

000 001 DRIFT: LEARNING FROM ABUNDANT USER DISSAT- 002 ISFACTION IN REAL-WORLD PREFERENCE LEARNING 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Real-world large language model deployments (e.g., conversational AI systems,
012 code generation assistants) naturally generate abundant implicit user dissatisfaction
013 (DSAT) signals, as users iterate toward better answers through refinements,
014 corrections, and expressed preferences, while explicit satisfaction (SAT) feedback
015 is scarce. Existing preference learning approaches are poorly aligned with this
016 data profile, as they rely on costly human annotations or assume plentiful positive
017 responses. In this paper, we introduce **DRIFT** (Dissatisfaction-Refined Iterative
018 preFerence Training), which anchors training on real-world DSAT signals and
019 samples positives dynamically from the evolving policy. Empirically, DRIFT
020 models trained on real-world *WildFeedback* datasets and synthetic *UltraFeedback*
021 datasets achieve up to +6.23% (7B) / +7.61% (14B) on WildBench Task Score and
022 up to +8.95% (7B) / +12.29% (14B) on AlpacaEval2 win rate over base models,
023 outperforming strong baseline methods such as iterative DPO and SPIN. At larger
024 scales, the improvements are particularly pronounced: 14B models trained with
025 DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT
026 also preserves exploratory capacity, yielding more diverse high-reward solutions
027 rather than collapsing to narrow subsets. Theoretically, we demonstrate that this
028 design preserves preference margins and avoids the gradient degeneration. These
029 results show that DRIFT is an effective and scalable recipe for real-world post-
030 training that leverages the most abundant and informative signal.

031 1 INTRODUCTION 032

033 Large language models (LLMs) now power a wide range of real-world applications, including
034 conversational assistants (e.g., GPT, Claude, Gemini), customer support, search and recommendation,
035 productivity and education tools, and code generation. A key driver of this success is preference
036 learning, a critical component of post-training that aligns model behavior with human judgments and
037 values. Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) pioneered
038 this approach by training a reward model on human preference data and subsequently optimizing
039 the policy using reinforcement learning algorithms (Schulman et al., 2017). Direct Preference Opti-
040 mization (DPO) (Rafailov et al., 2023) simplified this process by directly optimizing on preference
041 pairs without requiring an explicit reward model, making the training procedure more stable and
042 computationally efficient, while achieving comparable alignment performance.

043 However, these approaches depend on costly, carefully curated human preference annotations that
044 are difficult to scale across domains and evolving user needs. In contrast, deployed LLM systems
045 continuously generate vast amounts of real-world interaction data. Beyond offering scalability, such
046 real data often captures a richer and more nuanced spectrum of human preferences than small, cu-
047 rated annotation datasets, as users naturally convey satisfaction, dissatisfaction, and refinement in-
048 tents during conversation. This motivates a key question:

049 *How can we transform abundant but implicit user feedback from real-world inter-
050 actions into scalable and effective preference learning signals for LLMs?*

051 From a data collection perspective, existing chatbot platform as shown in Figure 1 (left) attempts to
052 gather user feedback through explicit mechanisms: (1) asking users to compare and rank multiple
053 model responses, or (2) providing simple feedback buttons (e.g. thumbs up/down) at the end of chat



Figure 1: Overview of user feedback signals and the DRIFT framework. Explicit feedback (left) is sparse and biased, as most users are passive consumers. In contrast, implicit feedback (middle) provides abundant and informative signals, where dissatisfaction (DSAT) is far more prevalent than satisfaction (SAT) (e.g., 12% vs 5% in the *WildFeedback* dataset). DRIFT (right) leverages these DSAT signals for preference learning, enabling our 14B model to surpass commercial models.

interfaces. However, these collection methods are inefficient, as most are passive consumers (Lounamaa, 2024), with only 1–3% users willing to provide explicit feedback. Moreover, those who do provide feedback often express extreme opinions (strongly positive or negative) that may not reflect the broader distribution of user preferences. However, as illustrated by the example in Figure 1, (middle) users naturally express their preferences through the conversation itself through follow-up questions, correction requests, and iterative refinements, creating a rich source of implicit feedback. Beyond scalability, such real interaction data can contain richer and more representative preference information than curated annotation datasets, capturing fine-grained user intents that explicit labels often miss. Recent datasets such as WildChat-1M (Zhao et al., 2024) and LMSYS-Chat-1M (Zheng et al., 2024) have collected over one million real-world conversations, creating a rich foundation for studying naturally occurring user feedback. Building on these resources, several studies have explored ways to extract preference signals directly from user interactions. For example, Don-Yehiya et al. (2025) demonstrate that naturally occurring user feedback appears in approximately 30% of conversations and propose mining preferences by detecting explicit evaluative user responses. Similarly, *WildFeedback* (Shi et al., 2025) applies user satisfaction estimation (Lin et al., 2024b) to automatically extract satisfaction and dissatisfaction labels to construct large-scale preference datasets.

From a preference learning method perspective, recent works explored self-generated strategies to reduce reliance on human annotation. Self-Rewarding Language Models (Yuan et al., 2024) prompt the training model itself to score its own rollouts, but face a key limitation: the synchronized improvement of *chosen* and *rejected* responses progressively reduces their contrast, which in turn undermines effective preference learning (Wang et al., 2025a). An alternative approach, SPIN (Chen et al., 2024c) treats ground-truth responses from the SFT dataset as *chosen* and self-generated ones as *rejected*, yet is difficult to apply in practice where gold-standard responses are often rare, limiting its ability to generalize to broader scenarios. In contrast to positive feedback, dissatisfaction signals are naturally abundant as users refine suboptimal outputs through interaction. To leverage this underutilized signal, we introduce **DRIFT** (Dissatisfaction-Refined Iterative preFeRenCe Training), a simple yet scalable method that directly leverages user dissatisfaction (DSAT) signals from authentic conversations to iteratively enhance model performance. Unlike SPIN, which fixes supervised responses as positives and treats self-generated ones as negatives, DRIFT anchors each training pair with a real DSAT negative and samples the *chosen* responses from the current policy, enabling dynamic and policy-aligned adaptation. Our contributions are:

- **Empirical Validation:** DRIFT consistently surpasses other iterative self-improving methods, SPIN and IterDPO, yielding gains of up to +6.23% (7B) / +7.61% (14B) in WildBench Task Score and up to +8.95% (7B) / +12.29% (14B) in AlpacaEval2 win rate over base models.
- **Enhanced Exploration:** DRIFT preserves a larger exploration space and generates more diverse responses with substantially broader coverage of the global high-reward region.
- **Theoretical Analysis:** We show that DRIFT maintains a non-vanishing expected preference margin and prevents gradient collapse, which is a critical limitation in existing self-improving models.

2 RELATED WORK

2.1 LEARNING FROM REAL-WORLD USER FEEDBACK

Since relying on human labeling is not only expensive and time-consuming, but also highly subjective to a small set of annotators, recent work has shifted toward leveraging naturally occurring signals “in the wild”. A natural starting point is to incorporate the most explicit feedback of user input, including edits and demonstrations. Gao et al. (2024) use edits in writing assistant settings to infer latent preferences, keeping the base LLM frozen and training a separate preference module that conditions future outputs. Similarly, Shaikh et al. (2025); Tucker et al. (2024) rely on a handful of user-provided demonstrations to bootstrap alignment, iteratively generating comparison pairs by treating user examples as preferred over LLM outputs and their intermediate revisions. Another stream of work draws on implicit feedback that emerges naturally during conversations. Hancock et al. (2019) introduced a self-feeding chatbot that monitors user satisfaction during deployment: satisfied turns are added as new training data, while explicit feedback is requested when dissatisfaction is detected. Liu et al. (2025) extended this idea, regenerating improved responses for dissatisfaction and applying them in supervised fine-tuning (SFT). While this provides some benefit on short tasks like MT-Bench (Bai et al., 2024), gains are limited on more complex real-world task benchmarks such as WildBench (Lin et al., 2024a). Building further on implicit signals, recent approaches transform them into pairwise preferences for direct optimization. Shi et al. (2025) identify dissatisfaction with GPT-4, summarize user preferences, and generate improved responses as *chosen* answers, contrasting them with the original unsatisfactory replies as *rejected*. Tan et al. (2025) follow a similar philosophy by extracting reader-centric questions from user-generated content, sampling multiple candidate answers with an LLM, and ranking them with a reward model to construct chosen-rejected pairs. In contrast, our approach requires no positive responses from stronger models, no reward model, and certainly no human-provided golden truth, relying solely on abundant real-world dissatisfaction (DSAT) signals and dynamic positives from the evolving policy.

2.2 SELF-IMPROVEMENT AND ITERATIVE DIRECT PREFERENCE OPTIMIZATION

Self-improvement strategies have emerged as an important avenue for iteratively enhancing model performance. SPIN (Chen et al., 2024c) formulates this framework by treating the previous iteration model as the opponent and the current iteration model as the main player, constructing preference data with the SFT response as the *chosen* response and the prior iteration’s response as the *rejected* response, thereby fully utilizing the SFT data without requiring additional human annotation. Beyond this, Iterative DPO (Xiong et al., 2024; Xu et al., 2024) and Self-Rewarding Language Models (Yuan et al., 2024) and its variants (Pang et al., 2024; Chen et al., 2024a; Zeng et al., 2025; Tu et al., 2025; Chen et al., 2024b) explore generating on policy preference data via ranking responses by the model itself or a reward model/ verifier and then conducting iterative DPO training. However, subsequent studies reveal that self-improving models face a critical limitation: the chosen and rejected responses can become too similar, leading to weak preference signals. To address this, Temporal Self-Rewarding LMs (Wang et al., 2025a) decouple chosen and rejected responses through past-future anchoring, while CREAM (Wang et al., 2025b) introduces consistency regularization to stabilize the preference signal. Our method naturally avoids this issue by anchoring on genuine DSAT negatives and sampling fresh positives from the evolving policy, thereby maintaining a non-vanishing preference margin and preventing gradient collapse.

