomaly detectors.

4 FINITE SAMPLE ANALYSIS FOR EMPIRICAL RELATIVE SCORING BIAS

In this section, we show how one can estimate the relative scoring bias (Equation 3.4) given any two
scoring functions s, s′ learned in Section 3.1. As an example, s could be a scoring function induced
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by a semi-unsupervised anomaly detector trained on normal data only, and s′ could be a scoring
function induced by a supervised anomaly detector trained on biased anomaly set. In the following,
we provide a finite sample analysis of the convergence rate of the empirical relative scoring bias,
and validate our theoretical analysis via a case study.

4.1 FINITE SAMPLE GUARANTEE

Notations. Concretely, we assume that when determining the threshold in Line 3 of Algo-
rithm 1, both scoring functions s, s′ are evaluated on the unbiased (marginal) empirical distribu-
tion of the normal data. Furthermore, the empirical TPR in Line 4 are estimated on the unbiased
empirical distribution of the abnormal data. Let {si := s(xi) | xi, yi = 0}n0

i=1 denote a set of
anomaly scores evaluated by s(·) on n0 i.i.d. random normal data points. Following the nota-
tion in Section 3.1, we use F0(t) := P [s(x) ≤ t | y = 0] to denote the CDF of s(x), and use
F̂0(t) := 1

n0

∑n0
i=1 1si≤t;yi=0 to denote the corresponding empirical CDF. For n1 i.i.d. samples

{sj := s(xj) | xj , yj = 1}n1
j=0 with CDF Fa(t) := P [s(x) ≤ t | y = 1], the corresponding empri-

cal CDF is F̂a(t) := 1
n1

∑n1
j=1 1sj≤t;yj=1. Similarly, we denote the CDF and emiprical CDF for

{s′i | yi = 0}n0
i=0 as F ′0(t) and F̂ ′0(t), and for {s′j | yj = 1}n1

j=0 as as F ′a(t) and F̂ ′a(t), respectively.

Infinite sample case. In the limit of infinite data (both normal and abnormal), F̂0, F̂a, F̂
′
0, F̂

′
a

will converge to the true CDFs (cf. Skorokhod’s representation theorem and Theorem 2A of Parzen
(1980)), and hence the empirical relative scoring bias will also converge. The following Proposition
establishes a connection between the CDFs and the scoring bias.
Proposition 1. Given two scoring functions s, s′ and a target FPR q, the relative scoring bias is
ξ(s, s′) = Fa(F−1

0 (q))− F ′a(F ′0
−1(q)).

Here, F−1(·) is the quantile function. The proof of Proposition 1 follows from the fact that for
corresponding choice of τ, τ ′ in Algorithm 1, TPR(s, τ) = 1 − Fa(F−1

0 (q)), and TPR(s′, τ ′) =
1− F ′a(F ′0

−1(q)).

Next, a direct corollary of the above result shows that, for the special cases where both the scores for
normal and abnormal data are Gaussian distributed, one can directly compute the relative scoring
bias. The proof is listed in Appendix A.
Corollary 2. Let q be a fixed target FPR. Given two scoring functions s, s′, assume that s(x) | (y =
0) ∼ N (µ0, σ0), s(x) | (y = 1) ∼ N (µa, σa), s′(x) | (y = 0) ∼ N (µ′0, σ′0), s′(x) | (y = 1) ∼
N (µ′a, σ′a). Then, the relative scoring bias

ξ(s, s′) = Φ
(
σ0Φ−1(q)

σa
+ µ0 − µa

σa

)
− Φ

(
σ′0Φ−1(q)

σ′a
+ µ′0 − µ′a

σ′a

)
where Φ denotes the CDF of the standard Gaussian.

Finite sample case. In practical scenarios, when comparing the performance of two scoring
functions s and s′, we would only have access to finite samples from the validation set, and hence it
is crucial to bound the estimation error due to insufficient samples. We now establish a finite sample
guarantee for the estimating the relative scoring bias. Our result extends the analysis of Liu et al.
(2018), where we follow the convention to assume that the anomaly data amounts to an α fraction of
the mixture distribution. The validation set contains a mixture of n = n0 + n1 i.i.d. samples, with
n0 normal samples and n1 abnormal samples where n1

n = α.

The following result shows that under mild assumptions of the continuity of the CDFs and quantile
functions Fa, F ′a, F

−1
0 , F ′0

−1, the sample complexity for achieving |ξ̂ − ξ| ≤ ε:
Theorem 3. Assume that Fa, F ′a, F

−1
0 , F ′0

−1 are Lipschitz continuous with Lipschitz constant
`a, `

′
a, `
−
0 , `
′
0
−, respectively. Let α be the fraction of abnormal data among n i.i.d. samples from the

mixture distribution. Then, w.p. at least 1− δ, with

n ≥ 8
ε2
·

(
log 2

1−
√

1− δ
·
(

2− α
α

)2
+ log 2

δ
· 1

1− α

((
`a

`−0

)2
+
(
`′a
`′0
−

)2
))

the empirical relative scoring bias satisfies |ξ̂ − ξ| ≤ ε.

5



Under review as a conference paper at ICLR 2021

Type Semi-supervised (trained on normal data) Supervised (trained on normal & some abnormal data)

Hypersphere-based Deep SVDD Deep SAD
Hypersphere Classifier (HSC)

Reconstruction-based Autoencoder (AE) Semi-supervised AE (SAE)
Autoencoding Binary Classifier (ABC)

Table 1: The anomaly detection models considered in our case study. Deep SAD and HSC are the
supervised versions of Deep SVDD (the semi-supervised baseline model); SAE and ABC are the
supervised versions of AE (the semi-supervised baseline model).

We defer the proof of Theorem 3 to Appendix B. Similarly with the open category alien detection
setting as discussed in Liu et al. (2018), the sample complexity for estimating the relative scoring
bias n grows as O

( 1
α2ε2 log 1

δ

)
. Note the analysis of our bound involves a novel two-step process

which first bounds the estimation of the threshold for the given FPR, and then leverages the Lipschitz
continuity condition to derive the final bound.

4.2 CASE STUDY

We conduct a case study to validate our main results above, by training anomaly detection models
using a synthetic dataset (Liu et al., 2018) and three real-world datasets. We consider six anomaly
detection models listed in Table 1, and they lead to similar results. For brevity, we show results
when using Deep SVDD (Ruff et al., 2018) as the baseline model (i.e. trained on normal data
only) and Deep SAD (Ruff et al., 2020b) as the semi-supervised model trained on normal and some
abnormal data. Later in Appendix D, we include results of other model pairs, including Deep SVDD
vs. Hypersphere Classifier (HSC) (Ruff et al., 2020a), Autoencoder (AE) vs. Semi-supervised
Autoencoder (SAE)5, and AE vs. ABC (Yamanaka et al., 2019).

