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Abstract

Cross-Domain Sequential Recommendation
(CDSR) leverages user behaviors across multiple
domains to mitigate data sparsity and cold-start
challenges in Single-Domain Sequential Recom-
mendation. Existing methods primarily rely on
shared users (overlapping users) to learn trans-
ferable interest representations. However, these
approaches have limited information propagation,
benefiting mainly overlapping users and those
with rich interaction histories while neglecting
non-overlapping (cold-start) and long-tailed users,
who constitute the majority in real-world scenarios.
To address this issue, we propose i2VAE, a novel
variational autoencoder (VAE)-based framework
that enhances user interest learning with mutual
information-based regularizers. i2VAE improves
recommendations for cold-start and long-tailed
users while maintaining strong performance across
all user groups. Specifically, cross-domain and
disentangling regularizers extract transferable fea-
tures for cold-start users, while a pseudo-sequence
generator synthesizes interactions for long-tailed
users, refined by a denoising regularizer to filter
noise and preserve meaningful interest signals.
Extensive experiments demonstrate that i2VAE out-
performs state-of-the-art methods, underscoring
its effectiveness in real-world CDSR applications.
Code and datasets are available at https:
//github.com/YennNing/I2VAE.

1 INTRODUCTION

With the rise of various sequential models, single-domain se-
quential recommendation (SDSR) [Hidasi et al., 2015, Kang
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Figure 1: Previous CDSR methods [Li et al., 2021, Ma et al.,
2019, Cao et al., 2022a] rely on domain-shared informa-
tion from overlapping users (Fig. (a)) but fail to effectively
model cold-start users’ interests (Fig. (b)) and capture long-
tail users’ preferences with sparse interactions (Fig. (c)).
In contrast, i2VAE disentangles cross-domain interests and
refines intra-domain interest representations, enhancing rec-
ommendations for all user groups.

and McAuley, 2018, Sun et al., 2019, Tang and Wang, 2018,
Wang et al., 2020, Xu et al., 2024b,a, Wei et al., 2024] has
gained increased attention due to its ability to model users’
dynamic interests in recommendation systems. However,
these SDSR models often suffer from the long-standing data
sparsity problem [Lin et al., 2021, Xu et al., 2023a, Wei and
He, 2022], where users have few interactions in a domain
to learn their preferences effectively. To address this issue,
cross-domain sequential recommendation (CDSR) methods
[Ma et al., 2019, 2022, Cao et al., 2022a, Li et al., 2021]
have been proposed to leverage abundant data from other
relevant domains to improve recommendation performance
in a data-scarce domain.

The core idea of CDSR is to extend SDSR methods by de-
signing cross-domain information transfer modules to cap-
ture domain-shared interests that can be transferred across
domains. Researchers have employed various techniques,
including gating mechanisms [Ma et al., 2019, Sun et al.,
2021], attention mechanisms [Li et al., 2021, Xu et al.,
2023b], graph neural networks [Guo et al., 2021, Ma et al.,
2022], and contrastive learning [Cao et al., 2022a, Xu et al.,
2023b], to learn user interests that can be transferred across
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domains. Although it appears promising, we find that previ-
ous CDSR methods [Ma et al., 2019, Li et al., 2021, Man
et al., 2017, Cao et al., 2022a] heavily rely on overlapping
users (Figure 1(a)) with rich historical behaviors. They can
only effectively learn users’ cross-domain interests when
a majority (over 70%, as noted by [Xu et al., 2023c]) of
users are overlapping across domains, and only adequately
capture intra-domain interests when users have extensive
historical interactions. However, these conditions are rarely
met in real-world recommendation tasks [Xu et al., 2023c,b],
where the majority of users are cold-start1 (Figure 1(b)) or
long-tailed2 (Figure 1(c)). For instance, on platforms like
Taobao or Amazon, there are very few overlapping users
compared to the entire user base (including overlapping and
non-overlapping users), and most users have very few inter-
action records (a.k.a. long-tailed users). In such cases, these
CDSR methods, trained on the sparse historical behaviors of
a few overlapping users, often show poor generalization, es-
pecially when inferring the intra-domain and cross-domain
interests of cold-start and long-tailed users. This presents the
primary challenge: how to enhance the CDSR model’s per-
formance in real-world recommendation scenarios, where
most users are either cold-start or long-tailed?

