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ABSTRACT

Antibodies offer several advantages in therapeutic design, including high speci-
ficity to targets, reduced off-target effects, immune system engagement, and the
ability to bind traditionally undruggable proteins. To harness these benefits,
we propose an antibody design method that integrates large language models
(LLMs), preference optimization, diffusion modeling, and molecular dynamics
simulations. Our approach begins by fine-tuning an LLM on complementarity-
determining region (CDR) sequences, generating new CDR sequences, and fold-
ing antibodies with antigen scaffolds. We then apply diffusion models to refine
CDR backbones, followed by inverse folding to generate new amino acid se-
quences. These redesigned antibodies undergo molecular dynamics simulations
to evaluate binding affinity, and preference data is used to iteratively improve the
LLM through direct preference optimization. This method has been applied to
lysozyme, where it produced antibodies with greater predicted binding affinity
than native counterparts. Future directions include extending this approach to
antigens that adopt multiple conformations and experimentally validating the de-
signed antibodies. Ultimately, this framework leverages artificial intelligence and
high-performance computing to accelerate the discovery of clinically relevant an-
tibody candidates.

1 INTRODUCTION

Antibodies are effective therapeutics that offer high specificity and low toxicity, making them ideal
for treating cancer (Kumar et al.,[2024;|Sliwkowski & Mellman, 2013) and autoimmune diseases (Du
et al., 2017 |Lu et al.|[2020). Furthermore, they have a longer half-life compared to small molecules,
enabling extended circulation times and reducing the need for frequent dosing. Moreover, anti-
bodies possess versatile mechanisms of antigen neutralization, including direct binding, blocking
receptor-ligand interactions, and inducing receptor internalization. Finally, they can effectively bind
to otherwise undruggable extracellular receptors on large and complex protein structures. In light
of this non-exhaustive list of advantages, antibodies represent a promising direction for successful
therapeutic design campaigns. Traditionally, antibody design has relied on experimental methods
such as hybridoma technology (KOHLER & MILSTEIN, 1975), phage display (Smith} |1985; [Win-
ter et al., [1994), yeast display (Gai & Wittrup, 2007), and directed evolution (Arnold, |1996}; Wang
et al.| 2021;|Amon et al.| [2020). Informed by experimental validation, these methods while reliable
can be time-consuming, expensive and error-prone, limiting the screening capacity.

The integration of machine learning (ML) relies heavily on high-throughput in-silico validations to
rapidly iterate and refine antibody candidates. Earlier efforts have utilized ML to predict various
molecular and physicochemical properties, serving as faster surrogates to traditional experimen-
tal pipelines. More recently, generative ML techniques such as Generative Adversarial Networks
(GANSs) (Amimeur et al.,2020), Variational Autoencoders (VAEs) (Eguchi et al[2022)), Large Lan-
guage Models (LLMs) (Melnyk et al., 2023} |Barton et al.l 2024} [Zvyagin et al.| 2022), and De-
noising Probabilistic Diffusion Models (He et al.|[2024) have been employed to generate innovative
antibody sequences and structures. While these methods are scalable and cost-effective, integrating
them with sparse experimental data remains a significant challenge. This often results in a bottle-
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Figure 1: Antibody generation workflow Our workflow generates antibodies via a combination
of LLM inference, protein folding, partial diffusion, inverse folding, direct preference optimization
and molecular dynamics simulation.

neck due to the limited resources available for experimentally validating synthetic designs and the
inherent limitations of the models themselves.

In response to existing challenges, we propose a novel, experiment-in-the-loop pipeline that itera-
tively refines a protein language model to enhance antibody design capabilities. Our pipeline op-
timizes antibodies by leveraging direct preference optimization (DPO), a replacement to reinforce-
ment learning. DPO increases the probability of sequences similar to preferred sequences instead
of directly optimizing metrics, improving multi-objective optimization. Recently, DPO has been
applied to miniprotein binder and small molecule optimization; however, these approaches have
not incorporated structural diffusion derived sequences into the preference data (Mistani & Mysore,
2024} [Dharuman et al.| 2024} [Park et al., 2023).

