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ABSTRACT

Real-world large language model deployments (e.g., conversational AI systems,
code generation assistants) naturally generate abundant implicit user dissatisfac-
tion (DSAT) signals, as users iterate toward better answers through refinements,
corrections, and expressed preferences, while explicit satisfaction (SAT) feedback
is scarce. Existing preference learning approaches are poorly aligned with this
data profile, as they rely on costly human annotations or assume plentiful positive
responses. In this paper, we introduce DRIFT (Dissatisfaction-Refined Iterative
preFerence Training), which anchors training on real-world DSAT signals and
samples positives dynamically from the evolving policy. Empirically, DRIFT
models trained on real-world WildFeedback datasets and synthetic UltraFeedback
datasets achieve up to +6.23% (7B) / +7.61% (14B) on WildBench Task Score and
up to +8.95% (7B) / +12.29% (14B) on AlpacaEval2 win rate over base models,
outperforming strong baseline methods such as iterative DPO and SPIN. At larger
scales, the improvements are particularly pronounced: 14B models trained with
DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT
also preserves exploratory capacity, yielding more diverse high-reward solutions
rather than collapsing to narrow subsets. Theoretically, we demonstrate that this
design preserves preference margins and avoids the gradient degeneration. These
results show that DRIFT is an effective and scalable recipe for real-world post-
training that leverages the most abundant and informative signal.

1 INTRODUCTION

Large language models (LLMs) now power a wide range of real-world applications, including con-
versational assistants (e.g., GPT, Claude, Gemini), customer support, search and recommendation,
productivity and education tools, and code generation. A key driver of this success is preference
learning, a critical component of post-training that aligns model behavior with human judgments and
values. Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) pioneered
this approach by training a reward model on human preference data and subsequently optimizing
the policy using reinforcement learning algorithms (Schulman et al., 2017). Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) simplified this process by directly optimizing on preference
pairs without requiring an explicit reward model, making the training procedure more stable and
computationally efficient, while achieving comparable alignment performance.

However, these approaches depend on costly, carefully curated human preference annotations that
are difficult to scale across domains and evolving user needs.In contrast, deployed LLM systems
continuously generate vast amounts of real-world interaction data. Beyond offering scalability, such
real data often captures a richer and more nuanced spectrum of human preferences than small, cu-
rated annotation datasets, as users naturally convey satisfaction, dissatisfaction, and refinement in-
tents during conversation. This motivates a key question:

How can we transform abundant but implicit user feedback from real-world inter-
actions into scalable and effective preference learning signals for LLMs?

From a data collection perspective, existing chatbot platform as shown in Figure 1 (left) attempts to
gather user feedback through explicit mechanisms: (1) asking users to compare and rank multiple
model responses, or (2) providing simple feedback buttons (e.g. thumbs up/down) at the end of chat
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Which response do you prefer? 

response A response B

Abundant, Informative Learning from DSAT

Implicit User Feedback DRIFT

Sparse, Biased

Explicit User Feedback

What is the current currency of Croatia?

The current currency of Croatia is the Croatian kuna (HRK).

What is the current currency of Croatia?

Wrong. It's the Euro.And it happened in 2023 DSAT User Feedback

What is the current currency of Croatia?What is the current currency of Croatia?

Thanks! SAT User Feedback

(b) Satisfied Example (  in WildFeedback dataset)5%

(a) Dissatisfied Example (  in WildFeedback dataset)12%(a) Compare two responses

Only 1-3% users 
provide feedback

Affect user experience

The current currency of Croatia is Euro.

DSAT response

DSAT Chat history 

with user feedback

positive response

chosen 

sample


rejected

Preference Training

14B Beats Cutting-Edge Models(b) Thumbs up/down button

Figure 1: Overview of user feedback signals and the DRIFT framework. Explicit feedback (left)
is sparse and biased, as most users are passive consumers. In contrast, implicit feedback (middle)
provides abundant and informative signals, where dissatisfaction (DSAT) is far more prevalent than
satisfaction (SAT) (e.g., 12% vs 5% in the WildFeedback dataset). DRIFT (right) leverages these
DSAT signals for preference learning, enabling our 14B model to surpass commercial models.

interfaces. However, these collection methods are inefficient, as most are passive consumers (Louna-
maa, 2024), with only 1–3% users willing to provide explicit feedback. Moreover, those who do
provide feedback often express extreme opinions (strongly positive or negative) that may not reflect
the broader distribution of user preferences. However, as illustrated by the example in Figure 1,
(middle) users naturally express their preferences through the conversation itself through follow-up
questions, correction requests, and iterative refinements, creating a rich source of implicit feedback.
Beyond scalability, such real interaction data can contain richer and more representative preference
information than curated annotation datasets, capturing fine-grained user intents that explicit labels
often miss. Recent datasets such as WildChat-1M (Zhao et al., 2024) and LMSYS-Chat-1M (Zheng
et al., 2024) have collected over one million real-world conversations, creating a rich foundation for
studying naturally occurring user feedback. Building on these resources, several studies have ex-
plored ways to extract preference signals directly from user interactions. For example, Don-Yehiya
et al. (2025) demonstrate that naturally occurring user feedback appears in approximately 30% of
conversations and propose mining preferences by detecting explicit evaluative user responses. Simi-
larly, WildFeedback (Shi et al., 2025) applies user satisfaction estimation (Lin et al., 2024b) to auto-
matically extract satisfaction and dissatisfaction labels to construct large-scale preference datasets.

From a preference learning method perspective, recent works explored self-generated strategies to
reduce reliance on human annotation. Self-Rewarding Language Models (Yuan et al., 2024) prompt
the training model itself to score its own rollouts, but face a key limitation: the synchronized im-
provement of chosen and rejected responses progressively reduces their contrast, which in turn un-
dermines effective preference learning (Wang et al., 2025a). An alternative approach, SPIN (Chen
et al., 2024c) treats ground-truth responses from the SFT dataset as chosen and self-generated ones
as rejected, yet is difficult to apply in practice where gold-standard responses are often rare, limiting
its ability to generalize to broader scenarios. In contrast to positive feedback, dissatisfaction signals
are naturally abundant as users refine suboptimal outputs through interaction. To leverage this un-
derutilized signal, we introduce DRIFT (Dissatisfaction-Refined Iterative preFerence Training), a
simple yet scalable method that directly leverages user dissatisfaction (DSAT) signals from authen-
tic conversations to iteratively enhance model performance. Unlike SPIN, which fixes supervised
responses as positives and treats self-generated ones as negatives, DRIFT anchors each training
pair with a real DSAT negative and samples the chosen responses from the current policy, enabling
dynamic and policy-aligned adaptation. Our contributions are:

• Empirical Validation: DRIFT consistently surpasses other iterative self-improving methods,
SPIN and IterDPO, yielding gains of up to +6.23% (7B) / +7.61% (14B) in WildBench Task
Score and up to +8.95% (7B) / +12.29% (14B) in AlpacaEval2 win rate over base models.

• Enhanced Exploration: DRIFT preserves a larger exploration space and generates more diverse
responses with substantially broader coverage of the global high-reward region.