Suffering from cold-start users, previous CDSR and CDR
works have often utilized cross-domain modules that learn
a mapping function from one domain to another based on
the historical behaviors of overlapping users [Kang et al.,
2019, Zhu et al., 2021, Salah et al., 2021, Shi and Wang,
2019]. Most recently, some researchers [Xu et al., 2023a,c]
construct user-user graph to propagate the cross-domain
information for the cold-start users. However, cross-domain
information is only learned in domains where users exhibit
behaviors, and the density of the constructed graph heavily
depends on the density of these user interactions. Therefore,
the 1st sub-challenge is: how to transfer relevant cross-
domain information for cold-start users who lack historical
interest data in a domain? In addition, to address insufficient
interest learning of the predominant presence of long-tailed
users in real-world scenarios, MACD [Xu et al., 2023b]
employs attention mechanisms to discern latent interests
from users’ auxiliary sequential behavior data. However,
such auxiliary behaviors may not always be available in
real-world scenarios. Therefore, the 2nd sub-challenge is:
how to unearth and leverage the latent interest information
of long-tailed users, thereby improving model performance
in practical CDSR scenarios?

To address these challenges, we propose Interest Informa-
tion Augmentation with Variational Regularizers, named as
i2VAE, a novel framework that integrates a pseudo-sequence
generator, variational autoencoders, and interest-enhancing
regularizers (cross-domain, disentangling, and denoising).
Our framework effectively explores latent interest informa-

1Cold-start users have interactions in only one domain.
2Long-tailed users are those with a few interaction records.

tion for long-tailed users while transferring disentangled
cross-domain interest information for both overlapping and
cold-start users, significantly improving performance in real-
world scenarios. Recent works [Cao et al., 2022b,c] have
explored cross-domain interest transfer but remain limited
in scope. DisenCDR [Cao et al., 2022b] assumes full user
overlap and applies mutual information for disentanglement,
making it ineffective for cold-start users. CDRIB [Cao et al.,
2022c] leverages information bottleneck and contrastive
learning but struggles to capture long-tailed users’ prefer-
ences. In contrast, our framework integrates information
augmentation and denoising via mutual information, en-
abling robust learning for both cold-start and long-tailed
users in practical scenarios. The main contributions of our
work can be summarized as follows:

• Novel Framework. We propose i2VAE, a framework
based on variational autoencoders that enhances Interest In-
formation through variational regularizers. It uncovers latent
interests in long-tailed users and facilitates cross-domain
interest transfer for overlapping and cold-start users, signifi-
cantly improving real-world recommendation performance.

• Cold-Start Adaptation. We design new data pathways
and introduce cross-domain and disentangling regularizers
to jointly model and separate users’ intra- and cross-domain
interests in partially overlapped CDSR scenarios.

• Long-Tail Interest Enhancement. We introduce a
pseudo-sequence generator combined with a denoising reg-
ularizer to enrich sparse interaction histories while eliminat-
ing noises in pseudo-sequences.

• Empirical and theoretical validation. We show that
i2VAE achieves state-of-the-art performance across all user
types, including long-tailed and cold-start users, in real-
world cross-domain scenarios. Additionally, we provide
rigorous theoretical derivations to support its effectiveness.

2 PRELIMINARY

This section introduces the CDSR problem, where the model
uses user behavior from two domains to predict true interests.
We also present the concept of mutual information.

2.1 PROBLEM FORMULATION

In this work, we consider a real-world CDSR scenario
that includes a fraction of overlapping users, and a ma-
jority of long-tailed and cold-start users across two do-
mains, namely domain X and domain Y . The recommen-
dation data is represented by DX = (UX ,VX , EX) and
DY = (UY ,VY , EY ), where U ·, V ·, and E · are the sets
of users, items, and interaction edges, respectively. For a
given user, we denote the sequeneces of user-item interac-
tion in chronological order, as SX = [vX1 , vX2 , · · · , vX|SX |]



and SY = [vY1 , vY2 , · · · , vY|SY |], where | · | is the length
of user behavior. The objective of CDSR is to predict the
next item that each user will purchase based on the user’s
previous behavior in two domains [Cao et al., 2022c, Xu
et al., 2023b].

