
Policy-Enhanced Fallback Nodes in Behavior Trees

Andreas Naoum1, and Loizos Michael1,2

Abstract— Robots operating in highly-dynamic environments
are burdened with the task of continuously monitoring and flex-
ibly adapting to their changing surroundings and internal state.
Fallback nodes in Behavior Trees offer a basic means to achieve
this adaptability, by determining a total static ordering over
contingency plans for achieving a goal. Attempting to encode a
more nuanced contextual ordering leads to significantly larger
Behavior Trees, sacrificing their human readability and the ease
of their elaboration. Towards maintaining these two desiderata,
we propose the enhancement of fallback nodes with symbolic
policies that transparently determine, at execution time, the
order in which contingency plans are to be considered according
to the current context. Based on our undertaken user study, we
offer evidence for the benefit of employing such policy-based
Behavior Trees over alternative versions of Behavior Trees.

I. INTRODUCTION

Behaviour Trees (BTs) are becoming popular in robotics
because they offer several benefits for handling dynamic sit-
uations and defining reactive behaviours [1], [2]. Researchers
have been focusing on making BTs adaptable to uncertain
environments, highlighting the potential of robotics in diverse
real-world domains [2]. While robots can often operate
autonomously, there are cases where it is important for their
behavior to be transparent to humans, and even allow them
to intervene. In this context, transparency and explainability
are crucial in developing human-centred robots.

One potential benefit of improving BTs is the increased
ability to effectively address failures in autonomous agents.
Despite significant attempts to enhance the reliability of
autonomous agents, these agents face frequent failures when
operating in dynamic environments. Such failures can pose
risks to the environment, the autonomous agent itself, and
even human safety [3]. Dealing with failures or unexpected
events in BTs can be achieved by incorporating safety guar-
antees and recovery plans into the task. Many approaches
have been developed to guide the agents and resolve failures
in such scenarios with or without human involvement [4],
[5]. However, challenges arise with hard-coded, large and
complex sub-trees for safety and recovery. This emphasizes
the necessity to improve the adaptability and transparency of
BTs, and enabled them to be modified by an external entity.

Building on the need for transparency and explainability,
fallback nodes in BTs often represent critical decision points,
and the capability to communicate the decision-making
process is essential. Moreover, enabling external entities to
coach robots can address misalignment in Human-Robot
Interaction (HRI). This makes interactive machine learning

1CYENS Centre of Excellence, Nicosia, Cyprus
a.naoum@cyens.org.cy

2 Open University of Cyprus, Nicosia, Cyprus loizos@ouc.ac.cy

an appropriate approach for determining the optimal actions
to execute in fallback nodes. Machine Coaching [6], a form
of interactive machine learning, aims to develop AI systems
that are not only explainable but also allow human super-
vision. As the author mentioned, the decision-making for
critical tasks can be retained, compared to machine learning
approaches where this is not an option as these solutions
are based on statistical solutions. The proposed two-step
approach involves acquiring world knowledge through ma-
chine learning and then applying machine coaching to avoid
undesirable inferences, thereby allowing the system to in-
corporate user-specific knowledge while reducing bias from
the training data. Building such an integrated system poses
challenges, primarily in developing a seamless interface that
enables humans to interact with and modify the decision-
making process without extensive technical knowledge.

In addressing these challenges, our research introduces
a novel approach to BT structure aimed at improving key
aspects of HRI. We hypothesize that our proposed approach
will lead to improvements in three main areas: transparency,
adaptability, and trust. Specifically, we anticipate that par-
ticipants will find the decision-making with our approach
to be more transparent and easier to understand compared
to other extensions of BTs. Furthermore, we predict that our
approach will be perceived as user-friendly, making it simple
for users to modify and extend the behavior of the robot.
Lastly, we expect that users will exhibit higher levels of
trust and confidence in the robot’s decisions when using our
proposed BT framework, compared to the other approaches.