• Theoretical Analysis: We show that DRIFT maintains a non-vanishing expected preference mar-
gin and prevents gradient collapse, which is a critical limitation in existing self-improving models.
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2 RELATED WORK

2.1 LEARNING FROM REAL-WORLD USER FEEDBACK

Since relying on human labeling is not only expensive and time-consuming, but also highly sub-
jective to a small set of annotators, recent work has shifted toward leveraging naturally occurring
signals “in the wild”. A natural starting point is to incorporate the most explicit feedback of user
input, including edits and demonstrations. Gao et al. (2024) use edits in writing assistant settings
to infer latent preferences, keeping the base LLM frozen and training a separate preference mod-
ule that conditions future outputs. Similarly, Shaikh et al. (2025); Tucker et al. (2024) rely on a
handful of user-provided demonstrations to bootstrap alignment, iteratively generating comparison
pairs by treating user examples as preferred over LLM outputs and their intermediate revisions.
Another stream of work draws on implicit feedback that emerges naturally during conversations.
Hancock et al. (2019) introduced a self-feeding chatbot that monitors user satisfaction during de-
ployment: satisfied turns are added as new training data, while explicit feedback is requested when
dissatisfaction is detected. Liu et al. (2025) extended this idea, regenerating improved responses for
dissatisfaction and applying them in supervised fine-tuning (SFT). While this provides some bene-
fit on short tasks like MT-Bench (Bai et al., 2024), gains are limited on more complex real-world
task benchmarks such as WildBench (Lin et al., 2024a). Building further on implicit signals, re-
cent approaches transform them into pairwise preferences for direct optimization. Shi et al. (2025)
identify dissatisfaction with GPT-4, summarize user preferences, and generate improved responses
as chosen answers, contrasting them with the original unsatisfactory replies as rejected. Tan et al.
(2025) follow a similar philosophy by extracting reader-centric questions from user-generated con-
tent, sampling multiple candidate answers with an LLM, and ranking them with a reward model
to construct chosen–rejected pairs. In contrast, our approach requires no positive responses from
stronger models, no reward model, and certainly no human-provided golden truth, relying solely on
abundant real-world dissatisfaction (DSAT) signals and dynamic positives from the evolving policy.

2.2 SELF-IMPROVEMENT AND ITERATIVE DIRECT PREFERENCE OPTIMIZATION

Self-improvement strategies have emerged as an important avenue for iteratively enhancing model
performance. SPIN (Chen et al., 2024c) formulates this framework by treating the previous iteration
model as the opponent and the current iteration model as the main player, constructing preference
data with the SFT response as the chosen response and the prior iteration’s response as the rejected
response, thereby fully utilizing the SFT data without requiring additional human annotation. Be-
yond this, Iterative DPO (Xiong et al., 2024; Xu et al., 2024) and Self-Rewarding Language Models
(Yuan et al., 2024) and its variants (Pang et al., 2024; Chen et al., 2024a; Zeng et al., 2025; Tu
et al., 2025; Chen et al., 2024b) explore generating on policy preference data via ranking responses
by the model itself or a reward model/ verifier and then conducting iterative DPO training. How-
ever, subsequent studies reveal that self-improving models face a critical limitation: the chosen
and rejected responses can become too similar, leading to weak preference signals. To address
this, Temporal Self-Rewarding LMs (Wang et al., 2025a) decouple chosen and rejected responses
through past-future anchoring, while CREAM (Wang et al., 2025b) introduces consistency regular-
ization to stabilize the preference signal. Our method naturally avoids this issue by anchoring on
genuine DSAT negatives and sampling fresh positives from the evolving policy, thereby maintaining
a non-vanishing preference margin and preventing gradient collapse.

3 DRIFT: DISSATISFACTION-REFINED ITERATIVE PRE-FERENCE
TRAINING

User feedback in real-world systems is inherently asymmetric, while satisfied users rarely provided
explicit positive responses, dissatisfied users are more likely to offer abundant and detailed feedback
in the form of complaints, corrections, and stated preferences. As a result, dissatisfaction (DSAT)
signals are not only more frequent but also richer in information than satisfaction (SAT) signals.
Instead of viewing this imbalance as a limitation, DRIFT exploits it by treating authentic dissatis-
faction as high-quality negative supervision, while generating positive feedback dynamically from
the evolving model itself.

3
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Our approach is motivated by two key insights:

• Genuine dissatisfaction reflects real deployment failure modes, offering more informative and
reliable supervision than synthetically constructed negatives.

• Iteratively sampling fresh positives from the current policy maintains the margin between
chosen and rejected responses, thus mitigating the gradient collapse that plagues most self-
improvement methods as these responses become increasingly similar over time.

Formally, let X denote the prompt space and Y the response space. The current model is πθ :
X × Y → (0, 1), and πref is a frozen reference model. Let XDSAT ⊆ X denote prompts with
observed dissatisfaction signals. For each x ∈ XDSAT, we observe a set of negative responses:

DSAT(x) = { y− : user expressed dissatisfaction}. (1)

DRIFT proceeds in iterative refinement cycles, where each round builds upon the improved policy
from the previous iteration (Algorithm 1). We begin by filtering the wild dataset to extract dissatis-
faction (DSAT) cases, producing prompt-response pairs (x, y−) that reflect concrete failure modes
encountered in real-world scenarios. At each iteration, the current model πθk generates a fresh pos-
itive response y+ for the same prompt x, allowing the positive response to evolve alongside the
model’s capacities. The model is then updated by minimizing the DPO loss:

LDPO = −E(x,y+,y−)

[
log σ

(
β log πθ(y

+|x)
πref (y+|x) − β log πθ(y

−|x)
πref (y−|x)

)]
(2)

where β controls the preference margin and σ denotes the logistic function.

Algorithm 1 DRIFT: Dissatisfaction-Refined Iterative Preference Training
1: Input: Wild implicit feedback dataset, current model πθ, reference model πref , number of

iterations K
2: Output: Updated model parameters θK
3: Filter: Extract DSAT signals to form D = {(x, y−) | y− ∈ DSAT(x)}
4: for k = 1, . . . ,K do
5: Positive Sampling: For each (x, y−) ∈ D, sample a fresh positive response y+ ∼ πθk(· | x)
6: Loss Update: Update θk by minimizing LDPO (Eq. 2)
7: end for

4 EXPERIMENT

In this section, we evaluate DRIFT against strong self-improvement baselines, focusing on real
world task performance. Sec. 4.1 outlines datasets, training recipe, and evaluation benchmarks.
Sec. 4.2 presents the task performance on WildBench and AlpacaEval2. Then, in Sec. 4.3, we
analyze exploration cability on response space of each method through global high-reward coverage.

4.1 SETUP

Datasets. WildFeedback (real-world, user-feedback). The WildFeedback dataset is derived from
WildChat-1M, a corpus of over one million human–ChatGPT conversations, by assigning per-turn
labels Satisfaction (SAT), Dissatisfaction (DSAT), Neutral (Non-DSAT/Non-SAT). Labels are de-
rived using SPUR (Lin et al., 2024b), which recursively prompts GPT-4 to learn SAT/DSAT rubrics
from thumb-annotated conversations and applies them to score satisfaction/ dissatisfaction.

Table 1: Data Statistics
Category # Conversations

DSAT Conversations 10,467
SAT Conversations 4,378
DSAT → SAT 491

As summarized in Table 1, among all 88,920 unique
conversations, only 4,478 (5.04%) conversations were
labeled SAT, while 10,632 (11.96%) were labeled
DSAT, which is more than twice the SAT count. We
also curate 491 seed data items (0.55%) in which LLM
responses transition from DSAT to SAT after revision,
naturally yielding preference pairs.

4
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UltraFeedback (synthetic, LLM-labeled). For completeness and comparability with prior self-
improvement work, we also evaluate on UltraFeedback in which each prompt has four completions
from different models that are scored by GPT-4. This synthetic setting provides a complementary
evaluation to the real-world data setting and ensures fair comparison with SPIN/ IterDPO on com-
monly used LLM-labeled preference data.

Table 2: Comparison of preference data construction strategies across different methods. “Self-Gen”
means responses are generated by the current policy. “Real” is from user feedback.