2.2 PRELIMINARY OF MUTUAL INFORMATION

Mutual Information Maximization [McGill, 1954, Hjelm
et al., 2018, Belghazi et al., 2018] is a key mathematical tool
for ensuring the robustness of interest augmentation. For
random variables X and Y , the mutual information [Järvelin
and Kekäläinen, 2002, Paninski, 2003] I(X;Y ), measur-
ing how much X reduces uncertainty in Y , is defined as:
I(X;Y ) = H(X)−H(X|Y ), where H(X) and H(X|Y )
denote the entropy [Rényi, 1961, Cover et al., 1991] of X
and the conditional entropy of X given Y . For three random
variables X , Y , and Z, the interaction information [McGill,
1954, Bell, 2003] I(X;Y ;Z), is defined as:

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z), (1)

which captures shared information beyond pairwise mutual
information. Notably, all variables are symmetric in these
definitions.

3 METHODOLODGY

This section introduces the pseudo-sequence generator, in-
ference and generation procedures of i2VAE, and its interest-
enhancing regularizers. Figure 2 provides an overview.

3.1 PSEUDO-SEQUENCE GENERATOR

Behavior sparsity poses a significant challenge in real-world
CDSR scenarios, making it difficult for models to capture
users’ within-domain interests, let alone cross-domain inter-
ests. Thus, the pseudo-sequence generator (PSG) augments
user behaviors by serving as a fast retrieval model that effi-
ciently generates candidate items aligned with user interests
but not yet interacted with. To balance efficiency and effec-
tiveness, we use LightGCN [He et al., 2020] with iterative
recall to generate pseudo-sequences while avoiding the high
computational cost of sequential recommendation models.

The pseudo-sequence generation process consists of three
steps: (1) Unified Item Set Construction: Items from both do-
mains are remapped into a unified item set, V = VX ∪ VY ,
ensuring no duplicates. A user-item bipartite graph G is
built based on the interaction data E = EX ∪ EY . (2)
Embedding Learning & Recall: Using LightGCN, user
and item embeddings are learned as EU ∈ R|U|×d and
EV ∈ R|V|×d, where d is the embedding dimension. Pre-
dicted user preferences are represented by the rating matrix

R = EUE
T
V . The recall process iteratively selects candi-

date items based on R, updates the interaction graph with
pseudo-interactions, and refines embeddings through mes-
sage propagation. (3) Pseudo-Sequence Generation: Users’
original interaction sequences SX and SY are expanded
with high-scoring items from the recall process that have not
been interacted with. For domain X , the pseudo-sequence
is defined as S̃X = SX ∪ {ṽ1, . . . , ṽT ′}, where the top T ′

items ṽi are selected by the iterative recall process, satisfy-
ing ṽi ∈ VX \ SX . A similar process is applied to domain
Y simultaneously.

3.2 EMBEDDING LAYER

We employ embedding layers EX ∈ R|VX |×d and EY ∈
R|VY |×d, along with the self-attention layer from SAS-
Rec [Kang and McAuley, 2018], to derive interest represen-
tations for both real sequences ( SX and SY ) and pseudo
sequences (S̃X and S̃Y ). Specifically, the representations
are computed as SX = ⊙

(
{hSX

1
, · · · ,hSX

T
}
)
, SY =

⊙
(
{hSY

1
, · · · ,hSY

T
}
)
, SX

a = ⊙
(
{hS̃X

1
, · · · ,hS̃X

T ′
}
)
,

SY
a = ⊙

(
{hS̃Y

1
, · · · ,hS̃Y

T ′
}
)
, where hSX

t
and hSY

t
de-

note the hidden representations of items at position t in
sequences SX and SY , and ⊙ represents mean pooling over
the time dimension, producing embeddings in Rd. Here,
T and T ′ are the maximum lengths of the real and pseudo
sequences, respectively. For sequences longer than T (T ′),
only the most recent T (T ′) actions are retained; for shorter
sequences, ’padding’ items are added to the left to meet the
required length. SX and SY represent the user interests
derived from real sequences, while SX

a and SY
a capture

the augmented interests obtained from pseudo sequences.

