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Abstract
Large Language Models (LLMs) have gained001
significant attention in on-device applications002
due to their remarkable performance across003
real-world tasks. However, on-device LLMs004
often suffer from suboptimal performance005
due to hardware limitations. A promis-006
ing solution to this challenge is cascad-007
ing a weaker local (on-device) LLM with008
a more powerful server LLM. While exist-009
ing research on LLM cascade primarily op-010
timizes the performance-cost trade-off, real-011
world applications impose additional require-012
ments, such as privacy preservation, which re-013
main largely unaddressed. In this work, we014
move beyond existing confidence- and logit-015
based LLM cascade methods and propose016
P3Defer, a novel Chain-of-Thought (CoT)-017
enhanced policy learning framework for018
privacy-preserved deferral decision-making.019
Our approach effectively improves cascade ef-020
ficiency while mitigating privacy risks. Exten-021
sive experiments on three benchmark datasets022
demonstrate the effectiveness and superiority023
of P3Defer over existing methods.024

1 Introduction025

As Large Language Models (LLMs) continue to evolve026
rapidly (Touvron et al., 2023; Achiam et al., 2023; Reid027
et al., 2024), they are increasingly being integrated into028
real-world applications, enhancing the intelligence of029
a wide range of systems. At the same time, mobile030
devices have become indispensable in everyday life.031
The emergence of on-device intelligence—such as Ap-032
ple Intelligence (Gunter et al., 2024) and Gemini Live033
(Reid et al., 2024)—which embeds LLMs directly into034
devices for more personalized and intelligent user in-035
teractions, is gaining traction but remains relatively un-036
derexplored (Xu et al., 2024). A major challenge in this037
area is the hardware limitations of mobile devices, in-038
cluding constraints on compute power, battery life, and039
storage capacity. As a result, only smaller LLMs, such040
as Gemma-2B (Team et al., 2024), can be deployed041
on these devices, leading to trade-offs in performance042
compared to larger, more powerful models like Gem-043
ini. This raises a critical question for the research com-044

munity: how can we optimize on-device intelligence 045
given these size constraints? The LLM cascade system 046
presents a solution for this challenge. 047

In an LLM cascade system, a query is usually first 048
processed by a smaller, weaker local (on-device) LLM 049
and is only escalated to a larger, stronger server LLM 050
if the local model’s output is deemed insufficient by a 051
deferral module, as shown in Figure 1. This paradigm 052
has garnered significant attention recently (Chen et al., 053
2023a; Gupta et al., 2024; Yue et al., 2023; Wang 054
et al., 2024). As larger LLMs are often substantially 055
more expensive than their smaller counterparts (e.g., 056
Gemini-1.5 Pro (Reid et al., 2024) costs up to 35 times 057
more than Gemini-Flash1), most existing LLM cascade 058
works focused on the exploration of optimal trade-offs 059
between cost and performance. However, real-world 060
applications can be more complicated and requires the 061
cascade system to make deferral decisions beyond just 062
performance-cost consideration. For instance, privacy 063
concerns may arise if personal data is routed to the 064
server LLM where decisions are made based solely on 065
the local answer’s quality, as illustrated in Figure 1. 066
Unfortunately, rare studies have explored the privacy- 067
preserved LLM cascade system where to the best of our 068
knowledge, only Hartmann et al. (2024) makes an at- 069
tempt in this regards. In this study, we move beyond ex- 070
isting cascade system to make a pioneer step for includ- 071
ing privacy concerns into the deferral decision making. 072

One key focus of LLM cascade research is the de- 073
sign of deferral criteria, which determine whether a 074
query needs to be routed to the server model. Exist- 075
ing study on this can be divied into two paradigms: 076
confidence-based and logit-based methods (Please re- 077
fer to Appendix D for more details if readers are not fa- 078
miliar with deferral decision making in LLM cascade.). 079
Ideally, the deferral criteria should identify queries that 080
the local LLM is unlikely to handle effectively, sending 081
them to the server to significantly improve performance 082
while keeping costs manageable. Conversely, sending 083
queries that the local LLM can address with high qual- 084
ity to the server can result in unnecessary costs. In- 085
tuitively, model confidence could serve as a good in- 086
dicator, with queries routed to the server when the lo- 087
cal model is not confident with its response. For in- 088
stance, Zhu et al. (2024) explored a self-critique strat- 089

1https://ai.google.dev/pricing
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Figure 1: On the left is the existing LLM cascade, where the deferral module makes decisions solely based on
the quality of the local answer, potentially leading to privacy leakage. On the right is the privacy-preserved LLM
cascade, where deferral decisions are more aligned with the needs of real-world applications.

egy to leverage the local model’s intelligence to pro-090
duce a confidence level in terms of the local answer and091
make decisions based on the confidence level. How-092
ever, Jitkrittum et al. (2024) noticed the weakness of093
confidence-based deferral rule in cases where distribu-094
tion shifts occur between the training and test datasets.095
Logit-based methods step further by using the gener-096
ated token logits of the local answer as features to make097
deferral decisions. For example, Gupta et al. (2024)098
found the length bias and token uncertainty problems099
in cascading by relying on the mean logits and pro-100
posed to leverage quantile logits as features to miti-101
gate this problem. Additionally, Wang et al. (2024)102
introduced cascade-aware training, which incorporates103
both the local and server LLM’s logits into the loss104
function during local model training, helping the lo-105
cal LLM become more aware of which queries should106
be deferred to the server. Unfortunately, none of these107
works explored deferral decision making with respects108
to privacy concerns which aligns more with real-world109
needs. Moreover, both confidence-based and logit-110
based methods are by nature not feasible for including111
privacy considerations since logits and confidence can112
only reflect generation quality. To address this gap, we113
propose incorporating a policy learning strategy into114
the LLM cascade system. Instead of using a thresh-115
old for deferral decision making, we propose to train116
an agent that can make actions based on cascade needs.117
Moreover, Chain-of-Though (CoT) has been proven ef-118
ficient in both training and training-free methods(Wu119
et al., 2024; Yan et al., 2023). Taking advantages, we120
propose a novel CoT-enhanced policy learning frame-121
work coupled with a private memory for better privacy-122
preserved deferral decision making (P3Defer). Dif-123
ferent from logit-based or confidence-based methods,124
our P3Defer leverages an agent to make deferral de-125
cisions (actions) based on the cascde system needs (en-126
vironment). This paradigm enable our method to im-127
prove the LLM cascade performance while mitigate the128
privacy leakage problem. In tandem, the contributions129
of this study are three-fold:130