Method Chosen Response Rejected Response No Positive
Examples

Leverage Real
User FeedbackSelf-Gen Real Self-Gen Real

SPIN ✗ ✓ (SAT) ✓ ✗ ✗ ✓
IterDPO ✓ ✗ ✓ ✗ ✓ ✗
DRIFT (Ours) ✓ ✗ ✗ ✓ (DSAT) ✓ ✓

Training Recipe. Our experiments are conducted on Qwen2.5-7B-Instruct and Qwen2.5-14B-
Instruct. We adopt a two-stage training:
(1) Warm start: train on the 491 seed DSAT→SAT pairs, which provides an initial aligned policy.
(2) Iterative preference training: After warm start, each method constructs fresh preference pairs.
Per-iteration preference data construction (Table 2):
DRIFT: In WildFeedback, we keep the DSAT reply as the rejected response and, at each iteration,
sample a fresh response from the current policy using prompt which contains the full conversation
including the DSAT user turn and an explicit improvement instruction. In UltraFeedback, we re-
place the original chosen with a fresh policy sample.
SPIN: In WildFeedback, we use the SAT reply as the chosen response and a policy sample as the
rejected response using the prompt which is the conversation before the SAT user turn. In Ultra-
Feedback, we replace the original rejected with a fresh policy sample.
IterDPO: In WildFeedback, we generate two responses using different prompts: the chosen context
includes the full conversation including the DSAT user turn and an explicit improvement instruction,
while the rejected context is the conversation before the DSAT user turn which does not reveal the
user preference and instruction information. In UltraFeedback, both responses are generated from
the same prompt and ranked by the reward model 1.; the higher-scored response is chosen and the
other is rejected.
We then perform one epoch of DPO training after data generation, which prevents overfitting during
iterative training. Full training details are presented in Appendix D.

Evaluation. We evaluate on WildBench (Elo, Task Score) and AlpacaEval2 (win rate, length-
controlled; LC). WildBench is built from challenging real-world user queries in WildChat-1M and
spans five diverse categories: Creative, Reasoning, Math, Info Seek, and Coding, making it well
suited for assessing our method for real-world performance. The WildBench Task Score is com-
puted as a weighted average across these five tasks.

4.2 PERFORMANCE EVALUATION

4.2.1 RESULTS ON WildFeedback

We first examine performance on the real-world WildFeedback dataset, which contains authentic user
satisfaction/ dissatisfaction labels and exhibits a strong imbalance: dissatisfied responses (DSAT)
outnumber satisfied ones (SAT) by more than 2:1. Hence, we consider two configurations: a Con-
trolled setting with around 4k samples (matching SPIN for fair comparison), and a Full setting
using all 11k DSAT samples to demonstrate DRIFT’s ability to exploit abundant negative feedback.

As shown in Table 3, DRIFT raises the WildBench Task Score by 6.23% (+3.03) for 7B and 5.97%
(+3.29) for 14B, and boosts AlpacaEval2 win rate by 8.95% for 7B and 12.11% for 14B compared
to the base models. And our method consistently outperforms both SPIN and IterDPO across all
metrics in both controlled and full data settings.

While SPIN shows degraded performance with iterations likely due to its reliance on a fixed set of
satisfied responses becoming stale, DRIFT maintains steady improvements, suggesting that its strat-

1OpenAssistant/reward-model-deberta-v3-large-v2
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Table 3: Results of training on WildFeedback. Appendix C for detailed per-task results.

WildBench AlpacaEval2

Method 7B 14B 7B 14B
Elo Score Elo Score Win LC Win LC

Base 1194.67 48.66 1213.17 55.08 37.69 39.73 36.65 43.58
Seed 1193.66 49.11 1213.50 54.93 42.67 42.06 40.25 45.78

Controlled Setting

SPIN
iter1 1180.75 42.86 1200.63 47.16 26.21 34.09 25.53 37.28
iter2 1173.45 37.86 1192.56 44.04 20.56 29.00 18.57 30.91

IterDPO
iter1 1189.43 47.07 1206.65 51.79 41.55 41.35 37.14 43.14
iter2 1192.46 48.94 1211.69 56.63 41.18 40.14 48.32 47.28

DRIFT (Ours)
iter1 1197.13 51.06 1215.73 58.37 42.73 41.41 48.76 45.42
iter2 1195.33 51.06 1214.03 57.59 43.79 41.49 46.83 43.48

Full Setting

IterDPO
iter1 1185.11 46.31 1205.48 52.34 40.36 39.85 38.07 43.99
iter2 1182.33 46.17 1206.63 51.38 35.76 37.06 32.88 37.92

DRIFT (Ours)
iter1 1194.81 50.61 1212.83 57.27 43.90 40.32 48.63 47.46
iter2 1199.09 51.69 1217.61 58.30 46.64 42.72 45.33 44.93

egy prevents distribution shift. IterDPO performs better than SPIN but still lags behind DRIFT in
both settings, indicating that while reward model guidance helps, the real world informative DSAT
examples provides superior training signal. Notably, DRIFT’s controlled setting (using only 4k sam-
ples) already matches or exceeds IterDPO’s full setting performance, demonstrating the efficiency of
dissatisfaction-anchored learning. The stronger gains at the 14B scale suggest that DRIFT benefits
larger models more, likely because their greater capacity makes it easier to discover better positives
while being anchored by real negatives. This making DRIFT well suited for scaling up.

Long-horizon stability beyond 2 iterations. To further investigate the stability and performance
trends for longer iterations, we extended all methods to five iterations on Qwen2.5-7B. Figure 2
visualizes the performance trajectories across iterations.

iter1 iter2 iter3 iter4 iter5
Iteration
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Figure 2: Performance across five iterations on
Qwen2.5-7B. Bold values indicate the maximum
score achieved by each method across iterations.

Both SPIN and IterDPO peak early at iter1
and then exhibit performance degradation, with
SPIN showing the most pronounced decline.
In contrast, DRIFT demonstrates sustained im-
provement up to iter4 (52.47), and then forms
a stable plateau with minimal variation (51.22
at iter5). This stability suggests that DRIFT’s
strategy of anchoring on real dissatisfied re-
sponses while continuously sampling fresh pos-
itives prevents mode collapse that plagues other
self-play or self-improve methods during ex-
tended iterative training. The limited perfor-
mance collapse observed even at iter5 further
validates DRIFT’s robustness for long-horizon
self-improvement.
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Unguided ablation study and the source of DRIFT’s advantage. An important consideration is
whether DRIFT’s observed gains are attributable to the guidance prompts provided during positive
generation. To examine this, we evaluated an unguided variant in which DRIFT and IterDPO gener-
ate responses solely from the original user prompt, matching SPIN’s configuration. The results (see
Appendix C, Table 6) show that DRIFT remains consistently stronger than both baselines in this
setting, and the gap between the unguided and full versions is small. This suggests that DRIFT’s
gains are not attributable to instruction prompt and reference point, but instead to its design principle
of anchoring on off-policy DSAT negatives while drawing positives from the evolving policy.

4.2.2 RESULTS ON UltraFeedback

To ensure comprehensive evaluation and fair comparison with prior work, we also evaluate on the
synthetic UltraFeedback dataset, where preferences are scored by GPT-4 rather than derived from
real user interactions. This complementary evaluation helps assess whether DRIFT’s advantages
generalize beyond the specific characteristics of real-world dissatisfaction signals to more conven-
tional preference learning settings. As shown in Table 4, DRIFT outperforms the base model with
gains of 4.62% (+2.25) for 7B and 7.61% (+4.19) for 14B on WildBench Task Score, and im-
provements of +3.35% (7B) and +12.29% (14B) on AlpacaEval2 win rate. Compared to the best
SPIN/IterDPO results, DRIFT achieves additional gains of +2.14 (7B) and +4.49 (14B) on Task
Score, as well as +6.51% (7B) and +6.10% (14B) on win rate.

Table 4: Results of training on UltraFeedback. Appendix C for detailed per-task results.