3.3 GENERATION AND INFERENCE OF I2VAE

In line with previous CDR studies [Cao et al., 2022b,a], we
adopt variational autoencoder as the foundamental architec-
ture due to its ability to model interest decomposition and
transfer. We assume that a user’s interests in domains X and
Y are represented by X and Y , which capture the user’s
true preferences in each domain. These interests follow a
bivariate distribution PD(X,Y ), and our goal is to recon-
struct them in PD to predict the next items the user will
interact with. In our i2VAE, to map the initial interest rep-
resentations (SX ,SY ,SX

a ,SY
a ) to their true interests, we

design six d-dimensional latent variables in VAE, three for
each domain, representing different aspects of user interests
to facilitate interest reconstruction:

• ZX , ZY : Domain-specific interests in domain X and Y .

• ZY
t , ZX

t : Transferable interests that capture cross-
domain user preferences; ZY

t represents the interests in
domain Y that are transferable to X , and vise versa for ZX

t .
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Figure 2: Figure (a) presents an overview of i2VAE, highlighting computational pathways (thick black lines) and key
interest-enhancing regularizers I(ZX

a ;ZX), −I(ZX ;ZY
t ), and I(X;Y ;ZY

t ) for predictions in domain X . The dashed
component ry(zyt |y) replaces the cross-domain module q(zyt |x, y) for cold-start users in X . The model is symmetric for
domain Y (grey lines). Figures (b) and (c) depict simplified data pathways for overlapping and cold-start users in domain X .

• ZX
a , ZY

a : Augmented domain-specific interests derived
from pseudo sequnces in domain X and Y .

3.3.1 Inference Procedure

To model the six representations described above, we use
the VAE [Kingma, 2013], which encodes different aspects
of a user’s interests into latent variables. We assume that the
six latent variables are conditionally independent given X
and Y . Moreover, ZY

t and ZX
t represent cross-domain

information, while ZX , ZX
a , ZY , and ZY

a represent
domain-specific information that only correlates with one
domain. With the previously mentioned assumptions, we can
obtain q(zx|x, y) = q(zx|x)3, which is applicable to other
domain-specific latent variables. Based on this assumption,
we factorize qϕ as follows.

q(zx, zy, zyt , z
x
t , z

x
a , z

y
a |x, y) (2)

= q(zx|x)q(zyt |x, y)q(z
x
a |x)︸ ︷︷ ︸

Domain X

q(zy|y)q(zxt |x, y)q(zya |y)︸ ︷︷ ︸
Domain Y

Resembling standard VAE’s inference process, each q(·) in
the factorization above corresponds to a VAE’s encoder, and
it is assumed to follow a Gaussian distribution. The mean
(µ·) and standard deviation vectors (σ·) of the distribution
are generated by their respective encoders. In the equation
above, ϕ represents the learnable parameters of all encoders.
Details regarding the implementation of domain-specific
and cross-domain encoders are provided in Appendix D.
Then, using the reparameterization trick, latent variables are
generated as follows. For zx, we have:

zx = µx + σx ⊙ ϵ, ϵ ∼ N (0, I) , (3)

3To keep equations compact, we use lowercase, non-bold sym-
bols in prior and posterior expansions to represent their bold up-
percase counterparts (e.g., zyt for ZY

t , and x for X).

with other latent variables generated similarly.

3.3.2 Generative Procedure

We assume that X and Y are conditionally independent
given the six latent variables. Additionally, each domain
is associated with only three latent variables. For instance,
reconstructing X only involves the domain-specific inter-
est representation ZX , the augmented interest represen-
tation ZX

a , and the cross-domain representation ZY
t for

information transferred from domain Y to X . Therefore,
we have pθ(x|zx, zyt , zxa , zy, zxt , zya) = pθx(x|zx, z

y
t , z

x
a),

which similarly applies to domain Y . Based on this assump-
tion, our generative distribution can be structured as:

pθ(x, y) =

∫
pθx(x|zx, z

y
t , z

x
a)pθy (y|zy, z

y
t , z

y
a)p(z

x)p(zy)

· p(zxa)p(zya)p(zxt )p(z
y
t )dz

xdzydzxadz
y
adz

x
t dz

y
t .

Here, θ = {θx, θy} denotes the parameters of the VAE de-
coders. The prior distributions p(·) for cross-domain latent
variables (zxt and zyt ) are set as standard normal distribu-
tions, N (0, I), while domain-specific priors vary in mean
and standard deviation to reflect domain distinctions.