•We extend the current focus of LLM cascading be-131
yond the traditional cost-performance trade-off to in-132
clude privacy considerations, better aligning with the133

needs of real-world applications. 134
• We reformulate the LLM cascade task and inno- 135

vatively incorporate a CoT-enhanced policy learning 136
strategy coupled with a private objective to perform 137
privacy-preserved deferral decision making, which pro- 138
vides a fresh perspective to the community. 139
• Extensive experiments on three benchmarks have 140

validated the efficiency and superiority of proposed 141
P3Defer, witnessing improvements in LLM cascade 142
performance while mitigating the privacy leakage2. 143

2 Methodology 144

Figure 2: Overview of the proposed P3Defer frame-
work. Given a user query x, the local model Φ(L) gen-
erates a response yL. The agentA decides among three
actions based on the state st: (1) return yL, (2) defer to
the server model Φ(S) for response yS , or (3) mask
private tokens via private memory. The agent is trained
via reinforcement learning, where the reward function
R evaluates response quality and privacy, and the critic
function C assesses long-term decision-making.

2.1 Preliminary Formulation 145

Before proceeding, we will first present the prelimi- 146
nary concepts and formulations. Assuming we have 147

2https://anonymous.4open.science/r/
Privacy_preserving_LLM_Cascade-E78C
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Algorithm 1 P3Defer

Require: Φ(L), Φ(S), D(A,R, C,S), D,M
1: Initialize policy network πθ, value function Vψ ,

and experience buffer B
2: for each training iteration do
3: for each query x ∼ D do
4: Generate local prediction yL = Φ(L)(x)
5: Encode state st = [ept , e

q
t ]

6: Sample action at ∼ πθ(st, x, y
L)

7: if at = a1 then
8: Set final response y = yL

9: Compute reward rt using formula 2
10: else if at = a2 then
11: Query server LLM: yS = Φ(S)(x)
12: Set final response y = yS

13: Compute reward rt using formula 2
14: else if at = a3 then
15: Mask sensitive tokens in x viaM
16: Generate modified query x′

17: Query server LLM: yS = Φ(S)(x′)
18: Set final response y = yS

19: Compute reward rt using formula 2
20: end if
21: Store (st, at, rt) in buffer B
22: end for
23: Policy Update:
24: Compute advantage Ât = Qπ(st, at)− V π(st)
25: Update policy θ ← θ + η∇θE[Ât log πθ(at|st)]
26: end for

an LLM cascade system consists of a local on-device148
LLM Φ(L) (smaller and weaker), a server LLM Φ(S)149
(larger and stronger) and a deferral module D(·). When150
a user sends a query x to Φ(L) and the local model gen-151
erates an initial answer yL, the deferral module D(·)152
needs to determines whether it is necessary to invoke153
Φ(S) for the final response back to user.154
Typically, existing methods use either the logit distribu-155
tion of yL or prompting Φ(L) to do the deferral deci-156
sion making(Wang et al., 2024; Zhu et al., 2024). That157
is say if D(·) accepts yL, it becomes the final answer y158
returned to the user. If rejected, the query x is routed to159
Φ(S), and the server-generated answer yS serves as the160
final response y. However, these attempts are limited161
in incorporating real-world requirements into consider-162
ations due to the nature that their deferral modules are163
fixed and only make decisions based on confidence or164
logits3. To step further, we move beyond and reformu-165
late the deferral module into a trainable agent so that166
more considerations such as privacy can be added into167
deferral decision making.168
In details, we can represent the deferral module by a169
tuple D(A,R, C,S, x, yL) whereA is the action space170
containing the actions that the deferral agent can take;171
R and C are the reward function and critic function,172

3Please refer to appendix B and D to check detailed ex-
planations and preliminary results of existing methods.

respectively; S denotes the set of environment states. 173
A policy network πθ : (S, x, yL) → P (A) maps 174
the user query, local LLM’s response and environment 175
to a probability distribution over actions. A histori- 176
cal experience buffer O = (o0, ..., ot, ..., oN ) records 177
the past observations where ot = [(st, x, y

L), at] is 178
the (user query, local LLM’s response, environment)- 179
action pair and si ∈ S is the environment state at time 180
t. Inspired by the success of PPO (Schulman et al., 181
2017), we not only use the a reward function to eval- 182
uate current selected action but also leverage a critic 183
function to estimate the cumulative value of historical 184
action selections. Specifically, R can be denoted as 185
R : (S × A) → R and C is Q(st, at) − V (st), where 186
Q(s, a) is the action-state value function and V (s) is 187
the state value function. rt = R(st, at) can represent 188
the reward received at time t. We’ll further elaborate 189
how these functions are used within P 3Defer in the 190
following sections. Our objective in this study is to 191
learn the policy πθ from given training datasetD to en- 192
able A being aware of both performance-cost and pri- 193
vacy concerns: 194

max
π

Eτ∼π

[
T∑
t=0

γtRt

]
(1) 195

where τ denotes a trajectory of state-action pairs. 196

2.2 P3Defer 197

Unlike existing methods where the deferral module is 198
fixed and only makes decisions based on logits distri- 199
bution or model’s confidence level. The deferral mod- 200
ule D(·) in P3Defer is formulated as a reinforcement 201
learning agent that selects among three actions: re- 202
turning the local model’s output yL, requesting a re- 203
sponse from the server LLM yS , or masking private 204
tokens before making a deferral decision. The mod- 205
ule operates within an environment defined by the tuple 206
D(A,R, C,S, x, yL) which contains: 207
Action Space (A). The available actions include: 208

• a1: accept yL and set final response y = yL 209

• a2: defer x to Φ(S) and let final response y = yS . 210

• a3: apply privacy masking using private mem- 211
ory M on x and routing the privacy masked x′ 212
to Φ(S), final response y = Φ(S)(x′). 213

State Space (S). There are four environment states: 214

• x contains privacy concerns, yL is good. 215

• x does not contain privacy concerns, yL is good. 216

• x contains privacy concerns, yL is bad. 217

• x does not contains privacy concerns, yL is bad. 218

Each state st = [ept , e
q
t ] consists of privacy- and 219

quality-related embeddings capturing the four possible 220
states above based on the given input query x and the 221
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local llm’s response yL.222
Reward Function (R). The reward function optimizes223
both response quality and privacy compliance:224