Our synthetic dataset. Similar to Liu et al. (2018), we generate our synthetic dataset by sam-
pling data from a mixture data distribution S, w.p. 1− α generating the normal data distribution S0
and w.p. α generating the abnormal data distribution Sa. Data points in S0 are sampled randomly
from a 9-dimensional Gaussian distribution, where each dimension is independently distributed as
N (0, 1). Data points in Sa are sampled from another 9-dimensional distribution, which w.p. 0.4
have 3 dimensions (uniformly chosen at random) distributed asN (1.6, 0.8), w.p. 0.6 have 4 dimen-
sions (uniformly chosen at random) distributed as N (1.6, 0.8), and have the remaining dimensions
distributed as N (0, 1). This ensures meaningful feature relevance, point difficulty and variation for
the abnormal data distribution as discussed in Emmott et al. (2015).

We obtain two score functions s and s′ by training Deep SVDD and Deep SAD respectively on
samples from the synthetic dataset (10K data from S0, 1K data from Sa). We configure the training,
validation and test set so there is no data overlap in them. Thus the training procedure will not affect
the sample complexity for estimating the relative scoring bias. To set the anomaly threshold, we fix
the target FPR to be 0.05, and vary the number of normal data in the validation set n from {100,
1K, 10K}. We then test the score function and threshold on a fixed test dataset with a large number
(20K) of normal data and α×20K of abnormal data. We vary α from {0.01, 0.05, 0.1, 0.2}.
Real-world datasets. We consider three real-world datasets targeting disjoint subjects: Fashion-
MNIST (Xiao et al., 2017) is a collection of images of fashion objects, where we choose some
objects as normal and the rest as abnormal; StatLog (Srinivasan, 1993) is a collection of satellite
images on various soil types; and Cellular Spectrum Misuse (Li et al., 2019) is a real-world anomaly
dataset on cellular spectrum usage, including normal usage and those under four types of attacks.
Detailed descriptions of these datasets and training configurations are listed in Appendix C. Like the
above, we obtain s, s′, and anomaly threshold (at a target FPR of 0.05) from these datasets, and test
the score function and threshold on their corresponding test datasets and different α values.

Distribution of anomaly scores. We first study the distribution of anomaly scores. Figure 1 is a
sample plot of score distributions on the test set with α = 0.1. We plot the scores for normal and
abnormal test data separately, for both scoring functions (derived from Deep SVDD and Deep SAD
models respectively). We make two key observations. First, all the distribution curves follow a rough
bell shape. Second and more importantly, while the abnormal score distribution closely mimics
the normal score distribution under the unsupervised model, it deviates largely from the normal

5We design SAE by forcing the reconstruction errors to be maximized for additional labeled anomalies
encountered in training the autoencoder.
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score distribution after semi-supervised learning (i.e., similar mean but much higher variance). This
confirms that semi-supervised learning does introduce additional bias in anomaly scores.

Figure 1: Anomaly score distributions for Deep SVDD (left) and Deep SAD (right) trained and
tested using the synthetic dataset, estimated by Kernel Density Estimation.

We also examine the anomaly score distributions for models trained on real-world anomaly detection
data sets, including Fashion-MNIST and Cellular Spectrum Misuse. While the score distributions
are less close to Gaussian, we do observe the same trend where normal and abnormal score distribu-
tions become significantly different after applying semi-supervised learning. The results are shown
in Figure 7 and 8 in Appendix D.

Convergence of relative scoring bias (ξ̂) and FPR. Next we examine the convergence of the
empirical FPR obtained from s′ (semi-supervised model) and the empirical relative scoring bias
ξ̂ (computed as the difference of the empirical TPR according to Equation 3.5) obtained from s
(semi-supervised model with normal only) and s′ (supervised model with biased anomaly). Here
we present the convergence results in Figure 2 for the synthetic dataset in terms of the quantile
distribution of ξ̂ between Deep SVDD (semi-supervised) and Deep SAD (supervised) and the quan-
tile distribution of Deep SAD’s FPR. Results for other models and three real-world datasets are in
Appendix D, and show consistent trends.

Figure 2: Models (Deep SVDD v.s. Deep SAD) trained on the synthetic dataset: the quantile
distribution of relative scoring bias ξ̂ (top 4 figures) and FPR (bottom 4 figures), computed on the
test set over 1500 runs. n =100, 1000 or 10000; α =0.01, 0.05, 0.1, 0.2. The triangle in each
boxplot is the mean. For FPR, the red dotted line marks the target FPR of 0.05.

Similar to our theoretical results, we observe a consistent trend of convergence in FPR and ξ̂ as the
sample complexity goes up. More specifically, for FPR, as n goes up, it converges to the prefixed
value of 0.05; for ξ̂, it also converges to a certain level.

We also examine the rate of convergence w.r.t to n. Section 4.1 shows that n required for estimating
ξ̂ grows in the same order as 1

α2ε2 log 1
δ . That is, the estimation error ε decreases at the rate of 1√

n
;

furthermore, as α increases, n required for estimating ξ̂ decreases. This can be seen from Figure 2
(top figure) where at n = 10000, the variation of ξ̂ at α = 0.2 is 50% less than that at α = 0.01.

5 IMPACT OF SCORING BIAS ON ANOMALY DETECTION PERFORMANCE

We perform empirical experiments to study the end-to-end impact of relative scoring bias on deep
anomaly detection models. Our goal is to understand the type and severity of performance variations
introduced by different anomaly training sets.
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Experiment setup. We consider six deep anomaly detection models previously listed in Table 1,
and three real-world datasets: Fashion-MNIST, Statlog (Landsat Satellite) and Cellular Spectrum
Misuse. For each dataset, we build normal data by choosing a single class (e.g., top in Fashion-
MNIST, normal in Cellular Spectrum Misuse), and treat the other classes as the abnormal classes.
Note that Cellular Spectrum Misuse is a real-world anomaly dataset where the abnormal classes are
attacks against today’s cellular networks (Li et al., 2019).

From those abnormal classes, we pick a single class as the abnormal training data, and the rest as
the abnormal test data on which we test separately. Given the data, we train θ0 := (sθ0 , τθ0), a semi-
supervised anomaly detector using normal training data, and θs := (sθs , τθs) a supervised anomaly
detector using both normal and abnormal training data (with a 10:1 normal vs. anomaly ratio). We
follow the original paper of each model to implement the model and its training. For each trained
model, we configure the anomaly score threshold to reach a target false positive rate (FPR) of 0.05.
We then test these trained models against various abnormal test classes, and record the recall (TPR)
value for each abnormal test class. We repeat the above by selecting different abnormal training
data. Detailed descriptions of these datasets and training configurations are listed in Appendix C.