WildBench AlpacaEval2

Method 7B 14B 7B 14B
Elo Score Elo Score Win LC Win LC

Base 1194.67 48.66 1213.17 55.08 37.69 39.73 36.65 43.58

SPIN
iter1 1163.16 35.10 1178.88 36.99 18.39 26.62 16.09 28.20
iter2 1139.66 25.93 1155.07 28.01 13.23 19.91 13.66 24.29

IterDPO
iter1 1194.45 48.77 1214.14 54.21 34.53 40.55 33.29 42.84
iter2 1192.01 48.49 1215.12 54.78 32.15 39.92 28.51 40.47

DRIFT (Ours)
iter1 1197.04 50.91 1215.67 58.52 41.04 40.37 47.89 48.46
iter2 1197.94 50.32 1218.75 59.27 40.47 37.09 48.94 47.43

4.3 EXPLORATORY CAPACITY ANALYSIS: DRIFT EXPLORES MORE DIVERSE HIGH
REWARD SOLUTIONS

Figure 3: Comparison of high reward
region coverage.

A central question in preference learning is whether push-
ing rewards upward narrows the response distribution and
erodes exploration capacity and diversity. Methods that op-
timize aggressively for top scores or fixed chosen responses
can shift toward mode seeking: peak metrics improve while
alternative high-quality modes are under explored. We fur-
ther investigate whether DRIFT’s strategy of sampling fresh
positives while anchoring on real dissatisfied responses en-
hances the model’s ability to explore the space of high-
quality solutions than SPIN or iterDPO, which may pro-
gressively constrain the solution space.
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Semantic reward topography construction. For each prompt, we first sample 128 responses
from each method and embed all collected responses2. We obtain a 2D semantic projection via
UMAP and estimate a reward-weighted density surface Zall(g) ∈ [0, 1] over a regular grid g using
Gaussian KDE. The global high-reward region is defined as

H = { g : Zall(g) ≥ zhigh }, zhigh = Quantile
(
Zall, 0.8

)
.

For each method m, we construct a corresponding surface Dm(g) on the same grid and bandwidth,
and measure its coverage inside the global high-reward region by

Sm = { g ∈ H : Dm(g) ≥ zhigh }, Share(m) =
|Sm|
|H|

.

We render Zall as the background terrain, overlay the boundary of H (dashed), and shade Sm for
each method. We report the average high-reward coverage across 50 prompts in Figure 3. DRIFT
consistently attains the largest share at both 7B and 14B scales, with a larger margin at 14B, indicat-
ing greater high reward solutions diversity and better scalability.

Case Study: High-Reward Coverage and Response Diversity. Figure 4 shows an example that
DRIFT distributes responses across a broader set of high-reward semantic regions, whereas SPIN
and IterDPO concentrate their outputs within a much smaller subset of the space. Notably, DRIFT
also discovered a distinct region (circled in the reward topography) where it uniquely employed
markdown formatting to structure research papers, demonstrating alternative presentation styles for
the same prompt.

Figure 4: Example of response diversity and quality comparison via semantic reward topography.
Two central plots: Left is the UMAP scatter of all responses; Right is the semantic reward topogra-
phy showing the global high-reward region and the coverage of the three methods. Full prompt and
responses are in Appendix E

Anchoring on authentic DSAT negatives while sampling fresh positives enables DRIFT to maintain
and amplify exploratory capacity. DRIFT not only reaches high reward but also occupies a far
broader set of high-reward areas, explaining why it continues to improve over iterations without
collapsing to a small family of solutions.

2Embeddings are computed using Qwen/Qwen3-Embedding-0.6B.
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5 THEORETICAL ANALYSIS

DRIFT shows superior performance by leveraging real-world user dissatisfaction as high-quality
negatives, which leads us to further investigate and analyze how real-world data shapes the success
of DRIFT and why some other strong baselines like SPIN and IterDPO fall short. In this section, we
prove that DRIFT maintains a usable gradient signal through fresh positives anchored by genuine
DSAT negatives; in contrast, updates fitted to a fixed SAT set like SPIN can easily overfit to a small
sub-optimal subset with gradient collapse.

Notation. Let X be the prompt set. For a particular prompt x ∼ X , denote y+ as the chosen
response and y− the rejected response. Let the generation likelihoods of y+ and y− to be π+ =
πθ(y

+ | x) and π− = πθ(y
− | x) respectively, where πθ is the language model we aim to train.

For formula simplicity, we denote the implicit reward margin (Rafailov et al., 2023) as:

s = β ·
(
log

(
π+/πref(y

+|x)
)
− log

(
π−/πref(y

−|x)
))

, (3)

and the loss function:

ℓ = − log σ(s), ∇θℓ = −β σ(−s)
[
∇θ log πθ(y

+ | x)−∇θ log πθ(y
− | x)

]
, (4)

where σ(s) = (1 + e−s)−1 is the logistic function. We also denote dθ := ∇ lnπθ(y
+ | x) −

∇ lnπθ(y
− | x) and g(θ) := E[−∇ℓ(θ)] = β E[σ(−s) dθ]. Finally, let r⋆ : X × Y → [0, 1] be the

unknown gold reward, and J(θ) := Ex∼µ EY∼πθ(·|x)[r
⋆(x, Y )] be the overall objective.

Reward Margin Hypothesis. With a probability of at least pimp, both the implicit reward margin
and the gold reward margin have positive lower bounds. Specifically, there exists some τ ∈ (0, 1

2 ]
and mr > 0 such that

Eimp :=
{
σ(−s) ≥ τ and r⋆(x, y+)− r⋆(x, y−) ≥ mr

}
, P(Eimp) ≥ pimp > 0. (5)

This hypothesis ensures that chosen responses are mostly ranked higher than rejected responses.

Non-vanishing expected training signal. We first certify that DRIFT maintains a uniform ex-
pected gradient magnitude under a positive-mass “quality” event.
Lemma 1 (Expected gradient lower bound under local quality). Let E = {σ(−s) ≥ τ} with
P(E) ≥ p0 > 0 for some τ ∈ (0, 1

2 ]. If E
[
∥dθ∥ | E

]
≥ ∆cond > 0, then

E
[
∥∇θℓ∥

]
≥ β τ p0 ∆cond. (6)

Proof. From Eq. 4 and σ(−s) ≥ 0,

E∥∇ℓ∥ = E
[
β σ(−s) ∥dθ∥

]
≥ β τ E

[
∥dθ∥1E

]
= β τ P(E)E

[
∥dθ∥ | E

]
.

This bound shows that as long as a non-negligible fraction of pairs satisfy σ(−s) ≥ τ and have a
nonzero conditional gradient gap

(
E[∥dθ∥ | σ(−s) ≥ τ ] > 0

)
, the expected training signal stays

away from zero.

Expected improvement of actual utility. We now state a general improvement guarantee: the
expected DPO step increases the true utility J , with the gain quantified based on the key data condi-
tion.
Theorem 1 (Expected improvement of J). Assume the improvement event Eq. 5 holds with proba-
bility at least pimp, and there exists λ > 0 such that

E
[ 〈

∇J(θ), dθ
〉 ∣∣∣ Eimp

]
≥ λ. (7)

If J is LJ -smooth in a neighborhood of θ, then for any η > 0,

E
[
J(θ + η g(θ))

]
≥ J(θ) + η β τ pimp λ − LJ

2
η2 E

[
∥g(θ)∥2

]
. (8)

In particular, for sufficiently small η, the right-hand side exceeds J(θ) by a linear-in-η margin
βτpimpλ up to O(η2).
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Proof sketch. g(θ) = β E[σ(−s)dθ] gives

E⟨∇J, g⟩ = β E
[
σ(−s)⟨∇J, dθ⟩

]
≥ β τ P(Eimp)E

[
⟨∇J, dθ⟩ | Eimp

]
≥ β τ pimp λ.