3 DRIFT: DISSATISFACTION-REFINED ITERATIVE PRE-FERENCE TRAINING

User feedback in real-world systems is inherently asymmetric, while satisfied users rarely provided explicit positive responses, dissatisfied users are more likely to offer abundant and detailed feedback in the form of complaints, corrections, and stated preferences. As a result, dissatisfaction (DSAT) signals are not only more frequent but also richer in information than satisfaction (SAT) signals. Instead of viewing this imbalance as a limitation, DRIFT exploits it by treating authentic dissatisfaction as high-quality negative supervision, while generating positive feedback dynamically from the evolving model itself.

162 Our approach is motivated by two key insights:
 163

164 • **Genuine dissatisfaction reflects real deployment failure modes**, offering more informative and
 165 reliable supervision than synthetically constructed negatives.
 166 • **Iteratively sampling fresh positives from the current policy** maintains the margin between
 167 chosen and rejected responses, thus mitigating the gradient collapse that plagues most self-
 168 improvement methods as these responses become increasingly similar over time.
 169

170 Formally, let \mathcal{X} denote the prompt space and \mathcal{Y} the response space. The current model is $\pi_\theta : \mathcal{X} \times \mathcal{Y} \rightarrow (0, 1)$, and π_{ref} is a frozen reference model. Let $\mathcal{X}_{\text{DSAT}} \subseteq \mathcal{X}$ denote prompts with
 171 observed dissatisfaction signals. For each $x \in \mathcal{X}_{\text{DSAT}}$, we observe a set of negative responses:
 172

$$173 \quad \text{DSAT}(x) = \{y^- : \text{user expressed dissatisfaction}\}. \quad (1)$$

174

175 DRIFT proceeds in iterative refinement cycles, where each round builds upon the improved policy
 176 from the previous iteration (Algorithm 1). We begin by filtering the wild dataset to extract dissatisfaction
 177 (DSAT) cases, producing prompt-response pairs (x, y^-) that reflect concrete failure modes
 178 encountered in real-world scenarios. At each iteration, the current model π_{θ_k} generates a fresh positive
 179 response y^+ for the same prompt x , allowing the positive response to evolve alongside the
 180 model’s capacities. The model is then updated by minimizing the DPO loss:
 181

$$182 \quad \mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(x, y^+, y^-)} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y^+ | x)}{\pi_{\text{ref}}(y^+ | x)} - \beta \log \frac{\pi_\theta(y^- | x)}{\pi_{\text{ref}}(y^- | x)} \right) \right] \quad (2)$$

183

184 where β controls the preference margin and σ denotes the logistic function.
 185

Algorithm 1 DRIFT: Dissatisfaction-Refined Iterative Preference Training

186 1: **Input:** Wild implicit feedback dataset, current model π_θ , reference model π_{ref} , number of
 187 iterations K
 188 2: **Output:** Updated model parameters θ_K
 189 3: **Filter:** Extract DSAT signals to form $\mathcal{D} = \{(x, y^-) \mid y^- \in \text{DSAT}(x)\}$
 190 4: **for** $k = 1, \dots, K$ **do**
 191 5: **Positive Sampling:** For each $(x, y^-) \in \mathcal{D}$, sample a fresh positive response $y^+ \sim \pi_{\theta_k}(\cdot \mid x)$
 192 6: **Loss Update:** Update θ_k by minimizing \mathcal{L}_{DPO} (Eq. 2)
 193 7: **end for**

195
 196 **4 EXPERIMENT**
 197

198 In this section, we evaluate DRIFT against strong self-improvement baselines, focusing on real
 199 world task performance. Sec. 4.1 outlines datasets, training recipe, and evaluation benchmarks.
 200 Sec. 4.2 presents the task performance on WildBench and AlpacaEval2. Then, in Sec. 4.3, we
 201 analyze exploration capability on response space of each method through global high-reward coverage.
 202

203 4.1 SETUP
 204

205 **Datasets. WildFeedback (real-world, user-feedback).** The *WildFeedback* dataset is derived from
 206 WildChat-1M, a corpus of over one million human–ChatGPT conversations, by assigning per-turn
 207 labels Satisfaction (SAT), Dissatisfaction (DSAT), Neutral (Non-DSAT/Non-SAT). Labels are de-
 208 rived using SPUR (Lin et al., 2024b), which recursively prompts GPT-4 to learn SAT/DSAT rubrics
 209 from thumb-annotated conversations and applies them to score satisfaction/ dissatisfaction.

210 As summarized in Table 1, among all 88,920 unique
 211 conversations, only 4,478 (5.04%) conversations were
 212 labeled SAT, while 10,632 (11.96%) were labeled
 213 DSAT, which is more than twice the SAT count. We
 214 also curate 491 seed data items (0.55%) in which LLM
 215 responses transition from DSAT to SAT after revision,
 naturally yielding preference pairs.

Table 1: Data Statistics

Category	# Conversations
DSAT Conversations	10,467
SAT Conversations	4,378
DSAT \rightarrow SAT	491

216 **UltraFeedback (synthetic, LLM-labeled).** For completeness and comparability with prior self-
 217 improvement work, we also evaluate on *UltraFeedback* in which each prompt has four completions
 218 from different models that are scored by GPT-4. This synthetic setting provides a complementary
 219 evaluation to the real-world data setting and ensures fair comparison with SPIN/ IterDPO on com-
 220 monly used LLM-labeled preference data.

221 Table 2: Comparison of preference data construction strategies across different methods. “Self-Gen”
 222 means responses are generated by the current policy. “Real” is from user feedback.

Method	Chosen Response		Rejected Response		No Positive Examples	Leverage Real User Feedback
	Self-Gen	Real	Self-Gen	Real		
SPIN	✗	✓ (SAT)	✓	✗	✗	✓
IterDPO	✓	✗	✓	✗	✓	✗
DRIFT (Ours)	✓	✗	✗	✓ (DSAT)	✓	✓

230 **Training Recipe.** Our experiments are conducted on Qwen2.5-7B-Instruct and Qwen2.5-14B-
 231 Instruct. We adopt a two-stage training:

232 (1) *Warm start*: train on the 491 seed DSAT→SAT pairs, which provides an initial aligned policy.

233 (2) *Iterative preference training*: After warm start, each method constructs fresh preference pairs.

234 *Per-iteration preference data construction (Table 2)*:

235 **DRIFT**: In *WildFeedback*, we keep the DSAT reply as the *rejected* response and, at each iteration,
 236 sample a fresh response from the current policy using prompt which contains the full conversation
 237 including the DSAT user turn and an explicit improvement instruction. In *UltraFeedback*, we re-
 238 place the original *chosen* with a fresh policy sample.

239 **SPIN**: In *WildFeedback*, we use the SAT reply as the *chosen* response and a policy sample as the
 240 *rejected* response using the prompt which is the conversation before the SAT user turn. In *Ultra-
 241 Feedback*, we replace the original *rejected* with a fresh policy sample.

242 **IterDPO**: In *WildFeedback*, we generate two responses using different prompts: the *chosen* context
 243 includes the full conversation including the DSAT user turn and an explicit improvement instruction,
 244 while the *rejected* context is the conversation before the DSAT user turn which does not reveal the
 245 user preference and instruction information. In *UltraFeedback*, both responses are generated from
 246 the same prompt and ranked by the reward model ¹; the higher-scored response is *chosen* and the
 247 other is *rejected*.

248 We then perform one epoch of DPO training after data generation, which prevents overfitting during
 249 iterative training. Full training details are presented in Appendix D.

250 **Evaluation.** We evaluate on WildBench (Elo, Task Score) and AlpacaEval2 (win rate, length-
 251 controlled; LC). WildBench is built from challenging real-world user queries in WildChat-1M and
 252 spans five diverse categories: *Creative*, *Reasoning*, *Math*, *Info Seek*, and *Coding*, making it well
 253 suited for assessing our method for real-world performance. The WildBench Task Score is com-
 254 puted as a weighted average across these five tasks.

255 4.2 PERFORMANCE EVALUATION

256 4.2.1 RESULTS ON *WildFeedback*

257 We first examine performance on the real-world *WildFeedback* dataset, which contains authentic user
 258 satisfaction/ dissatisfaction labels and exhibits a strong imbalance: dissatisfied responses (DSAT)
 259 outnumber satisfied ones (SAT) by more than 2:1. Hence, we consider two configurations: a **Con-
 260 trolled setting** with around 4k samples (matching SPIN for fair comparison), and a **Full setting**
 261 using all 11k DSAT samples to demonstrate DRIFT’s ability to exploit abundant negative feedback.

262 As shown in Table 3, DRIFT raises the WildBench Task Score by 6.23% (+3.03) for 7B and 5.97%
 263 (+3.29) for 14B, and boosts AlpacaEval2 win rate by 8.95% for 7B and 12.11% for 14B compared
 264 to the base models. And our method consistently outperforms both SPIN and IterDPO across all
 265 metrics in both controlled and full data settings.

266 While SPIN shows degraded performance with iterations likely due to its reliance on a fixed set of
 267 satisfied responses becoming stale, DRIFT maintains steady improvements, suggesting that its strat-
 268

269 ¹OpenAssistant/reward-model-deberta-v3-large-v2

270

271 Table 3: Results of training on *WildFeedback*. Appendix C for detailed per-task results.

Method	WildBench				AlpacaEval2			
	7B		14B		7B		14B	
	Elo	Score	Elo	Score	Win	LC	Win	LC
Base	1194.67	48.66	1213.17	55.08	37.69	39.73	36.65	43.58
Seed	1193.66	49.11	1213.50	54.93	42.67	42.06	40.25	45.78
Controlled Setting								
<i>SPIN</i>								
iter1	1180.75	42.86	1200.63	47.16	26.21	34.09	25.53	37.28
iter2	1173.45	37.86	1192.56	44.04	20.56	29.00	18.57	30.91
<i>IterDPO</i>								
iter1	1189.43	47.07	1206.65	51.79	41.55	41.35	37.14	43.14
iter2	1192.46	48.94	1211.69	56.63	41.18	40.14	48.32	47.28
<i>DRIFT (Ours)</i>								
iter1	1197.13	51.06	1215.73	58.37	42.73	41.41	48.76	45.42
iter2	1195.33	51.06	1214.03	57.59	43.79	41.49	46.83	43.48
Full Setting								
<i>IterDPO</i>								
iter1	1185.11	46.31	1205.48	52.34	40.36	39.85	38.07	43.99
iter2	1182.33	46.17	1206.63	51.38	35.76	37.06	32.88	37.92
<i>DRIFT (Ours)</i>								
iter1	1194.81	50.61	1212.83	57.27	43.90	40.32	48.63	47.46
iter2	1199.09	51.69	1217.61	58.30	46.64	42.72	45.33	44.93

egy prevents distribution shift. IterDPO performs better than SPIN but still lags behind DRIFT in both settings, indicating that while reward model guidance helps, the real world informative DSAT examples provides superior training signal. Notably, DRIFT’s controlled setting (using only 4k samples) already matches or exceeds IterDPO’s full setting performance, demonstrating the efficiency of dissatisfaction-anchored learning. The stronger gains at the 14B scale suggest that DRIFT benefits larger models more, likely because their greater capacity makes it easier to discover better positives while being anchored by real negatives. This making DRIFT well suited for scaling up.

