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Abstract

Large Language Models (LLMs) have gained
significant attention in on-device applications
due to their remarkable performance across
real-world tasks. However, on-device LLMs
often suffer from suboptimal performance
due to hardware limitations. A promis-
ing solution to this challenge is cascad-
ing a weaker local (on-device) LLM with
a more powerful server LLM. While exist-
ing research on LLM cascade primarily op-
timizes the performance-cost trade-off, real-
world applications impose additional require-
ments, such as privacy preservation, which re-
main largely unaddressed. In this work, we
move beyond existing confidence- and logit-
based LLM cascade methods and propose
P3Defer, a novel Chain-of-Thought (CoT)-
enhanced policy learning framework for
privacy-preserved deferral decision-making.
Our approach effectively improves cascade ef-
ficiency while mitigating privacy risks. Exten-
sive experiments on three benchmark datasets
demonstrate the effectiveness and superiority
of P3Defer over existing methods.

1 Introduction

As Large Language Models (LLMs) continue to evolve
rapidly (Touvron et al., 2023; Achiam et al., 2023; Reid
et al., 2024), they are increasingly being integrated into
real-world applications, enhancing the intelligence of
a wide range of systems. At the same time, mobile
devices have become indispensable in everyday life.
The emergence of on-device intelligence—such as Ap-
ple Intelligence (Gunter et al., 2024) and Gemini Live
(Reid et al., 2024)—which embeds LLMs directly into
devices for more personalized and intelligent user in-
teractions, is gaining traction but remains relatively un-
derexplored (Xu et al., 2024). A major challenge in this
area is the hardware limitations of mobile devices, in-
cluding constraints on compute power, battery life, and
storage capacity. As a result, only smaller LLMs, such
as Gemma-2B (Team et al., 2024), can be deployed
on these devices, leading to trade-offs in performance
compared to larger, more powerful models like Gem-
ini. This raises a critical question for the research com-

munity: how can we optimize on-device intelligence
given these size constraints? The LLM cascade system
presents a solution for this challenge.

In an LLM cascade system, a query is usually first
processed by a smaller, weaker local (on-device) LLM
and is only escalated to a larger, stronger server LLM
if the local model’s output is deemed insufficient by a
deferral module, as shown in Figure 1. This paradigm
has garnered significant attention recently (Chen et al.,
2023a; Gupta et al., 2024; Yue et al., 2023; Wang
et al., 2024). As larger LLMs are often substantially
more expensive than their smaller counterparts (e.g.,
Gemini-1.5 Pro (Reid et al., 2024) costs up to 35 times
more than Gemini-Flash'), most existing LLM cascade
works focused on the exploration of optimal trade-offs
between cost and performance. However, real-world
applications can be more complicated and requires the
cascade system to make deferral decisions beyond just
performance-cost consideration. For instance, privacy
concerns may arise if personal data is routed to the
server LLM where decisions are made based solely on
the local answer’s quality, as illustrated in Figure 1.
Unfortunately, rare studies have explored the privacy-
preserved LLM cascade system where to the best of our
knowledge, only Hartmann et al. (2024) makes an at-
tempt in this regards. In this study, we move beyond ex-
isting cascade system to make a pioneer step for includ-
ing privacy concerns into the deferral decision making.

One key focus of LLM cascade research is the de-
sign of deferral criteria, which determine whether a
query needs to be routed to the server model. Exist-
ing study on this can be divied into two paradigms:
confidence-based and logit-based methods (Please re-
fer to Appendix D for more details if readers are not fa-
miliar with deferral decision making in LLM cascade.).
Ideally, the deferral criteria should identify queries that
the local LLM is unlikely to handle effectively, sending
them to the server to significantly improve performance
while keeping costs manageable. Conversely, sending
queries that the local LLM can address with high qual-
ity to the server can result in unnecessary costs. In-
tuitively, model confidence could serve as a good in-
dicator, with queries routed to the server when the lo-
cal model is not confident with its response. For in-
stance, Zhu et al. (2024) explored a self-critique strat-
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Figure 1: On the left is the existing LLM cascade, where the deferral module makes decisions solely based on
the quality of the local answer, potentially leading to privacy leakage. On the right is the privacy-preserved LLM
cascade, where deferral decisions are more aligned with the needs of real-world applications.

egy to leverage the local model’s intelligence to pro-
duce a confidence level in terms of the local answer and
make decisions based on the confidence level. How-
ever, Jitkrittum et al. (2024) noticed the weakness of
confidence-based deferral rule in cases where distribu-
tion shifts occur between the training and test datasets.
Logit-based methods step further by using the gener-
ated token logits of the local answer as features to make
deferral decisions. For example, Gupta et al. (2024)
found the length bias and token uncertainty problems
in cascading by relying on the mean logits and pro-
posed to leverage quantile logits as features to miti-
gate this problem. Additionally, Wang et al. (2024)
introduced cascade-aware training, which incorporates
both the local and server LLM’s logits into the loss
function during local model training, helping the lo-
cal LLM become more aware of which queries should
be deferred to the server. Unfortunately, none of these
works explored deferral decision making with respects
to privacy concerns which aligns more with real-world
needs. Moreover, both confidence-based and logit-
based methods are by nature not feasible for including
privacy considerations since logits and confidence can
only reflect generation quality. To address this gap, we
propose incorporating a policy learning strategy into
the LLM cascade system. Instead of using a thresh-
old for deferral decision making, we propose to train
an agent that can make actions based on cascade needs.
Moreover, Chain-of-Though (CoT) has been proven ef-
ficient in both training and training-free methods(Wu
et al., 2024; Yan et al., 2023). Taking advantages, we
propose a novel CoT-enhanced policy learning frame-
work coupled with a private memory for better privacy-
preserved deferral decision making (P3Defer). Dif-
ferent from logit-based or confidence-based methods,
our P3Defer leverages an agent to make deferral de-
cisions (actions) based on the cascde system needs (en-
vironment). This paradigm enable our method to im-
prove the LLM cascade performance while mitigate the
privacy leakage problem. In tandem, the contributions
of this study are three-fold:

e We extend the current focus of LLM cascading be-
yond the traditional cost-performance trade-off to in-
clude privacy considerations, better aligning with the

needs of real-world applications.

o We reformulate the LLM cascade task and inno-
vatively incorporate a CoT-enhanced policy learning
strategy coupled with a private objective to perform
privacy-preserved deferral decision making, which pro-
vides a fresh perspective to the community.

e Extensive experiments on three benchmarks have
validated the efficiency and superiority of proposed
P3Defer, witnessing improvements in LLM cascade
performance while mitigating the privacy leakage?.