LJ -smoothness yields J(θ+ ηg) ≥ J(θ) + η⟨∇J, g⟩ − LJ

2 η2∥g∥2, then take expectations to obtain
Eq.8. Full proof in Appendix B.2. □

Why DRIFT outperforms SPIN? When SPIN concentrates probability on a finite SAT catalogue
and reaches a fixed point, the magnitude of the pairwise DPO signal on SPIN pairs is controlled by
the catalogue’s log–density-ratio variance:∥∥∥E[β σ(−s) dθ̂

]∥∥∥ ≤ β

4

√
Var(s)

√
E∥dθ̂∥2, Var(s) = 2β2 VarY∼pSAT

(
h(Y )

)
, (9)

where h(y) := lnπθ̂(y | x)− lnπref(y | x) (Proposition 1 in Appendix). Thus, a small VarpSAT
(h)

implies a weak training signal that can quantitatively degenerate. By contrast, DRIFT maintains a
non-vanishing signal and practical gains. Full discussions are in Appendix B.3.

Summary

• Signal: If improvement events occur with nonzero probability, DRIFT’s expected gradient
stays non-vanishing (Lemma 1).

• Utility: Under the local correlation, a small step along the expected DPO direction improves J
up to O(η2) (Theorem 1).

• Contrast: At SPIN fixed points on a finite SAT catalogue, the signal is controlled by catalogue
log–density-ratio variance and can degenerate (Proposition 1).

6 DISCUSSION

Generalization beyond a single model family. To test our method’s generality, we applied the
same training procedure to Gemma-3-12B-it, a multimodal and structurally distinct architecture.
The results (see Appendix C, Table 7) show that DRIFT again outperformed SPIN and IterDPO
across all WildBench categories, exhibiting similar stability and improvement patterns. These results
confirm that DRIFT generalizes beyond a single model family and performs well even on different
model architecture.

Safety implications of training with DSAT signals. Since DRIFT explicitly anchors on real user
dissatisfaction, it is important to assess whether such supervision inadvertently amplifies adversarial
vulnerabilities or demographic biases. Evaluations on AdvBench and ToxiGen (see Appendix C,
Table 8) show that DRIFT does not increase jailbreak success rates, toxicity, or group-specific harms
relative to baseline models across iterations.

Taken together, these results show that DRIFT’s asymmetric pairing of off-policy DSAT negatives
with on-policy positives provides a stable and informative learning signal, generalizes across model
families, and preserves baseline safety characteristics. Grounding preference optimization in real
dissatisfaction thus offers a reliable and scalable direction for real-world post-training.

7 CONCLUSION

Real-world post-training rarely comes with abundant golden positives; it comes with abundant dis-
satisfaction and iterative user edits. In this paper, we introduced DRIFT, a simple, scalable recipe
that pairs authentic DSAT negatives with policy sampled positives, turning in-situ feedback into sta-
ble, exploration preserving updates. Empirically, on real-world user feedback dataset WildFeedback,
DRIFT outperforms SPIN and IterDPO on WildBench and AlpacaEval2 (with the stronger margins
at larger base models); on synthetic LLM-labeled dataset UltraFeedback, it retains its superiority.
Exploratory capacity analysis indicates that DRIFT explores more diverse high-reward solutions
rather than overfitting to a narrow region. Theoretically, we show that DRIFT’s admits a uniform,
non-vanishing gradient lower bound, avoiding the collapse that arises when training concentrates
probability on a finite fixed chosen (Or SFT) set as in SPIN. Together, these results suggest DRIFT
is a promising practical recipe for preference learning with real-world user feedback.

10
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Ethics Statement This work relies on a publicly datasets WildFeedback that contain anonymized
human–LLM conversations. No personally identifiable information was collected or used. All ex-
periments comply with dataset licenses and terms of use. The research has no foreseeable negative
social or ethical impacts.

Reproducibility Statement We have made extensive efforts to ensure the reproducibility of our
work. The main paper details our training setup, datasets, and evaluation metrics (Secs. 4.1–4.3).
Dataset construction and filtering steps are described in Sec. 4.1, with references to the source
corpora. Training hyperparameters, iteration procedures and training dynamics are presented in
Appendix D. To further facilitate verification and reuse, we will open-source our code, including
data-processing pipelines, training scripts and analysis upon paper acceptance.
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A DISCLOSURE OF LLM USE IN PAPER PREPARATION

We acknowledge the use of LLMs for assistance with writing and polishing text. All the content
suggested by LLMs in writing was proofread and manually adjusted before being integrated into the
final manuscript. The authors take full responsibility for the accuracy and factuality of all content
presented.

B THEORETICAL PROOFS

B.1 ASSUMPTIONS

(A1) Improvement event (data-level). There exist τ ∈ (0, 1
2 ], mr > 0, and pimp > 0 such that,

with
Eimp =

{
σ(−s) ≥ τ and r⋆(x, y+)− r⋆(x, y−) ≥ mr

}
,

one has P(Eimp) ≥ pimp.

(A2) Local smoothness of J . There exists LJ < ∞ such that, for all sufficiently small v,
J(θ + v) ≥ J(θ) + ⟨∇J(θ), v⟩ − LJ

2 ∥v∥2.

(A3) Finite second moment for the score difference. E ∥dθ∥2 ≤ Cd < ∞.

B.2 PROOF OF THEOREM 1 (EXPECTED IMPROVEMENT OF J )

Theorem (Restatement of Theorem 1). Under Assumptions (A1), (A2), (A3), and the local advan-
tage correlation condition Eq.7, for any η > 0 and g(θ) = β E[σ(−s) dθ],

E
[
J(θ + η g(θ))

]
≥ J(θ) + η β τ pimp λ − LJ

2
η2 β2 Cd.

Proof. By definition, g(θ) = β E
[
σ(−s) dθ

]
. Taking inner product with ∇J(θ) and then expecta-

tion,
E ⟨∇J(θ), g(θ)⟩ = β E

[
σ(−s) ⟨∇J(θ), dθ⟩

]
.

On the improvement event from Assumption (A1), σ(−s) ≥ τ ; conditioning on Eimp and using
Eq.7,

E ⟨∇J(θ), g(θ)⟩ ≥ β τ P(Eimp)E
[
⟨∇J(θ), dθ⟩

∣∣ Eimp

]
≥ β τ pimp λ.

By the LJ -smoothness in Assumption (A2),
J(θ + ηg) ≥ J(θ) + η ⟨∇J(θ), g⟩ − LJ

2 η2 ∥g∥2.
Taking expectations and combining the previous bound gives

E J(θ + ηg) ≥ J(θ) + η β τ pimp λ − LJ

2 η2 E ∥g∥2.
It remains to bound E ∥g(θ)∥2. Since σ ∈ (0, 1),

∥g(θ)∥ =
∥∥β E[σ(−s) dθ]

∥∥ ≤ β E∥dθ∥ ≤ β
√

E∥dθ∥2 ≤ β
√

Cd,

where we used Assumption (A3) and Jensen. Hence E ∥g(θ)∥2 ≤ β2Cd, which yields the stated
inequality.

B.3 SPIN REAL-WORLD PERFORMANCE DISCUSSION

SPIN updates concentrate probability on the finite SAT catalogue SAT(x) and, under a trust-region
style update, admit the closed-form iteration (see, e.g., (Chen et al., 2024c)):

pθt+1
(y | x) ∝ pθt(y | x)

[pSAT(y | x)
pθt(y | x)

]1/λ
, (5.3)

which drives pθt(· | x) toward pSAT(· | x) supported on SAT(x). Consequently, at any fixed point
θ̂ one has πθ̂(· | x) = pSAT(· | x); under the SPIN data rule (positive sampled from pSAT, negative
sampled independently from πθ̂ given x), the positive y+ and negative y− are conditionally i.i.d.
on SAT(x) with the common marginal pSAT. The DPO signal then depends on the variance of the
log-density ratio on that finite set and can quantitatively degenerate.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition 1 (Quantitative degeneration at a SPIN fixed point). At a SPIN fixed point θ̂ with
πθ̂(·|x) = pSAT(·|x), if y+, y− are conditionally i.i.d. from πθ̂(·|x) and E∥dθ̂∥

2 < ∞, then for
h(y) := lnπθ̂(y | x)− lnπref(y | x),∥∥∥E[β σ(−s) dθ̂

]∥∥∥ ≤ β

4

√
Var(s)

√
E∥dθ̂∥2, Var(s) = 2β2 VarY∼pSAT

(
h(Y )

)
. (10)

Proof. By (A5), for each x we have E[dθ̂ | x] = 0 since y+, y− are i.i.d. under πθ̂(·|x). Therefore

E
[
β σ(−s) dθ̂

]
= β E

[(
σ(−s)− Eσ(−s)

)
dθ̂

]
.