Rt = Pq(y, ŷ) + λPp(x) (2)225

where Pq(y, ŷ) measures the generation quality of fi-226
nal response y with respect to the golden responses ŷ,227
Pp(x) represents the identification of privacy leakage228
and λ is a scaling factor. Pq and Pp are both in the229
form of entropy calculation as referred in Table 5230
Critic Function (C). The critic model evaluates the ex-231
pected return for different actions and guides the policy232
updates accordingly.233

V π(st) = Eπ

[
T∑
t′=t

γt
′−tRt′

]
(3)234

where γ ∈ [0, 1] is the discount factor, controlling the235
importance of future rewards; T is the trajectory length;236
Rt is the immediate reward as defined in your equation.237
The expectation is taken over all possible trajectories238
following policy πθ(a|s).239

Additionally, the state-action value function (Q-240
function) is:241

Qπ(st, at) = Eπ

[
T∑
t′=t

γt
′−tRt′ | st, at

]
(4)242

which evaluates the expected reward after taking action243
at in state st.244

Using the policy gradient framework, the policy net-245
work πθ(a|s) updates its parameters θ by maximizing246
the following objective:247

∇θJ(πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at | st, x, yL)Ât

]
(5)248

where Ât = Qπ(st, at)−Vψ(st) is the advantage func-249
tion.250

2.3 Local LLM Training251

The local LLM Φ(L) is trained using two key tech-252
niques: (1) CoT-enhanced instruction tuning and (2)253
knowledge distillation from the server LLM Φ(S)254
when deferral occurs.255

CoT-enhanced Instruction Tuning To improve rea-256
soning capabilities, we fine-tune the local LLM using257
a dataset of instruction-response pairs enhanced with258
chain-of-thought (CoT) reasoning. In this paper, we259
mainly use the zero-shot CoT prompting to formulate260
our instructions as can be seen in appendix A. Given an261
instruction x and the corresponding target response ŷ,262
the loss function is defined as:263

Linst = −
∑
t

logPΦ(L)(ŷt | x, ŷ<t). (6)264

This objective encourages the model to generate re-265
sponses aligned with human-annotated outputs while266
incorporating reasoning steps.267

Knowledge Distillation from Server LLM When 268
the server LLM Φ(S) is invoked due to deferral, the 269
local LLM learns from the distilled server responses 270
yS . The knowledge distillation loss minimizes the di- 271
vergence between the local and server predictions: 272

LKD =
∑
t

DKL

(
PΦ(S)(y

S
t | x, yS

<t) ∥ PΦ(L)(y
S
t | x, yS

<t)
)
,

(7) 273
where DKL is the Kullback-Leibler divergence. This 274

loss ensures that the local model mimics the server 275
model’s outputs when necessary. 276

Training Objective The overall training objective 277
combines the two losses: 278

L = Linst + λKDLKD, (8) 279

where λKD controls the influence of knowledge dis- 280
tillation. This framework enables the local LLM to 281
improve its reasoning and generalization capabilities 282
while reducing reliance on the server. 283

2.4 Private MemoryM 284

Unlike previous work (Hartmann et al., 2024), which 285
relies on the local LLM to identify and rewrite pri- 286
vate tokens, this approach carries the risk of altering 287
the original meaning of the given query during the 288
rewriting process. To address this issue, we introduce 289
an innovative private memory M that pre-stores pri- 290
vate tokens extracted from a large corpus (Zhang et al., 291
2024a). When a private query is encountered, the pri- 292
vate memory efficiently identifies and masks private to- 293
kens without modifying the original meaning. 294
The memory is structured as a dynamic, growing list, 295
where private tokens are detected by measuring the 296
Levenshtein distance of each token. Once identified, 297
replacing private tokens with similar alternatives helps 298
mitigate privacy leakage while preserving the original 299
intent of the query, thereby ensuring the quality of the 300
final response.M supports add, delete etc. operations. 301

2.5 Inference 302

Figure 3: Inference process of the proposed framework.
The Deferral Agent determines whether to return the
local response, defer to the server LLM, or apply pri-
vacy masking based on the input query.

During inference, the user query x is first processed 303
by the local LLM Φ(L), generating an initial response 304
yL. The Deferral Agent A then decides among three 305
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actions based on the query context: Use local response:306
If the local LLM’s response is deemed sufficient, it307
is returned as the final answer; Defer to server LLM:308
If the query is too complex or uncertain and presents309
no privacy concerns, the agent queries the server LLM310
Φ(S), which provides a refined response yS ; Mask pri-311
vate tokens: If sensitive information is detected, the312
agent applies a privacy-preserving mechanism using313
the Private Memory module before passing the mod-314
ified query to the server. The agent optimally selects315
actions to balance response quality and privacy, ensur-316
ing reliable and secure query resolution.317

3 Experimental Settings318

3.1 Datasets319

To validate the effectiveness of P 3Defer, we opt for320
three benchmarks with privacy concerns that cover321
daily scenarios in on-device intelligence application to322
test our methods as below, more statistics can be seen323
in appendix C.4 and Table 5.324

GSM8K(Cobbe et al., 2021) is a graduate stu-325
dent mathematical dataset consisting of mathemati-326
cal questions and corresponding solutions, of which327
some questions contain personal information for pri-328
vacy study(Hartmann et al., 2024).329

MedSum(Zekaoui et al., 2023) is a medical related330
dataset with a focus on summarizing the customer331
health question. The dataset contains customer health332
questions and corresponding summaries which con-333
tains personal healthcare information.334

EmailSum(Zhang et al., 2021) is a sequence-to-335
sequence email summarization dataset consisting of336
daily email thread and corresponding summary. The337
summary types are available in long-summary and338
short-summary, we use short-summary in this study.339

3.2 Tasks, Metrics & Baselines340

We evaluate our proposed P 3Defer on three com-341
monly used daily tasks: mathematical QA, medical342
inquiry summarization, and email summarization,343
as indicated in Table 5. We also incorporate the met-344
ric of privacy leakage (Hartmann et al., 2024), which345
calculates the average number of privacy tokens leaked346
when sending queries to the server LLM (Check more347
details in appendix C.4).348