2 Methodology
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Figure 2: Overview of the proposed P3Defer frame-
work. Given a user query z, the local model ®(L) gen-
erates a response y~. The agent A decides among three
actions based on the state s;: (1) return y~, (2) defer to
the server model ®(S) for response y~, or (3) mask
private tokens via private memory. The agent is trained
via reinforcement learning, where the reward function
‘R evaluates response quality and privacy, and the critic
function C assesses long-term decision-making.

2.1 Preliminary Formulation
Before proceeding, we will first present the prelimi-
nary concepts and formulations. Assuming we have
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Algorithm 1 P3Defer

Require: ®(L), ®(S), D(A,R,C,S), D, M

1: Initialize policy network mp, value function V,

and experience buffer B

2: for each training iteration do

3:  for each query x ~ D do

4 Generate local prediction y© = ®(L)(x)

5: Encode state s; = [e}, €]
6: Sample action a; ~ (s, z, y*)
7
8
9

if a; = a, then
Set final response y = y*
: Compute reward 7; using formula 2
10: else if a; = a> then

11: Query server LLM: y° = ®(S)(x)
12: Set final response y = y°

13: Compute reward 7; using formula 2
14: else if a; = a3 then

15: Mask sensitive tokens in = via M
16: Generate modified query z’

17: Query server LLM: y¥ = ®(S)(2')
18: Set final response y = y°

19: Compute reward 7; using formula 2
20: end if

21: Store (s, at,r¢) in buffer B

22:  end for

23:  Policy Update:

24:  Compute advantage A, = Q™ (s;, a;) — V™ (sy)
25:  Update policy 0 < 6 + nVyE[A, log mg(as|s;)]
26: end for

an LLM cascade system consists of a local on-device
LLM (L) (smaller and weaker), a server LLM ®(.5)
(larger and stronger) and a deferral module D(-). When
auser sends a query x to ®(L) and the local model gen-
erates an initial answer y”, the deferral module D(-)
needs to determines whether it is necessary to invoke
®(.9) for the final response back to user.

Typically, existing methods use either the logit distribu-
tion of y” or prompting ®(L) to do the deferral deci-
sion making(Wang et al., 2024; Zhu et al., 2024). That
is say if D(-) accepts y”, it becomes the final answer y
returned to the user. If rejected, the query « is routed to
®(S), and the server-generated answer y° serves as the
final response y. However, these attempts are limited
in incorporating real-world requirements into consider-
ations due to the nature that their deferral modules are
fixed and only make decisions based on confidence or
logits®. To step further, we move beyond and reformu-
late the deferral module into a trainable agent so that
more considerations such as privacy can be added into
deferral decision making.

In details, we can represent the deferral module by a
tuple D(A, R,C, S, x,y") where A is the action space
containing the actions that the deferral agent can take;
R and C are the reward function and critic function,

3Please refer to appendix B and D to check detailed ex-
planations and preliminary results of existing methods.

respectively; S denotes the set of environment states.
A policy network 7y : (S,z,y*) — P(A) maps
the user query, local LLM’s response and environment
to a probability distribution over actions. A histori-
cal experience buffer O = (oo, ..., 0¢, ..., 0n ) records
the past observations where o; = [(s¢, 7, y"), as] is
the (user query, local LLM’s response, environment)-
action pair and s; € S is the environment state at time
t. Inspired by the success of PPO (Schulman et al.,
2017), we not only use the a reward function to eval-
uate current selected action but also leverage a critic
function to estimate the cumulative value of historical
action selections. Specifically, R can be denoted as
R:(SxA) — RandCis Q(st,ar) — V(st), where
Q(s, a) is the action-state value function and V' (s) is
the state value function. r; = R(s, a;) can represent
the reward received at time ¢t. We’ll further elaborate
how these functions are used within P3Defer in the
following sections. Our objective in this study is to
learn the policy my from given training dataset D to en-
able A being aware of both performance-cost and pri-
vacy concerns:

(D

maxE .
T

where 7 denotes a trajectory of state-action pairs.

2.2 P3Defer

Unlike existing methods where the deferral module is
fixed and only makes decisions based on logits distri-
bution or model’s confidence level. The deferral mod-
ule D(-) in P3Defer is formulated as a reinforcement
learning agent that selects among three actions: re-
turning the local model’s output y”, requesting a re-
sponse from the server LLM y°, or masking private
tokens before making a deferral decision. The mod-
ule operates within an environment defined by the tuple
D(A,R,C,S,z,y") which contains:

Action Space (A). The available actions include:

* a;: accept y* and set final response y = y”
s ay: defer x to ®(S) and let final response y = y°.

* a3: apply privacy masking using private mem-
ory M on z and routing the privacy masked z’
to ®(.5), final response y = &(S)(z').

State Space (S). There are four environment states:
*  contains privacy concerns, " is good.
«  does not contain privacy concerns, y” is good.
*  contains privacy concerns, y” is bad.
« x does not contains privacy concerns, y” is bad.