Our pipeline first generates multiple CDR sequences from a protein language model finetuned on
naturally occuring complementarity-determining region (CDR) sequences and grafts these CDRs
into an antibody scaffold of interest. We then predict the antibody-antigen complex 3D structure
and use the structure to initialize partial diffusion and inverse folding of CDR loops. The diffusion
modeling increases sampling of novel CDR loops that may have been missed by the PLM. This is
followed by molecular dynamics simulations of each complex to assess binding affinities. These
simulations serve as preference signals in our direct preference optimization (DPO) loop in which
the PLM is optimized to generate effective designs. This method not only accelerates the antibody
discovery process but also expands the scope of designable antibodies, enabling access to novel
sequences and structures that are difficult to achieve through experimental methods alone. By opti-
mizing the generation of preferred CDRs, our framework embodies a closed-loop discovery process
that significantly enhances the speed and breadth of antibody development.

2 METHODS

This methodology intends to transform an arbitrary antibody to recognize a particular antigen of in-
terest. Our workflow for generating novel antibodies involves six general steps (Fig[I): (1) LLM in-
ference to generate antibody CDR loop sequences, (2) folding model inference to predict a structural
model from antibody heavy/light and antigen sequences, (3) diffusion model inference to generate
new backbone structures, (4) inverse folding to predict new sequences based on backbone structures,
(5) molecular dynamics simulations to evaluate energetics of antibody-antigen interactions, (6) di-
rect preference optimization to increase likelihood of LLM generating favorable antibody CDR loop
sequences.

2.1 LLM INFERENCE TO GENERATE ANTIBODY CDR LOOP SEQUENCES

To generate biologically relevant CDR loop sequences, the GPT-NEOX model that serves as the
basis for GenSLM [Zvyagin et al.| (2022) is finetuned on a dataset of 670 CDRH3 loop sequences
(2015). We divide the dataset into training, validation, and test sets with an 8:1:1 split. Then,
the model is finetuned on the training set with 10 epochs. Following this, the finetuned GPT-NEOX




model can be used to autoregressively generate CDR loop sequences. A max length of 26 and
minimum length of 8 is employed during the generation to approximate the size of a CDRH3 loop.
Each generated CDR loop is then grafted onto a reference antibody FAB sequence.

2.2 FOLDING SEQUENCES

Then, we take the antibody sequence with the newly grafted CDR loop and input this into the folding
module. We used the state-of-the-art model, CHAI-1 for folding the heavy and light chains of the
antibody in complex with the antigen. CHAI-1 has previously shown success on folding antibod-
ies (Escarra-Senmarti et al.,|[2025)); on a subset of 268 interfaces across 129 structures, CHAI-1 out-
performed AF2.3 significantly (DockQ < 0.23). In our method, we ran CHAI-1 inference directly
using embeddings from the ESM model without incorporating full MSAs. It has previously been
shown on antibody benchmarks that when omitting MSAs, similar performance was achieved |Dis-
covery et al.|(2024).

2.3 STRUCTURAL INFERENCE OF NEW CDR LOOPS

Then, we use the CDR fold as a basis for RFDiffusion to generate new CDR backbones|Watson et al.
(2023). RFDiffusion is an addendum to generative LLM which incorporates structural context into
the pipeline. Diffusion is performed only on the CDR loop of interest while keeping the antibody
scaffold and antigen fixed. To condition structural generation, the folded CDR from the previous
step is only partially noised for 10 steps before sampling new backbones.

RFDiffusion is an example of a denoising diffusion probabilistic model which aim to approximate
a distribution by reversing a discrete diffusion process |Watson et al.| (2023). In forward diffusion,
20 is sampled out of the target data distribution P° and noised in 7" steps towards a final 27 € PT
that is not dependent on PY Ho et al.| (2020). Then, the real distribution P is approximated by
the distribution P which is parameterized by a transition kernel p(x'~!|x!) at each timestep, t.
RFDiffusion uses a trained neural network to parameterize each transition kernel. The denoising
process works by (1) sampling 7 from the reference distribution P”, and (2) at each timestep ¢
sampling new 2¢~! from p(x'~!|x?) until reaching 2° ~ P° Ho et al. (2020).