3.3.3 Evidence Lower Bound of i2VAE

Similar to standard VAE approaches, we derive the Ev-
idence Lower Bound (ELBO) of the optimization objec-
tive [Kingma, 2013, Salah et al., 2021] based on the as-
sumptions in the generation and inference. It comprises
two reconstruction terms (Eqϕ [·]), aiming to reconstruct the
user’s true interests in domains X and Y , and six Kullback-
Leibler (KL) divergences (DKL[·]), which regularize the



latent variable distributions to align with their priors:

log p(x, y) ≥ ELBO
= Eqϕ [log p(x|zx, z

y
t , z

x
a)] + Eqϕ [log p(y|zy, zxt , zya)]

−DKL[q(z
x|x)∥p(zx)]−DKL[q(z

y|y)∥p(zy)]
−DKL[q(z

y
t |x, y)∥p(zyc )]−DKL[q(z

x
t |x, y)∥p(zxc )]

−DKL[q(z
x
a |x)∥p(zxa)]−DKL[q(z

y
a |y)∥p(zya)].

(4)

For the reconstruction term in domain X , an MLP functions
as the VAE decoder, reconstructing the user’s true interest
representation X ∈ Rd from three domain-specific latent
variables. Each item in domain X is associated with an
embedding EX

vi ∈ Rd, which is used to estimate the user’s
preference for an item via their dot product: r̂Xui = Xu ·EX

vi .
The reconstruction term is optimized by minimizing the Bi-
nary Cross-Entropy Loss between the predicted interaction
probability r̂Xui and the true interaction label rXui. The same
process applies to domain Y .

3.4 INTEREST-ENHANCING REGULARIZERS

Using an unconstrained VAE model alone cannot guarantee
reliable interest augmentation. We identify two key aspects
of this reliability: (a) Predicting interactions in the cold-start
domain relies solely on cross-domain transferable interests,
which must be separate from domain-specific interests in
the other domain. (b) Augmenting intra-domain interests
may introduce noise due to inaccuracies in the PSG, thus
a denoising mechanism is needed to filter out these devia-
tions and preserve the true intra-domain augmented inter-
ests. To address these reliability challenges, we propose
three interest-enhancing regularizers—cross-domain, disen-
tangling, and denoising—illustrated using domain X , with
symmetric designs for domain Y omitted for brevity.

3.4.1 Cross-domain Regularizer I(X;Y ;ZY
t )

We aim for the the transferable interest representation ZY
t

to capture user interests that can transfer from domain Y to
X , acting as a cross-domain signal, such as shared themes
or topics across domains like books and movies. To achieve
this, we propose the first regularizer—maximizing the in-
teraction information I(X;Y ;ZY

t )—which quantifies the
interdependence and shared information among these vari-
ables. Using the formal definition of interaction information
(Eq. (1)), we expand I(X;Y ;ZY

t ) as:

I(X;Y ;ZY
t ) = I(X;ZY

t )− I(X;ZY
t |Y ). (5)

The above equation can be intuitively explained from
two perspectives: (1) it increases I(X;ZY

t ), ensuring
ZY

t captures information relevant to X; (2) it minimizes
I(X;ZY

t |Y ), which helps restrict ZY
t to information in-

ferred from domain Y . By doing so, the cross-domain latent
variable, ZY

t , effectively encodes shared and transferable
user-interest signals across the two domains.

3.4.2 Disentangling Regularizer −I(ZX ;ZY
t )

For cold-start users in domain X , only ZY
t , the cross-

domain representation, is utilized for reconstruction, while
all domain-specific representations in X are masked. This
design requires ZY

t to focus exclusively on transferable
cross-domain interests without contamination from domain-
specific information in Y , as such contamination could lead
to negative transfer [Zhang et al., 2023, Park et al., 2023].

To achieve this, we propose our second regularizer-
minimizing I(ZX ;ZY

t )-ensuring that ZY
t remains dis-

entangled and dedicated to cross-domain information. We
further propose a generalizable proposition that simpli-
fies intractable disentangling regularizers by breaking them
down into manageable components. Distinct from Cao et al.
[2022b,a], our derivation of its optimizable terms in Sec-
tion 3.5.1 further ensures the reliability of interest extraction
for cold-start users.