II. RELATED WORK

Various extensions have been suggested, emphasizing fall-
back implementation [1], [2]. Initially, approaches suggested
by researchers involve the incorporation of a utility system
into the BT structure. Merrill [7] introduced the concept of
Utility Fallback Node, which integrates a utility calculation
function for each node. The utility fallback node then dynam-
ically sorts its children based on their utility values, thereby
determining the fallback children nodes order.

More sophisticated frameworks to deal with uncertainty
lead to other solutions. Stochastic BTs [8] also use a utility
system and rely on the acquired experience, as they require
training and taking into account the success probabilities
associated with each child node based on Hidden Markov
Models (HMM). These models are utilized to handle noisy
observations and estimate state transition probabilities within
the BT. By running Monte Carlo simulations, the authors
verified analytical results about Stochastic BTs for complex
robotic tasks. Additionally, a hybrid combination of active



inference and BTs has been suggested in dealing with uncer-
tainty and reduce the number of nodes [9]. They introduced
a new type of leaf node that specifies the desired state, while
the action planning is carried out using active inference.
Their findings demonstrate an improved runtime adaptability.
These frameworks illustrate that probabilistic solutions could
be advantageous for complex robotic tasks.

The need to influence human behavior without causing
unintended consequences has led to proposed solutions that
allow for human guidance [1]. Two concepts, styles [10]
and hints [11], have been suggested to temporarily modify
the priorities of the BTs. The concept of styles involves the
selective disabling of a subset of the BT, offering a flexible
approach to modify the tree’s behavior temporarily. On the
other hand, the hints concept focuses on the reorganization of
sub-trees based on external cues. By incorporating hints from
an external entity, this approach enables adaptive adjustments
to the BT, enhancing its responsiveness to changing condi-
tions and requirements. These solutions may be advantageous
for integrating human guidance into robotic systems.

In addition to BT extensions, it is essential for seamless
HRI that humans have a clear understanding of the robot’s
behavior, including its intentions, objectives, capabilities,
and decision-making process. Olivia et al. [12] proposed
that one effective way to communicate robot policies is by
demonstrating examples of robot behaviors. They conducted
a user study in which they presented examples of robot
behaviors in various situations to end users, categorized as
exploratory and critical states. The results indicated that end-
users were able to comprehend the robot’s policies, assess its
trustworthiness, and consequently establish trust in the robot
if it was considered trustworthy.

Our proposed solution aims to achieve a balance between
these two directions, the necessary runtime adaptability based
on the environment and the adaptability required by incor-
porating human guidelines and preferences, while providing
a mental model for the robot’s decision-making process.

III. BACKGROUND

A. Background on BTs

BTs are used to design and execute complex behaviors for
autonomous systems. BTs are easy to visually comprehend
and simple to design, and they offer modularity, scalability,
and reusability. A BT consists of key components, such as
control flow nodes, Sequence, Fallback), with the possibility
of having children, and execution nodes, Condition and
Action. The root of the BT initiates the execution process
by periodically sending signals to its children. When a node
in the BT is activated, it reports back to the parent with a
status of running if its execution is ongoing, success if it has
attained its objective, or failure otherwise [1].

Focusing on the fallback node, it is important to highlight
some observations based on commonly used design practices.
When condition nodes are integrated among the children
of the fallback node, the action nodes essentially represent
alternative actions that yield the same outcome [1], [9]. In a
classical BT, the determination of the next child is based

on the design choices made. However, this structure has
a significant limitation, as Merill has highlighted [7], the
fixed priorities within the children of fallback nodes. No-
tably, the optimal action may differ from the predetermined
design depending on the circumstances and state of the
environment. Addressing this constraint requires prompting
a shift towards a paradigm that accommodates dynamic
considerations within the BT structure.

B. Background on Prudens
Prudens [13] is a declarative programming language,

linked to an efficient provable deduction process and is
interpreted under an argumentative semantics. As Prudens
is based on argumentation, it enables the creation of systems
capable of explaining their decisions by providing the inter-
nal arguments that led to a conclusion. Moreover, its authors
designed the language to be compatible with the knowl-
edge acquisition process of machine coaching, a proven
and efficient human-in-the-loop machine learning approach.
Prudens empowered cognitive assistants for personalising the
user experience as well to promoting user understanding,
and therefore, building more trust towards the system. The
user-friendly ecosystem of a cognitive assistant demonstrated
how machine coaching can be integrated into real-world
applications and holds promise for empowering cognitive
robots as well.