We evaluate the potential bias introduced by different abnormal training data by comparing the
model recall (TPR) value of both θ0 and θs against different abnormal test data. We define the bias
to be upward (↑) if TPR(θs) > TPR(θ0), and downward (↓) if TPR(θs) < TPR(θ0).

We group our experiments into three scenarios: (1) when abnormal training data is visually similar to
normal training data; (2) when abnormal training data is visually dissimilar to normal training data;
and (3) when abnormal training data is a weighted combination of (1) and (2). Here we compute
visual similarity as the L2 distance. The similarity results are listed in Appendix E.

We observe similar trends across all three datasets and all six anomaly detection models. For brevity,
we summarize our observations below, and further illustrate them using examples that consider
two models (Deep SVDD as θ0 and Deep SAD as θs), and two datasets (Fashion-MNIST, Cellular
Spectrum Misuse). We list full results (mean/std) on all the models and datasets in Appendix E.

Scenario 1: Abnormal training data visually similar to normal training data. In this sce-
nario, the use of abnormal data in model training (or supervised model) does improve detection of
abnormal data in the training class, but also creates considerable performance changes, both upward
and downward, for other classes of abnormal test data. The direction of change depends heavily on
the similarity of the abnormal test data to the training abnormal data. The model performance on
test data similar to the training abnormal data moves upward significantly while that on test data
dissimilar to the training abnormal moves downward significantly.

We illustrate this observation using examples of Fashion-MNIST and Cellular Spectrum Misuse.
For Fashion-MNIST, the normal and abnormal training classes are top and shirt, respectively,
which are similar to each other. Figure 3(a) plots the recalls of model θ0 and θs for all abnormal
test classes, arranged by a decreasing similarity to the training abnormal class (shirt). We see that
TPR(θs) on classes similar to shirt (including itself) is significantly higher than TPR(θ0) (e.g.
increased from <0.2 to 0.9 for pullover). But for classes dissimilar from shirt, TPR(θs) is
either similar or significantly lower (e.g., reduced from 0.9 to 0.4 for boot). For Cellular Spectrum
Misuse, the normal and abnormal training classes are normal and NB-10ms, respectively. The
effect of training bias is highly visible in Figure 3(c), where TPR(θs) on NB-10ms and NB-5ms
rises from almost zero to >93% while TPR(θs) on WB-nlos and WB-los drops by 50% or more.

Scenario 2: Abnormal training data visually dissimilar to normal training data. Like Sce-
nario 1, the use of abnormal training does improve the detection of abnormal data belonging to the
training class and those similar to the training class. But different from Scenario 1, we observe very
little downward changes at abnormal classes dissimilar to the training abnormal.

This is illustrated using another Fashion-MNIST example in Figure 3(b). While the normal training
class is still top, we use a new abnormal training class of sneaker that is quite dissimilar from
top. We see that TPR(θs) on sneaker, sandal, boot and bag are largely elevated to 0.8 and
higher, while TPR(θs) on other classes are relatively stable (except for trouser which more than
doubles). Finally, the same applies to another example of Cellular Spectrum Misuse in Figure 3(d)
where the abnormal training class is WB-los, which is quite different from the normal data. In this
case, we observe little change to the model recall.
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(a) Fashion-MNIST: Scenario 1 (b) Fashion-MNIST: Scenario 2

(c) Spectrum Misuse: Scenario 1 (d) Spectrum Misuse: Scenario 2

Figure 3: Model TPR under Scenario 1 and 2, trained on two real-world datasets: Fashion-MNIST
and Cellular Spectrum Misuse. In each figure, we compare the performance of θ0 = Deep SVDD
(semi-supervised) and θs = Deep SAD (supervised) when tested on abnormal data. We arrange
abnormal test data (by their class label) in decreasing similarity with training abnormal data. The
leftmost entry in each figure is the class used for abnormal training. For Fashion-MNIST, the normal
data is top; for Cellular Spectrum Misuse, the normal data is normal.

Scenario 3: Mixed abnormal training data. We run three configurations of group training
on Fashion-MNIST (normal: top; abnormal: shirt & sneaker) by varying the weights of the
two abnormal classes in training (0.5/0.5, 0.9/0.1, 0.1/0.9). The detailed results for each weight
configuration are listed in Appendix E. Overall, the use of group training does improve the model
performance. However, under all three weight configurations, we observe a consistent pattern of
downward bias for an abnormal test class (trouser) and upward bias for most other abnormal
classes. Note that trouser is relatively more dissimilar to both training abnormal classes.

Summary of observations. Our empirical study shows that a biased (anomaly) training set can
introduce significant impact on deep anomaly detection, especially on whether the use of labeled
anomalies in training would help detect unseen anomalies. When the labeled anomalies are sim-
ilar to the normal instances, the trained model will likely face large performance degradation on
unseen anomalies different from the labeled anomalies, but improvement on those similar to the
labeled anomalies. Yet when the labeled anomalies are dissimilar to the normal instances, the su-
pervised model is more useful than its semi-supervised version. Such difference in model behavior
is likely because different types of abnormal training data affect the training distribution (thus the
scoring function) differently. In particular, when the labeled anomalies are similar to the normal
data, they lead to large changes to the scoring function and affect the detection of unseen anomalies
“unevenly”. Overall, our results suggest that model trainers must treat labeled anomalies with care.

6 CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, our work provides the first formal analysis on how a biased anomaly
training set affects deep anomaly detection. We define and formulate its impact on anomaly de-
tector’s recall (or TPR) as the relative scoring bias of the detector when comparing to its semi-
supervised baseline trained on only normal data. We then establish the first finite sample rates for
estimating the relative scoring bias for supervised anomaly detection, and empirically validate our
theoretical results on both synthetic and real-world datasets. We also empirically study how such
relative scoring bias translates into variance in detector performance against different unseen anoma-
lies, and demonstrate scenarios in which the biased anomaly set can be useful or harmful. Our work
exposes a new challenge in training deep anomaly detection models, especially when labeled abnor-
mal data becomes available. An open question is how to construct an unbiased anomaly detector,
even when having access to the true anomaly distribution. As future work, we plan to develop
new training procedures that can leverage labeled anomalies to exploit upward scoring bias while
avoiding downward scoring bias.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Charu C Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensembles.
Acm Sigkdd Explorations Newsletter, 17(1):24–47, 2015.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41(3), July 2009.

Tal Daniel, Thanard Kurutach, and Aviv Tamar. Deep variational semi-supervised novelty detection.
arXiv preprint arXiv:1911.04971, 2019.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong. A meta-
analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158, 2015.

Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. In Ad-
vances in Neural Information Processing Systems, pp. 9758–9769, 2018.