Long-horizon stability beyond 2 iterations. To further investigate the stability and performance trends for longer iterations, we extended all methods to five iterations on Qwen2.5-7B. Figure 2 visualizes the performance trajectories across iterations.

Both SPIN and IterDPO peak early at iter1 and then exhibit performance degradation, with SPIN showing the most pronounced decline. In contrast, DRIFT demonstrates sustained improvement up to iter4 (52.47), and then forms a stable plateau with minimal variation (51.22 at iter5). This stability suggests that DRIFT’s strategy of anchoring on real dissatisfied responses while continuously sampling fresh positives prevents mode collapse that plagues other self-play or self-improve methods during extended iterative training. The limited performance collapse observed even at iter5 further validates DRIFT’s robustness for long-horizon self-improvement.

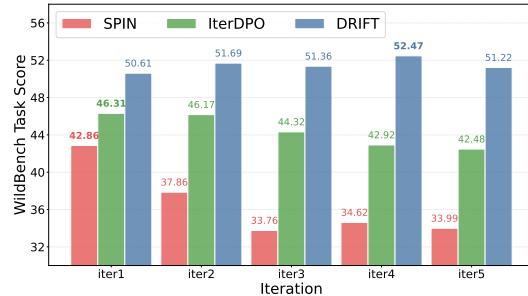


Figure 2: Performance across five iterations on Qwen2.5-7B. Bold values indicate the maximum score achieved by each method across iterations.

324 **Unguided ablation study and the source of DRIFT’s advantage.** An important consideration is
 325 whether DRIFT’s observed gains are attributable to the guidance prompts provided during positive
 326 generation. To examine this, we evaluated an unguided variant in which DRIFT and IterDPO gener-
 327 ate responses solely from the original user prompt, matching SPIN’s configuration. The results (see
 328 Appendix C, Table 6) show that DRIFT remains consistently stronger than both baselines in this
 329 setting, and the gap between the unguided and full versions is small. This suggests that DRIFT’s
 330 gains are not attributable to instruction prompt and reference point, but instead to its design principle
 331 of anchoring on off-policy DSAT negatives while drawing positives from the evolving policy.

333 4.2.2 RESULTS ON *UltraFeedback*

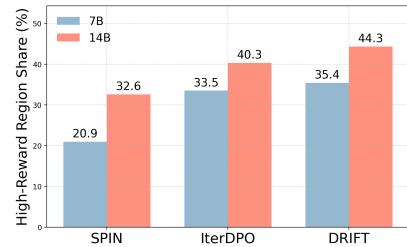
335 To ensure comprehensive evaluation and fair comparison with prior work, we also evaluate on the
 336 synthetic *UltraFeedback* dataset, where preferences are scored by GPT-4 rather than derived from
 337 real user interactions. This complementary evaluation helps assess whether DRIFT’s advantages
 338 generalize beyond the specific characteristics of real-world dissatisfaction signals to more conven-
 339 tional preference learning settings. As shown in Table 4, DRIFT outperforms the base model with
 340 gains of 4.62% (+2.25) for 7B and 7.61% (+4.19) for 14B on WildBench Task Score, and im-
 341 provements of +3.35% (7B) and +12.29% (14B) on AlpacaEval2 win rate. Compared to the best
 342 SPIN/IterDPO results, DRIFT achieves additional gains of +2.14 (7B) and +4.49 (14B) on Task
 343 Score, as well as +6.51% (7B) and +6.10% (14B) on win rate.

344
 345
 346 Table 4: Results of training on *UltraFeedback*. Appendix C for detailed per-task results.

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362	350 WildBench				351 AlpacaEval2				
	352 Method	353 7B		354 14B		355 7B		356 14B	
		357 Elo	358 Score	359 Elo	360 Score	361 Win	362 LC	363 Win	364 LC
351 Base	352	1194.67	48.66	1213.17	55.08	37.69	39.73	36.65	43.58
SPIN									
353 iter1	354	1163.16	35.10	1178.88	36.99	18.39	26.62	16.09	28.20
354 iter2	355	1139.66	25.93	1155.07	28.01	13.23	19.91	13.66	24.29
IterDPO									
355 iter1	356	1194.45	48.77	1214.14	54.21	34.53	40.55	33.29	42.84
356 iter2	357	1192.01	48.49	1215.12	54.78	32.15	39.92	28.51	40.47
DRIFT (Ours)									
357 iter1	358	1197.04	50.91	1215.67	58.52	41.04	40.37	47.89	48.46
358 iter2	359	1197.94	50.32	1218.75	59.27	40.47	37.09	48.94	47.43

363 364 365 4.3 EXPLORATORY CAPACITY ANALYSIS: DRIFT EXPLORES MORE DIVERSE HIGH 366 REWARD SOLUTIONS

368 A central question in preference learning is whether pushing
 369 rewards upward narrows the response distribution and
 370 erodes *exploration capacity* and *diversity*. Methods that op-
 371 timize aggressively for top scores or fixed chosen responses
 372 can shift toward mode seeking: peak metrics improve while
 373 alternative high-quality modes are under explored. We fur-
 374 ther investigate whether DRIFT’s strategy of sampling fresh
 375 positives while anchoring on real dissatisfied responses en-
 376 hances the model’s ability to explore the space of high-
 377 quality solutions than SPIN or iterDPO, which may pro-
 378 gressively constrain the solution space.



369 370 371 372 373 374 375 376 377 378 Figure 3: Comparison of high reward
 379 region coverage.

378 **Semantic reward topography construction.** For each prompt, we first sample 128 responses
 379 from each method and embed all collected responses². We obtain a 2D semantic projection via
 380 UMAP and estimate a reward-weighted density surface $Z_{\text{all}}(g) \in [0, 1]$ over a regular grid g using
 381 Gaussian KDE. The global high-reward region is defined as
 382

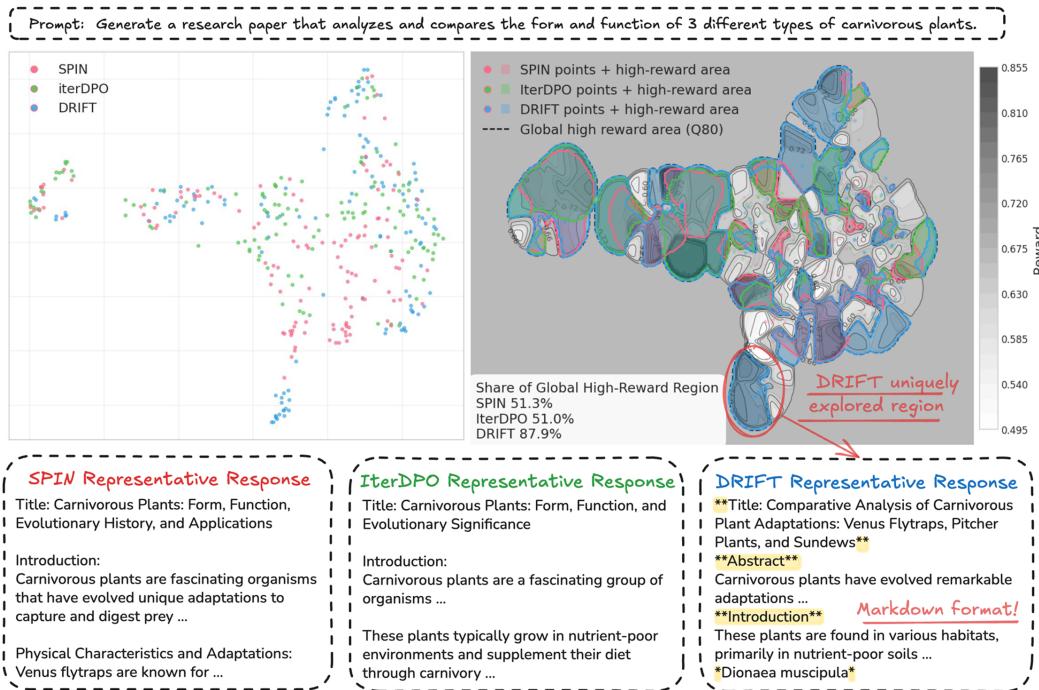
$$\mathcal{H} = \{g : Z_{\text{all}}(g) \geq z_{\text{high}}\}, \quad z_{\text{high}} = \text{Quantile}(Z_{\text{all}}, 0.8).$$

384 For each method m , we construct a corresponding surface $D_m(g)$ on the same grid and bandwidth,
 385 and measure its coverage inside the global high-reward region by
 386

$$\mathcal{S}_m = \{g \in \mathcal{H} : D_m(g) \geq z_{\text{high}}\}, \quad \text{Share}(m) = \frac{|\mathcal{S}_m|}{|\mathcal{H}|}.$$

389 We render Z_{all} as the background terrain, overlay the boundary of \mathcal{H} (dashed), and shade \mathcal{S}_m for
 390 each method. We report the average high-reward coverage across 50 prompts in Figure 3. DRIFT
 391 consistently attains the largest share at both 7B and 14B scales, with a larger margin at 14B, indicat-
 392 ing greater high reward solutions diversity and better scalability.
 393

394 **Case Study: High-Reward Coverage and Response Diversity.** Figure 4 shows an example that
 395 DRIFT distributes responses across a broader set of high-reward semantic regions, whereas SPIN
 396 and IterDPO concentrate their outputs within a much smaller subset of the space. Notably, DRIFT
 397 also discovered a distinct region (circled in the reward topography) where it uniquely employed
 398 markdown formatting to structure research papers, demonstrating alternative presentation styles for
 399 the same prompt.