Proposition 1. Let ZX ∈ Rd represent the domain-specific
interest in domain X , and ZY

t ∈ Rd denote the cross-
domain transferable interest from domain Y to X . To
effectively disentangle domain-specific and cross-domain
interests, we aim to minimize their mutual information,
I(ZX ;ZY

t ), which is equivalent to:

max
{
− I(X;ZX)− I(X;ZY

t ) + I(X;ZX ,ZY
t )

}
. (6)

The proof is given in the Appendix A.1. Eq. (6) above can be
intuitively explained as follows: ZX and ZY

t are required
to be jointly informative to domain X (the third term), and
the total amount of information in ZY

t and ZX will be
penalized (the first and second terms). Thus, maximizing
Eq. (6) will naturally encourage ZY

t and ZX to encode the
distinct, non-overlapping information that can be informa-
tive to domain X .

3.4.3 Denoising Regularizer I(ZX ;ZX
a )

The third regularizer aims to maximize the mutual informa-
tion I(ZX ;ZX

a ) between the representations of SX and
S̃X . This ensures that the pseudo-sequences retain relevant
intra-domain interest information while filtering out noise
introduced by unreliable recalled items from PSG. Specifi-
cally, maximizing I(ZX ;ZX

a ) reduces the uncertainty of
ZX given ZX

a , encouraging ZX
a to capture the true un-

derlying information in ZX and eliminate irrelevant noise.
When user behavior is sparse, it is crucial to leverage rich in-
formation from the pseudo-sequence rather than excessively
denoise it. Conversely, when user behavior is abundant, en-
hancing the denoising process improves the model’s ability
to capture useful augmentations. Therefore, we introduce
a noise-adaptive weight λX

d for the denoising regularizer
I(ZX ;ZX

a ), which increases with the richness of user in-
teractions: λX

d = exp(aLX/T )− b, where LX is the length



of the user’s unpadded historical behavior in domain X , and
T is the maximum length of SX . Constants a and b both set
to 0.8 in our study.

3.5 OPTIMIZATION DETAILS

3.5.1 Derivation of Regularizers’ Lower Bounds

Combining the previous three interest-enhancing regular-
izers for domain X , we have the following optimization
objectives to enforce robustness:

max

{ Cross-domain︷ ︸︸ ︷
I(X;Y ;ZY

t )+[

Disentangling︷ ︸︸ ︷
−I(ZX ;ZY

t )] +

Denoising︷ ︸︸ ︷
I(ZX ;ZX

a )︸ ︷︷ ︸
IX

interest

}
, (7)

with the derivations in Eq. (5) - (6), it is equivalent to:

max
{
I(X;ZX ,ZY

t )− I(X;ZX)− I(X;ZY
t |Y ) + I(ZX ;ZX

a )︸ ︷︷ ︸
IX

interest

}
. (8)

Although mutual information possesses elegant mathemati-
cal properties, the terms above cannot be directly optimized,
requiring innovative derivations to establish tractable and
reliable lower bounds. Below, we provide derivations and
explanations for bounds L(·).

• Derivations for I(X;ZX ,ZY
t ) ≥ LI(X;ZX ,ZY

t ):

I(X;ZX ,ZY
t ) ≥ H(X) + EpDq(zx|x)q(zy

t |x,y) [log p(x|z
x, zyt )] (9)

The detailed derivation is provided in Section A.2. Maxi-
mizing Eq. (9) plays a critical role in aligning p(x|zx, zyt )
with q(x|zx, zyt ), effectively functioning as a reconstruc-
tion term. This alignment ensures that the learned latent
representations ZX and ZY

t are capable of accurately
reconstructing the original user preferences X . To avoid
redundancy in the objectives, we approximate this term in
practice with Eqϕ [log p(x|zx, z

y
t , z

x
a)] from Eq. (4). This

approximation not only avoids overlapping objectives but
also simplifies computation. For clarity, we refer to this term
as LI(X;ZX ,ZY

t ).

• Derivations for −I(X;ZX) ≥ L−I(X;ZX):

−I(X;ZX) = −EpD(x) [ DKL [q(z
x|x)∥q(zx)]]

≥ −EpD(x) [ DKL [q(z
x|x)∥p(zx)]] .