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. In Advances
in Neural Information Processing Systems, pp. 9871–9881, 2019.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. Proceedings of the International Conference on Machine Learning, 2019a.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. Proceedings of the International Conference on Learning Representations, 2019b.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. In Advances in Neural Information Processing
Systems, pp. 15663–15674, 2019c.

Yoshinao Ishii, Satoshi Koide, and Keiichiro Hayakawa. L0-norm constrained autoencoders for
unsupervised outlier detection. In Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 674–687, 2020.

Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to computational
learning theory. MIT press, 1994.

Samory Kpotufe and Guillaume Martinet. Marginal singularity, and the benefits of labels in
covariate-shift. arXiv preprint arXiv:1803.01833, 2018.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. Proceedings of the International Conference on Learning
Representations, 2018.

Zhijing Li, Zhujun Xiao, Bolun Wang, Ben Y. Zhao, and Haitao Zheng. Scaling deep learning
models for spectrum anomaly detection. In Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 291–300, 2019.

Kun Liu and Huadong Ma. Exploring background-bias for anomaly detection in surveillance videos.
In Proceedings of the 27th ACM International Conference on Multimedia, pp. 1490–1499, 2019.

Si Liu, Risheek Garrepalli, Thomas Dietterich, Alan Fern, and Dan Hendrycks. Open category
detection with PAC guarantees. In Proceedings of the 35th International Conference on Machine
Learning, pp. 3169–3178, 2018.

P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. Ann. Probab., 18(3):
1269–1283, 07 1990. doi: 10.1214/aop/1176990746. URL https://doi.org/10.1214/
aop/1176990746.

Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with deviation
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 353–362, 2019.

Emanuel Parzen. Quantile functions, convergence in quantile, and extreme value distribution theory.
Technical report, Texas A & M University, 1980.

10

https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1214/aop/1176990746


Under review as a conference paper at ICLR 2021

Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review of novelty
detection. Signal Processing, 99:215–249, 2014.

Shebuti Rayana, Wen Zhong, and Leman Akoglu. Sequential ensemble learning for outlier detec-
tion: A bias-variance perspective. In Proceedings of the IEEE 16th International Conference on
Data Mining (ICDM), pp. 1167–1172. IEEE, 2016.

Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Lucas Deecke, Shoaib A. Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Proceedings of
the 35th International Conference on Machine Learning, volume 80, pp. 4393–4402, 2018.

Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Klaus-Robert Müller, and Marius Kloft.
Rethinking assumptions in deep anomaly detection. arXiv preprint arXiv:2006.00339, 2020a.

Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-
Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In Proc. of ICLR,
2020b.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the 2nd Workshop on Machine Learning for Sensory Data
Analysis, pp. 4–11, 2014.

Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
vector method for novelty detection. In Proceedings of the 12th International Conference on
Neural Information Processing Systems, pp. 582–588, 1999.

Md Amran Siddiqui, Alan Fern, Thomas G Dietterich, and Shubhomoy Das. Finite sample com-
plexity of rare pattern anomaly detection. In UAI, 2016.

Ashwin Srinivasan. StatLog (Landsat Satellite) Data Set. https://archive.ics.uci.edu/
ml/datasets/Statlog+(Landsat+Satellite), 1993.

Alexander Tong, Roozbah Yousefzadeh, Guy Wolf, and Smita Krishnaswamy. Fixing bias
in reconstruction-based anomaly detection with lipschitz discriminators. arXiv preprint
arXiv:1905.10710, 2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft. Ef-
fective end-to-end unsupervised outlier detection via inlier priority of discriminative network. In
Advances in Neural Information Processing Systems, volume 32, pp. 5962–5975, 2019a.
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A PROOF OF COROLLARY 2

Proof of Corollary 2. Assuming the score functions are Gaussian distributed, we can denoted F0(s)
as Φ( s−µ0

σ0
), F̃0(s) as Φ( s−µ̃0

σ̃0
), Fa(s) as Φ( s−µaσa

), and F̃a(s) as Φ( s−µ̃aσ̃a
).

Therefore, we have ∆0 = |(σ0Φ−1(q) + µ0)− (σ̃0Φ−1(q) + µ̃0)|.
Thus,

ξN := r̃ − r

= Fa(F−1
0 (q))− F̃a( ˜F−1

0 (q))

= Φ(σ0Φ−1(q)
σa

+ µ0 − µa
σa

)− Φ( σ̃0Φ−1(q)
σ̃a

+ µ̃0 − µ̃a
σ̃a

)

B PROOF OF THEOREM 3

Proof of Theorem 3. Our proof builds upon and extends the analysis framework of Liu et al. (2018),
which relies on one key result from Massart (1990),

P
[√

n sup
x
|F̂ (x)− F (x)| > λ

]
≤ 2 exp(−2λ2). (B.1)

Here, F̂ (x) is the empirical CDF calculated from n samples. Given a fixed threshold function, Liu
et al. (2018) showed that it required

n >
1

2ε21
log 2

1−
√

1− δ
·
(

2− α
α

)2
(B.2)

examples, in order to guarantee |F̂a(x) − Fa(x)| ≤ ε1 with probability at least 1 − δ (recall that α
denotes the fraction of abnormal data among the n samples).

Here we note that our proof relies on a novel adaption of Equation B.1, which allows us to extend
our analysis to the convergence of quantile functions.

To achieve this goal, we further assume the Lipschitz continuity for the CDFs/quantile functions:

|Fa(x)− Fa(x′)| ≤ `a|x− x′| (B.3)

|F ′a(x)− F ′a(x′)| ≤ `′a|x− x′| (B.4)

|F0
−(x)− F0

−(x′)| ≤ `−0 |x− x′| (B.5)

|F ′0
−(x)− F ′0

−(x′)| ≤ `′0
−|x− x′| (B.6)

Combining the above inequalities equation B.5 with equation B.1, we obtain

P
[
sup
q

∣∣∣F̂−1
0 (q)− F−1

0 (q)
∣∣∣ ≥ λ
√
n0

]
≤ P

[
sup
q

∣∣∣F0

(
F̂−1

0 (q)
)
− F0

(
F−1

0 (q)
)∣∣∣ ≥ λ

√
n0`
−
0

]
(B.7)

Let q = F̂0(x), then equation B.7 becomes

P
[∣∣∣F0

(
F̂−1

0 (F̂0(x))
)
− F0

(
F−1

0 (F̂0(x))
)∣∣∣ ≥ λ

√
n0`
−
0

]
=P
[∣∣∣F0 (x)− F̂0(x))

∣∣∣ ≥ λ
√
n0`
−
0

]

≤2e
− 2
n0

(
λ

`
−
0

)2

(B.8)
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Therefore, in order for P
[
supq

∣∣∣F̂−1
0 (q)− F−1

0 (q)
∣∣∣ ≥ ε2] ≤ δ to hold, it suffices to set

n0 = n(1− α) > 1
2

1
ε22

1
`−0

2 log 2
δ

(B.9)

Furthermore, combining equation B.1, equation B.2, and equation B.3, we get

F̂a (τn) ≤ Fa (τ) + (τ − τn)`a + ε1 (B.10)

Subtitute τn = F̂−1
0 (q), and τ = F−1

0 (q) in the above inequality, and set ε1 = ε
4 , ε2 = ε

4`a , we get∣∣∣F̂a (F̂−1
0 (q)

)
− Fa

(
F−1

0 (q)
)∣∣∣ ≤ ε/2. (B.11)

Similary, we repeat the same procedure for s′, and can get∣∣∣F̂ ′a (F̂ ′−1
0 (q)

)
− F ′a

(
F ′0
−1(q)

)∣∣∣ ≤ ε/2. (B.12)

with probability at least 1− δ.