Fix any unit vector u. Scalar Cauchy–Schwarz yields

u⊤E
[
β σ(−s) dθ̂

]
= β E

[(
σ(−s)− Eσ(−s)

)
u⊤dθ̂

]
≤ β

√
Var(σ(−s))

√
E
[
(u⊤dθ̂)

2
]
.

Taking the supremum over all unit u,∥∥∥E[β σ(−s) dθ̂
]∥∥∥ ≤ β

√
Var(σ(−s))

√
E∥dθ̂∥2.

Since σ is 1/4-Lipschitz, Var(σ(−s)) ≤ 1
16 Var(s). With s = β[h(y+)− h(y−)] and y+, y− i.i.d.,

Var(s) = β2 Var
(
h(y+)− h(y−)

)
= 2β2 VarY∼pSAT

(
h(Y )

)
,

which gives the stated inequality.
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C ADDITIONAL RESULTS

C.1 WILDBENCH LEADERBOARD FULL TABLE

Table 5: Complete WildBench leaderboard showing all evaluated models with comprehensive task-
specific scores across multiple evaluation dimensions. Our models are highlighted in gray.

Model Elo Task Creative Reasoning Math Info Seek Coding Length

GPT-4o (2024-05-13) 1256.86 59.30 59.12 60.21 57.29 58.61 60.47 3723.52
Claude-3.5-Sonnet (20240620) 1238.93 54.70 55.61 55.64 50.16 55.54 56.51 2911.85
GPT-4-Turbo (2024-04-09) 1233.99 55.22 58.66 56.20 51.00 57.18 55.07 3093.17
Gemini-1.5-Pro 1228.55 52.95 55.12 53.73 48.59 52.23 55.22 3247.97
DeepSeek-v2-Chat (0628) 1221.66 53.99 56.43 54.83 51.43 52.72 55.00 3252.38
GPT-4 (0125-preview) 1221.30 52.28 57.57 53.45 45.79 54.36 52.92 3335.64
Claude-3-Opus (20240229) 1219.27 51.71 53.02 52.53 46.75 53.47 53.30 2685.98
Qwen2.5-14B-UltraFeedback-DRIFT-iter2 1218.75 59.27 59.48 61.05 59.44 58.66 57.64 4275.27
Mistral-Large-2 1217.99 55.57 58.86 57.22 52.67 57.38 53.84 3503.63
Qwen2.5-14B-WildFeedback-DRIFT-iter2 1217.61 58.30 58.14 60.60 59.37 58.37 55.19 4492.77
GPT-4o-mini (2024-07-18) 1217.35 57.14 60.05 58.24 54.05 57.43 57.17 3648.13
Qwen2.5-14B-WildFeedback-DRIFT-iter1-4k 1215.73 58.37 58.55 60.39 58.89 58.86 55.57 4528.15
Qwen2.5-14B-UltraFeedback-DRIFT-iter1 1215.67 58.52 58.65 60.30 58.02 57.57 57.64 4288.24
Qwen2.5-14B-UltraFeedback-IterDPO-iter2 1215.12 54.78 55.35 56.76 54.00 55.00 53.08 3152.61
Qwen2.5-14B-UltraFeedback-IterDPO-iter1 1214.14 54.21 55.13 56.27 52.02 55.74 52.64 3424.60
Qwen2.5-14B-WildFeedback-DRIFT-iter2-4k 1214.03 57.59 57.98 59.73 57.45 57.62 55.38 5333.00
Qwen2.5-14B-WildFeedback-Seed 1213.50 54.93 54.94 57.30 53.60 55.45 53.30 3878.89
Qwen2.5-14B-Instruct 1213.17 55.08 55.71 57.84 54.98 54.95 52.23 3682.95
Qwen2.5-14B-WildFeedback-DRIFT-iter1 1212.83 57.27 58.09 59.31 55.78 57.22 56.13 4485.35
Qwen2.5-14B-WildFeedback-IterDPO-iter2-4k 1211.69 56.63 56.18 59.19 56.51 56.78 54.25 4491.05
DeepSeek-v2-Coder (0628) 1206.89 45.66 40.78 47.17 46.43 40.05 48.87 2580.18
Gemini-1.5-Flash 1206.77 48.85 51.66 50.79 45.32 48.67 48.73 3654.40
Qwen2.5-14B-WildFeedback-IterDPO-iter1-4k 1206.65 51.79 50.75 54.49 51.24 52.67 49.43 3925.74
Qwen2.5-14B-WildFeedback-IterDPO-iter2 1206.63 51.38 50.23 54.17 51.03 52.48 48.68 4011.82
Qwen2.5-14B-WildFeedback-IterDPO-iter1 1205.48 52.34 52.87 54.97 51.71 54.06 48.96 4054.28
DeepSeek-v2-Chat 1205.02 48.21 53.59 50.63 44.52 51.81 44.43 2896.97
Qwen2.5-14B-WildFeedback-SPIN-iter1 1200.63 47.16 49.90 49.75 47.25 47.67 43.11 2707.18
Qwen2.5-7B-WildFeedback-DRIFT-iter2 1199.09 51.69 52.45 53.21 50.63 52.38 50.28 4707.48
Qwen2.5-7B-UltraFeedback-DRIFT-iter2 1197.94 50.32 50.39 52.50 48.41 52.08 48.58 5121.20
Qwen2.5-7B-WildFeedback-DRIFT-4k-iter1 1197.13 51.06 53.23 53.44 48.32 52.28 49.29 4517.02
Qwen2.5-7B-UltraFeedback-DRIFT-iter1 1197.04 50.91 50.08 53.77 48.92 52.72 48.87 4856.83
Qwen2.5-7B-WildFeedback-DRIFT-4k-iter2 1195.33 51.06 51.42 53.45 49.16 52.13 49.38 4686.39
Qwen2.5-7B-WildFeedback-DRIFT-iter1 1194.81 50.61 52.09 53.03 48.56 52.13 48.34 4652.38
Qwen2.5-7B-Instruct 1194.67 48.66 50.08 51.80 47.09 50.69 45.00 4275.08
Qwen2.5-7B-UltraFeedback-IterDPO-iter1 1194.45 48.77 49.35 51.39 46.03 50.89 46.82 3888.79
Qwen2.5-7B-WildFeedback-DRIFT-iter2-RPO 1194.24 50.42 51.89 53.31 48.88 51.49 47.52 4711.01
Qwen2.5-7B-WildFeedback-Seed 1193.66 49.11 49.35 51.57 47.54 50.15 47.17 4624.30
Nemotron-4-340B-Instruct 1193.60 47.67 53.32 49.13 40.80 53.00 46.26 2754.01
Qwen2.5-14B-WildFeedback-SPIN-iter2 1192.56 44.04 45.54 45.95 40.64 45.89 43.13 2820.38
Qwen2.5-7B-WildFeedback-IterDPO-iter2-4k 1192.46 48.94 50.39 51.35 46.37 50.99 46.79 4731.32
Claude-3-Sonnet (20240229) 1192.03 45.48 46.30 47.43 40.64 47.13 46.10 2670.24
Qwen2.5-7B-UltraFeedback-IterDPO-iter2 1192.01 48.49 50.18 50.73 44.68 50.22 47.58 3708.61
Qwen2-72B-Instruct 1189.43 44.50 49.92 46.85 40.95 49.50 39.81 2856.45
Qwen2.5-7B-WildFeedback-IterDPO-iter1-4k 1189.43 47.07 48.63 49.13 44.50 49.26 45.12 4602.08
Mistral-Nemo-Instruct (2407) 1187.35 44.38 54.57 47.41 35.63 51.93 39.72 3318.21
Qwen2.5-7B-WildFeedback-IterDPO-iter1 1185.11 46.31 46.77 48.61 44.46 48.02 44.27 4662.34
Qwen2.5-7B-WildFeedback-IterDPO-iter2 1182.33 46.17 45.74 49.22 45.60 46.24 43.70 4520.58
Qwen2.5-7B-WildFeedback-SPIN-iter1 1180.75 42.86 43.26 45.45 41.59 46.29 39.06 3611.19
Qwen2.5-14B-UltraFeedback-SPIN-iter1 1178.88 36.99 38.86 40.09 35.16 39.01 33.40 2642.64
Claude-3-Haiku (20240307) 1175.97 38.89 42.95 41.29 31.43 45.35 36.98 2601.03
Qwen2.5-7B-WildFeedback-SPIN-iter2 1173.45 37.86 37.36 40.72 37.06 42.13 33.27 2839.09
Mistral-Large (2402) 1172.18 38.89 49.66 41.80 30.88 46.14 33.74 2514.98
Qwen2.5-7B-UltraFeedback-SPIN-iter1 1163.16 35.10 34.78 37.61 30.87 39.90 33.21 3475.16
Qwen1.5-72B-Chat-Greedy 1160.02 39.93 50.36 43.45 29.80 48.22 35.36 2392.36
Qwen2.5-14B-UltraFeedback-SPIN-iter2 1155.07 28.01 29.77 31.69 25.08 32.72 23.13 2504.57
Mixtral-8x7B-Instruct-v0.1 1145.51 31.47 42.75 34.59 22.14 41.94 25.02 2653.58
Qwen2.5-7B-UltraFeedback-SPIN-iter2 1139.66 25.93 25.79 28.88 19.60 32.03 24.43 3293.30
GPT-3.5-Turbo (0125) 1135.69 30.02 37.42 33.39 21.59 36.49 26.54 1844.14
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C.2 UNGUIDED ABLATION STUDY