Once new backbones are sampled, we apply inverse folding on the CDR loops using the Protein-
MPNN model Dauparas et al.| (2022)). This model contains two components: (1) an encoder layer
that embeds backbone coordinates via a graph neural network (GNN), and (2) a decoder layer that
conditions generation of sequences on the GNN embeddings. The new CDR loop sequences from
inverse folding are then grafted onto the antibody scaffold sequence and the sequence is folded using
the CHAI-1 model.

2.4 MOLECULAR DYNAMICS SIMULATIONS

To verify stability for the antibody/antigen complex structures, we build and simulate the complexes
in implicit solvent using OpenMM. Each complex is built in the GBn2 solvation model in the AM-
BER forcefield, with solute and solvent dielectrics of 1.0 and 80.0, respectively with a Debye-Huckel
screening parameter of 1.0/nm. Then each complex is energy minimized and simulated in an NVT
ensemble using Langevin dynamics with a temperature of 300K, friction coefficient of 1/ps, and a
timestep of 4 fs. Hydrogen bonds are constrained during the simulations.

2.5 DIRECT PREFERENCE OPTIMIZATION OF CDR LOOPS

Then, we finetune the LLM generating CDR loops using direct preference optimization (DPO) to
improve the binding energetics of generated antibody structures.

To apply DPO, we input a list of preferred and unpreferred CDR sequences according to a met-
ric. Our metric is the energy weighted contacts (W) between the antibody and antigen. A contact is
defined as an antibody residue C., that comes within 8 Aof an antigen residue C.,. We apply a Boltz-
mann weight towards lower energy interactions that typically define the stability of a complex. The
interaction energy is calculated between the antibody and antigen within the same implicit solvent
conditions as during simulation using OpenMM. We determine the energy of the two components



together (E 4 ), the energy of each component individually (E4, Ep), and subtract these terms to
get the interaction energy (E;nt = Eap — (Ea + EB)

With this metric, we divide the CDR loop datasets into preferred and unpreferred according to the
following criteria:
D = {s;|Wi(s:) > Weur}s,es

D™ = {5i|Wi(si) < Weut}s,es,

where DT, D~ C D, and W,,; is the cutoff weighted contact number. Then, we use DT and D~ in
our DPO loop to align the LLM.

DPO simplifies model alignment compared to Proximal Policy Optimization (PPO) methods by not
requiring a trained reward model Rafailov et al.[{(2024). Instead, DPO directly updates the preference
policy directly using preference information. During alignment, the preference policy is optimized
to fit the preference data using a binary cross entropy objective Rafailov et al.| (2024). Although
DPO removes the reward model directly from LLM alignment, an implicit reward function is still
used to define the preference data. Thus, it is essential to choose a sensible metric to divide the
dataset.

First, DPO defines a fixed reference model, ...y and a policy model, 7y that is aligned during DPO.
Both ..y and 7y output tokens with probability (P) given by:

P(at|a<t§ 6) = 7Te(a<t)7
where € is the parameters of 7, a; is the token at position ¢, and a, are all tokens before ¢.

Then m,.y and 7y are given the preferred and unpreferred samples to align the my model. A loss
function is defined incorporating the log-probabilities of the preferred and unpreferred samples after
being input to 7, and mg:

7o (sT|r)

Tref (s7[7)

= Blog I gy

‘CDPO(T(Q;WT'ef) = _E(r,er,s*)N'D[logo'(ﬁ IOg = f(87|7’)

Here, s and s~ define the positive and negative CDR sequences, r is the prompt sequence inputted
into the model (e.g. a single amino acid), and 3 is a scaling factor. For the antibody design problem,
model alignment should promote strong antibody-antigen binding.