400
 401 Prompt: Generate a research paper that analyzes and compares the form and function of 3 different types of carnivorous plants.
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415 SPIN Representative Response
 416 Title: Carnivorous Plants: Form, Function,
 417 Evolutionary History, and Applications
 418
 419 Introduction:
 420 Carnivorous plants are fascinating organisms
 421 that have evolved unique adaptations to
 422 capture and digest prey ...
 423 Physical Characteristics and Adaptations:
 424 Venus flytraps are known for ...
 425
 426 IterDPO Representative Response
 427 Title: Carnivorous Plants: Form, Function, and
 428 Evolutionary Significance
 429
 430 Introduction:
 431 Carnivorous plants are a fascinating group of
 432 organisms ...
 433 These plants typically grow in nutrient-poor
 434 environments and supplement their diet
 435 through carnivory ...
 436
 437 DRIFT Representative Response
 438 **Title: Comparative Analysis of Carnivorous
 439 Plant Adaptations: Venus Flytraps, Pitcher
 440 Plants, and Sundews**
 441 **Abstract**
 442 Carnivorous plants have evolved remarkable
 443 adaptations ...
 444 **Introduction**
 445 These plants are found in various habitats,
 446 primarily in nutrient-poor soils ...
 447 *Dionaea muscipula*
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725

432 **5 THEORETICAL ANALYSIS**
 433

434 DRIFT shows superior performance by leveraging real-world user dissatisfaction as high-quality
 435 negatives, which leads us to further investigate and analyze how real-world data shapes the success
 436 of DRIFT and why some other strong baselines like SPIN and IterDPO fall short. In this section, we
 437 prove that DRIFT maintains a usable gradient signal through fresh positives anchored by genuine
 438 DSAT negatives; in contrast, updates fitted to a fixed SAT set like SPIN can easily overfit to a small
 439 sub-optimal subset with gradient collapse.

440 **Notation.** Let \mathcal{X} be the prompt set. For a particular prompt $x \sim \mathcal{X}$, denote y^+ as the chosen
 441 response and y^- the rejected response. Let the generation likelihoods of y^+ and y^- to be $\pi^+ =$
 442 $\pi_\theta(y^+ | x)$ and $\pi^- = \pi_\theta(y^- | x)$ respectively, where π_θ is the language model we aim to train.

444 For formula simplicity, we denote the implicit reward margin (Rafailov et al., 2023) as:

$$445 \quad s = \beta \cdot (\log(\pi^+ / \pi_{\text{ref}}(y^+ | x)) - \log(\pi^- / \pi_{\text{ref}}(y^- | x))), \quad (3)$$

446 and the loss function:

$$447 \quad \ell = -\log \sigma(s), \quad \nabla_\theta \ell = -\beta \sigma(-s) \left[\nabla_\theta \log \pi_\theta(y^+ | x) - \nabla_\theta \log \pi_\theta(y^- | x) \right], \quad (4)$$

448 where $\sigma(s) = (1 + e^{-s})^{-1}$ is the logistic function. We also denote $d_\theta := \nabla \ln \pi_\theta(y^+ | x) -$
 449 $\nabla \ln \pi_\theta(y^- | x)$ and $g(\theta) := \mathbb{E}[-\nabla \ell(\theta)] = \beta \mathbb{E}[\sigma(-s) d_\theta]$. Finally, let $r^* : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$ be the
 450 unknown gold reward, and $J(\theta) := \mathbb{E}_{x \sim \mu} \mathbb{E}_{Y \sim \pi_\theta(\cdot | x)} [r^*(x, Y)]$ be the overall objective.

451 **Reward Margin Hypothesis.** With a probability of at least p_{imp} , both the implicit reward margin
 452 and the gold reward margin have positive lower bounds. Specifically, there exists some $\tau \in (0, \frac{1}{2}]$
 453 and $m_r > 0$ such that

$$454 \quad E_{\text{imp}} := \left\{ \sigma(-s) \geq \tau \text{ and } r^*(x, y^+) - r^*(x, y^-) \geq m_r \right\}, \quad \mathbb{P}(E_{\text{imp}}) \geq p_{\text{imp}} > 0. \quad (5)$$

455 This hypothesis ensures that chosen responses are mostly ranked higher than rejected responses.

456 **Non-vanishing expected training signal.** We first certify that DRIFT maintains a uniform *expected*
 457 gradient magnitude under a positive-mass “quality” event.

458 **Lemma 1** (Expected gradient lower bound under local quality). *Let $E = \{\sigma(-s) \geq \tau\}$ with
 459 $\mathbb{P}(E) \geq p_0 > 0$ for some $\tau \in (0, \frac{1}{2}]$. If $\mathbb{E}[\|d_\theta\| | E] \geq \Delta_{\text{cond}} > 0$, then*

$$460 \quad \mathbb{E}[\|\nabla_\theta \ell\|] \geq \beta \tau p_0 \Delta_{\text{cond}}. \quad (6)$$

461 **Proof.** From Eq. 4 and $\sigma(-s) \geq 0$,

$$462 \quad \mathbb{E}\|\nabla \ell\| = \mathbb{E}[\beta \sigma(-s) \|d_\theta\|] \geq \beta \tau \mathbb{E}[\|d_\theta\| \mathbf{1}_E] = \beta \tau \mathbb{P}(E) \mathbb{E}[\|d_\theta\| | E].$$

463 This bound shows that as long as a non-negligible fraction of pairs satisfy $\sigma(-s) \geq \tau$ and have a
 464 nonzero conditional gradient gap ($\mathbb{E}[\|d_\theta\| | \sigma(-s) \geq \tau] > 0$), the expected training signal stays
 465 away from zero.

466 **Expected improvement of actual utility.** We now state a general improvement guarantee: the
 467 expected DPO step increases the true utility J , with the gain quantified based on the key data condition.

468 **Theorem 1** (Expected improvement of J). *Assume the improvement event Eq. 5 holds with proba-
 469 bility at least p_{imp} , and there exists $\lambda > 0$ such that*

$$470 \quad \mathbb{E}[\langle \nabla J(\theta), d_\theta \rangle \mid E_{\text{imp}}] \geq \lambda. \quad (7)$$

471 *If J is L_J -smooth in a neighborhood of θ , then for any $\eta > 0$,*

$$472 \quad \mathbb{E}[J(\theta + \eta g(\theta))] \geq J(\theta) + \eta \beta \tau p_{\text{imp}} \lambda - \frac{L_J}{2} \eta^2 \mathbb{E}[\|g(\theta)\|^2]. \quad (8)$$

473 *In particular, for sufficiently small η , the right-hand side exceeds $J(\theta)$ by a linear-in- η margin
 474 $\beta \tau p_{\text{imp}} \lambda$ up to $O(\eta^2)$.*

486 *Proof sketch.* $g(\theta) = \beta \mathbb{E}[\sigma(-s)d_\theta]$ gives
 487 $\mathbb{E}\langle \nabla J, g \rangle = \beta \mathbb{E}[\sigma(-s)\langle \nabla J, d_\theta \rangle] \geq \beta \tau \mathbb{P}(E_{\text{imp}}) \mathbb{E}[\langle \nabla J, d_\theta \rangle \mid E_{\text{imp}}] \geq \beta \tau p_{\text{imp}} \lambda.$
 488 L_J -smoothness yields $J(\theta + \eta g) \geq J(\theta) + \eta \langle \nabla J, g \rangle - \frac{L_J}{2} \eta^2 \|g\|^2$, then take expectations to obtain
 489 Eq.8. *Full proof in Appendix B.2.* \square
 490

491 **Why DRIFT outperforms SPIN?** When SPIN concentrates probability on a finite SAT catalogue
 492 and reaches a fixed point, the magnitude of the pairwise DPO signal on SPIN pairs is controlled by
 493 the catalogue’s log-density-ratio variance:
 494

495
$$\left\| \mathbb{E}[\beta \sigma(-s) d_{\hat{\theta}}] \right\| \leq \frac{\beta}{4} \sqrt{\text{Var}(s)} \sqrt{\mathbb{E}\|d_{\hat{\theta}}\|^2}, \quad \text{Var}(s) = 2\beta^2 \text{Var}_{Y \sim p_{\text{SAT}}}(h(Y)), \quad (9)$$

496 where $h(y) := \ln \pi_{\hat{\theta}}(y \mid x) - \ln \pi_{\text{ref}}(y \mid x)$ (Proposition 1 in Appendix). Thus, a small $\text{Var}_{p_{\text{SAT}}}(h)$
 497 implies a weak training signal that can quantitatively *degenerate*. By contrast, DRIFT maintains a
 498 non-vanishing signal and practical gains. Full discussions are in Appendix B.3.
 499

500 Summary

501 • **Signal:** If improvement events occur with nonzero probability, DRIFT’s expected gradient
 502 stays non-vanishing (Lemma 1).
 503 • **Utility:** Under the local correlation, a small step along the expected DPO direction improves J
 504 up to $O(\eta^2)$ (Theorem 1).
 505 • **Contrast:** At SPIN fixed points on a finite SAT catalogue, the signal is controlled by catalogue
 506 log-density-ratio variance and can *degenerate* (Proposition 1).
 507

509 6 DISCUSSION

511 **Generalization beyond a single model family.** To test our method’s generality, we applied the
 512 same training procedure to Gemma-3-12B-it, a multimodal and structurally distinct architecture.
 513 The results (see Appendix C, Table 7) show that DRIFT again outperformed SPIN and IterDPO
 514 across all WildBench categories, exhibiting similar stability and improvement patterns. These results
 515 confirm that DRIFT generalizes beyond a single model family and performs well even on different
 516 model architecture.
 517