Each state s; = [el,ef] consists of privacy- and

quality-related embeddings capturing the four possible
states above based on the given input query = and the



local llm’s response .
Reward Function (R). The reward function optimizes
both response quality and privacy compliance:

Ry =Py, §) + AP (x) (@)

where P?(y, ) measures the generation quality of fi-
nal response y with respect to the golden responses ¢,
PP (x) represents the identification of privacy leakage
and A is a scaling factor. P4 and PP are both in the
form of entropy calculation as referred in Table 5
Critic Function (C). The critic model evaluates the ex-
pected return for different actions and guides the policy
updates accordingly.

T

Z ’Yt/_th'

t'=t

VT (St) =En (3)

where v € [0, 1] is the discount factor, controlling the
importance of future rewards; 7' is the trajectory length;
R, is the immediate reward as defined in your equation.
The expectation is taken over all possible trajectories
following policy 7y (als).

Additionally, the state-action value function (Q-
function) is:

Qﬂ(stu at) = ETK‘

T
Z’Yt 'Ry | st at‘| “)

t'=t

which evaluates the expected reward after taking action
a; 1n state s;.

Using the policy gradient framework, the policy net-
work 7y (als) updates its parameters 6 by maximizing
the following objective:

T

Z Vologmo(as | s¢,x, Z/L)At
t=0

Vod(mg) = Errn,

®
where A; = Q™ (s¢, ar) — Vi (s¢) is the advantage func-
tion.

2.3 Local LLM Training

The local LLM ®(L) is trained using two key tech-
niques: (1) CoT-enhanced instruction tuning and (2)
knowledge distillation from the server LLM ®(.5)
when deferral occurs.

CoT-enhanced Instruction Tuning To improve rea-
soning capabilities, we fine-tune the local LLM using
a dataset of instruction-response pairs enhanced with
chain-of-thought (CoT) reasoning. In this paper, we
mainly use the zero-shot CoT prompting to formulate
our instructions as can be seen in appendix A. Given an
instruction x and the corresponding target response ¥,
the loss function is defined as:

Liny = — Y _1og Por) (it | #,9<1).  (6)
t

This objective encourages the model to generate re-
sponses aligned with human-annotated outputs while
incorporating reasoning steps.

Knowledge Distillation from Server LLM When
the server LLM ®(.5) is invoked due to deferral, the
local LLM learns from the distilled server responses
y°. The knowledge distillation loss minimizes the di-
vergence between the local and server predictions:

Lxp =Y Dk (P<1><S) (i | 2,920) || Pacy(ys | %yit)) ;

t
@)
where Dy is the Kullback-Leibler divergence. This
loss ensures that the local model mimics the server
model’s outputs when necessary.
Training Objective The overall training objective
combines the two losses:

L = Linst + AxpLKD, ®)

where Agp controls the influence of knowledge dis-
tillation. This framework enables the local LLM to
improve its reasoning and generalization capabilities
while reducing reliance on the server.

2.4 Private Memory M

Unlike previous work (Hartmann et al., 2024), which
relies on the local LLM to identify and rewrite pri-
vate tokens, this approach carries the risk of altering
the original meaning of the given query during the
rewriting process. To address this issue, we introduce
an innovative private memory M that pre-stores pri-
vate tokens extracted from a large corpus (Zhang et al.,
2024a). When a private query is encountered, the pri-
vate memory efficiently identifies and masks private to-
kens without modifying the original meaning.

The memory is structured as a dynamic, growing list,
where private tokens are detected by measuring the
Levenshtein distance of each token. Once identified,
replacing private tokens with similar alternatives helps
mitigate privacy leakage while preserving the original
intent of the query, thereby ensuring the quality of the
final response. M supports add, delete etc. operations.

2.5 Inference
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Figure 3: Inference process of the proposed framework.
The Deferral Agent determines whether to return the
local response, defer to the server LLM, or apply pri-
vacy masking based on the input query.

During inference, the user query x is first processed
by the local LLM ®(L), generating an initial response
yY. The Deferral Agent A then decides among three



actions based on the query context: Use local response:
If the local LLM’s response is deemed sufficient, it
is returned as the final answer; Defer to server LLM:
If the query is too complex or uncertain and presents
no privacy concerns, the agent queries the server LLM
®(.S), which provides a refined response y®; Mask pri-
vate tokens: If sensitive information is detected, the
agent applies a privacy-preserving mechanism using
the Private Memory module before passing the mod-
ified query to the server. The agent optimally selects
actions to balance response quality and privacy, ensur-
ing reliable and secure query resolution.

3 Experimental Settings
3.1 Datasets

To validate the effectiveness of P3Defer, we opt for
three benchmarks with privacy concerns that cover
daily scenarios in on-device intelligence application to
test our methods as below, more statistics can be seen
in appendix C.4 and Table 5.

GSMB8K(Cobbe et al., 2021) is a graduate stu-
dent mathematical dataset consisting of mathemati-
cal questions and corresponding solutions, of which
some questions contain personal information for pri-
vacy study(Hartmann et al., 2024).

MedSum(Zekaoui et al., 2023) is a medical related
dataset with a focus on summarizing the customer
health question. The dataset contains customer health
questions and corresponding summaries which con-
tains personal healthcare information.

EmailSum(Zhang et al., 2021) is a sequence-to-
sequence email summarization dataset consisting of
daily email thread and corresponding summary. The
summary types are available in long-summary and
short-summary, we use short-summary in this study.

3.2 Tasks, Metrics & Baselines

We evaluate our proposed P3Defer on three com-
monly used daily tasks: mathematical QA, medical
inquiry summarization, and email summarization,
as indicated in Table 5. We also incorporate the met-
ric of privacy leakage (Hartmann et al., 2024), which
calculates the average number of privacy tokens leaked
when sending queries to the server LLM (Check more
details in appendix C.4).