(10)

This formula represents reducing the mutual information
between X and its latent representation ZX to ensure
that ZX retains only the necessary information about X .
By replacing q(zx) with the prior distribution p(zx), a
more tractable KL divergence lower bound is obtained for
practical model training. We denote the derived term as
L−I(X;ZX).

• Derivations for −I(X;ZY
t |Y ) ≥ L−I(X;ZY

t |Y ):

−I(X;ZY
t |Y ) ≥ −EpD(x,y) [DKL (q(zyt |x, y)∥ry(z

y
t |y))] (11)

The derived bound is denoted as L−I(X;ZY
t |Y ), with de-

tailed derivations provided in Section A.3. Minimizing
−I(X;ZY

t | Y ) aligns the auxiliary distribution ry(zyt |y)
with the cross-domain representation q(zyt |x, y). This is
particularly useful for cold-start users in domain X , where
q(zyt |x, y) becomes unreliable. In such cases, as illustrated
in Figure 2, ry(zyt |y), relying solely on domain Y , substi-
tutes q(zyt |x, y) during inference to ensure the robustness
for cold-start users.

• Derivations for I(ZX ;ZX
a ) ≥ LI(ZX ;ZX

a ):

I(ZX ;ZX
a ) = −Eq(zx

a |zx,x) [DKL (q(zx|x)∥q(zxa |x))] + ϵ. (12)

Detailed derivation can be found in Section A.4. Since ϵ is
intractable, we optimize I(ZX ;ZX

a ) by solely maximizing
the first term, denoted as the lower bound LI(ZX ;ZX

a ).

3.5.2 Overall Optimization Objectives

The interest-enhancing regularizers for the reconstruc-
tion of domain Y are symmetrical. Referring to Eqs. (9)-
(12), we can obtain optimization objectives for do-
main Y : LI(Y ;ZY ,ZX

t ), L−I(Y ;ZY ), L−I(Y ;ZX
t |X), and

LI(ZY ;ZY
a ).

To jointly optimize domains X and Y , we derive the overall
optimization objective by combining the ELBO in Eq. (4)
with the tractable lower bounds of I(·)interest for each domain
X and Y . This is achieved using balancing weights λa and
adaptive denoising weight λ(·)

d for the denoising regularizer
and λc for the cross-domain and disentangling regularizers.
The overall optimization objective is formulated as follows.

max
θ,ϕ

{
log p(x, y) + IXinterest + IYinterest

}
≥ max

θ,ϕ

{
ELBO + λaλ

X
d LI(ZX ;ZX

a ) + λaλ
Y
d LI(ZY ;ZY

a )

+ λc

(
LI(X;ZX ,ZY

t ) + L−I(X;ZX) + L−I(X;ZY
t |Y )

)
+ λc

(
LI(Y ;ZY ,ZX

t ) + L−I(Y ;ZY ) + L−I(Y ;ZX
t |X)

)}
.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the per-
formance of our i2VAE. Experiments in this section intend
to answer the following research questions (RQs): RQ1:
How does i2VAE perform compared to other baseline meth-
ods in the CDSR task across different user types, including
long-tailed and cold-start users? RQ2: How do the different
modules of i2VAE contribute to the performance improve-
ment of our method? RQ3: Can i2VAE consistently achieve
strong performance across varying user-item interaction den-
sities and different numbers of overlapping users, and how
do hyperparameter settings impact its performance?



Table 1: Experimental Results (%) across different types of users, including long-tailed(tailed), cold-start, and all users,
on "Cloth-Sport" and "Phone-Elec" CDSR datasets. Due to space constraints, the full experimental results, including the
"Game-Video" dataset, are presented in Appendix E. The best and second-best average performances are highlighted.