518 **Safety implications of training with DSAT signals.** Since DRIFT explicitly anchors on real user
 519 dissatisfaction, it is important to assess whether such supervision inadvertently amplifies adversarial
 520 vulnerabilities or demographic biases. Evaluations on AdvBench and ToxiGen (see Appendix C,
 521 Table 8) show that DRIFT does not increase jailbreak success rates, toxicity, or group-specific harms
 522 relative to baseline models across iterations.
 523

524 Taken together, these results show that DRIFT’s asymmetric pairing of off-policy DSAT negatives
 525 with on-policy positives provides a stable and informative learning signal, generalizes across model
 526 families, and preserves baseline safety characteristics. Grounding preference optimization in real
 527 dissatisfaction thus offers a reliable and scalable direction for real-world post-training.
 528

529 7 CONCLUSION

530 Real-world post-training rarely comes with abundant golden positives; it comes with abundant dis-
 531 satisfaction and iterative user edits. In this paper, we introduced DRIFT, a simple, scalable recipe
 532 that pairs authentic DSAT negatives with policy sampled positives, turning in-situ feedback into sta-
 533 ble, exploration preserving updates. Empirically, on real-world user feedback dataset *WildFeedback*,
 534 DRIFT outperforms SPIN and IterDPO on WildBench and AlpacaEval2 (with the stronger margins
 535 at larger base models); on synthetic LLM-labeled dataset *UltraFeedback*, it retains its superiority.
 536 Exploratory capacity analysis indicates that DRIFT explores more diverse high-reward solutions
 537 rather than overfitting to a narrow region. Theoretically, we show that DRIFT’s admits a uniform,
 538 non-vanishing gradient lower bound, avoiding the collapse that arises when training concentrates
 539 probability on a finite fixed *chosen* (Or SFT) set as in SPIN. Together, these results suggest DRIFT
 is a promising practical recipe for preference learning with real-world user feedback.

540 **Ethics Statement** This work relies on a publicly datasets *WildFeedback* that contain anonymized
 541 human-LLM conversations. No personally identifiable information was collected or used. All ex-
 542 periments comply with dataset licenses and terms of use. The research has no foreseeable negative
 543 social or ethical impacts.

544 **Reproducibility Statement** We have made extensive efforts to ensure the reproducibility of our
 545 work. The main paper details our training setup, datasets, and evaluation metrics (Secs. 4.1–4.3).
 546 Dataset construction and filtering steps are described in Sec. 4.1, with references to the source
 547 corpora. Training hyperparameters, iteration procedures and training dynamics are presented in
 548 Appendix D. To further facilitate verification and reuse, we will open-source our code, including
 549 data-processing pipelines, training scripts and analysis upon paper acceptance.

551 **REFERENCES**

553 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
 554 Tiezheng Ge, Bo Zheng, and Wanli Ouyang. Mt-bench-101: A fine-grained benchmark for eval-
 555 uating large language models in multi-turn dialogues. In *Proceedings of the 62nd Annual Meet-
 556 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7421–7454.
 557 Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.401. URL
 558 <http://dx.doi.org/10.18653/v1/2024.acl-long.401>.

559 Changyu Chen, Zichen Liu, Chao Du, Tianyu Pang, Qian Liu, Arunesh Sinha, Pradeep Varakan-
 560 tham, and Min Lin. Bootstrapping language models with dpo implicit rewards. *arXiv preprint
 561 arXiv:2406.09760*, 2024a.

563 Kaiyuan Chen, Jin Wang, and Xuejie Zhang. Learning to reason via self-iterative process feedback
 564 for small language models, 2024b. URL <https://arxiv.org/abs/2412.08393>.

565 Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
 566 converts weak language models to strong language models, 2024c. URL <https://arxiv.org/abs/2401.01335>.

569 Shachar Don-Yehiya, Leshem Choshen, and Omri Abend. Naturally occurring feedback is common,
 570 extractable and useful, 2025. URL <https://arxiv.org/abs/2407.10944>.

571 Ge Gao, Alexey Taymanov, Eduardo Salinas, Paul Mineiro, and Dipendra Misra. Aligning llm
 572 agents by learning latent preference from user edits, 2024. URL <https://arxiv.org/abs/2404.15269>.

575 Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning from
 576 dialogue after deployment: Feed yourself, chatbot! In Anna Korhonen, David Traum, and Lluís
 577 Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational
 578 Linguistics*, pp. 3667–3684, Florence, Italy, July 2019. Association for Computational Linguis-
 579 tics. doi: 10.18653/v1/P19-1358. URL <https://aclanthology.org/P19-1358/>.

580 Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina
 581 Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking llms with chal-
 582 lenging tasks from real users in the wild, 2024a. URL <https://arxiv.org/abs/2406.04770>.

584 Ying-Chun Lin, Jennifer Neville, Jack W Stokes, Longqi Yang, Tara Safavi, Mengting Wan, Scott
 585 Counts, Siddharth Suri, Reid Andersen, Xiaofeng Xu, et al. Interpretable user satisfaction esti-
 586 mation for conversational systems with large language models. *arXiv preprint arXiv:2403.12388*,
 587 2024b.

588 Yuhan Liu, Michael J. Q. Zhang, and Eunsol Choi. User feedback in human-llm dialogues: A lens
 589 to understand users but noisy as a learning signal, 2025. URL <https://arxiv.org/abs/2507.23158>.

592 Tuomas Lounamaa. Explicit and implicit llm user feedback: A
 593 quick guide, May 2024. URL <https://www.nebulys.com/blog/explicit-implicit-llm-user-feedback-quick-guide>. Accessed: 2025-09-10.

594 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 596 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 597 27730–27744, 2022.

598 Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
 599 Weston. Iterative reasoning preference optimization, 2024. URL <https://arxiv.org/abs/2404.19733>.

600 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 601 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 602 in neural information processing systems*, 36:53728–53741, 2023.

603 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 604 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

605 Omar Shaikh, Michelle S. Lam, Joey Hejna, Yijia Shao, Hyundong Cho, Michael S. Bernstein,
 606 and Diyi Yang. Aligning language models with demonstrated feedback, 2025. URL <https://arxiv.org/abs/2406.00888>.

607 Taiwei Shi, Zhuoer Wang, Longqi Yang, Ying-Chun Lin, Zexue He, Mengting Wan, Pei Zhou, Sujay
 608 Jauhar, Sihao Chen, Shan Xia, Hongfei Zhang, Jieyu Zhao, Xiaofeng Xu, Xia Song, and Jennifer
 609 Neville. Wildfeedback: Aligning llms with in-situ user interactions and feedback, 2025. URL
 610 <https://arxiv.org/abs/2408.15549>.

611 Zhaoxuan Tan, Zheng Li, Tianyi Liu, Haodong Wang, Hyokun Yun, Ming Zeng, Pei Chen, Zhihan
 612 Zhang, Yifan Gao, Ruijie Wang, Priyanka Nigam, Bing Yin, and Meng Jiang. Aligning large
 613 language models with implicit preferences from user-generated content, 2025. URL <https://arxiv.org/abs/2506.04463>.

614 Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He,
 615 Xiangyuan Lan, Dongmei Jiang, and Dongbin Zhao. Enhancing llm reasoning with iterative dpo:
 616 A comprehensive empirical investigation, 2025. URL <https://arxiv.org/abs/2503.12854>.

617 Aaron David Tucker, Kianté Brantley, Adam Cahall, and Thorsten Joachims. Coactive learning for
 618 large language models using implicit user feedback. In *Forty-first International Conference on
 619 Machine Learning*, 2024.

620 Yidong Wang, Xin Wang, Cunxiang Wang, Junfeng Fang, Qiufeng Wang, Jianing Chu, Xu-
 621 ran Meng, Shuxun Yang, Libo Qin, Yue Zhang, Wei Ye, and Shikun Zhang. Temporal self-
 622 rewarding language models: Decoupling chosen-rejected via past-future, 2025a. URL <https://arxiv.org/abs/2508.06026>.

623 Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong
 624 Zhang, and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models, 2025b.
 625 URL <https://arxiv.org/abs/2410.12735>.

626 Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
 627 Iterative preference learning from human feedback: Bridging theory and practice for rlfh under
 628 kl-constraint, 2024. URL <https://arxiv.org/abs/2312.11456>.

629 Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe
 630 than others: Iterative preference optimization with the pairwise cringe loss, 2024. URL <https://arxiv.org/abs/2312.16682>.

631 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
 632 Weston. Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 3, 2024.

633 Yongcheng Zeng, Xuanfa Jin, Guoqing Liu, Quan He, Dong Li, Jianye Hao, Haifeng Zhang, and
 634 Jun Wang. Aries: Stimulating self-refinement of large language models with and for iterative
 635 preference optimization. In *Workshop on Reasoning and Planning for Large Language Models*,
 636 2025.

648 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m
649 chatgpt interaction logs in the wild, 2024. URL <https://arxiv.org/abs/2405.01470>.
650

651 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yong-
652 hao Zhuang, Zhuohan Li, Zi Lin, Eric P. Xing, Joseph E. Gonzalez, Ion Stoica, and Hao
653 Zhang. Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2024. URL <https://arxiv.org/abs/2309.11998>.
654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DISCLOSURE OF LLM USE IN PAPER PREPARATION
703

704 We acknowledge the use of LLMs for assistance with writing and polishing text. All the content
705 suggested by LLMs in writing was proofread and manually adjusted before being integrated into the
706 final manuscript. The authors take full responsibility for the accuracy and factuality of all content
707 presented.

709 B THEORETICAL PROOFS
710711 B.1 ASSUMPTIONS
712

713 (A1) **Improvement event (data-level).** There exist $\tau \in (0, \frac{1}{2}]$, $m_r > 0$, and $p_{\text{imp}} > 0$ such that,
714 with

$$715 E_{\text{imp}} = \{ \sigma(-s) \geq \tau \text{ and } r^*(x, y^+) - r^*(x, y^-) \geq m_r \},$$

716 one has $\mathbb{P}(E_{\text{imp}}) \geq p_{\text{imp}}$.