Therefore, with n ≥ 8
ε2 ·

(
log 2

1−
√

1−δ ·
( 2−α

α

)2 + log 2
δ ·

1
1−α

((
`a
`−0

)2
+
(
`′a
`′0
−

)2
))

examples

we can get |ξ̂ − ξ| ≤ ε with probability at least 1− δ.

C THREE REAL-WORLD DATASETS AND TRAINING CONFIGURATIONS

Fashion-MNIST. This dataset (Xiao et al. (2017)) is a collection of 70K grayscale images on
fashion objects (a training set of 60K examples and a test set of 10K examples), evenly divided into
10 classes (7000 images per class). Each image is of 28 pixels in height and 28 pixels in width, and
each pixel-value is an integer between 0 and 255. The 10 classes are denoted as top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, boot.

To train the anomaly detection models, we pick one class as the normal training class, another class
as the abnormal training class, and the rest as the abnormal testing class. We use the full training
set of the normal class (6K), and a random 10% of the training set of the abnormal training class
(600) to train the deep anomaly detection models. We use the test data of the normal class (1K) to
configure the anomaly scoring thresholds to meet a 5% false positive rate (FPR). We then test the
models on the full data of each abnormal testing class, as well as on the untrained fraction of the
abnormal training class.

StatLog (Landsat Satellite). This dataset (Srinivasan (1993)) is a collection of 6,435 NASA
satellite images, each of 82 × 100 pixels, valued between 0 and 255. The six labeled classes
are denoted as red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble, and very damp grey soil. Unless specified otherwise, we fol-
low the same procedure to train the models. The normal training data includes 80% data of the
designated class, and the abnormal training data is 10% of the normal training data in size. Due
to the limited amount of the data, we use the full data of the normal data to configure the anomaly
scoring thresholds to meet a 5% FPR. We then test the models on the full data of each abnormal
testing class, as well as the untrained fraction of the abnormal training class.

Cellular Spectrum Misuse. This real-world anomaly dataset measures cellular spectrum usage
under both normal scenarios and in the presence of misuses (or attacks) (Li et al., 2019). We obtained
the dataset from the authors of Li et al. (2019). The dataset includes a large set (100K instances)
of real cellular spectrum measurements in the form of spectrogram (or time-frequency pattern of
the received signal). Each spectrogram (instance) is a 125×128 matrix, representing the signal
measured over 125 time steps and 128 frequency subcarriers. The dataset includes five classes:
normal (normal usage in the absence of misuse) and four misuse classes: WB-los (wideband
attack w/o blockage), WB-nlos (wideband attack w/ blockage), NB-10ms (narrowband attack)
and NB-5ms (narrowband attack with a different signal). The sample size is 60K for normal
and 10K for each abnormal class. To train the models, we randomly sample 20K instances from
normal, 2K instances from one abnormal class, and configure the anomaly score thresholds to
meet a 5% FPR.
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D ADDITIONAL EXPERIMENT RESULTS OF SECTION 4.2

Anomaly score distributions for models trained on the synthetic dataset. Figure 4–6 plot the
anomaly score distributions for semi-supervised (left figure) and supervised (right figure) models,
trained on the synthetic dataset (α = 0.1, n = 10000), estimated by Kernel Density Estimation.

Figure 4: Anomaly score distributions for Deep SVDD (left) and HSC (right), trained on the syn-
thetic dataset.

Figure 5: Anomaly score distributions for AE (left) and SAE (right), trained on the synthetic dataset.

Figure 6: Anomaly score distributions for AE (left) and ABC (right),trained on the synthetic dataset.

Anomaly score distributions for models trained on real-world datasets. Figure 7 and 8 plot the
anomaly score distributions for semi-supervised and supervised models, when trained on Fashion-
MNIST and Cellular Spectrum Misuse, respectively.

Figure 7: Anomaly score distributions for Deep SVDD (left) and Deep SAD (right), trained on
Fashion-MNIST (using top as the normal class and shirt as the abnormal class).

Figure 8: Anomaly score distributions for Deep SVDD (left) and Deep SAD (right), trained on
Cellular Spectrum Misuse (using normal as the normal class and NB-10ms as the abnormal class).
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Convergence of relative scoring bias ξ̂ and FRP on the synthetic dataset. We plot in Figure 9–
11 the additional results on (Deep SVDD vs. HSC), (AE vs. SAE), and (AE vs. ABC). Experiment
settings are described in Section 4.2. Overall, they show a consistent trend on convergence.

Figure 9: The quantile distribution on the synthetic dataset of (top) relative scoring bias ξ̂ and
(bottom) FPR, computed on the test set over 1500 runs, for Deep SVDD and HSC.

Figure 10: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 1500 runs, for AE and SAE trained on the synthetic dataset.

Figure 11: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 1500 runs, for AE and ABC trained on the synthetic dataset.
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Convergence of relative scoring bias ξ̂ and FRP on Cellular Spectrum Misuse. We plot in
Figure 12–15 the additional results of (Deep SVDD vs. Deep SAD), (Deep SVDD vs. HSC), (AE
vs. SAE), and (AE vs. ABC), when trained on the Cellular Spectrum Misuse dataset. Here we set
the normal class as normal and the abnormal class as NB-10ms, and configure the sample size for
the training set as 16K and for the test set as 6K, and vary the sample size for the validation set n
from 100, 200, 500, 1K, 2K, 5K. Overall, the plots show a consistent trend on convergence.

Figure 12: The quantile distribution of relative scoring bias ξ̂ (top) and FPR (bottom), computed on
the test set over 1000 runs, for Deep SVDD and Deep SAD trained on Cellular Spectrum Misuse.

Figure 13: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 1000 runs, for Deep SVDD and HSC trained on Cellular Spectrum Misuse.

Figure 14: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 1000 runs, for AE and SAE trained on Cellular Spectrum Misuse.
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Figure 15: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 1000 runs, for AE and ABC trained on Cellular Spectrum Misuse.