To the best our knowledge, rare study has been made349
in privacy-preserved LLM cascade except Hartmann350
et al. (2024) leverages in-context learning for query351
rewritten to mitigate privacy leakage problem. Thus,352
we first compare our P 3Defer with existing logit-353
based (Wang et al., 2024; Jitkrittum et al., 2024) and354
confidence-based (Zhu et al., 2024) cascade meth-355
ods. For logit-based methods, we are using Instruction356
Tuning (IT) and Loss Tuning (LT); for confidence-357
based method, we are using Few-shot In-context358
Learning (Few-shot ICL), detailed implementation359
can be seen in appendix D. Further, we compare our360
P 3Defer with other policy learning methods that361

close to our work: TREACLE(Zhang et al.). Next, we 362
conduct privacy study to evaluate how P 3Defer miti- 363
gates privacy problem. A machine unlearning method: 364
EMSO (Zhang et al., 2024e) is further compared to 365
validate the efficiency and superiority of P 3Defer in 366
privacy-preservation as can be seen in Appendix C.3. 367

3.3 Implementation Details 368

For implementation details, we leverage the Trans- 369
formers(Wolf et al., 2020) as the base code and conduct 370
extensive experiments with the Gemma models(Team 371
et al., 2024): Gemma-2B as the local LLM, Gemma- 372
7B as the server LLM. Notably, the server LLM is 373
fine-tuned on all datasets to reach reasonably great 374
performance, of which the server LLM’s ability on 375
GSM8K, MedSum and EmailSum are 52.85%, 61.22% 376
and 56.51%, respectively. We use the AdamW op- 377
timizer(Loshchilov and Hutter, 2018; Paszke et al., 378
2017) with a learning rate of 5e-4 and also a linear 379
warm-up scheduler initialized with 10% of the total 380
training steps as warm-up steps and a weight decay of 381
1e-4 to avoid over-fitting for all the experiments. The 382
batch size per device is set to 8. All the experiments are 383
conducted on two computation nodes configured with 384
eight 80G H100 GPUs. 385

4 Experimental Results 386

4.1 Cascade Study 387

Cascade Performance One of the key advantages 388
of LLM cascading is its ability to enhance perfor- 389
mance without increasing the size of the base local 390
LLM. As shown in Table 1, confidence-based mod- 391
els primarily rely on the server LLM to boost per- 392
formance, while logit-based methods selectively de- 393
fer difficult queries that the local model cannot solve, 394
leading to performance improvements. In contrast, 395
our proposed P 3Defer achieves state-of-the-art per- 396
formance across all three benchmarks, demonstrating 397
an accuracy of 55.96% with a call rate of 66.41% 398
on GSM8K, a ROUGE-Sum score of 63.94% with a 399
call rate of 69.71% on MedSum, and a ROUGE-Sum 400
score of 61.21% with a call rate of 44.7% on Email- 401
Sum. Notably, P 3Defer outperforms all other base- 402
lines, achieving post-cascade improvements of 3.11%, 403
2.72%, and 4.70% over the server model across the 404
three datasets, respectively. 405
Performance vs Cost A crucial factor in evaluating 406
an LLM cascade system is the trade-off between per- 407
formance and cost, where the ideal approach maxi- 408
mizes performance gains while minimizing the server 409
call rate. As observed in Table 1, policy learning- 410
based methods, such as TREACLE and P 3Defer, 411
make fewer calls to the server while still improving per- 412
formance, distinguishing them from confidence-based 413
and logit-based approaches. Furthermore, as depicted 414
in Figure 4, P 3Defer demonstrates superior deferral 415
decision-making, as its performance curve reaches an 416
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Method Type Confidence-based Logit-based Policy Learning
Dataset Metric % Few-shot ICL IT LT TREACLE P3Defer

GSM8K

CR 100 100 81.2 93.1 66.41
SCR 28.13 28.13 31.75 84.31 92.61

Acc
Φ(L) 11.83 26.08 26.91 24.31 27.33

Φ(L) + Φ(S) 52.85 52.85 55.92 55.78 55.96
vs Φ(S) N.A. N.A. ↑3.07 ↑2.07 ↑3.11

MedSum

CR 96.2 94.8 97.3 80.6 69.71
SCR 26.09 26.89 26.92 76.93 88.40

R-S
Φ(L) 28.55 34.61 36.77 34.87 35.31

Φ(L) + Φ(S) 61.97 62.18 62.95 63.17 63.94
vs Φ(S) ↑0.75 ↑0.96 ↑1.73 ↑1.95 ↑2.72

EmailSum

CR 100 98.5 80.6 88.9 44.7
SCR 31.77 39.16 46.93 79.16 94.61

R-S
Φ(L) 24.59 29.49 28.58 27.06 28.91

Φ(L) + Φ(S) 56.51 56.92 56.99 60.19 61.21
vs Φ(S) N.A. ↑0.41 ↑0.48 ↑3.68 ↑4.70

Table 1: The best cascade performance of Φ(L) across three benchmarks. CR denotes call rate, indicating the
proportion of queries sent to the server. SCR represents safe call rate, reflecting the number of queries that are safe
(i.e., those sent to the server that do not contain privacy information) among the total sent queries. Acc refers to
accuracy, while R-S indicates the ROUGE-Sum score. The symbol ↑ signifies an improvement compared to Φ(S).
The red number pair shows the best cascade performance (lower call rate with higher scores), the blue number
indicates the safest method.

(a) GSM8K (b) MedSum (c) EmailSum

Figure 4: Curves depicting cascade performance versus call rate for different methods across all three datasets: (a)
GSM8K, (b) MedSum, and (c) EmailSum.

inflection point earlier while attaining the highest per-417
formance compared to other methods. Moreover, in418
Figure 4, we observe that TREACLE exhibits differ-419
ent trends on the GSM8K dataset compared to the two420
summarization datasets. We attribute this to TREA-421
CLE’s reliance on its routing strategy rather than en-422
hancing the local LLM’s capabilities, whereas other423
methods focus on both cascade deferral and improving424
the local LLM. Additionally, an interesting observation425
is that the confidence-based method demonstrates in-426
consistencies across the three datasets, suggesting that427
instructing the local LLM for cascading leads to un-428
reliable performance. These findings highlight the ef-429
fectiveness and superiority of P 3Defer in optimizing430
cascade performance while maintaining cost-efficient.431