717 (A2) **Local smoothness of J .** There exists $L_J < \infty$ such that, for all sufficiently small v ,

$$718 J(\theta + v) \geq J(\theta) + \langle \nabla J(\theta), v \rangle - \frac{L_J}{2} \|v\|^2.$$

720 (A3) **Finite second moment for the score difference.** $\mathbb{E} \|d_\theta\|^2 \leq C_d < \infty$.

722 B.2 PROOF OF THEOREM 1 (EXPECTED IMPROVEMENT OF J)
723

724 **Theorem** (Restatement of Theorem 1). *Under Assumptions (A1), (A2), (A3), and the local advantage correlation condition Eq.7, for any $\eta > 0$ and $g(\theta) = \beta \mathbb{E}[\sigma(-s) d_\theta]$,*

$$726 \mathbb{E}[J(\theta + \eta g(\theta))] \geq J(\theta) + \eta \beta \tau p_{\text{imp}} \lambda - \frac{L_J}{2} \eta^2 \beta^2 C_d.$$

728 *Proof.* By definition, $g(\theta) = \beta \mathbb{E}[\sigma(-s) d_\theta]$. Taking inner product with $\nabla J(\theta)$ and then expectation,

$$731 \mathbb{E} \langle \nabla J(\theta), g(\theta) \rangle = \beta \mathbb{E} \left[\sigma(-s) \langle \nabla J(\theta), d_\theta \rangle \right].$$

732 On the improvement event from Assumption (A1), $\sigma(-s) \geq \tau$; conditioning on E_{imp} and using
733 Eq.7,

$$734 \mathbb{E} \langle \nabla J(\theta), g(\theta) \rangle \geq \beta \tau \mathbb{P}(E_{\text{imp}}) \mathbb{E} [\langle \nabla J(\theta), d_\theta \rangle \mid E_{\text{imp}}] \geq \beta \tau p_{\text{imp}} \lambda.$$

735 By the L_J -smoothness in Assumption (A2),

$$736 J(\theta + \eta g) \geq J(\theta) + \eta \langle \nabla J(\theta), g \rangle - \frac{L_J}{2} \eta^2 \|g\|^2.$$

738 Taking expectations and combining the previous bound gives

$$739 \mathbb{E} J(\theta + \eta g) \geq J(\theta) + \eta \beta \tau p_{\text{imp}} \lambda - \frac{L_J}{2} \eta^2 \mathbb{E} \|g\|^2.$$

740 It remains to bound $\mathbb{E} \|g(\theta)\|^2$. Since $\sigma \in (0, 1)$,

$$741 \|g(\theta)\| = \|\beta \mathbb{E}[\sigma(-s) d_\theta]\| \leq \beta \mathbb{E} \|d_\theta\| \leq \beta \sqrt{\mathbb{E} \|d_\theta\|^2} \leq \beta \sqrt{C_d},$$

743 where we used Assumption (A3) and Jensen. Hence $\mathbb{E} \|g(\theta)\|^2 \leq \beta^2 C_d$, which yields the stated
744 inequality. \square

745 B.3 SPIN REAL-WORLD PERFORMANCE DISCUSSION
746

747 SPIN updates concentrate probability on the finite SAT catalogue $\text{SAT}(x)$ and, under a trust-region
748 style update, admit the closed-form iteration (see, e.g., (Chen et al., 2024c)):

$$750 p_{\theta_{t+1}}(y \mid x) \propto p_{\theta_t}(y \mid x) \left[\frac{p_{\text{SAT}}(y \mid x)}{p_{\theta_t}(y \mid x)} \right]^{1/\lambda}, \quad (5.3)$$

751 which drives $p_{\theta_t}(\cdot \mid x)$ toward $p_{\text{SAT}}(\cdot \mid x)$ supported on $\text{SAT}(x)$. Consequently, at any fixed point
752 $\hat{\theta}$ one has $\pi_{\hat{\theta}}(\cdot \mid x) = p_{\text{SAT}}(\cdot \mid x)$; under the SPIN data rule (positive sampled from p_{SAT} , negative
753 sampled independently from $\pi_{\hat{\theta}}$ given x), the positive y^+ and negative y^- are conditionally i.i.d.
754 on $\text{SAT}(x)$ with the common marginal p_{SAT} . The DPO signal then depends on the variance of the
755 log-density ratio on that finite set and can quantitatively degenerate.

756 **Proposition 1** (Quantitative degeneration at a SPIN fixed point $\hat{\theta}$ with
 757 $\pi_{\hat{\theta}}(\cdot|x) = p_{\text{SAT}}(\cdot|x)$, if y^+, y^- are conditionally i.i.d. from $\pi_{\hat{\theta}}(\cdot|x)$ and $\mathbb{E}\|d_{\hat{\theta}}\|^2 < \infty$, then for
 758 $h(y) := \ln \pi_{\hat{\theta}}(y|x) - \ln \pi_{\text{ref}}(y|x)$,

$$760 \quad \left\| \mathbb{E}[\beta \sigma(-s) d_{\hat{\theta}}] \right\| \leq \frac{\beta}{4} \sqrt{\text{Var}(s)} \sqrt{\mathbb{E}\|d_{\hat{\theta}}\|^2}, \quad \text{Var}(s) = 2\beta^2 \text{Var}_{Y \sim p_{\text{SAT}}}(h(Y)). \quad (10)$$

762 *Proof.* By (A5), for each x we have $\mathbb{E}[d_{\hat{\theta}}|x] = 0$ since y^+, y^- are i.i.d. under $\pi_{\hat{\theta}}(\cdot|x)$. Therefore
 763

$$764 \quad \mathbb{E}[\beta \sigma(-s) d_{\hat{\theta}}] = \beta \mathbb{E}[(\sigma(-s) - \mathbb{E}\sigma(-s)) d_{\hat{\theta}}].$$

766 Fix any unit vector u . Scalar Cauchy–Schwarz yields
 767

$$768 \quad u^\top \mathbb{E}[\beta \sigma(-s) d_{\hat{\theta}}] = \beta \mathbb{E}[(\sigma(-s) - \mathbb{E}\sigma(-s)) u^\top d_{\hat{\theta}}] \leq \beta \sqrt{\text{Var}(\sigma(-s))} \sqrt{\mathbb{E}[(u^\top d_{\hat{\theta}})^2]}.$$

770 Taking the supremum over all unit u ,

$$772 \quad \left\| \mathbb{E}[\beta \sigma(-s) d_{\hat{\theta}}] \right\| \leq \beta \sqrt{\text{Var}(\sigma(-s))} \sqrt{\mathbb{E}\|d_{\hat{\theta}}\|^2}.$$

774 Since σ is 1/4-Lipschitz, $\text{Var}(\sigma(-s)) \leq \frac{1}{16} \text{Var}(s)$. With $s = \beta[h(y^+) - h(y^-)]$ and y^+, y^- i.i.d.,
 775

$$776 \quad \text{Var}(s) = \beta^2 \text{Var}(h(y^+) - h(y^-)) = 2\beta^2 \text{Var}_{Y \sim p_{\text{SAT}}}(h(Y)),$$

777 which gives the stated inequality. \square

778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 C ADDITIONAL RESULTS

811 C.1 WILDBENCH LEADERBOARD FULL TABLE

816 Table 5: Complete WildBench leaderboard showing all evaluated models with comprehensive task-
 817 specific scores across multiple evaluation dimensions. Our models are highlighted in gray.