To the best our knowledge, rare study has been made
in privacy-preserved LLM cascade except Hartmann
et al. (2024) leverages in-context learning for query
rewritten to mitigate privacy leakage problem. Thus,
we first compare our P3Defer with existing logit-
based (Wang et al., 2024; Jitkrittum et al., 2024) and
confidence-based (Zhu et al., 2024) cascade meth-
ods. For logit-based methods, we are using Instruction
Tuning (IT) and Loss Tuning (LT); for confidence-
based method, we are using Few-shot In-context
Learning (Few-shot ICL), detailed implementation
can be seen in appendix D. Further, we compare our
P3Defer with other policy learning methods that

close to our work: TREACLE(Zhang et al.). Next, we
conduct privacy study to evaluate how P3 De fer miti-
gates privacy problem. A machine unlearning method:
EMSO (Zhang et al., 2024e) is further compared to
validate the efficiency and superiority of P3Defer in
privacy-preservation as can be seen in Appendix C.3.

3.3 Implementation Details

For implementation details, we leverage the Trans-
formers(Wolf et al., 2020) as the base code and conduct
extensive experiments with the Gemma models(Team
et al., 2024): Gemma-2B as the local LLM, Gemma-
7B as the server LLM. Notably, the server LLM is
fine-tuned on all datasets to reach reasonably great
performance, of which the server LLM’s ability on
GSMS8K, MedSum and EmailSum are 52.85%, 61.22%
and 56.51%, respectively. We use the AdamW op-
timizer(Loshchilov and Hutter, 2018; Paszke et al.,
2017) with a learning rate of 5e-4 and also a linear
warm-up scheduler initialized with 10% of the total
training steps as warm-up steps and a weight decay of
le-4 to avoid over-fitting for all the experiments. The
batch size per device is set to 8. All the experiments are
conducted on two computation nodes configured with
eight 80G H100 GPUs.

4 Experimental Results

4.1 Cascade Study

Cascade Performance One of the key advantages
of LLM cascading is its ability to enhance perfor-
mance without increasing the size of the base local
LLM. As shown in Table 1, confidence-based mod-
els primarily rely on the server LLM to boost per-
formance, while logit-based methods selectively de-
fer difficult queries that the local model cannot solve,
leading to performance improvements. In contrast,
our proposed P3Defer achieves state-of-the-art per-
formance across all three benchmarks, demonstrating
an accuracy of 55.96% with a call rate of 66.41%
on GSMS8K, a ROUGE-Sum score of 63.94% with a
call rate of 69.71% on MedSum, and a ROUGE-Sum
score of 61.21% with a call rate of 44.7% on Email-
Sum. Notably, P?Defer outperforms all other base-
lines, achieving post-cascade improvements of 3.11%,
2.72%, and 4.70% over the server model across the
three datasets, respectively.

Performance vs Cost A crucial factor in evaluating
an LLM cascade system is the trade-off between per-
formance and cost, where the ideal approach maxi-
mizes performance gains while minimizing the server
call rate. As observed in Table 1, policy learning-
based methods, such as TREACLE and P3De fer,
make fewer calls to the server while still improving per-
formance, distinguishing them from confidence-based
and logit-based approaches. Furthermore, as depicted
in Figure 4, P3Defer demonstrates superior deferral
decision-making, as its performance curve reaches an



Method Type Confidence-based Logit-based Policy Learning
Dataset Metric % Few-shot ICL IT LT TREACLE P3Defer
CR 100 100 81.2 93.1 66.41
SCR 28.13 28.13  31.75 84.31 92.61
GSMS8K O(L) 11.83 26.08 2691 2431 27.33
Acc O(L) + D(5) 52.85 52.85 55.92 55.78 55.96
vs ®(.5) N.A. N.A.  13.07 12.07 13.11
CR 96.2 94.8 97.3 80.6 69.71
SCR 26.09 26.89 26.92 76.93 88.40
MedSum D(L) 28.55 34.61 36.77 34.87 35.31
R-S ®(L) + D(5) 61.97 62.18  62.95 63.17 63.94
vs @(.5) 10.75 10.96 11.73 11.95 12.72
CR 100 98.5 80.6 88.9 44.7
SCR 31.77 39.16  46.93 79.16 94.61
EmailSum d(L) 24.59 2949  28.58 27.06 28.91
R-S O(L) + D(5) 56.51 56.92  56.99 60.19 61.21
vs ®(5) N.A. 10.41 1048 13.68 14.70

Table 1: The best cascade performance of ®(L) across three benchmarks. CR denotes call rate, indicating the
proportion of queries sent to the server. SCR represents safe call rate, reflecting the number of queries that are safe
(i.e., those sent to the server that do not contain privacy information) among the total sent queries. Acc refers to
accuracy, while R-S indicates the ROUGE-Sum score. The symbol 1 signifies an improvement compared to ®(.5).
The red number pair shows the best cascade performance (lower call rate with higher scores), the blue number

indicates the safest method.
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Figure 4: Curves depicting cascade performance versus call rate for different methods across all three datasets: (a)

GSMB8K, (b) MedSum, and (¢) EmailSum.

inflection point earlier while attaining the highest per-
formance compared to other methods. Moreover, in
Figure 4, we observe that TREACLE exhibits differ-
ent trends on the GSM8K dataset compared to the two
summarization datasets. We attribute this to TREA-
CLE’s reliance on its routing strategy rather than en-
hancing the local LLM’s capabilities, whereas other
methods focus on both cascade deferral and improving
the local LLM. Additionally, an interesting observation
is that the confidence-based method demonstrates in-
consistencies across the three datasets, suggesting that
instructing the local LLM for cascading leads to un-
reliable performance. These findings highlight the ef-
fectiveness and superiority of P3De fer in optimizing
cascade performance while maintaining cost-efficient.