Convergence of relative scoring bias ξ̂ and FRP on FashionMNIST. Figure 16 plots the conver-
gence of ξ̂ and FRP on Deep SVDD vs. Deep SAD models trained on FashionMNIST. The results
for other model combinations are consistent and thus omitted. Here we set the normal class as top
and the abnormal class as shirt, and configure the sample size for the training set as 3K and for
the test set as 2K, and vary the sample size for the validation set n from 100, 200, 500, 1K. Overall,
the plots show a consistent trend on convergence.

Figure 16: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 100 runs, for Deep SVDD and SAD trained on Fashion-MNIST.
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Convergence of relative scoring bias ξ̂ and FRP on StatLog. Figure 17 plots ξ̂ and FRP of Deep
SVDD vs. Deep SAD trained on the StatLog dataset. The results for other model combinations
are consistent and thus omitted. To maintain a reasonable sample size, we set the normal class to
be a combination of grey soil, damp grey soil and very damp grey soil, and the
abnormal class to be a combination of red soil and cotton crop. The sample size for the
training is 1.2K and the test set is 1K. We vary the sample size for the validation set n from 100,
200, 500, 1K. Overall, the plots show a consistent trend on convergence.

Figure 17: The quantile distribution of (top) relative scoring bias ξ̂ and (bottom) FPR, computed on
the test set over 100 runs, for Deep SVDD and SAD trained on StatLog.
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E ADDITIONAL RESULTS OF SECTION 5

Scenario 1. Here the training normal set is visually similar to the training abnormal set. We
include the detailed recall result (mean/std over 100 runs) of all six models, and three real-life
datasets in Table 2 – 4. Across the six models, the two semi-supervised models (trained on normal
data) are Deep SVDD and AE; and the rest are supervised models trained on both normal data and
the specified abnormal training data.

In each table, we report the model recall on all abnormal test classes. These abnormal test classes
are sorted by decreasing similarity to the abnormal training class (measured by L2, small value =
visually similar). Also, ↑ indicates that the supervised model has a higher recall than the semi-
supervised model; ↓ indicates the other direction. Overall we observe both upward and downward
bias across the test abnormal classes, and the direction depends on the test abnormal class’ similarity
to the train abnormal class.

We also observe that when using the reconstruction based models (AE, SAE, ABC), the performance
for StatLog is much worse than the hypersphere based models. This result is in fact consistent with
what has been reported in the literature—Ishii et al. (2020) reports a similar low performance of
reconstruction based model on StatLog, which was trained on normal data (cf Table 4 of Ishii et al.
(2020)). We consider this as a result potentially arising from specific latent spaces of data on the
reconstruction based models, and leave improvement of these reconstruction models to future work.

It is worth highlighting that although these reconstruction based models demonstrate inferior perfor-
mance on StatLog when training only on normal data, adding training abnormal set under Scenario
1 does demonstrate a similar behavior to that of the hypersphere based models. When training the
SAE model with (biased) anomaly data, we handle the exploding loss issue in a similar way as
Ruff et al. (2020b): For the anomaly class, we consider a loss function which takes the form of

1
reconstruction error . We found that this design of loss function easily converges in practice with few loss
explosion issues on reconstruction based models.

training normal = top, training abnormal = shirt
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to shirt
shirt 0.09 ± 0.01 0.71 ± 0.01 ↑ 0.70 ± 0.01 ↑ 0.12 ± 0.01 0.72 ± 0.01 ↑ 0.72 ± 0.01 ↑ 0

pullover 0.13 ± 0.02 0.90 ± 0.01 ↑ 0.89 ± 0.01 ↑ 0.19 ± 0.02 0.84 ± 0.02 ↑ 0.85 ± 0.01 ↑ 0.01
coat 0.14 ± 0.03 0.92 ± 0.02 ↑ 0.92 ± 0.01 ↑ 0.15 ± 0.02 0.92 ± 0.02 ↑ 0.92 ± 0.01 ↑ 0.01
dress 0.17 ± 0.03 0.24 ± 0.03 ↑ 0.24 ± 0.03 ↑ 0.11 ± 0.01 0.20 ± 0.03 ↑ 0.21 ± 0.03 ↑ 0.04
bag 0.49 ± 0.07 0.38 ± 0.08 ↓ 0.36 ± 0.07 ↓ 0.70 ± 0.03 0.52 ± 0.09 ↓ 0.53 ± 0.07 ↓ 0.04

trouser 0.32 ± 0.10 0.07 ± 0.04 ↓ 0.06 ± 0.03 ↓ 0.59 ± 0.04 0.07 ± 0.04 ↓ 0.16 ± 0.07 ↓ 0.06
boot 0.92 ± 0.03 0.29 ± 0.15 ↓ 0.27 ± 0.16 ↓ 0.98 ± 0.02 0.90 ± 0.09 ↓ 0.90 ± 0.08 ↓ 0.08

sandal 0.30 ± 0.04 0.26 ± 0.08 ↓ 0.26 ± 0.12 ↓ 0.82 ± 0.02 0.46 ± 0.10 ↓ 0.56 ± 0.09 ↓ 0.09
sneaker 0.55 ± 0.09 0.12 ± 0.10 ↓ 0.14 ± 0.12 ↓ 0.74 ± 0.09 0.47 ± 0.19 ↓ 0.46 ± 0.18 ↓ 0.10

Table 2: The model TPR under scenario 1, Fashion-MNIST. The normal class top is similar to the
abnormal training class shirt. Their L2 distance = 0.02.

training normal = very damp grey soil, training abnormal = damp grey soil
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to damp grey soil

damp grey soil 0.12 ± 0.05 0.81 ± 0.02 ↑ 0.80 ± 0.02 ↑ 0.00 ± 0.00 0.08 ± 0.02 ↑ 0.01 ± 0.01 ↓ 0
red soil 0.67 ± 0.16 0.92 ± 0.05 ↑ 0.91 ± 0.05 ↑ 0.00 ± 0.00 0.00 ± 0.00 ↓ 0.00 ± 0.00 ↓ 4.39
grey soil 0.45 ± 0.17 0.92 ± 0.02 ↑ 0.92 ± 0.02 ↑ 0.01 ± 0.00 0.04 ± 0.02 ↑ 0.02 ± 0.02 ↓ 4.42

vegetable soil 0.40 ± 0.10 0.19 ± 0.04 ↓ 0.18 ± 0.04 ↓ 0.35 ± 0.01 0.35 ± 0.01 ↓ 0.35 ± 0.00 ↓ 5.44
cotton crop 0.96 ± 0.06 0.80 ± 0.06 ↓ 0.70 ± 0.08 ↓ 0.89 ± 0.02 0.90 ± 0.01 ↓ 0.90 ± 0.01 ↓ 11.46