Table 6: Unguided ablation study results on Qwen2.5-7B (full WildFeedback setting). Unguided
variants remove the reference DSAT response and explicit improvement instruction, matching
SPIN’s setting.

Method WildBench Score AlpacaEval2 WinRate

SPIN
iter1 42.86 26.21
iter2 37.86 20.56

IterDPO
iter1 (Unguided) 49.44 40.30
iter2 (Unguided) 49.66 41.24
iter1 (Full) 46.31 40.36
iter2 (Full) 46.17 35.76

DRIFT (Ours)
iter1 (Unguided) 50.77 46.77
iter2 (Unguided) 51.04 45.47
iter1 (Full) 50.61 43.90
iter2 (Full) 51.69 46.64

C.3 GENERALIZATION ACROSS MODEL FAMILIES

Table 7: Experiment results on Gemma-3-12B-it (full WildFeedback setting). All methods were
trained using the same recipe and evaluated on WildBench. Bold indicates the highest score for
each metric.

Method Task Creative Reasoning Math Info Seek Coding

Base 60.77 66.10 62.46 54.10 65.21 59.62

SPIN
iter1 59.06 65.79 61.14 50.40 63.96 58.30
iter2 51.86 58.76 53.81 42.06 59.60 50.33

IterDPO
iter1 60.10 62.74 60.48 54.92 61.29 62.10
iter2 48.98 52.40 49.27 43.89 47.61 52.23

DRIFT (Ours)
iter1 61.73 66.37 63.02 56.19 64.71 61.23
iter2 60.88 66.10 62.07 54.76 62.82 61.33

C.4 SAFETY AND ETHICAL CONSIDERATIONS
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Table 8: Safety and ethical norms evaluation results. AdvBench measures adversarial jailbreak
attack success rate (%). ToxiGen measures toxicity scores (1–5 scale). Lower values indicate better
safety.

Method Attack Success Rate (%) Toxic Score (1-5)

Base 0.01 1.56

SPIN
iter1 0.01 1.65
iter2 0.00 1.70

IterDPO
iter1 0.02 1.50
iter2 0.00 1.66

DRIFT (Ours)
iter1 0.02 1.54
iter2 0.01 1.58
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D IMPLEMENTATION DETAILS

D.1 WARM START TRAINING DETAILS

We curate a DSAT→SAT seed set (491 pairs) from WildFeedback, where a dissatisfied user turn
(DSAT) is followed by a revised model response that satisfies the user (SAT). Each pair provides
a natural preference: the DSAT response fails to meet expectations, while the subsequent SAT re-
sponse is preferred.

For our warm start phase, we initialize training using pre-trained instruction-tuned models as the
base models. The warm start training utilizes seed preference data to establish initial alignment
before iterative refinement. We did DPO training with carefully tuned hyperparameters to ensure
stable convergence. All experiments were conducted on 8 H100 GPUs with the same hardware
configuration maintained across all training phases. The detailed hyperparameters for warm start
training are presented in Table 9.

Table 9: Warm Start Training Hyperparameters
Learning rate Batch size β Optimizer LR scheduler Seq length Epochs Precision

5.0e-7 4 0.1 RMSprop Linear 2048 3 bfloat16

D.2 ITERATIVE TRAINING DETAILS

After the warm start phase, we conducted iterative training to progressively refine model alignment
using dynamically generated preference data. Data generation details are in Sec. 4.1. Each iteration
builds upon the previous model checkpoint, incorporating newly created preference data. The iter-
ative training process maintains consistent hyperparameters across iterations, with only the training
data and base model checkpoint changing between iterations. We trained each iteration for a single
epoch to prevent overfitting on the iteratively generated data. Table 10 details the hyperparameters
used for iterative training phases.

Table 10: Iterative Training Hyperparameters
Learning rate Batch size β Optimizer LR scheduler Seq length Epochs Precision

5.0e-7 4 0.1 RMSprop Linear 2048 1 bfloat16

D.3 TRAINING DYNAMICS

For better training illustration, we report the Qwen2.5-14B-Instruct DRIFT iter1 & iter2 training
dynamics in Figure 5 which shows dpo training loss, chosen reward, and rejected reward. The loss
curves exhibit stable convergence across both iterations. The reward signals show the expected
separation pattern: chosen rewards consistently increase while rejected rewards decrease. This trend
is observed in both iterations, confirming the effectiveness of the training.
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(a) Qwen-2.5-14B-WildFeedback-DRIFT-iter1

(b) Qwen-2.5-14B-WildFeedback-DRIFT-iter2

Figure 5: The top row shows DRIFT training dynamics for iteration 1 on Qwen2.5-14B-Instruct.
The bottom row shows the training dynamics for iteration 2.
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E MODEL RESPONSES EXAMPLE

Prompt: Using at least two different scientific sources, generate a research paper that
analyzes and compares the form and function of three different types of carnivorous plants,
including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should
include detailed descriptions of the physical characteristics of each plant, as well as an
analysis of their unique adaptations for capturing and digesting prey. In addition, the paper
should explore the evolutionary history and ecological significance of carnivorous plants,
and discuss current research on their use in medicine and biotechnology. The paper should
be written in APA format and include at least 10 peer-reviewed references.

SPIN Representative Response:
Title: Carnivorous Plants: Form, Function, Evolutionary History, and Applications

Introduction:
Carnivorous plants are fascinating organisms that have evolved unique adaptations to capture
and digest prey. These plants are found in nutrient-poor environments where soil lacks
sufficient nitrogen and phosphorus. The three most common types of carnivorous plants are
Venus flytraps (Dionaea muscipula), pitcher plants (Nepenthes spp.), and sundews (Drosera
spp.). This research paper will analyze and compare the form and function of these three
types of carnivorous plants, as well as their evolutionary history and ecological significance.