4.2 Privacy Study

Beyond its improvements in cascade performance,
our P3Defer also demonstrates a remarkable abil-
ity to mitigate privacy concerns. As shown in Ta-
ble 1, P3Defer achieves a safe call rate of 92.61%,
88.40%, and 94.61% across the three datasets, respec-
tively. Notably, confidence-based methods achieve
only around 28.66%, indicating that relying solely on
the local LLM to identify privacy-sensitive queries
is unreliable. Moreover, while logit-based methods
offer some improvements in privacy sensitivity, they
still fall short compared to policy-learning-based ap-
proaches. This finding is further validated by the re-
sults in Table 2, where the precision and recall scores
of confidence- and logit-based methods remain infe-
rior to those of policy-learning-based methods. Sim-
ilar patterns emerge in mitigating privacy leakage, as
confidence-based methods leak the most private to-



Dataset Metric Few-shot ICL  Instruction Tuning Loss Tuning TREACLE P®Defer
precision 64.17 82.95 91.79 88.17 96.31
GSMSK recall 44.20 72.89 87.24 76.45 88.79
r(leakage) 95.11 84.17 75.98 74.22 20.11
precision 68.85 85.62 90.10 87.41 92.17
MedSum recall 42.99 68.84 82.99 68.41 88.56
r(leakage) 97.60 72.14 70.10 70.54 23.87
precision 67.58 86.66 91.07 82.17 96.91
EmailSum recall 44.17 66.47 81.37 62.43 85.77
r(leakage) 80.79 73.46 56.52 55.62 16.34

Table 2: Privacy study. Precision and recall are used for evaluating the ability of different methods on identifying
queries with privacy concerns, r(leakage) measures the ratio between leaked private tokens and all private tokens.

kens across all three datasets, reinforcing the unrelia-
bility of instructing the model itself to rewrite queries.
Although logit-based methods provide some mitiga-
tion, their performance remains suboptimal. We at-
tribute this to the fundamental limitation of logit-based
methods: their primary objective is to align logits
with quality confidence, making them unsuitable for
incorporating additional considerations such as pri-
vacy protection during deferral decisions. In con-
trast, P3Defer achieves average relative reductions
of 75.35%, 68.64%, and 74.81% in leaked token ra-
tios across the three datasets. This substantial reduc-
tion highlights the advantages of P3Defer in han-
dling privacy-sensitive queries, which we attribute to
the integration of private memory. By leveraging pri-
vate memory that pre-stores private tokens, the local
LLM does not need to focus on rewriting queries. In-
stead, the memory mechanism assists in identifying
and masking private tokens before sending queries to
the server, leading to significant improvements in mit-
igating privacy leakage. Together, policy learning en-
ables P3 De fer to accurately identify privacy-sensitive
queries, while private memory effectively mitigates pri-
vate token leakage, ensuring a more secure and privacy-
aware LLM cascade system.

4.3 Ablation Study

Ablation on Cascade Performance We further con-
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Figure 5: Ablation study on CoT usage.

duct ablation study on the usage of CoT. The results
are presented in Figure 5, we observe that incorporat-
ing CoT reasoning consistently improves cascade per-
formance across all datasets, albeit with varying mag-
nitudes. The most significant improvement is observed
on the GSM8K dataset, where the model with CoT out-
performs its counterpart without CoT by approximately
3%. This suggests that CoT reasoning enhances logi-
cal reasoning capabilities, allowing the local model to
make better-informed cascade decisions. For MedSum
and EmailSum, the performance gap between CoT and
non-CoT models is relatively smaller (around 1-2%)
which we attribute to the fact that MedSum and Email-
Sum rely more on semantic understanding and less on
multi-step reasoning, making CoT less critical in these
cases. Overall, these findings suggest that CoT is a
beneficial augmentation to local model training, partic-
ularly in reasoning-intensive tasks which further vali-
date the effectiveness of the whole P3De fer design.

Ablation on Privacy Preservation Beyond cascade
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Figure 6: Ablation study on private memory usage.

performance, privacy preservation is also a crucial ob-
jective of our approach. To further investigate the im-
pact of memory design, we conduct an ablation study
on the memory component, as shown in Fig. 6. The
results reveal that leveraging private memory signif-
icantly mitigates privacy token leakage, as indicated
by the substantially lower violet bar compared to the



pink one. This demonstrates that private memory is far
more effective than relying on the local LLM’s rewrit-
ing ability to reduce private token leakage, further val-
idating the overall design of P3De fer of which, pol-
icy learning endorse P2 De fer the ability to accurately
detect privacy-sensitive queries while private memory
serves for mitigates private token leakage, ensuring an
effective and privacy-preserved LLM cascade system.

5 Conclusion & Furture Work

In this study, we advance the privacy-preserved LLM
cascade by incorporating policy learning coupled with
a private memory, moving beyond existing approaches
that primarily emphasize cost-performance trade-offs.
This enhancement aligns more closely with the de-
mands of real-world applications. Extensive experi-
ments demonstrate that P3Defer significantly miti-
gate the privacy leakage problem while improving the
IIm cascade systemperformance.

While this work represents the pioneer effort to
introduce privacy-preserved LLM cascade, future re-
search will explore more on other factors that fit real-
world cascade system. We also aim to develop more
computational efficient and multi-objective optimized
methods to sustain favorable cost-performance trade-
offs while accommodating a wider array of objectives
such as latency. Innovations on training local 1lm and
deferral module together are also worth to investigate.

6 Related Work

LLM Cascade Cascading has been extensively studied
and applied across various domains due to its ability
to enhance system performance in downstream tasks
by selecting appropriate models (Hu et al., 2023; Li
et al., 2019; Karlos et al., 2016; Viola and Jones, 2001).
Recently, this approach has garnered increasing at-
tention for improving the performance of large lan-
guage models (LLMs). For instance, Agrawal et al.
(2024); Xu et al. (2023); Chen et al. (2024) have ex-
plored speculative decoding, which leverages a larger
and more powerful LLM to verify token-level accu-
racy during the inference of a smaller LLM, thereby
accelerating the overall process. Despite the success
of cascading, researchers have observed that larger,
more capable LLMs (e.g., GPT-4 (Achiam et al., 2023))
can be expensive, while smaller LLMs (e.g., GPT-
2 (Radford et al., 2019)) may not always meet per-
formance requirements. This has led to the emer-
gence of the deferral rule—determining when to in-
voke the larger LLM—as a critical area of exploration
for balancing performance and cost in LLM cascading
(Shekhar et al., 2024; Chen et al., 2023a,b). There are
two primary approaches to deferral: confidence-based
methods and router-based methods. Confidence-based
methods leverage the LLM’s confidence in its gener-
ated answers to inform deferral decisions. Ideally, an
LLM exhibits higher confidence for higher-quality an-
swers, and vice versa. A straightforward approach in-