Table 3: The model TPR under scenario 1, StatLog. The normal class very damp grey soil
is similar to the abnormal training class damp grey soil. Their L2 distance = 3.63.

training normal = normal, training abnormal = NB-10ms
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to NB-10ms
NB-10ms 0.03 ± 0.01 0.99 ± 0.02 ↑ 0.99 ± 0.01 ↑ 0.02 ± 0.01 0.97 ± 0.05 ↑ 0.92 ± 0.03 ↑ 0
NB-5ms 0.02 ± 0.00 0.93 ± 0.05 ↑ 0.82 ± 0.07 ↑ 0.00 ± 0.00 0.96 ± 0.02 ↑ 0.99 ± 0.01 ↑ 6.22
WB-nlos 0.99 ± 0.00 0.38 ± 0.08 ↓ 0.43 ± 0.10 ↓ 0.89 ± 0.03 0.54 ± 0.02 ↓ 0.47 ± 0.02 ↓ 32.40
WB-los 0.99 ± 0.00 0.50 ± 0.10 ↓ 0.53 ± 0.15 ↓ 0.92 ± 0.03 0.51 ± 0.07 ↓ 0.50 ± 0.03 ↓ 43.01

Table 4: The model TPR under scenario 1, Cellular Spectrum Misuse. The normal class is similar
to the abnormal training class NB-10ms, and the L2 distance between the two is 6.17.
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Scenario 2. We consider scenario 2 where the training normal set is visually dissimilar to the
training abnormal set. The detailed TPR result of all six models, and three real-life datasets are
in Table 5 – 7. Like the above, in each table, the abnormal test classes are sorted by decreasing
similarity to the abnormal training class. Like the above, ↑ indicates that the supervised model has
a higher recall than the semi-supervised model; ↓ indicates the other direction.

Different from Scenario 1, here we observe mostly upward changes. Again we observe poorer
performance of AE, SAE, ABC on StatLog compared to the hypersphere-based models.

training normal = top, training abnormal = sneaker
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to sneaker
sneaker 0.55 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.74 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0
sandal 0.30 ± 0.04 0.99 ± 0.01 ↑ 0.98 ± 0.02 ↑ 0.82 ± 0.02 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.02
boot 0.92 ± 0.03 1.00 ± 0.00 ↑ 0.97 ± 0.02 ↑ 0.98 ± 0.02 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.07
bag 0.49 ± 0.07 0.80 ± 0.05 ↑ 0.81 ± 0.11 ↑ 0.70 ± 0.03 0.84 ± 0.03 ↑ 0.82 ± 0.03 ↑ 0.07

shirt 0.09 ± 0.01 0.11 ± 0.02 ↑ 0.12 ± 0.01 ↑ 0.12 ± 0.01 0.13 ± 0.01 ↑ 0.15 ± 0.01 ↑ 0.10
trouser 0.32 ± 0.09 0.31 ± 0.10 ↓ 0.11 ± 0.12 ↓ 0.58 ± 0.04 0.58 ± 0.03 ↓ 0.58 ± 0.05 ↓ 0.12
dress 0.16 ± 0.03 0.16 ± 0.04 ↓ 0.11 ± 0.01 ↓ 0.11 ± 0.01 0.11 ± 0.01 ↓ 0.12 ± 0.01 ↓ 0.13

pullover 0.13 ± 0.02 0.13 ± 0.03 ↓ 0.14 ± 0.05 ↓ 0.19 ± 0.02 0.21 ± 0.03 ↓ 0.19 ± 0.02 ↓ 0.13
coat 0.14 ± 0.03 0.13 ± 0.03 ↓ 0.13 ± 0.06 ↓ 0.15 ± 0.02 0.16 ± 0.02 ↓ 0.15 ± 0.02 ↓ 0.14

Table 5: The model TPR under scenario 2, Fashion-MNIST. The normal class top is dissimilar to
the abnormal training class sneaker, and the L2 distance between the two is 0.13.

training normal = very damp grey soil, training abnormal = red soil
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to red soil

red soil 0.69 ± 0.12 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.00 ± 0.00 0.21 ± 0.01 ↑ 0.20 ± 0.00 ↑ 0
damp grey soil 0.12 ± 0.05 0.25 ± 0.04 ↑ 0.22 ± 0.04 ↑ 0.00 ± 0.00 0.00 ± 0.00 ↓ 0.00 ± 0.00 ↓ 4.39

grey soil 0.43 ± 0.16 0.68 ± 0.12 ↑ 0.53 ± 0.09 ↑ 0.01 ± 0.00 0.02 ± 0.00 ↓ 0.01 ± 0.00 ↓ 5.48
vegetable soil 0.40 ± 0.10 0.76 ± 0.07 ↑ 0.76 ± 0.07 ↑ 0.35 ± 0.00 0.42 ± 0.02 ↑ 0.42 ± 0.02 ↑ 6.63
cotton crop 0.96 ± 0.06 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.89 ± 0.00 0.93 ± 0.01 ↑ 0.93 ± 0.01 ↑ 8.97

Table 6: The model TPR under scenario 2, StatLog. The normal class very damp grey soil
is dissimilar to the abnormal training class red soil, and the L2 distance between the two is 8.48.

training normal = normal, training abnormal = WB-los

Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to WB-los
WB-los 0.99 ± 0.00 1.00 ± 0.01 ↑ 1.00 ± 0.01 ↑ 0.92 ± 0.03 0.95 ± 0.04 ↑ 1.00 ± 0.02 ↑ 0
WB-nlos 0.99 ± 0.00 1.00 ± 0.01 ↑ 1.00 ± 0.00 ↑ 0.89 ± 0.03 0.94 ± 0.03 ↑ 0.96 ± 0.02 ↑ 14.39
NB-10ms 0.03 ± 0.01 0.06 ± 0.01 ↑ 0.05 ± 0.02 ↓ 0.02 ± 0.01 0.03 ± 0.00 ↑ 0.04 ± 0.01 ↓ 43.01
NB-5ms 0.02 ± 0.00 0.03 ± 0.01 ↓ 0.02 ± 0.00 ↓ 0.00 ± 0.00 0.02 ± 0.00 ↑ 0.02 ± 0.01 ↑ 44.37

Table 7: The model TPR under scenario 2, Cellular Spectrum Misuse. The normal class is dissimilar
to the abnormal training class WB-los, and the L2 distance between the two is 43.84.
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Scenario 3. We run three configurations of grouped abnormal training on Fashion-MNIST (train-
ing normal: top; training abnormal: shirt & sneaker) by varying the weights of the two
abnormal classes in training (0.5/0.5, 0.9/0.1, 0.1/0.9). Again ↑ indicates that the supervised model
has a higher recall than the semi-supervised model; ↓ indicates the other direction. Under these
settings, we observe downward bias (↓) for one abnormal test class trouser and upward bias for
most other classes.