818 Model	819 Elo	820 Task	821 Creative	822 Reasoning	823 Math	824 Info Seek	825 Coding	826 Length
GPT-4o (2024-05-13)	1256.86	59.30	59.12	60.21	57.29	58.61	60.47	3723.52
Claude-3.5-Sonnet (20240620)	1238.93	54.70	55.61	55.64	50.16	55.54	56.51	2911.85
GPT-4-Turbo (2024-04-09)	1233.99	55.22	58.66	56.20	51.00	57.18	55.07	3093.17
Gemini-1.5-Pro	1228.55	52.95	55.12	53.73	48.59	52.23	55.22	3247.97
DeepSeek-v2-Chat (0628)	1221.66	53.99	56.43	54.83	51.43	52.72	55.00	3252.38
GPT-4 (0125-preview)	1221.30	52.28	57.57	53.45	45.79	54.36	52.92	3335.64
Claude-3-Opus (20240229)	1219.27	51.71	53.02	52.53	46.75	53.47	53.30	2685.98
Qwen2.5-14B-UltraFeedback-DRIFT-iter2	1218.75	59.27	59.48	61.05	59.44	58.66	57.64	4275.27
Mistral-Large-2	1217.99	55.57	58.86	57.22	52.67	57.38	53.84	3503.63
Qwen2.5-14B-WildFeedback-DRIFT-iter2	1217.61	58.30	58.14	60.60	59.37	58.37	55.19	4492.77
GPT-4o-mini (2024-07-18)	1217.35	57.14	60.05	58.24	54.05	57.43	57.17	3648.13
Qwen2.5-14B-WildFeedback-DRIFT-iter1-4k	1215.73	58.37	58.55	60.39	58.89	58.86	55.57	4528.15
Qwen2.5-14B-UltraFeedback-DRIFT-iter1	1215.67	58.52	58.65	60.30	58.02	57.57	57.64	4288.24
Qwen2.5-14B-UltraFeedback-IterDPO-iter2	1215.12	54.78	55.35	56.76	54.00	55.00	53.08	3152.61
Qwen2.5-14B-UltraFeedback-IterDPO-iter1	1214.14	54.21	55.13	56.27	52.02	55.74	52.64	3424.60
Qwen2.5-14B-WildFeedback-DRIFT-iter2-4k	1214.03	57.59	57.98	59.73	57.45	57.62	55.38	5333.00
Qwen2.5-14B-WildFeedback-Seed	1213.50	54.93	54.94	57.30	53.60	55.45	53.30	3878.89
Qwen2.5-14B-Instruct	1213.17	55.08	55.71	57.84	54.98	54.95	52.23	3682.95
Qwen2.5-14B-WildFeedback-DRIFT-iter1	1212.83	57.27	58.09	59.31	55.78	57.22	56.13	4485.35
Qwen2.5-14B-WildFeedback-IterDPO-iter2-4k	1211.69	56.63	56.18	59.19	56.51	56.78	54.25	4491.05
DeepSeek-v2-Coder (0628)	1206.89	45.66	40.78	47.17	46.43	40.05	48.87	2580.18
Gemini-1.5-Flash	1206.77	48.85	51.66	50.79	45.32	48.67	48.73	3654.40
Qwen2.5-14B-WildFeedback-IterDPO-iter1-4k	1206.65	51.79	50.75	54.49	51.24	52.67	49.43	3925.74
Qwen2.5-14B-WildFeedback-IterDPO-iter2	1206.63	51.38	50.23	54.17	51.03	52.48	48.68	4011.82
Qwen2.5-14B-WildFeedback-IterDPO-iter1	1205.48	52.34	52.87	54.97	51.71	54.06	48.96	4054.28
DeepSeek-v2-Chat	1205.02	48.21	53.59	50.63	44.52	51.81	44.43	2896.97
Qwen2.5-14B-WildFeedback-SPIN-iter1	1200.63	47.16	49.90	49.75	47.25	47.67	43.11	2707.18
Qwen2.5-7B-WildFeedback-DRIFT-iter2	1199.09	51.69	52.45	53.21	50.63	52.38	50.28	4707.48
Qwen2.5-7B-UltraFeedback-DRIFT-iter2	1197.94	50.32	50.39	52.50	48.41	52.08	48.58	5121.20
Qwen2.5-7B-WildFeedback-DRIFT-4k-iter1	1197.13	51.06	53.23	53.44	48.32	52.28	49.29	4517.02
Qwen2.5-7B-UltraFeedback-DRIFT-iter1	1197.04	50.91	50.08	53.77	48.92	52.72	48.87	4856.83
Qwen2.5-7B-WildFeedback-DRIFT-4k-iter2	1195.33	51.06	51.42	53.45	49.16	52.13	49.38	4686.39
Qwen2.5-7B-WildFeedback-DRIFT-iter1	1194.81	50.61	52.09	53.03	48.56	52.13	48.34	4652.38
Qwen2.5-7B-Instruct	1194.67	48.66	50.08	51.80	47.09	50.69	45.00	4275.08
Qwen2.5-7B-UltraFeedback-IterDPO-iter1	1194.45	48.77	49.35	51.39	46.03	50.89	46.82	3888.79
Qwen2.5-7B-WildFeedback-DRIFT-iter2-RPO	1194.24	50.42	51.89	53.31	48.88	51.49	47.52	4711.01
Qwen2.5-7B-WildFeedback-Seed	1193.66	49.11	49.35	51.57	47.54	50.15	47.17	4624.30
Nemotron-4-340B-Instruct	1193.60	47.67	53.32	49.13	40.80	53.00	46.26	2754.01
Qwen2.5-14B-WildFeedback-SPIN-iter2	1192.56	44.04	45.54	45.95	40.64	45.89	43.13	2820.38
Qwen2.5-7B-WildFeedback-IterDPO-iter2-4k	1192.46	48.94	50.39	51.35	46.37	50.99	46.79	4731.32
Claude-3-Sonnet (20240229)	1192.03	45.48	46.30	47.43	40.64	47.13	46.10	2670.24
Qwen2.5-7B-UltraFeedback-IterDPO-iter2	1192.01	48.49	50.18	50.73	44.68	50.22	47.58	3708.61
Qwen2.7B-Instruct	1189.43	44.50	49.92	46.85	40.95	49.50	39.81	2856.45
Qwen2.5-7B-WildFeedback-IterDPO-iter1-4k	1189.43	47.07	48.63	49.13	44.50	49.26	45.12	4602.08
Mistral-Nemo-Instruct (2407)	1187.35	44.38	54.57	47.41	35.63	51.93	39.72	3318.21
Qwen2.5-7B-WildFeedback-IterDPO-iter1	1185.11	46.31	46.77	48.61	44.46	48.02	44.27	4662.34
Qwen2.5-7B-WildFeedback-IterDPO-iter2	1182.33	46.17	45.74	49.22	45.60	46.24	43.70	4520.58
Qwen2.5-7B-WildFeedback-SPIN-iter1	1180.75	42.86	43.26	45.45	41.59	46.29	39.06	3611.19
Qwen2.5-14B-UltraFeedback-SPIN-iter1	1178.88	36.99	38.86	40.09	35.16	39.01	33.40	2642.64
Claude-3-Haiku (20240307)	1175.97	38.89	42.95	41.29	31.43	45.35	36.98	2601.03
Qwen2.5-7B-WildFeedback-SPIN-iter2	1173.45	37.86	37.36	40.72	37.06	42.13	33.27	2839.09
Mistral-Large (2402)	1172.18	38.89	49.66	41.80	30.88	46.14	33.74	2514.98
Qwen2.5-7B-UltraFeedback-SPIN-iter1	1163.16	35.10	34.78	37.61	30.87	39.90	33.21	3475.16
Qwen1.5-7B-Chat-Greedy	1160.02	39.93	50.36	43.45	29.80	48.22	35.36	2392.36
Qwen2.5-14B-UltraFeedback-SPIN-iter2	1155.07	28.01	29.77	31.69	25.08	32.72	23.13	2504.57
Mixtral-8x7B-Instruct-v0.1	1145.51	31.47	42.75	34.59	22.14	41.94	25.02	2653.58
Qwen2.5-7B-UltraFeedback-SPIN-iter2	1139.66	25.93	25.79	28.88	19.60	32.03	24.43	3293.30
GPT-3.5-Turbo (0125)	1135.69	30.02	37.42	33.39	21.59	36.49	26.54	1844.14

863

864 C.2 UNGUIDED ABLATION STUDY
865
866867 Table 6: Unguided ablation study results on Qwen2.5-7B (full *WildFeedback* setting). Unguided
868 variants remove the reference DSAT response and explicit improvement instruction, matching
869 SPIN’s setting.

Method	WildBench Score	AlpacaEval2 WinRate
<i>SPIN</i>		
iter1	42.86	26.21
iter2	37.86	20.56
<i>IterDPO</i>		
iter1 (Unguided)	49.44	40.30
iter2 (Unguided)	49.66	41.24
iter1 (Full)	46.31	40.36
iter2 (Full)	46.17	35.76
<i>DRIFT (Ours)</i>		
iter1 (Unguided)	50.77	46.77
iter2 (Unguided)	51.04	45.47
iter1 (Full)	50.61	43.90
iter2 (Full)	51.69	46.64

887 C.3 GENERALIZATION ACROSS MODEL FAMILIES
888890 Table 7: Experiment results on Gemma-3-12B-it (full *WildFeedback* setting). All methods were
891 trained using the same recipe and evaluated on WildBench. Bold indicates the highest score for
892 each metric.

Method	Task	Creative	Reasoning	Math	Info Seek	Coding
Base	60.77	66.10	62.46	54.10	65.21	59.62
<i>SPIN</i>						
iter1	59.06	65.79	61.14	50.40	63.96	58.30
iter2	51.86	58.76	53.81	42.06	59.60	50.33
<i>IterDPO</i>						
iter1	60.10	62.74	60.48	54.92	61.29	62.10
iter2	48.98	52.40	49.27	43.89	47.61	52.23
<i>DRIFT (Ours)</i>						
iter1	61.73	66.37	63.02	56.19	64.71	61.23
iter2	60.88	66.10	62.07	54.76	62.82	61.33

908 C.4 SAFETY AND ETHICAL CONSIDERATIONS
909

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937

Table 8: Safety and ethical norms evaluation results. AdvBench measures adversarial jailbreak attack success rate (%). ToxiGen measures toxicity scores (1–5 scale). Lower values indicate better safety.

Method	Attack Success Rate (%)	Toxic Score (1-5)
Base	0.01	1.56
<i>SPIN</i>		
iter1	0.01	1.65
iter2	0.00	1.70
<i>IterDPO</i>		
iter1	0.02	1.50
iter2	0.00	1.66
<i>DRIFT (Ours)</i>		
iter1	0.02	1.54
iter2	0.01	1.58

954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **D IMPLEMENTATION DETAILS**
973
974975 **D.1 WARM START TRAINING DETAILS**
976977 We curate a DSAT→SAT seed set (491 pairs) from WildFeedback, where a dissatisfied user turn
978 (DSAT) is followed by a revised model response that satisfies the user (SAT). Each pair provides
979 a natural preference: the DSAT response fails to meet expectations, while the subsequent SAT re-
980 sponse is preferred.
981982 For our warm start phase, we initialize training using pre-trained instruction-tuned models as the
983 base models. The warm start training utilizes seed preference data to establish initial alignment
984 before iterative refinement. We did DPO training with carefully tuned hyperparameters to ensure
985 stable convergence. All experiments were conducted on 8 H100 GPUs with the same hardware
986 configuration maintained across all training phases. The detailed hyperparameters for warm start
987 training are presented in Table 9.
988989
990 **Table 9: Warm Start Training Hyperparameters**
991

Learning rate	Batch size	β	Optimizer	LR scheduler	Seq length	Epochs	Precision
5.0e-7	4	0.1	RMSprop	Linear	2048	3	bfloat16

995
996
997
998 **D.2 ITERATIVE TRAINING DETAILS**
9991000 After the warm start phase, we conducted iterative training to progressively refine model alignment
1001 using dynamically generated preference data. Data generation details are in Sec. 4.1. Each iteration
1002 builds upon the previous model checkpoint, incorporating newly created preference data. The iter-
1003 ative training process maintains consistent hyperparameters across iterations, with only the training
1004 data and base model checkpoint changing between iterations. We trained each iteration for a single
1005 epoch to prevent overfitting on the iteratively generated data. Table 10 details the hyperparameters
1006 used for iterative training phases.
10071008
1009
1010 **Table 10: Iterative Training Hyperparameters**
1011

Learning rate	Batch size	β	Optimizer	LR scheduler	Seq length	Epochs	Precision
5.0e-7	4	0.1	RMSprop	Linear	2048	1	bfloat16

1015
1016
1017
1018
1019 **D.3 TRAINING DYNAMICS**
10201021 For better training illustration, we report the Qwen2.5-14B-Instruct DRIFT iter1 & iter2 training
1022 dynamics in Figure 5 which shows dpo training loss, chosen reward, and rejected reward. The loss
1023 curves exhibit stable convergence across both iterations. The reward signals show the expected
1024 separation pattern: chosen rewards consistently increase while rejected rewards decrease. This trend
1025 is observed in both iterations, confirming the effectiveness of the training.