volves asking the LLM to provide a confidence score
alongside its answers, invoking the stronger LLM when
the score is low (Zhu et al., 2024). Another prevalent
method utilizes the logits of generated tokens to repre-
sent the LLM’s confidence, with recent studies explor-
ing operations on logits, such as mean (Gupta et al.,
2024) and quantile (Jitkrittum et al., 2024). Wang et al.
(2024) extended this concept by incorporating the log-
its of the stronger LLM into the loss function for tun-
ing the weaker LLM, enhancing its understanding of
the cascade logic and enabling deferral decisions based
on logit indicators. In contrast, router-based methods
use a routing mechanism to determine whether to in-
voke the stronger LLM. Typically, the router selects the
most suitable LLM for different tasks. Non-predictive
routing evaluates the outputs of multiple LLMs to se-
lect the best one, but this can be costly due to the need
to assess all involved models (Madaan et al., 2023;
Lee et al., 2023; Wang et al., 2023). Predictive rout-
ing systems, however, employ reward functions that al-
low the router to anticipate which LLM to select, thus
avoiding the latency associated with extensive evalua-
tions (Shnitzer et al., 2023; Sakota et al., 2024; Hari
and Thomson, 2023). Nonetheless, router-based meth-
ods require prior knowledge of each LLM’s capabilities
and may incur significant costs when trying to enhance
performance, compared to confidence-based methods
(Hu et al., 2024b,a). Different from existing methods,
we incorporate a CoT-enhanced policy learning strat-
egy coupled with a private memory design to achieve
privacy-preserved LLM cascade.

Privacy-preservation Privacy has always been a
core concern in LLM research (Kim et al., 2024; Zhang
et al.,, 2024d; Das et al., 2024; Janryd and Johans-
son, 2024; Feng et al., 2024), particularly for on-device
LLM applications (Zhang et al., 2024c; Peng et al.,
2024; Yuan et al., 2024). LLMs have been shown to
inadvertently reveal sensitive information, such as per-
sonal names (Evertz et al., 2024; Kim et al., 2024).
To address these privacy issues, Liu et al. (2024a,b,c);
Kassem et al. (2023) proposed machine unlearning
techniques that enable LLMs to forget sensitive infor-
mation, thus mitigating the risk of generating harmful
or biased content. Another approach is differential pri-
vacy, which adds noise to the training data, making it
more difficult to identify individual data points (Hart-
mann et al., 2024). Additionally, Zhang et al. (2024e¢)
suggested using contrastive learning to erase an LLM’s
memory of user information. While these methods
have shown success across diverse user bases, our ob-
jective is to enhance the sensitivity of our LLM cascade
framework to privacy concerns in single-user settings.
To achieve this, we aim to leverage in-context learning
and integrate binary privacy identification into the loss
function, allowing the local LLM to be more attuned
to privacy considerations during the cascading process.
Further, we innovatively utilize a private memory into
our design to achieve privacy-preseveration.



Limitations

Despite the empirical success, our P3De fer presents
two limitation that may ask for further attentions to
work on. First, compare with confidence- and logit-
based methods that leverage thresholds to make defer-
ral decisions, our method needs to train a policy that
contains four components (even some of them have
small set of parameters), the computational costs are
higher. However, the higher costs obtain a reasonable
feedback on the performance and privacy-preservation
ability. We may still want to seek ways for reduc-
ing the computational costs(Zhou et al., 2023). Sec-
ond, our private memory design is a pre-process which
means it can not be updated even new privacy tokens
appear. This may pose hackers a way to attack this
system by simply use synonym(Zhang et al., 2024a).
Further explorations in including other memory tech-
niques(Zhang et al., 2024b) can be important.
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A Prompts

instruction_prompt = r"Assume you're a student working on some
mathematical problems. Now, you'll be giving mathematical problems, you
need to do two tasks:

a. Check if the question contains personal information (e.g., names ete.),
output Yes or No only;\n

b. Solve this question;

Here are some examples:

Question: Hector purchased a container of gumballs. He gave 4 to Todd,
then he gave twice as many as he had given Todd to Alisha, and then he
gave 5 less than four times as many to Bobby as he had given to Alisha. If
Hector had 6 gumballs remaining, what is the total number of gumballs that
Hector purchased? \n

Output:

Let's think step by step:

The question contains person names so the answer to a. is Yes.

Hector gave to Alisha twice as many as he had given Todd, for a total of
4*2=<<4*2=8>>8 gumballs, Hector gave 5 less than four times as many to
Bobby as he had given to Alisha, or a total of (8*4)-5=<<8*4-5=27>>27
gumballs. If Hector had 6 gumballs remaining, he originally purchased
4+8+27+6=<<4+8+27+6=45>>45 gumballs. So the answer is 45.

a. Contains Personal Information: Yes.

b. Answer: 45.

Case,

Question: {questionj\n
Output:

Let's think step by step:

Figure 7: Prompts Used on three datasets.

The design of prompts plays a crucial role in
activating the LLM’s capabilities for downstream
tasks. Following the findings of Webson and Pavlick
(2021) on prompt design, we first assume a persona
for the LLM, then provide task instructions and ask
the model to generate outputs in a fixed style. For
few-shot prompting, we provide task examples along
with their corresponding outputs; details are shown in
Figure 7. Interestingly, we observed that as the number
and complexity of tasks in the instructions increased,
the model’s performance on the target task declined, as
demonstrated in Table 1. The prompts presented here
yielded the best performance among all the variations
we tested.