IV. METHODOLOGY

Our strategy revolves around enhancing the fallback node
within the BT structure. To empower the agent’s capacity
for reasoning, we integrate prudens, and give the system a
symbolic presentation of its environment and capabilities.
Through the context and policy, the agent engages in log-
ical deduction to prioritize child nodes over their siblings.
Subsequently, we adapt the fallback node implementation to
incorporate this reasoning framework.

A. Reasoning System
In order to provide the system with a symbolic representa-

tion of its environment and abilities, we have established the
context and the policy. The context consists of a set of fluents
that capture observable aspects of the agent’s status and
environment. For instance, fluents could denote the presence
of an object in a room, its attributes, the state of a gripper
(whether it is open or closed), or any other dynamic property.
The current context serve as the input for decision-making,
providing real-time information about the environment and
the system’s state. The policy is composed of rules that guide
the decision-making process of the fallback node.

The reasoning system infers constraints for the ordering,
represented as before(childX, childY), which denotes the
prioritisation of child X over child Y. Alternatively, for a list
of pairs of indeterminate size, the notation order([(childX,
childY), ...]) is used to specify the prioritisation of multiple
children over others. This design choice was made for
adaptability in dynamic environments where priorities can
shift rapidly. It enables the updating of the priority schema
with minimal disruptions to the overall system functionality.



Fig. 1: MiniGrid Environment and Solutions

B. Fallback Node Modification

The current implementation of the fallback node’s Tick
function iterates through its children based on a predefined
order. To enhance the existing implementation, we used the
Pytrees library [14] to extend the fallback node’s tick func-
tion. Instead of following the predefined order, the overridden
tick function dynamically decides the prioritized order and
subsequently ticks the children in the determined order.

This extension allows the fallback node to iterate through
its children according to constraints inferred by the policy.
The overridden function guarantees that if the inferences
include a constraint such as before(childX, childY), then child
X will be ordered before child Y. However, the remaining
children are not strictly ordered unless specified. It is also
possible to enforce multiple constraints for complex and
precise control over the order in which children are ticked.
For example, consider the constraint order([(childX, childY),
(childX, childZ)]) where it is prioritised the child X over the
children Y and Z. Importantly, there is the opportunity to
make the order of execution to only change if the fallback
node returns either SUCCESS or FAILURE, ensuring that the
order remains constant during the execution of a child in the
RUNNING state. This design choice can prevent disruption
to a child that is currently executing.

C. Integrating User Advice

Our solution not only addressed ordering constraints, but
also enabled easy extension and modification. This flexibility
allows for adding or removing rules within the policy,
enabling external entities to interact with the agent and adjust
its behavior. Presently, our proof-of-concept demonstration
includes the functionality to add, remove, or modify rules.

By employing natural language for communication, the
robot could explain the policy for a specific scenario and pro-
vide clear and comprehensible explanations of its decision-
making process. Additionally, the robot could be queried
about its actions in particular cases, which allows for preemp-
tive adjustments and refinements. Human advice or feedback
could then be seamlessly integrated into the system to ensure
that the agent’s behavior aligns with human expectations.

This bidirectional communication channel can lead to a more
human-centered approach to robotics.

V. EVALUATION

A. Empirical Design

For our experimental setup, we developed a custom Min-
igrid environment of an empty room with moving obstacles.
The obstacles different by their color and every obstacle
based on the color has a different probability to move in
the next moment. The goal of the agent was to reach the
target goal square, marked as green, without colliding with
any obstacle and minimize the steps.

TABLE I: Performance of Each Solution

Type No. Nodes Avg. Steps
Classical BT 28 36,7

Utility-Based BT 8 37,3
Policy-Based BT 7 37,0

We developed three different solutions based on (1) clas-
sical BT, (2) BT with utility-based fallback nodes, and (3)
our proposed solution (see Figure 1). We aimed to ensure a
fair comparison among the solutions, as we were interested in
the design process and the perception of the system builders.
To validate this, we assessed the performance of the three
solutions based on the average number of steps required
to reach the goal in ten randomly generated scenarios in
a 20×20 minigrid environment. All three solutions yielded
comparable results, making them equally viable, as detailed
in Table I.