4.2 Privacy Study 432

Beyond its improvements in cascade performance, 433
our P 3Defer also demonstrates a remarkable abil- 434
ity to mitigate privacy concerns. As shown in Ta- 435
ble 1, P 3Defer achieves a safe call rate of 92.61%, 436
88.40%, and 94.61% across the three datasets, respec- 437
tively. Notably, confidence-based methods achieve 438
only around 28.66%, indicating that relying solely on 439
the local LLM to identify privacy-sensitive queries 440
is unreliable. Moreover, while logit-based methods 441
offer some improvements in privacy sensitivity, they 442
still fall short compared to policy-learning-based ap- 443
proaches. This finding is further validated by the re- 444
sults in Table 2, where the precision and recall scores 445
of confidence- and logit-based methods remain infe- 446
rior to those of policy-learning-based methods. Sim- 447
ilar patterns emerge in mitigating privacy leakage, as 448
confidence-based methods leak the most private to- 449
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Dataset Metric Few-shot ICL Instruction Tuning Loss Tuning TREACLE P3Defer

GSM8K
precision 64.17 82.95 91.79 88.17 96.31

recall 44.20 72.89 87.24 76.45 88.79
r(leakage) 95.11 84.17 75.98 74.22 20.11

MedSum
precision 68.85 85.62 90.10 87.41 92.17

recall 42.99 68.84 82.99 68.41 88.56
r(leakage) 97.60 72.14 70.10 70.54 23.87

EmailSum
precision 67.58 86.66 91.07 82.17 96.91

recall 44.17 66.47 81.37 62.43 85.77
r(leakage) 80.79 73.46 56.52 55.62 16.34

Table 2: Privacy study. Precision and recall are used for evaluating the ability of different methods on identifying
queries with privacy concerns, r(leakage) measures the ratio between leaked private tokens and all private tokens.

kens across all three datasets, reinforcing the unrelia-450
bility of instructing the model itself to rewrite queries.451
Although logit-based methods provide some mitiga-452
tion, their performance remains suboptimal. We at-453
tribute this to the fundamental limitation of logit-based454
methods: their primary objective is to align logits455
with quality confidence, making them unsuitable for456
incorporating additional considerations such as pri-457
vacy protection during deferral decisions. In con-458
trast, P 3Defer achieves average relative reductions459
of 75.35%, 68.64%, and 74.81% in leaked token ra-460
tios across the three datasets. This substantial reduc-461
tion highlights the advantages of P 3Defer in han-462
dling privacy-sensitive queries, which we attribute to463
the integration of private memory. By leveraging pri-464
vate memory that pre-stores private tokens, the local465
LLM does not need to focus on rewriting queries. In-466
stead, the memory mechanism assists in identifying467
and masking private tokens before sending queries to468
the server, leading to significant improvements in mit-469
igating privacy leakage. Together, policy learning en-470
ables P 3Defer to accurately identify privacy-sensitive471
queries, while private memory effectively mitigates pri-472
vate token leakage, ensuring a more secure and privacy-473
aware LLM cascade system.474

4.3 Ablation Study475

Ablation on Cascade Performance We further con-

Figure 5: Ablation study on CoT usage.

476
duct ablation study on the usage of CoT. The results 477
are presented in Figure 5, we observe that incorporat- 478
ing CoT reasoning consistently improves cascade per- 479
formance across all datasets, albeit with varying mag- 480
nitudes. The most significant improvement is observed 481
on the GSM8K dataset, where the model with CoT out- 482
performs its counterpart without CoT by approximately 483
3%. This suggests that CoT reasoning enhances logi- 484
cal reasoning capabilities, allowing the local model to 485
make better-informed cascade decisions. For MedSum 486
and EmailSum, the performance gap between CoT and 487
non-CoT models is relatively smaller (around 1-2%) 488
which we attribute to the fact that MedSum and Email- 489
Sum rely more on semantic understanding and less on 490
multi-step reasoning, making CoT less critical in these 491
cases. Overall, these findings suggest that CoT is a 492
beneficial augmentation to local model training, partic- 493
ularly in reasoning-intensive tasks which further vali- 494
date the effectiveness of the whole P 3Defer design. 495
Ablation on Privacy Preservation Beyond cascade

Figure 6: Ablation study on private memory usage.

496
performance, privacy preservation is also a crucial ob- 497
jective of our approach. To further investigate the im- 498
pact of memory design, we conduct an ablation study 499
on the memory component, as shown in Fig. 6. The 500
results reveal that leveraging private memory signif- 501
icantly mitigates privacy token leakage, as indicated 502
by the substantially lower violet bar compared to the 503
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pink one. This demonstrates that private memory is far504
more effective than relying on the local LLM’s rewrit-505
ing ability to reduce private token leakage, further val-506
idating the overall design of P 3Defer of which, pol-507
icy learning endorse P 3Defer the ability to accurately508
detect privacy-sensitive queries while private memory509
serves for mitigates private token leakage, ensuring an510
effective and privacy-preserved LLM cascade system.511

5 Conclusion & Furture Work512

In this study, we advance the privacy-preserved LLM513
cascade by incorporating policy learning coupled with514
a private memory, moving beyond existing approaches515
that primarily emphasize cost-performance trade-offs.516
This enhancement aligns more closely with the de-517
mands of real-world applications. Extensive experi-518
ments demonstrate that P 3Defer significantly miti-519
gate the privacy leakage problem while improving the520
llm cascade systemperformance.521

While this work represents the pioneer effort to522
introduce privacy-preserved LLM cascade, future re-523
search will explore more on other factors that fit real-524
world cascade system. We also aim to develop more525
computational efficient and multi-objective optimized526
methods to sustain favorable cost-performance trade-527
offs while accommodating a wider array of objectives528
such as latency. Innovations on training local llm and529
deferral module together are also worth to investigate.530