(a) Qwen-2.5-14B-WildFeedback-DRIFT-iter1

(b) Qwen-2.5-14B-WildFeedback-DRIFT-iter2

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 5: The top row shows DRIFT training dynamics for iteration 1 on Qwen2.5-14B-Instruct. The bottom row shows the training dynamics for iteration 2.

1080 E MODEL RESPONSES EXAMPLE
1081
1082

1083
1084 **Prompt:** Using at least two different scientific sources, generate a research paper that
1085 analyzes and compares the form and function of three different types of carnivorous plants,
1086 including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should
1087 include detailed descriptions of the physical characteristics of each plant, as well as an
1088 analysis of their unique adaptations for capturing and digesting prey. In addition, the paper
1089 should explore the evolutionary history and ecological significance of carnivorous plants,
1090 and discuss current research on their use in medicine and biotechnology. The paper should
1091 be written in APA format and include at least 10 peer-reviewed references.

1092 **SPIN Representative Response:**

1093 Title: Carnivorous Plants: Form, Function, Evolutionary History, and Applications

1094
1095 **Introduction:**

1096 Carnivorous plants are fascinating organisms that have evolved unique adaptations to capture
1097 and digest prey. These plants are found in nutrient-poor environments where soil lacks
1098 sufficient nitrogen and phosphorus. The three most common types of carnivorous plants are
1099 Venus flytraps (*Dionaea muscipula*), pitcher plants (*Nepenthes* spp.), and sundews (*Drosera*
1100 spp.). This research paper will analyze and compare the form and function of these three
1101 types of carnivorous plants, as well as their evolutionary history and ecological significance.

1102
1103 **Physical Characteristics and Adaptations:**

1104 Venus flytraps are known for their trap-like leaves that can close rapidly when triggered
1105 by insects. Each leaf has six trigger hairs that, when touched twice within 20 seconds,
1106 cause the trap to close. Once closed, the trap secretes digestive enzymes to break down the
1107 insect. Venus flytraps are native to North Carolina and South Carolina and require specific
1108 environmental conditions, such as high humidity and acidic soil, to thrive.

1109 Pitcher plants are named for their modified leaves that resemble pitchers or cups. These
1110 leaves are covered in nectar and have a slippery surface that makes it difficult for insects to
1111 escape once they enter. Once inside, the insect is digested by enzymes secreted by the plant.
1112 Pitcher plants are found throughout the world, from tropical rainforests to temperate regions,
1113 and come in various shapes and sizes. *Nepenthes rafflesiana*, also known as the Rafflesia
1114 pitcher plant, is one of the largest pitcher plants, with pitchers up to 30 centimeters tall.

1115 Sundews are named for their sticky glandular hairs that resemble dewdrops. When an insect
1116 lands on the plant, the sticky hairs trap it, and the plant secretes digestive enzymes to break
1117 down the insect. Sundews are found in many parts of the world, including North America,
1118 Europe, and Asia. *Drosera capensis*, also known as the Cape sundew, is a popular species
1119 used in horticulture due to its attractive appearance and ease of care.

1120
1121 **Evolutionary History and Ecological Significance:**

1122 The evolutionary history of carnivorous plants is still not fully understood, but it is believed
1123 that they evolved independently multiple times across different plant lineages. Carnivorous
1124 plants likely evolved in nutrient-poor environments as a way to supplement their nutrition
1125 through the capture and digestion of insects.

1126
1127 ...

1128 **GPT-5 Score: 5/10**

1129 **Explanation:** Covers the basic features of the plants but lacks depth; references are not
1130 standardized (limited to general descriptions rather than APA format); missing an abstract
1131 and overall not well structured as a research paper.

1132
1133 Figure 6: SPIN model response example.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Prompt: Using at least two different scientific sources, generate a research paper that analyzes and compares the form and function of three different types of carnivorous plants, including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should include detailed descriptions of the physical characteristics of each plant, as well as an analysis of their unique adaptations for capturing and digesting prey. In addition, the paper should explore the evolutionary history and ecological significance of carnivorous plants, and discuss current research on their use in medicine and biotechnology. The paper should be written in APA format and include at least 10 peer-reviewed references.

IterDPO Representative Response:

Title: Carnivorous Plants: Form, Function, and Evolutionary Significance

Abstract:

Carnivorous plants are fascinating organisms that have evolved unique mechanisms to capture and digest prey. This paper compares the form and function of three different types of carnivorous plants: Venus flytraps (*Dionaea muscipula*), pitcher plants (*Nepenthes* spp.), and sundews (*Drosera* spp.). We also discuss the evolutionary history and ecological significance of these plants, as well as their potential applications in medicine and biotechnology.

Introduction:

Carnivorous plants are found in nutrient-poor environments where other sources of nitrogen and phosphorus are scarce. They have evolved specialized trapping mechanisms to obtain these nutrients from insects and small animals. Venus flytraps, pitcher plants, and sundews are three examples of carnivorous plants with distinct trapping strategies.

Venus Flytraps:

Venus flytraps are native to North Carolina and South Carolina in the United States. Their leaves contain trigger hairs that, when touched twice, cause the leaf to snap shut, trapping the insect inside (Gurevitch et al., 2017). Once trapped, the insect is digested by enzymes secreted by the plant. Venus flytraps have evolved this mechanism to supplement their nutrient intake in nutrient-poor soil (Hunt & Raker, 2018).

Pitcher Plants:

Pitcher plants are found in tropical and subtropical regions worldwide. They have evolved a modified leaf that forms a deep, liquid-filled pitfall trap (Kress & Wurdack, 2006). Insects are attracted to the nectar produced by the pitcher and fall into the liquid, where they are digested by enzymes and bacteria. Pitcher plants have evolved this mechanism to obtain nutrients from a wide range of prey, including ants, flies, and spiders (Rice, 2014).

Sundews:

Sundews are found in temperate and tropical regions worldwide. They have evolved sticky glands on their leaves that trap insects (Orozco-terWengel & Brodersen, 2015). Once trapped, the insect is digested by enzymes secreted by the plant. Sundews have evolved this mechanism to obtain nutrients from a wide range of prey, including flies, mosquitoes, and ants (Rice, 2014).

...

GPT-5 Score: 6/10

Explanation: Presents a clearer structure with some academic tone, but the discussion is still surface-level and misses key elements like applications and conclusion.

Figure 7: IterDPO model response example.

1188
 1189 **Prompt:** Using at least two different scientific sources, generate a research paper that
 1190 analyzes and compares the form and function of three different types of carnivorous plants,
 1191 including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should
 1192 include detailed descriptions of the physical characteristics of each plant, as well as an
 1193 analysis of their unique adaptations for capturing and digesting prey. In addition, the paper
 1194 should explore the evolutionary history and ecological significance of carnivorous plants,
 1195 and discuss current research on their use in medicine and biotechnology. The paper should
 1196 be written in APA format and include at least 10 peer-reviewed references.
 1197

1198 **DRIFT Representative Response:**
 1199 **Title: Comparative Analysis of Carnivorous Plant Adaptations: Venus Flytraps, Pitcher
 1200 Plants, and Sundews**
 1201
 1202 **Abstract**
 1203 Carnivorous plants have evolved remarkable adaptations to survive in nutrient-poor environments by capturing and digesting insects. This paper compares the form and function of
 1204 three prominent carnivorous plants: **Dionaea muscipula** (Venus flytrap), **Nepenthes spp.**
 1205 (pitcher plants), and **Drosera spp.** (sundews). We analyze their physical characteristics,
 1206 trapping mechanisms, and digestive processes. Additionally, we discuss their evolutionary
 1207 history, ecological roles, and potential applications in medicine and biotechnology. Our
 1208 review synthesizes data from multiple studies to provide a comprehensive understanding of
 1209 these fascinating organisms.
 1210

1211 **Introduction**
 1212 Carnivorous plants are specialized angiosperms that have developed unique strategies to
 1213 obtain nutrients from animal prey (Lloyd, 1983). They thrive in nutrient-poor soils, where
 1214 traditional photosynthetic pathways alone cannot sustain growth. Three notable examples of
 1215 carnivorous plants are the Venus flytrap (**Dionaea muscipula**), pitcher plants (**Nepenthes spp.**), and sundews (**Drosera spp.**). Each species has distinct morphological features and
 1216 physiological mechanisms adapted for prey capture and digestion.
 1217

1218 **Venus Flytrap (**Dionaea muscipula**)**
 1219 The Venus flytrap is characterized by its hinged leaves with sensitive trigger hairs. When an
 1220 insect touches these hairs, the leaf rapidly closes within seconds (Braun & Speck, 2006). The
 1221 internal structure includes a complex system of mechanical sensors and hydraulic pressures
 1222 that facilitate rapid closure (Lischka et al., 2014).
 1223 **Pitcher Plants (**Nepenthes spp.**)**
 1224 Pitcher plants possess modified leaves forming a deep, fluid-filled trap. Insects are attracted to
 1225 the nectar produced at the pitcher's entrance and fall into the digestive fluid below (Givnish,
 1226 2000). The pitchers contain enzymes and acids that break down the prey (Bramwell &
 1227 Chaloner, 1975).
 1228 **Sundews (**Drosera spp.**)**
 1229 Sundews are covered in sticky glandular hairs that ensnare insects. Once an insect becomes
 1230 stuck, the plant secretes digestive enzymes to dissolve the prey (O'Leary et al., 2010).
 1231 ...
 1232

1233 **GPT-5 Score: 8/10**
 1234 **Explanation:** The format is closer to an academic paper (title, abstract, introduction, sub-
 1235 sections) and using markdown format; covers morphology, function, evolution, ecology, and
 1236 applications; relatively comprehensive and consistent with a review style.

1237
 1238 Figure 8: DRIFT model response example.
 1239
 1240
 1241