3 RESULTS

We apply our workflow to engineer a strong antibody-antigen interface using an antibody-antigen
pair not known to natively bind by only altering the sequence of its CDR loops. The operative
antibody in our experiment is the Broadly Neutralizing Fab PGT122 targeting HIV [Padlan et al.
(1989), which we engineer to target lysozyme, a common enzyme commonly found in secretions.
We benchmark antibody-antigen energetics for our designs to the antibody-lysozyme interface found
in the stable crystal structure (3HFM) |Padlan et al.|(1989). PGT122 is not known to natively target
lysozyme.

We generate 914 CDR sequences using RFDiffusion and 684 sequences from our aligned language
model. We find the CDRs generated by RFDiffusion to be significantly enhanced compared to via
the initial LLM inference (Fig[2JA). LLM inference is biased by the data used to train and finetune
the model; thus, the inferred sequences would carry that inherent bias. Compared to LLMs, the
diffusion/inverse folding models tend to produce structurally and sequentially more diverse outputs,
as they directly sample from a continuous structural space and map back to sequence space as
opposed to using autoregressoin. To understand the impact on optimizing antibody-antigen binding,
we simulate each complex in implicit solvent and calculate the antibody-antigen interaction energy.

We find most generated structures have improved Lennard Jones energy than the 3HFM antibody-
lysozyme complex. The heavy chain CDR3 loop in PGT122 is significantly more extended than
the native lysozyme antibody, increasing accessible surface area and promoting favorable nonpolar
interactions. In contrast, few generated structures improve electrostatic interaction energy between
the antibody and antigen as opposed to the native complex.
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Figure 2: DPO optimizes antibody-antigen binding A) ESM embeddings for LLM, diffusion,
and post-DPO CDR sequences, projected onto 2 t-SNE components. B) Relative frequency of each
amino acid in diffusion-generated (blue) and post-DPO generated CDR sequences (orange). C)
Distribution of electrostatic interaction energies for diffusion generated (blue) and post-DPO (red)
antibody/antigen complexes. Interaction energies calculated in implicit solvent (dielectric constant
= 1.0 and 80.0 for solute and solvent, respectively). Dashed line indicates the energy for the native
lysozyme-antibody complex (PDB ID: 3HFM). D) Snapshot of strong antibody/antigen binding.
Red, blue, and green ball and stick representations indicate acidic, basic, and polar residues, re-
spectively. E) contact map between CDR and antigen residues for diffusion generated (top) and
post-DPO (bottom) simulations (contact: 8 A C-a to C-a distance)

Strikingly, electrostatic energy of structures with post-DPO generated CDR loops have a signifi-
cantly left-shifted distribution indicating favorable electrostatic interactions (Fig [IC). Moreover,
the CDR loops post-DPO show a greater frequency of acidic residues than pre-DPO (Fig [ZE). In
particular an increased frequency of aspartate/glutamate-arginine interactions help stabilize the CDR
loop-antigen interaction. Interestingly, prior to DPO, the contact matrix of CDR and antigen residues
shows more high frequency interactions(Fig[2E) involving serine and glycine for the CDR loop, pos-
sibly due to inherent bias in the inverse folding model (Fig[2]B). While, post-DPO CDR sequences
have fewer overall antigen interactions, each interaction is more energetically favorable. It is impor-
tant to note that while the left tail is larger for the post-DPO distribution vs pre-DPO, the peak is
still at a higher energy than the native complex from 3HFM. In the native 3HFM heavy chain, the
electrostatic interactions are predominantly formed by CDR1 and CDR2. We chose to optimize the
PGT122 CDRS3 since this was the longest segment; however, to improve the energetics signicantly,
it would be beneficial to optimize multiple CDR loops.