6 Related Work531

LLM Cascade Cascading has been extensively studied532
and applied across various domains due to its ability533
to enhance system performance in downstream tasks534
by selecting appropriate models (Hu et al., 2023; Li535
et al., 2019; Karlos et al., 2016; Viola and Jones, 2001).536
Recently, this approach has garnered increasing at-537
tention for improving the performance of large lan-538
guage models (LLMs). For instance, Agrawal et al.539
(2024); Xu et al. (2023); Chen et al. (2024) have ex-540
plored speculative decoding, which leverages a larger541
and more powerful LLM to verify token-level accu-542
racy during the inference of a smaller LLM, thereby543
accelerating the overall process. Despite the success544
of cascading, researchers have observed that larger,545
more capable LLMs (e.g., GPT-4 (Achiam et al., 2023))546
can be expensive, while smaller LLMs (e.g., GPT-547
2 (Radford et al., 2019)) may not always meet per-548
formance requirements. This has led to the emer-549
gence of the deferral rule—determining when to in-550
voke the larger LLM—as a critical area of exploration551
for balancing performance and cost in LLM cascading552
(Shekhar et al., 2024; Chen et al., 2023a,b). There are553
two primary approaches to deferral: confidence-based554
methods and router-based methods. Confidence-based555
methods leverage the LLM’s confidence in its gener-556
ated answers to inform deferral decisions. Ideally, an557
LLM exhibits higher confidence for higher-quality an-558
swers, and vice versa. A straightforward approach in-559

volves asking the LLM to provide a confidence score 560
alongside its answers, invoking the stronger LLM when 561
the score is low (Zhu et al., 2024). Another prevalent 562
method utilizes the logits of generated tokens to repre- 563
sent the LLM’s confidence, with recent studies explor- 564
ing operations on logits, such as mean (Gupta et al., 565
2024) and quantile (Jitkrittum et al., 2024). Wang et al. 566
(2024) extended this concept by incorporating the log- 567
its of the stronger LLM into the loss function for tun- 568
ing the weaker LLM, enhancing its understanding of 569
the cascade logic and enabling deferral decisions based 570
on logit indicators. In contrast, router-based methods 571
use a routing mechanism to determine whether to in- 572
voke the stronger LLM. Typically, the router selects the 573
most suitable LLM for different tasks. Non-predictive 574
routing evaluates the outputs of multiple LLMs to se- 575
lect the best one, but this can be costly due to the need 576
to assess all involved models (Madaan et al., 2023; 577
Lee et al., 2023; Wang et al., 2023). Predictive rout- 578
ing systems, however, employ reward functions that al- 579
low the router to anticipate which LLM to select, thus 580
avoiding the latency associated with extensive evalua- 581
tions (Shnitzer et al., 2023; Šakota et al., 2024; Hari 582
and Thomson, 2023). Nonetheless, router-based meth- 583
ods require prior knowledge of each LLM’s capabilities 584
and may incur significant costs when trying to enhance 585
performance, compared to confidence-based methods 586
(Hu et al., 2024b,a). Different from existing methods, 587
we incorporate a CoT-enhanced policy learning strat- 588
egy coupled with a private memory design to achieve 589
privacy-preserved LLM cascade. 590

Privacy-preservation Privacy has always been a 591
core concern in LLM research (Kim et al., 2024; Zhang 592
et al., 2024d; Das et al., 2024; Janryd and Johans- 593
son, 2024; Feng et al., 2024), particularly for on-device 594
LLM applications (Zhang et al., 2024c; Peng et al., 595
2024; Yuan et al., 2024). LLMs have been shown to 596
inadvertently reveal sensitive information, such as per- 597
sonal names (Evertz et al., 2024; Kim et al., 2024). 598
To address these privacy issues, Liu et al. (2024a,b,c); 599
Kassem et al. (2023) proposed machine unlearning 600
techniques that enable LLMs to forget sensitive infor- 601
mation, thus mitigating the risk of generating harmful 602
or biased content. Another approach is differential pri- 603
vacy, which adds noise to the training data, making it 604
more difficult to identify individual data points (Hart- 605
mann et al., 2024). Additionally, Zhang et al. (2024e) 606
suggested using contrastive learning to erase an LLM’s 607
memory of user information. While these methods 608
have shown success across diverse user bases, our ob- 609
jective is to enhance the sensitivity of our LLM cascade 610
framework to privacy concerns in single-user settings. 611
To achieve this, we aim to leverage in-context learning 612
and integrate binary privacy identification into the loss 613
function, allowing the local LLM to be more attuned 614
to privacy considerations during the cascading process. 615
Further, we innovatively utilize a private memory into 616
our design to achieve privacy-preseveration. 617
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Limitations618

Despite the empirical success, our P 3Defer presents619
two limitation that may ask for further attentions to620
work on. First, compare with confidence- and logit-621
based methods that leverage thresholds to make defer-622
ral decisions, our method needs to train a policy that623
contains four components (even some of them have624
small set of parameters), the computational costs are625
higher. However, the higher costs obtain a reasonable626
feedback on the performance and privacy-preservation627
ability. We may still want to seek ways for reduc-628
ing the computational costs(Zhou et al., 2023). Sec-629
ond, our private memory design is a pre-process which630
means it can not be updated even new privacy tokens631
appear. This may pose hackers a way to attack this632
system by simply use synonym(Zhang et al., 2024a).633
Further explorations in including other memory tech-634
niques(Zhang et al., 2024b) can be important.635
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A Prompts959

Figure 7: Prompts Used on three datasets.

The design of prompts plays a crucial role in960
activating the LLM’s capabilities for downstream961
tasks. Following the findings of Webson and Pavlick962
(2021) on prompt design, we first assume a persona963
for the LLM, then provide task instructions and ask964
the model to generate outputs in a fixed style. For965
few-shot prompting, we provide task examples along966
with their corresponding outputs; details are shown in967
Figure 7. Interestingly, we observed that as the number968
and complexity of tasks in the instructions increased,969
the model’s performance on the target task declined, as970
demonstrated in Table 1. The prompts presented here971
yielded the best performance among all the variations972
we tested.973

974

B Preliminary Results975

Following the approach of Hartmann et al. (2024), we976
initially attempted to use self-critique and rely on the977
in-context learning capabilities of the local LLM to978
implement the deferral function. Specifically, we in-979
structed the model to handle the task while simultane-980
ously outputting a confidence level, which would de-981
termine whether the query should be deferred to the982

server. However, preliminary results revealed limita- 983
tions in this design. As shown in Table 3, without ex- 984
amples, the local model tends to be overly confident in 985
every generated response. Moreover, even when pro- 986
vided with several examples, the model treats confi- 987
dence as a classification task, rather than correlating 988
it with the quality of its generated responses. Con- 989
sequently, we opted to use logits for more effective 990
LLM cascading. Further, as indicated in section A, as 991
the number and the complexity of tasks within the in- 992
struction increase, the model tend to have worse perfor- 993
mance on the downstream task. As such, we propose 994
to decompose the tasks within the instruction to several 995
tasks and use different heads to handle it for achieving 996
LLM cascade. 997