training normal = top, training abnormal = 50% shirt and 50% sneaker
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to shirt L2 to sneaker
shirt 0.09 ± 0.01 0.69 ± 0.01 ↑ 0.69 ± 0.02 ↑ 0.12 ± 0.01 0.67 ± 0.01 ↑ 0.66 ± 0.01 ↑ 0 0.10

sneaker 0.55 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.74 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.10 0
pullover 0.13 ± 0.02 0.90 ± 0.01 ↑ 0.90 ± 0.01 ↑ 0.19 ± 0.02 0.82 ± 0.02 ↑ 0.83 ± 0.02 ↑ 0.01 0.13
coat 0.14 ± 0.03 0.91 ± 0.02 ↑ 0.90 ± 0.01 ↑ 0.15 ± 0.02 0.86 ± 0.02 ↑ 0.87 ± 0.02 ↑ 0.01 0.14
dress 0.17 ± 0.03 0.23 ± 0.04 ↑ 0.24 ± 0.04 ↑ 0.11 ± 0.01 0.19 ± 0.03 ↑ 0.18 ± 0.02 ↑ 0.04 0.13
bag 0.49 ± 0.07 0.63 ± 0.06 ↑ 0.62 ± 0.07 ↑ 0.70 ± 0.03 0.76 ± 0.05 ↑ 0.78 ± 0.03 ↑ 0.04 0.07

trouser 0.32 ± 0.10 0.05 ± 0.04 ↓ 0.04 ± 0.02 ↓ 0.59 ± 0.04 0.22 ± 0.08 ↓ 0.34 ± 0.06 ↓ 0.06 0.12
boot 0.92 ± 0.03 0.95 ± 0.03 ↓ 0.95 ± 0.03 ↓ 0.98 ± 0.02 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.08 0.07

sandal 0.30 ± 0.04 0.92 ± 0.04 ↑ 0.92 ± 0.04 ↑ 0.82 ± 0.02 0.96 ± 0.01 ↑ 0.97 ± 0.01 ↑ 0.09 0.02

Table 8: The model TPR under configuration 1 of weighted mixture training on Fashion-MNIST.

training normal = top, training abnormal = 90% shirt and 10% sneaker
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to shirt L2 to sneaker
shirt 0.09 ± 0.01 0.70 ± 0.01 ↑ 0.70 ± 0.01 ↑ 0.12 ± 0.01 0.72 ± 0.01 ↑ 0.71 ± 0.01 ↑ 0 0.10

sneaker 0.55 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.74 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.10 0
pullover 0.13 ± 0.02 0.90 ± 0.01 ↑ 0.89 ± 0.01 ↑ 0.19 ± 0.02 0.84 ± 0.02 ↑ 0.84 ± 0.02 ↑ 0.01 0.13
coat 0.14 ± 0.03 0.91 ± 0.02 ↑ 0.91 ± 0.02 ↑ 0.15 ± 0.02 0.91 ± 0.02 ↑ 0.90 ± 0.02 ↑ 0.01 0.14
dress 0.17 ± 0.03 0.23 ± 0.03 ↑ 0.24 ± 0.03 ↑ 0.11 ± 0.01 0.19 ± 0.03 ↑ 0.20 ± 0.03 ↑ 0.04 0.13
bag 0.49 ± 0.07 0.56 ± 0.08 ↓ 0.57 ± 0.07 ↓ 0.70 ± 0.03 0.67 ± 0.06 ↓ 0.68 ± 0.05 ↓ 0.04 0.07

trouser 0.32 ± 0.10 0.06 ± 0.04 ↓ 0.06 ± 0.03 ↓ 0.59 ± 0.04 0.10 ± 0.06 ↓ 0.20 ± 0.08 ↓ 0.06 0.12
boot 0.92 ± 0.03 0.87 ± 0.08 ↓ 0.88 ± 0.05 ↓ 0.98 ± 0.02 0.99 ± 0.01 ↓ 0.99 ± 0.00 ↓ 0.08 0.07

sandal 0.30 ± 0.04 0.84 ± 0.06 ↑ 0.83 ± 0.05 ↑ 0.82 ± 0.02 0.90 ± 0.02 ↑ 0.94 ± 0.02 ↑ 0.09 0.02

Table 9: The model TPR under configuration 2 of weighted mixture training on Fashion-MNIST.

training normal = top, training abnormal = 10% shirt and 90% sneaker
Test data Deep SVDD Deep SAD HSC AE SAE ABC L2 to shirt L2 to sneaker
shirt 0.09 ± 0.01 0.61 ± 0.02 ↑ 0.60 ± 0.02 ↑ 0.12 ± 0.01 0.54 ± 0.02 ↑ 0.54 ± 0.01 ↑ 0 0.10

sneaker 0.55 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.74 ± 0.09 1.00 ± 0.00 ↑ 1.00 ± 0.00 ↑ 0.10 0
pullover 0.13 ± 0.02 0.85 ± 0.02 ↑ 0.84 ± 0.02 ↑ 0.19 ± 0.02 0.74 ± 0.03 ↑ 0.74 ± 0.03 ↑ 0.01 0.13
coat 0.14 ± 0.03 0.79 ± 0.03 ↑ 0.77 ± 0.03 ↑ 0.15 ± 0.02 0.67 ± 0.04 ↑ 0.68 ± 0.03 ↑ 0.01 0.14
dress 0.17 ± 0.03 0.13 ± 0.03 ↓ 0.11 ± 0.03 ↓ 0.11 ± 0.01 0.12 ± 0.01 ↓ 0.11 ± 0.01 ↓ 0.04 0.13
bag 0.49 ± 0.07 0.82 ± 0.05 ↑ 0.84 ± 0.05 ↑ 0.70 ± 0.03 0.85 ± 0.03 ↑ 0.86 ± 0.02 ↑ 0.04 0.07

trouser 0.32 ± 0.10 0.10 ± 0.08 ↓ 0.05 ± 0.05 ↓ 0.59 ± 0.04 0.45 ± 0.07 ↓ 0.50 ± 0.05 ↓ 0.06 0.12
boot 0.92 ± 0.03 1.00 ± 0.00 ↑ 0.99 ± 0.01 ↑ 0.98 ± 0.02 0.98 ± 0.00 ↓ 1.00 ± 0.00 ↓ 0.08 0.07

sandal 0.30 ± 0.04 0.99 ± 0.01 ↑ 0.83 ± 0.01 ↑ 0.82 ± 0.02 0.98 ± 0.00 ↑ 0.99 ± 0.00 ↑ 0.09 0.02

Table 10: The model TPR under configuration 3 of weighted mixture training on Fashion-MNIST.
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