4 CONCLUSION

Our distinct approach, integrates DPO, structural diffusion modeling, and molecular simulation to
engineer antibody CDR loops. We demonstrate binding affinity optimization for the Fab PGT122
antibody for a non-native antigen, lysozyme. We find our method is capable of performing opti-
mization in the low data regime ( 1000 samples) using an autoregressive LLM with few parameters
(25 million). The diffusion/inference models operating in structural space allows a larger variety of
generated sequences that should still bind the antigen. The usage of partial diffusion allows us to
condition structure generation on the LLM-generated CDR sequences. Overall, the workflow builds
on the work performed on protein and small molecule

In the future, we would like to extend this workflow beyond antibody-antigen binding optimization.
This includes optimizing developability such as mitigating the risk of low thermal stability or high
aggregability (Raybould et al.|[2019). Additionally, the approach could be generalized to the lead op-
timization platforms for minibinders, small molecules and PROTACS. Ultimately, we would want to
incorporate in vitro and in vivo experiments into the loop to generate validated preferred/unpreferred
pairs for DPO finetuning.

REFERENCES

Tileli Amimeur, Jeremy M. Shaver, Randal R. Ketchem, J. Alex Taylor, Rutilio H. Clark, Josh Smith,
Danielle Van Citters, Christine C. Siska, Pauline Smidt, Megan Sprague, Bruce A. Kerwin, and



Dean Pettit. Designing feature-controlled humanoid antibody discovery libraries using generative
adversarial networks. April 2020. doi: 10.1101/2020.04.12.024844. URL http://dx.doi.
org/10.1101/2020.04.12.024844|

Ron Amon, Ronit Rosenfeld, Shahar Perlmutter, Oliver C. Grant, Sharon Yehuda, Aliza Borenstein-
Katz, Ron Alcalay, Tal Marshanski, Hai Yu, Ron Diskin, Robert J. Woods, Xi Chen, and Vered
Padler-Karavani. Directed evolution of therapeutic antibodies targeting glycosylation in cancer.
Cancers, 12(10):2824, September 2020. ISSN 2072-6694. doi: 10.3390/cancers12102824. URL
http://dx.doi.org/10.3390/cancers12102824.

Frances H. Arnold. Directed evolution: Creating biocatalysts for the future. Chemical Engineering
Science, 51(23):5091-5102, December 1996. ISSN 0009-2509. doi: 10.1016/s0009-2509(96)
00288-6. URL http://dx.doi.org/10.1016/S0009-2509(96)00288-6.

Justin Barton, Aretas Gaspariunas, David A. Yadin, Jorge Dias, Francesca L. Nice, Danielle H.
Minns, Olivia Snudden, Chelsea Povall, Sara Valle Tomas, Harry Dobson, James H. R. Farmery,
Jinwoo Leem, and Jacob D. Galson. A generative foundation model for antibody sequence un-
derstanding. May 2024. doi: 10.1101/2024.05.22.594943. URL http://dx.doi.org/10.
1101/2024.05.22.594943.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning—
based protein sequence design using proteinmpnn. Science, 378(6615):49-56, 2022.

Gautham Dharuman, Kyle Hippe, Alexander Brace, Sam Foreman, Vidind Hatanpéd, Varuni K Sas-
try, Huihuo Zheng, Logan Ward, Servesh Muralidharan, Archit Vasan, et al. Mprot-dpo: Breaking
the exaflops barrier for multimodal protein design workflows with direct preference optimization.
In SC24: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-13. IEEE, 2024.

Chai Discovery, Jacques Boitreaud, Jack Dent, Matthew McPartlon, Joshua Meier, Vinicius Reis,
Alex Rogozhnikov, and Kevin Wu. Chai-1: Decoding the molecular interactions of life. bioRxiv,
pp- 2024-10, 2024.