Physical Characteristics and Adaptations:
Venus flytraps are known for their trap-like leaves that can close rapidly when triggered
by insects. Each leaf has six trigger hairs that, when touched twice within 20 seconds,
cause the trap to close. Once closed, the trap secretes digestive enzymes to break down the
insect. Venus flytraps are native to North Carolina and South Carolina and require specific
environmental conditions, such as high humidity and acidic soil, to thrive.

Pitcher plants are named for their modified leaves that resemble pitchers or cups. These
leaves are covered in nectar and have a slippery surface that makes it difficult for insects to
escape once they enter. Once inside, the insect is digested by enzymes secreted by the plant.
Pitcher plants are found throughout the world, from tropical rainforests to temperate regions,
and come in various shapes and sizes. Nepenthes rafflesiana, also known as the Rafflesia
pitcher plant, is one of the largest pitcher plants, with pitchers up to 30 centimeters tall.

Sundews are named for their sticky glandular hairs that resemble dewdrops. When an insect
lands on the plant, the sticky hairs trap it, and the plant secretes digestive enzymes to break
down the insect. Sundews are found in many parts of the world, including North America,
Europe, and Asia. Drosera capensis, also known as the Cape sundew, is a popular species
used in horticulture due to its attractive appearance and ease of care.

Evolutionary History and Ecological Significance:
The evolutionary history of carnivorous plants is still not fully understood, but it is believed
that they evolved independently multiple times across different plant lineages. Carnivorous
plants likely evolved in nutrient-poor environments as a way to supplement their nutrition
through the capture and digestion of insects.
...

GPT-5 Score: 5/10
Explanation: Covers the basic features of the plants but lacks depth; references are not
standardized (limited to general descriptions rather than APA format); missing an abstract
and overall not well structured as a research paper.

Figure 6: SPIN model response example.
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Prompt: Using at least two different scientific sources, generate a research paper that
analyzes and compares the form and function of three different types of carnivorous plants,
including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should
include detailed descriptions of the physical characteristics of each plant, as well as an
analysis of their unique adaptations for capturing and digesting prey. In addition, the paper
should explore the evolutionary history and ecological significance of carnivorous plants,
and discuss current research on their use in medicine and biotechnology. The paper should
be written in APA format and include at least 10 peer-reviewed references.

IterDPO Representative Response:
Title: Carnivorous Plants: Form, Function, and Evolutionary Significance

Abstract:
Carnivorous plants are fascinating organisms that have evolved unique mechanisms to cap-
ture and digest prey. This paper compares the form and function of three different types of
carnivorous plants: Venus flytraps (Dionaea muscipula), pitcher plants (Nepenthes spp.), and
sundews (Drosera spp.). We also discuss the evolutionary history and ecological significance
of these plants, as well as their potential applications in medicine and biotechnology.

Introduction:
Carnivorous plants are found in nutrient-poor environments where other sources of nitrogen
and phosphorus are scarce. They have evolved specialized trapping mechanisms to obtain
these nutrients from insects and small animals. Venus flytraps, pitcher plants, and sundews
are three examples of carnivorous plants with distinct trapping strategies.

Venus Flytraps:
Venus flytraps are native to North Carolina and South Carolina in the United States. Their
leaves contain trigger hairs that, when touched twice, cause the leaf to snap shut, trapping
the insect inside (Gurevitch et al., 2017). Once trapped, the insect is digested by enzymes
secreted by the plant. Venus flytraps have evolved this mechanism to supplement their
nutrient intake in nutrient-poor soil (Hunt & Raker, 2018).

Pitcher Plants:
Pitcher plants are found in tropical and subtropical regions worldwide. They have evolved a
modified leaf that forms a deep, liquid-filled pitfall trap (Kress & Wurdack, 2006). Insects
are attracted to the nectar produced by the pitcher and fall into the liquid, where they are
digested by enzymes and bacteria. Pitcher plants have evolved this mechanism to obtain
nutrients from a wide range of prey, including ants, flies, and spiders (Rice, 2014).

Sundews:
Sundews are found in temperate and tropical regions worldwide. They have evolved sticky
glands on their leaves that trap insects (Orozco-terWengel & Brodersen, 2015). Once trapped,
the insect is digested by enzymes secreted by the plant. Sundews have evolved this mech-
anism to obtain nutrients from a wide range of prey, including flies, mosquitoes, and ants
(Rice, 2014).
...

GPT-5 Score: 6/10
Explanation: Presents a clearer structure with some academic tone, but the discussion is still
surface-level and misses key elements like applications and conclusion.

Figure 7: IterDPO model response example.
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Prompt: Using at least two different scientific sources, generate a research paper that
analyzes and compares the form and function of three different types of carnivorous plants,
including but not limited to Venus flytraps, pitcher plants, and sundews. The paper should
include detailed descriptions of the physical characteristics of each plant, as well as an
analysis of their unique adaptations for capturing and digesting prey. In addition, the paper
should explore the evolutionary history and ecological significance of carnivorous plants,
and discuss current research on their use in medicine and biotechnology. The paper should
be written in APA format and include at least 10 peer-reviewed references.

DRIFT Representative Response:
**Title: Comparative Analysis of Carnivorous Plant Adaptations: Venus Flytraps, Pitcher
Plants, and Sundews**

**Abstract**
Carnivorous plants have evolved remarkable adaptations to survive in nutrient-poor envi-
ronments by capturing and digesting insects. This paper compares the form and function of
three prominent carnivorous plants: *Dionaea muscipula* (Venus flytrap), *Nepenthes spp.*
(pitcher plants), and *Drosera spp.* (sundews). We analyze their physical characteristics,
trapping mechanisms, and digestive processes. Additionally, we discuss their evolutionary
history, ecological roles, and potential applications in medicine and biotechnology. Our
review synthesizes data from multiple studies to provide a comprehensive understanding of
these fascinating organisms.

**Introduction**
Carnivorous plants are specialized angiosperms that have developed unique strategies to
obtain nutrients from animal prey (Lloyd, 1983). They thrive in nutrient-poor soils, where
traditional photosynthetic pathways alone cannot sustain growth. Three notable examples of
carnivorous plants are the Venus flytrap (*Dionaea muscipula*), pitcher plants (*Nepenthes
spp.*), and sundews (*Drosera spp.*). Each species has distinct morphological features and
physiological mechanisms adapted for prey capture and digestion.

**Venus Flytrap (*Dionaea muscipula*)**
The Venus flytrap is characterized by its hinged leaves with sensitive trigger hairs. When an
insect touches these hairs, the leaf rapidly closes within seconds (Braun & Speck, 2006). The
internal structure includes a complex system of mechanical sensors and hydraulic pressures
that facilitate rapid closure (Lischka et al., 2014).
**Pitcher Plants (*Nepenthes spp.*)**
Pitcher plants possess modified leaves forming a deep, fluid-filled trap. Insects are attracted to
the nectar produced at the pitcher’s entrance and fall into the digestive fluid below (Givnish,
2000). The pitchers contain enzymes and acids that break down the prey (Bramwell &
Chaloner, 1975).
**Sundews (*Drosera spp.*)**
Sundews are covered in sticky glandular hairs that ensnare insects. Once an insect becomes
stuck, the plant secretes digestive enzymes to dissolve the prey (O’Leary et al., 2010).
...

GPT-5 Score: 8/10
Explanation: The format is closer to an academic paper (title, abstract, introduction, sub-
sections) and using markdown format; covers morphology, function, evolution, ecology, and
applications; relatively comprehensive and consistent with a review style.

Figure 8: DRIFT model response example.
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