The first solution was implemented using a classical BT.
Due to the limitations of this method in adapting based on the
status and environment, we decided to adopt a fixed strategy
for the agent’s actions. In this strategy, the agent turns when
facing blue or red obstacles, randomly chooses to turn or wait
when facing yellow obstacles, and waits when facing green
obstacles. These decisions were based on the probabilities of
movement for each type of obstacle: blue and red obstacles
have a low probability of moving, yellow obstacles have a
medium probability of moving, and green obstacles have a
high probability of moving.



The second solution was implemented using a BT with
utility-based fallback nodes. The fallback nodes as safety
guarantees of obstacle avoidance in the classical BT have
been replaced by one utility-based fallback node.

Let a be the set of possible actions {wait, move left, move
right}. We wish to find the action a∗ that maximizes the
utility function U . This can be formally expressed as:

a∗ = arg max
a∈{wait,move left,move right}

U(s,a,c)

The utility function calculates the utility for each action:

U(s,a,c) =


Pmoving(c)

D(s) if a is wait
1−Pmoving(c)

D(s) if a is move left/ right

where Pmoving(c) represents the probability that an obstacle
of color c will move in the next moment, and D(s) is the
Manhattan distance from the agent’s current position to the
target goal square.

In this formulation, the utility for the wait action is
proportional to the probability that the obstacle will move,
making waiting more advantageous when obstacles are likely
to move. Conversely, the utility for the move left and move
right actions is inversely proportional to the probability that
the obstacle will move. This means that moving left or right
is more advantageous when obstacles are less likely to move.

TABLE II: Policy for Fallback Node - MiniGrid Agent

Rule
1 probableMove(obs color) implies shouldWait
2 -probableMove(obs color) implies -shouldWait
3 closer(left), -shouldWait implies moveLeft
4 closer(right), -shouldWait implies moveRight
5 shouldWait implies

order([(wait, left), (wait, right)])
6 moveLeft implies

order([(left, wait), (left, right)])
7 moveRight implies

order([(right, left), (right, wait)])

The third solution was implemented using the policy-
based approach, which takes into account the probability of
obstacles moving and the Manhattan distance to the target
goal. The rules are structured to ensure that waiting is more
advantageous when obstacles are more likely to move, and
turning is prioritized based on the shortest distance to the
goal. The rules have been formulated as shown in Table II.

TABLE III: Modification of the Policy

Rule
1 obstacle(blue) implies shouldWait
2 obstacle(red) implies shouldWait
3 obstacle(yellow) implies shouldWait
4 obstacle(green) implies -shouldWait

For demonstrating the ability to modify the behavior, we
changed the policy by removing the first and second rule
from the initial policy, and we add the rules that guide the
agent to wait when faced every obstacle expect the green
one. The new rules are shown in Table III.

B. Participants and Procedure

We demonstrated the solutions to 8 people and asked them
to fill the questionnaire. Our main criterion was that the
participants should had prior experience in robotics by either
education or experience. We presented each solution with
a live demo and follow-up questions. After the demonstra-
tion, participants answered comparison questions. Finally, we
modified and extended the action policy in the demo of our
proposed solution to showcase the potential of interacting
with the action policy.

VI. RESULTS

The results of the user study, shown in Figure 2, provide
valuable insights into transparency, adaptiveness, and trust
for our system, validating our design choices and highlight-
ing areas for further development.