Fanny Huynh Du, Elizabeth A. Mills, and Yang Mao-Draayer. Next-generation anti-cd20 mono-
clonal antibodies in autoimmune disease treatment. Autoimmunity Highlights, 8(1), November
2017. ISSN 2038-3274. doi: 10.1007/s13317-017-0100-y. URL http://dx.doi.org/10.
1007/s13317-017-0100-vyl

Raphael R. Eguchi, Christian A. Choe, and Po-Ssu Huang. Ig-vae: Generative modeling of protein
structure by direct 3d coordinate generation. PLOS Computational Biology, 18(6):¢1010271,
June 2022. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1010271. URL http://dx.doi.
org/10.1371/journal .pcbi1.1010271L

Marta Escarra-Senmarti, Michael Chungyoun, Dylan Ferris, Jeffrey J Gray, and Felipe Andrade.
Anti-citrullinated protein antibodies arise during affinity maturation of germline antibodies to
carbamylated proteins in rtheumatoid arthritis. bioRxiv, pp. 2025-03, 2025.

S Annie Gai and K Dane Wittrup. Yeast surface display for protein engineering and characterization.
Current Opinion in Structural Biology, 17(4):467—473, August 2007. ISSN 0959-440X. doi: 10.
1016/.sb1.2007.08.012. URL |http://dx.doi.org/10.1016/j.sbi.2007.08.012,

Xin-heng He, Jun-rui Li, James Xu, Hong Shan, Shi-yi Shen, Si-han Gao, and H. Eric Xu. Ai-driven
antibody design with generative diffusion models: current insights and future directions. Acta
Pharmacologica Sinica, September 2024. ISSN 1745-7254. doi: 10.1038/s41401-024-01380-y.
URLhttp://dx.doi.org/10.1038/s41401-024-01380-vy.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

G. KOHLER and C. MILSTEIN. Continuous cultures of fused cells secreting antibody of predefined
specificity. Nature, 256(5517):495-497, August 1975. ISSN 1476-4687. doi: 10.1038/256495a0.
URLhttp://dx.doi.org/10.1038/256495a0.


http://dx.doi.org/10.1101/2020.04.12.024844
http://dx.doi.org/10.1101/2020.04.12.024844
http://dx.doi.org/10.3390/cancers12102824
http://dx.doi.org/10.1016/S0009-2509(96)00288-6
http://dx.doi.org/10.1101/2024.05.22.594943
http://dx.doi.org/10.1101/2024.05.22.594943
http://dx.doi.org/10.1007/s13317-017-0100-y
http://dx.doi.org/10.1007/s13317-017-0100-y
http://dx.doi.org/10.1371/journal.pcbi.1010271
http://dx.doi.org/10.1371/journal.pcbi.1010271
http://dx.doi.org/10.1016/j.sbi.2007.08.012
http://dx.doi.org/10.1038/s41401-024-01380-y
http://dx.doi.org/10.1038/256495a0

Mukesh Kumar, Akansha Jalota, Sushil Kumar Sahu, and Shabirul Haque. Therapeutic antibod-
ies for the prevention and treatment of cancer. Journal of Biomedical Science, 31(1), January
2024. ISSN 1423-0127. doi: 10.1186/s12929-024-00996-w. URL http://dx.doi.org/
10.1186/s12929-024-00996-w.

Ruei-Min Lu, Yu-Chyi Hwang, I-Ju Liu, Chi-Chiu Lee, Han-Zen Tsai, Hsin-Jung Li, and Han-
Chung Wu. Development of therapeutic antibodies for the treatment of diseases. Journal of
Biomedical Science, 27(1), January 2020. ISSN 1423-0127. doi: 10.1186/s12929-019-0592-z.
URLhttp://dx.doi.org/10.1186/s12929-019-0592~-2z,

Igor Melnyk, Vijil Chenthamarakshan, Pin-Yu Chen, Payel Das, Amit Dhurandhar, Inkit Padhi, and
Devleena Das. Reprogramming pretrained language models for antibody sequence infilling, 2023.
URL https://arxiv.org/abs/2210.07144.

Pouria Mistani and Venkatesh Mysore. Preference optimization of protein language models as a
multi-objective binder design paradigm. arXiv preprint arXiv:2403.04187, 2024.