B Preliminary Results

Following the approach of Hartmann et al. (2024), we
initially attempted to use self-critique and rely on the
in-context learning capabilities of the local LLM to
implement the deferral function. Specifically, we in-
structed the model to handle the task while simultane-
ously outputting a confidence level, which would de-
termine whether the query should be deferred to the
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server. However, preliminary results revealed limita-
tions in this design. As shown in Table 3, without ex-
amples, the local model tends to be overly confident in
every generated response. Moreover, even when pro-
vided with several examples, the model treats confi-
dence as a classification task, rather than correlating
it with the quality of its generated responses. Con-
sequently, we opted to use logits for more effective
LLM cascading. Further, as indicated in section A, as
the number and the complexity of tasks within the in-
struction increase, the model tend to have worse perfor-
mance on the downstream task. As such, we propose
to decompose the tasks within the instruction to several
tasks and use different heads to handle it for achieving
LLM cascade.

C Supplementary Results

C.1 Supplementary Cascade Results

As shown in Figure 9, training-based methods have a
direct impact on distinguishing between correct and
incorrect answers using logits (i.e., the separation be-
tween the green and red areas). This aligns with the
scatter distribution in Figure 10, further validating the
necessity of training in LLM cascading. Additionally,
the higher peak in the red area indicates a faster per-
formance improvement, as depicted in Figures 4 and 8.
These findings explain the effectiveness and intuition
of our approach.

C.2 Logits Distribution Study

To further understand the effectiveness of our proposed
LLM cascade with multi-objective considerations, we
visualize the logit distributions for both training and
training-free methods. As shown in Figure 10 and
9, the logits become more decentralized when a few
examples are provided for ®(L) to learn the cascade
logic, in contrast to 0-shot prompting. Additionally,
the signals within the distributions for prompting meth-
ods are not distinctly separable, which accounts for the
randomness observed in routing queries, as discussed
in previous sections. In contrast, training methods
demonstrate more distinct distributions, where concen-
trated red points represent the reflection points noted
in Figure 4. This indicates that training-based methods
better grasp the cascade logic; answers with higher log-
its are correlated with more correct responses, suggest-
ing that the trained ® (L) is more confident in its correct
answers and more likely to route difficult queries to the
server. Furthermore, the trained model tends to send
fewer unsafe queries to the server, as the logits for un-
safe responses are generally higher, making them less
likely to be sent. These observations reaffirm the effec-
tiveness and necessity of incorporating multi-objective
optimal considerations into cascading, highlighting the
superiority of our proposed loss function for training
the local LLM compared to existing prompting and in-
struction tuning methods.
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Metric % Cascade O-shot  1l-shot  2-shot  S-shot Instruction Tuning
Call Rate 0 7043 4898 6743 42.76
Safe Call Rate 0 2.05 2.94 2.13 27.61
A X 1494 1008 1183  10.68 26.08
ccuracy
v 1494 4291 3730 42.61 42.29

Table 3: Preliminary results on GSM8K.
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Figure 8: The curve of performance and call rate vs threshold on GSMS8K dataset

C.3 Privacy vs. Machine Unlearning

To further validate the privacy preservation ability of
P3Defer, we provide results on applying a popular
machine learning method EMSO (Zhang et al., 2024e)
to LLM Cascade as rare studies have been made in
privacy-preserved cascading. Specifically, we treat the
tokens in the private memory as the forgetting dataset
and replace the privacy loss with EMSO’s proposed
contrastive loss, same procedure as described in Ap-
pendix D.3. All other settings remain consistent with
our previous experiments. The results on GSM8K are
presented below: From our observations, integrating

mitigates this issue. This further validates the neces-
sity of our design.

C.4 Datasets

Table 5 provides detailed statistics for all datasets. Fol-
lowing the privacy research by Hartmann et al. (2024),
we extracted tokens with privacy concerns (e.g., names
and other personal identifiers), as the number of such
privacy-leakage tokens is critical for evaluating our
methods. The extraction was based on PII rules (Kim
et al.,, 2024) and HIPAA regulations (Lincke, 2024),
achieving extraction accuracies of 99.1% for GSMSK
and 99.7% for MedQSum. A subset of 100 samples
was manually verified by a highly educated PhD stu-

EMSO g(; scading ;I)Z(f;% (I)(SA)‘;O?(L) L§2k7a ]ge dent, and the p-value score between human and ma-
P3Defer 27:33 55:96 20:11 chine extractions was less than 0.05, further validating

Table 4: Comparison with EMSO in privacy preserva-
tion.

EMSO into the local LLM’s training for unlearning pri-
vacy tokens descrease the cascade performance that is
not comparable to our proposed P3Defer—it does not
even match the baselines presented in the paper. While
EMSO does help mitigate privacy leakage, this comes
at the cost of degraded local LLM and cascade perfor-
mance on the downstream task (i.e., GSM8K). Notably,
EMSO does not explicitly penalize the generation of
privacy tokens. Instead, it reduces the model’s reliance
on generating these tokens to preserve the original ca-
pabilities of the LLM. However, despite this mecha-
nism, we still observe a performance drop in LLM Cas-
cade. In contrast, our proposed P3Defer, which em-
ploys an agent to handle privacy actions, effectively
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the effectiveness of our proposed methods.

D Baseline Methodology

D.1 Multi-Objective In-context Learning

Ideally, the (L) can be taught multi-objective optimal
cascade logic based on its own natural language under-
standing ability. Efforts have been made to enable the
®(L) being aware of the confidence of generated re-
sponses via self-critique(Zhu et al., 2024), step-by-step
prompting(Zhang and Gao, 2023) etc. We step further
on the previous works and include the privacy concern
(Hartmann et al., 2024) into prompt design. Specifi-
cally, we formulate an instructional prompt* which in-
tegrates query x and objective considerations (i.e., pri-
vacy consideration obj,) to the ®(L) to obtain response
[y°%» %], and these response will further be sent to

*The prompts used can be seen in the appendix A
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Figure 9: Logits distribution curve by different methods on GSM8K dataset: (a) 0-shot prompting (b) few-shot

prompting (c) instruction tuning (d) loss tuning.