Firstly, a majority of the participants highlighted the
critical importance of adaptiveness to the fallback node and
the incorporation of user feedback in improving the BT
structure. Our questionnaire revealed that our approach is
perceived as more transparent and explainable compared
to the utility-based approach. Specifically, it is perceived
easier to predict behavior, identify unexpected situations, and
understand and modify the decision-making process. In the
general comparison, our data shows that utility-based and
policy-based approaches are considered adaptable. Both are
preferred for adaptability to changes in the environment and
for handling unexpected situations. All participants believe
that the policy-based approach is more adaptable to changes
in requirements. Notably, the classical BT was not chosen
for any of the questions. Regarding potential user interaction
with policy, participants believe that it is important for
the robot to communicate the action policy and that even
non-experts could potentially assist in the decision-making
process. The ability of the agent to explain the action policy
and for humans to modify it is seen to positively affect their
trust towards the system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced policy-enhanced fallback
nodes for BTs. We have presented a framework which mod-
ified the current fallback’s node implementation, and utilise
Prudens for the symbolic presentation and the inference of
the partial ordering. The proposed solution was evaluated
and compared with the classical and the utility approach.
Results have shown that the proposed solution shows promise
in be adopted and guides towards a transparent framework
for decision-making in BT without sacrificing effectiveness
and efficiency.

For future work, we aim to focus on two possible di-
rections. First, we will develop a framework for humans to
understand, modify, and extend action policies in HRI sce-
narios. Second, we will compare trained action policies with
probabilistic solutions, such as stochastic BTs, to evaluate
the benefits of each approach.



(a) (b) (c)

(d) (e) (f)

Fig. 2: User Study Results

ACKNOWLEDGMENT

The authors would like to thank Vassilis Vassiliades for
his feedback on this work.

This work was supported by funding from the EU’s
Horizon 2020 Research and Innovation Programme under
grant agreement no. 739578, and from the Government of
the Republic of Cyprus through the Deputy Ministry of
Research, Innovation, and Digital Policy.

REFERENCES

[1] M. Colledanchise and P. Ögren, “Behavior Trees in Robotics and AI:
An Introduction,” CoRR, vol. abs/1709.00084, 2017.

[2] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A Survey
of Behavior Trees in Robotics and AI,” CoRR, vol. abs/2005.05842,
2020.

[3] B. Dhillon, Robot system reliability and safety. Boca Raton, FL:
CRC Press, 4 2015.

[4] R. Wu, S. Kortik, and C. H. Santos, “Automated Behavior Tree
Error Recovery Framework for Robotic Systems,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 6898–6904.

[5] S. Honig and T. Oron-Gilad, “Understanding and Resolving Failures
in Human-Robot Interaction: Literature Review and Model Develop-
ment,” Frontiers in Psychology, vol. 9, 2018.

[6] L. Michael, “Machine Coaching,” in IJCAI 2019 Workshop on Ex-
plainable Artificial Intelligence, vol. Conference Proceedings, Macau,
China, 2019, pp. 80–86.

[7] B. Merrill, “Building Utility Decisions into Your Existing Behavior
Tree,” Game AI Pro 360, 2019.

[8] M. Colledanchise, A. Marzinotto, and P. Ögren, “Performance analysis
of stochastic behavior trees,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 3265–3272.

[9] C. Pezzato, C. H. Corbato, and M. Wisse, “Active Inference and Be-
havior Trees for Reactive Action Planning and Execution in Robotics,”
CoRR, vol. abs/2011.09756, 2020.

[10] D. Isla, “GDC 2005 Proceeding: Handling Complexity in the Halo 2
AI,” Mar 2005.

[11] S. Ocio Barriales, “Adapting AI Behaviors To Players in Driver San
Francisco: Hinted-Execution Behavior Trees,” 07 2012.

[12] O. Watkins, S. Huang, J. Frost, K. Bhatia, E. Weiner, P. Abbeel,
T. Darrell, B. Plummer, K. Saenko, and A. Dragan, “Explaining robot
policies,” Applied AI Letters, vol. 2, no. 4, p. e52, 2021.

[13] V. T. Markos and L. Michael, “Prudens: An argumentation-based lan-
guage for cognitive assistants,” in Proceedings of the 6th International
Joint Conference on Rules and Reasoning (RuleML+RR’22). Berlin,
Germany: Springer, 12 2022, pp. 296–304.

[14] D. Stonier et al., “Python Implementation of Behaviour Trees.”
https://github.com/splintered-reality/py trees, 2024.