C Supplementary Results 998

C.1 Supplementary Cascade Results 999

As shown in Figure 9, training-based methods have a 1000
direct impact on distinguishing between correct and 1001
incorrect answers using logits (i.e., the separation be- 1002
tween the green and red areas). This aligns with the 1003
scatter distribution in Figure 10, further validating the 1004
necessity of training in LLM cascading. Additionally, 1005
the higher peak in the red area indicates a faster per- 1006
formance improvement, as depicted in Figures 4 and 8. 1007
These findings explain the effectiveness and intuition 1008
of our approach. 1009

C.2 Logits Distribution Study 1010

To further understand the effectiveness of our proposed 1011
LLM cascade with multi-objective considerations, we 1012
visualize the logit distributions for both training and 1013
training-free methods. As shown in Figure 10 and 1014
9, the logits become more decentralized when a few 1015
examples are provided for Φ(L) to learn the cascade 1016
logic, in contrast to 0-shot prompting. Additionally, 1017
the signals within the distributions for prompting meth- 1018
ods are not distinctly separable, which accounts for the 1019
randomness observed in routing queries, as discussed 1020
in previous sections. In contrast, training methods 1021
demonstrate more distinct distributions, where concen- 1022
trated red points represent the reflection points noted 1023
in Figure 4. This indicates that training-based methods 1024
better grasp the cascade logic; answers with higher log- 1025
its are correlated with more correct responses, suggest- 1026
ing that the trained Φ(L) is more confident in its correct 1027
answers and more likely to route difficult queries to the 1028
server. Furthermore, the trained model tends to send 1029
fewer unsafe queries to the server, as the logits for un- 1030
safe responses are generally higher, making them less 1031
likely to be sent. These observations reaffirm the effec- 1032
tiveness and necessity of incorporating multi-objective 1033
optimal considerations into cascading, highlighting the 1034
superiority of our proposed loss function for training 1035
the local LLM compared to existing prompting and in- 1036
struction tuning methods. 1037
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Metric % Cascade Prompt Engineering Instruction Tuning0-shot 1-shot 2-shot 5-shot
Call Rate 0 70.43 48.98 67.43 42.76

Safe Call Rate 0 2.05 2.94 2.13 27.61

Accuracy % 14.94 10.08 11.83 10.68 26.08
! 14.94 42.91 37.30 42.61 42.29

Table 3: Preliminary results on GSM8K.

Figure 8: The curve of performance and call rate vs threshold on GSM8K dataset

C.3 Privacy vs. Machine Unlearning1038

To further validate the privacy preservation ability of1039
P 3Defer, we provide results on applying a popular1040
machine learning method EMSO (Zhang et al., 2024e)1041
to LLM Cascade as rare studies have been made in1042
privacy-preserved cascading. Specifically, we treat the1043
tokens in the private memory as the forgetting dataset1044
and replace the privacy loss with EMSO’s proposed1045
contrastive loss, same procedure as described in Ap-1046
pendix D.3. All other settings remain consistent with1047
our previous experiments. The results on GSM8K are1048
presented below: From our observations, integrating

% Φ(S) Φ(S) + Φ(L) Leakage
EMSO Cascading 22.83 42.05 26.71

P3Defer 27.33 55.96 20.11

Table 4: Comparison with EMSO in privacy preserva-
tion.

1049
EMSO into the local LLM’s training for unlearning pri-1050
vacy tokens descrease the cascade performance that is1051
not comparable to our proposed P3Defer—it does not1052
even match the baselines presented in the paper. While1053
EMSO does help mitigate privacy leakage, this comes1054
at the cost of degraded local LLM and cascade perfor-1055
mance on the downstream task (i.e., GSM8K). Notably,1056
EMSO does not explicitly penalize the generation of1057
privacy tokens. Instead, it reduces the model’s reliance1058
on generating these tokens to preserve the original ca-1059
pabilities of the LLM. However, despite this mecha-1060
nism, we still observe a performance drop in LLM Cas-1061
cade. In contrast, our proposed P3Defer, which em-1062
ploys an agent to handle privacy actions, effectively1063

mitigates this issue. This further validates the neces- 1064
sity of our design. 1065

C.4 Datasets 1066

Table 5 provides detailed statistics for all datasets. Fol- 1067
lowing the privacy research by Hartmann et al. (2024), 1068
we extracted tokens with privacy concerns (e.g., names 1069
and other personal identifiers), as the number of such 1070
privacy-leakage tokens is critical for evaluating our 1071
methods. The extraction was based on PII rules (Kim 1072
et al., 2024) and HIPAA regulations (Lincke, 2024), 1073
achieving extraction accuracies of 99.1% for GSM8K 1074
and 99.7% for MedQSum. A subset of 100 samples 1075
was manually verified by a highly educated PhD stu- 1076
dent, and the p-value score between human and ma- 1077
chine extractions was less than 0.05, further validating 1078
the effectiveness of our proposed methods. 1079

D Baseline Methodology 1080

D.1 Multi-Objective In-context Learning 1081

Ideally, the Φ(L) can be taught multi-objective optimal 1082
cascade logic based on its own natural language under- 1083
standing ability. Efforts have been made to enable the 1084
Φ(L) being aware of the confidence of generated re- 1085
sponses via self-critique(Zhu et al., 2024), step-by-step 1086
prompting(Zhang and Gao, 2023) etc. We step further 1087
on the previous works and include the privacy concern 1088
(Hartmann et al., 2024) into prompt design. Specifi- 1089
cally, we formulate an instructional prompt4 which in- 1090
tegrates query x and objective considerations (i.e., pri- 1091
vacy consideration objp) to the Φ(L) to obtain response 1092
[yobjp , yL], and these response will further be sent to 1093

4The prompts used can be seen in the appendix A
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(a) 0-shot prompting (b) few-shot prompting

(c) instruction tuning (d) loss tuning

Figure 9: Logits distribution curve by different methods on GSM8K dataset: (a) 0-shot prompting (b) few-shot
prompting (c) instruction tuning (d) loss tuning.