Eduardo A Padlan, Enid W Silverton, Steven Sheriff, Gerson H Cohen, Sandra J Smith-Gill, and
David R Davies. Structure of an antibody-antigen complex: crystal structure of the hyhel-10
fab-lysozyme complex. Proceedings of the National Academy of Sciences, 86(15):5938-5942,
1989.

Ryan Park, Ryan Theisen, Navriti Sahni, Marcel Patek, Anna Cichoniska, and Rayees Rahman.
Preference optimization for molecular language models. arXiv preprint arXiv:2310.12304, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Matthew 1J Raybould, Claire Marks, Konrad Krawczyk, Bruck Taddese, Jaroslaw Nowak, Alan P
Lewis, Alexander Bujotzek, Jiye Shi, and Charlotte M Deane. Five computational developability
guidelines for therapeutic antibody profiling. Proceedings of the National Academy of Sciences,
116(10):4025-4030, 2019.

Mark X. Sliwkowski and Ira Mellman. Antibody therapeutics in cancer. Science, 341(6151):
1192-1198, September 2013. ISSN 1095-9203. doi: 10.1126/science.1241145. URL http:
//dx.doi.org/10.1126/science.1241145!/

George P. Smith. Filamentous fusion phage: Novel expression vectors that display cloned antigens
on the virion surface. Science, 228(4705):1315-1317, June 1985. ISSN 1095-9203. doi: 10.
1126/science.4001944. URL http://dx.doi.org/10.1126/science.4001944.

Randi Vita, James A Overton, Jason A Greenbaum, Julia Ponomarenko, Jason D Clark, Jason R
Cantrell, Daniel K Wheeler, Joseph L Gabbard, Deborah Hix, Alessandro Sette, et al. The immune
epitope database (iedb) 3.0. Nucleic acids research, 43(D1):D405-D412, 2015.

Yajie Wang, Pu Xue, Mingfeng Cao, Tianhao Yu, Stephan T. Lane, and Huimin Zhao. Directed
evolution: Methodologies and applications. Chemical Reviews, 121(20):12384—12444, July
2021. ISSN 1520-6890. doi: 10.1021/acs.chemrev.1c00260. URL http://dx.doi.org/
10.1021/acs.chemrev.1c00260.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E FEise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089-1100, 2023.

Greg Winter, Andrew D. Griffiths, Robert E. Hawkins, and Hennie R. Hoogenboom. Making anti-
bodies by phage display technology. Annual Review of Immunology, 12(1):433-455, April 1994.
ISSN 1545-3278. doi: 10.1146/annurev.iy.12.040194.002245. URL http://dx.doi.org/
10.1146/annurev.1y.12.040194.002245.


http://dx.doi.org/10.1186/s12929-024-00996-w
http://dx.doi.org/10.1186/s12929-024-00996-w
http://dx.doi.org/10.1186/s12929-019-0592-z
https://arxiv.org/abs/2210.07144
http://dx.doi.org/10.1126/science.1241145
http://dx.doi.org/10.1126/science.1241145
http://dx.doi.org/10.1126/science.4001944
http://dx.doi.org/10.1021/acs.chemrev.1c00260
http://dx.doi.org/10.1021/acs.chemrev.1c00260
http://dx.doi.org/10.1146/annurev.iy.12.040194.002245
http://dx.doi.org/10.1146/annurev.iy.12.040194.002245

Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bo-
horquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael
Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot-Sasson, Murali Emani, Sam Foreman,
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vah-
dat, Chaowei Xiao, Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin,
Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, and Arvind Ramanathan. Genslms:
Genome-scale language models reveal sars-cov-2 evolutionary dynamics. October 2022. doi: 10.
1101/2022.10.10.511571. URL http://dx.doi.org/10.1101/2022.10.10.511571.


http://dx.doi.org/10.1101/2022.10.10.511571

	Introduction
	Methods
	LLM inference to generate antibody CDR loop sequences
	Folding sequences
	Structural inference of new CDR loops
	Molecular dynamics simulations
	Direct preference optimization of CDR loops

	Results
	Conclusion