Dataset GSMS8K MedSum EmailSum
Avg. Input Length 52.56 70.51 223.2
Avg. Output Length 83.60 11.49 27.1
Avg. Leakage Tokens 5.19 11.27 49.77
Task Type Question Answering Summarization Summarization
Measurement Accuracy, Privacy Leakage ROUGE, Privacy Leakage ROUGE, Privacy Leakage

Table 5: Detailed type, statistics and measurement of datasets.

the D(-) where deferral decisions will be made. Fur-
ther, we follow Deng et al. (2024)’s work and perform
few-shot prompting to better activate the ®(L)’s in-
context learning ability. However, with limited size,
the @ is inadequate® to understand the multi-objective
optimal cascade logic relying its own ability and the
complicated logic may further hurt its ability to answer
user’s query and thus training is needed.

D.2 Multi-Objective Instruction Tuning

Previous studies have demonstrated the effectiveness of
instruction tuning in enhancing downstream task per-
formance and improving comprehension of given in-
structions (Zhu et al., 2024; Zhao et al., 2024; Maet al.,
2024; Li et al., 2023). This ability to understand in-
structions aligns well with our objective of grasping
the deferral logic. Furthermore, the improvements in
task performance help mitigate any negative impacts

SPlease refer to the appendix B for better understanding
over the local 1lm’s weakness.
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on generating y” that may arise from producing y°%/
during prompting. Similar to the prompting method,
we utilize an instructional prompt that combines a step-
by-step instruction with the user query x as input. The
labeled text g corresponding to x, along with the la-
beled responses 4j°%¢ for the multi-objective consider-
ations, serve as outputs for fine-tuning the model ®(L).
The responses generated by the tuned model will then
be utilized by the deferral module D(-) to determine
whether routing to the server model ®(S) is necessary.

D.3 Multi-Objective Loss Tuning

Stepping further over the methods that rely on the local
model’s intricate understanding ability, recent works
have pointed out the superiority of distilling the server
llm’s ability on downstream tasks into the loss function
for tuning the local model(Wang et al., 2024). Intu-
itively, our assumption is that the server llm is larger
and more powerful(Hartmann et al., 2024) in terms of
down-stream tasks, and thus the discrepancy between
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Figure 10: Logits scatter distribution produced by different methods on GSMS8K dataset. (e) and (f) are logits for
privacy concerns; y-axis is the logits, x-axis is the data index.

the generations of ®(L) and ®(S) can somehow be
used for ®(L) to indicate the confidence level. The
larger the discrepancy is, the lower confidence level
should the ®(L) have. However, to enable ®(L) be-
ing aware of multi-objective considerations, simply in-
cluding the distillation loss from ®(.S) is inadequate.
To this end, we decompose the overall task into several
sub-tasks and use different heads to handle the differ-
ent sub-tasks. Namely, given the multi-objective con-
siderations [0obj1, ..., obj;] and the query z, we leverage
multiple llm heads [hq, ..., h;, k] to handle different
considerations and the query. Each head will produce a
loss and a distillation loss from ®(S) will be optionally
added. These losses will then be sent to a weighted-
sum function to produce a multi-objective cascade loss
for tuning ®(L):

lzzwi'lobji +wp, -l + at) - ws - g
. ©)
Zw? +wp +ws = 1,a(t) = H(logit,.,t)

K3

where w; denotes the weight for the loss associated
with generating response y°%’i for the objective 0bj;,
wy, is the weight for the loss of generating response y”
for x from ®(L) and wg is the weight for the loss of
generating response 3 for z from ® (). n is the num-
ber of objectives that need to be considered. « is the
factor for controlling if the knowledge from the server
LLM &(S) is used depending on a logit threshold ¢.
H(-,t) is a modified Heaviside Step function which re-
turns O if - > ¢ else returns 1. In the context of identi-
fying privacy concern, the loss function we utilized for
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tuning ®(L) is:

l=—wp - (3" log(pr (yP]2)) + (1 = 97) - log(1 — pr (¥"|x)))+

wy - log(pr(y" |2)) + a(t) - ws - log(ps (v°|x))
(10)

where yP, yP are the predicted, golden binary predic-
tions for privacy, respectively. Other terms remain the
same as in formula 9. By incorporating multi-objective
considerations into the loss function for tuning ®(L),
the model will generate answers with better awareness
of these considerations. The corresponding logits of the
generated answers by tuned ®(L) can then be utilized
by the deferral module to inform decision-making.

D.4 Deferral Module

All the three methods are studying how to enable the
local LLM to be aware of multi-objective considera-
tions while generating the response to the query. And
such considerations are presented as the logit distribu-
tions of the generated response, for example, higher
logit may indicated higher performance and less pri-
vacy concern. Deferral module plays a pivotal role
in the LLM cascade since it decides which query to
send out to the server llm based on the logits. Fol-
lowing previous successes on using different logit (e.g.,
mean, quantile) of the generated response as the refer-
ence to decide if there is a need to route the query to the
server LLM(Wang et al., 2024; Jitkrittum et al., 2024;
Gupta et al., 2024), we also utilize the logit of gener-
ated response as indicators to make the routing deci-
sions. Specifically, given a threshold ¢ € (0, 1), if the
logit of the generated response exceed ¢ then it means
the local LLM is confident with its response and no
need to route, otherwise route the query x to the server
LLM &(9).
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Figure 11: Overview of existing LLM cascade methods: ®(L) and ®(.S) represent the local model and server
model, respectively. The red box indicates trainable, while the blue box represents frozen. ®(L) is tasked with
generating responses i~ and y°%’¢ for both the query z and the multi-objective considerations obj;. For loss tuning,
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