Dataset GSM8K MedSum EmailSum
Avg. Input Length 52.56 70.51 223.2

Avg. Output Length 83.60 11.49 27.1
Avg. Leakage Tokens 5.19 11.27 49.77

Task Type Question Answering Summarization Summarization
Measurement Accuracy, Privacy Leakage ROUGE, Privacy Leakage ROUGE, Privacy Leakage

Table 5: Detailed type, statistics and measurement of datasets.

the D(·) where deferral decisions will be made. Fur-1094
ther, we follow Deng et al. (2024)’s work and perform1095
few-shot prompting to better activate the Φ(L)’s in-1096
context learning ability. However, with limited size,1097
the Φ is inadequate5 to understand the multi-objective1098
optimal cascade logic relying its own ability and the1099
complicated logic may further hurt its ability to answer1100
user’s query and thus training is needed.1101

D.2 Multi-Objective Instruction Tuning1102

Previous studies have demonstrated the effectiveness of1103
instruction tuning in enhancing downstream task per-1104
formance and improving comprehension of given in-1105
structions (Zhu et al., 2024; Zhao et al., 2024; Ma et al.,1106
2024; Li et al., 2023). This ability to understand in-1107
structions aligns well with our objective of grasping1108
the deferral logic. Furthermore, the improvements in1109
task performance help mitigate any negative impacts1110

5Please refer to the appendix B for better understanding
over the local llm’s weakness.

on generating yL that may arise from producing yobji 1111
during prompting. Similar to the prompting method, 1112
we utilize an instructional prompt that combines a step- 1113
by-step instruction with the user query x as input. The 1114
labeled text ŷ corresponding to x, along with the la- 1115
beled responses ŷobji for the multi-objective consider- 1116
ations, serve as outputs for fine-tuning the model Φ(L). 1117
The responses generated by the tuned model will then 1118
be utilized by the deferral module D(·) to determine 1119
whether routing to the server model Φ(S) is necessary. 1120

D.3 Multi-Objective Loss Tuning 1121

Stepping further over the methods that rely on the local 1122
model’s intricate understanding ability, recent works 1123
have pointed out the superiority of distilling the server 1124
llm’s ability on downstream tasks into the loss function 1125
for tuning the local model(Wang et al., 2024). Intu- 1126
itively, our assumption is that the server llm is larger 1127
and more powerful(Hartmann et al., 2024) in terms of 1128
down-stream tasks, and thus the discrepancy between 1129
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(a) 0-shot prompting (b) few-shot prompting (c) few-shot prompting

(d) instruction tuning (e) loss tuning (f) loss tuning

Figure 10: Logits scatter distribution produced by different methods on GSM8K dataset. (e) and (f) are logits for
privacy concerns; y-axis is the logits, x-axis is the data index.

the generations of Φ(L) and Φ(S) can somehow be1130
used for Φ(L) to indicate the confidence level. The1131
larger the discrepancy is, the lower confidence level1132
should the Φ(L) have. However, to enable Φ(L) be-1133
ing aware of multi-objective considerations, simply in-1134
cluding the distillation loss from Φ(S) is inadequate.1135
To this end, we decompose the overall task into several1136
sub-tasks and use different heads to handle the differ-1137
ent sub-tasks. Namely, given the multi-objective con-1138
siderations [obj1, ..., obji] and the query x, we leverage1139
multiple llm heads [h1, ..., hi, hL] to handle different1140
considerations and the query. Each head will produce a1141
loss and a distillation loss from Φ(S) will be optionally1142
added. These losses will then be sent to a weighted-1143
sum function to produce a multi-objective cascade loss1144
for tuning Φ(L):1145

l =

n∑
i

wi · lobji + wL · lL + α(t) · wS · lS

n∑
i

wni + wL + wS = 1, α(t) = H(logityL , t)

(9)1146

where wi denotes the weight for the loss associated1147
with generating response yobji for the objective obji,1148
wL is the weight for the loss of generating response yL1149
for x from Φ(L) and wS is the weight for the loss of1150
generating response yS for x from Φ(S). n is the num-1151
ber of objectives that need to be considered. α is the1152
factor for controlling if the knowledge from the server1153
LLM Φ(S) is used depending on a logit threshold t.1154
H(·, t) is a modified Heaviside Step function which re-1155
turns 0 if · > t else returns 1. In the context of identi-1156
fying privacy concern, the loss function we utilized for1157

tuning Φ(L) is: 1158

l = − wp · (ŷp · log(pL(y
p|x)) + (1 − ŷ

p
) · log(1 − pL(y

p|x)))+

wL · log(pL(y
L|x)) + α(t) · wS · log(pS(y

S |x))
(10) 1159

where yp, ŷp are the predicted, golden binary predic- 1160
tions for privacy, respectively. Other terms remain the 1161
same as in formula 9. By incorporating multi-objective 1162
considerations into the loss function for tuning Φ(L), 1163
the model will generate answers with better awareness 1164
of these considerations. The corresponding logits of the 1165
generated answers by tuned Φ(L) can then be utilized 1166
by the deferral module to inform decision-making. 1167

D.4 Deferral Module 1168

All the three methods are studying how to enable the 1169
local LLM to be aware of multi-objective considera- 1170
tions while generating the response to the query. And 1171
such considerations are presented as the logit distribu- 1172
tions of the generated response, for example, higher 1173
logit may indicated higher performance and less pri- 1174
vacy concern. Deferral module plays a pivotal role 1175
in the LLM cascade since it decides which query to 1176
send out to the server llm based on the logits. Fol- 1177
lowing previous successes on using different logit (e.g., 1178
mean, quantile) of the generated response as the refer- 1179
ence to decide if there is a need to route the query to the 1180
server LLM(Wang et al., 2024; Jitkrittum et al., 2024; 1181
Gupta et al., 2024), we also utilize the logit of gener- 1182
ated response as indicators to make the routing deci- 1183
sions. Specifically, given a threshold t ∈ (0, 1), if the 1184
logit of the generated response exceed t then it means 1185
the local LLM is confident with its response and no 1186
need to route, otherwise route the query x to the server 1187
LLM Φ(S). 1188

15



Figure 11: Overview of existing LLM cascade methods: Φ(L) and Φ(S) represent the local model and server
model, respectively. The red box indicates trainable, while the blue box represents frozen. Φ(L) is tasked with
generating responses yL and yobji for both the query x and the multi-objective considerations obji. For loss tuning,
the generation tasks are handled by different heads hi, and a combined cascade loss is utilized for tuning.
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