Datasets User Types Metric
SDR CDR-sequential CDR Ours

↑(%)
Multi-VAE SVAE SASRec DASL PiNet C2DSR DisenCDR SA-VAE CDRIB i2VAE

Cloth

Tailed
NDCG 2.31±0.08 2.07±0.16 2.09±0.20 2.28±0.17 2.11±0.17 2.29±0.09 2.20±0.06 2.40±0.14 2.27±0.10 2.52±0.07* 5.00

HR 4.15±0.12 3.99±0.34 3.99±0.31 4.46±0.24 4.15±0.36 4.38±0.32 4.21±0.15 4.43±0.22 4.21±0.21 4.73±0.16* 6.05

Cold-start
NDCG 3.23±0.29 3.41±0.35 2.86±0.50 3.28±0.18 3.04±0.66 3.08±0.65 2.95±0.29 3.25±0.24 3.00±0.39 3.45±0.35* 1.17

HR 6.08±0.38 6.39±0.43 5.64±0.86 6.27±0.40 5.58±1.24 5.96±0.95 5.58±0.23 5.89±0.46 5.52±0.58 6.77±0.51* 5.95

All
NDCG 2.20±0.10 2.18±0.10 2.11±0.15 2.43±0.09 2.18±0.10 2.40±0.07 2.30±0.05 2.52±0.10 2.39±0.06 2.59±0.11* 2.78

HR 4.25±0.12 4.28±0.28 4.15±0.30 4.82±0.11 4.24±0.18 4.63±0.18 4.48±0.18 4.81±0.19 4.56±0.09 5.00±0.17* 3.73

Sport

Tailed
NDCG 3.02±0.14 2.90±0.16 2.80±0.21 3.31±0.36 2.96±0.15 3.06±0.15 3.14±0.10 3.29±0.15 3.12±0.11 3.36±0.10* 1.51

HR 6.06±0.50 5.76±0.34 5.72±0.22 6.29±0.57 5.89±0.25 6.03±0.22 5.94±0.19 6.31±0.42 5.81±0.10 6.66±0.17* 5.55

Cold-start
NDCG 4.33±0.49 4.19±0.24 3.92±0.40 4.48±0.42 4.24±0.31 4.65±0.53 4.93±0.18 5.05±0.29 4.95±0.25 5.43±0.29* 7.52

HR 8.89±0.66 8.62±0.73 7.88±0.62 8.15±0.94 8.28±0.27 9.36±0.54 8.54±0.59 9.63±0.73 9.09±0.43 10.30±0.46* 6.96

All
NDCG 3.79±0.07 3.89±0.15 3.70±0.18 3.93±0.14 3.68±0.08 4.13±0.17 4.21±0.13 4.31±0.13 4.27±0.09 4.40±0.10* 2.20

HR 7.23±0.27 7.27±0.29 7.00±0.17 7.45±0.32 6.90±0.33 7.84±0.33 7.90±0.22 8.06±0.26 7.88±0.33 8.53±0.14* 5.80

Phone

Tailed
NDCG 3.58±0.13 3.51±0.11 3.41±0.13 4.10±0.15 3.68±0.17 3.81±0.17 4.01±0.14 4.06±0.31 4.01±0.23 4.23±0.21* 3.17

HR 6.90±0.34 6.74±0.20 6.58±0.32 8.06±0.27 7.17±0.20 7.47±0.39 7.78±0.39 7.96±0.61 7.92±0.38 8.17±0.27* 1.36

Cold-start
NDCG 3.16±0.19 3.15±0.30 2.97±0.38 3.63±0.25 3.51±0.38 3.73±0.37 3.80±0.33 3.83±0.48 4.00±0.35 4.39±0.21* 9.75

HR 6.26±0.39 6.11±0.42 6.03±0.45 7.40±0.39 7.18±0.51 7.18±0.74 7.56±0.56 7.94±0.85 7.56±0.51 8.63±0.19* 8.69

All
NDCG 3.98±0.19 3.89±0.06 3.88±0.14 4.40±0.17 4.13±0.14 4.36±0.21 4.52±0.15 4.49±0.29 4.46±0.19 5.79±0.29* 3.23

HR 7.59±0.39 7.33±0.14 7.36±0.27 8.54±0.32 7.77±0.34 8.30±0.38 8.68±0.22 8.54±0.50 8.66±0.29 10.61±0.22* 2.35

Elec

Tailed
NDCG 6.96±0.23 6.74±0.25 6.78±0.29 7.63±0.19 7.09±0.24 7.78±0.13 7.64±0.10 7.60±0.30 7.77±0.11 8.00±0.10* 2.96

HR 11.65±0.48 11.39±0.47 11.49±0.53 12.83±0.41 11.66±0.56 13.05±0.28 12.45±0.25 12.56±0.39 12.66±0.28 13.49±0.19* 5.14

Cold-start
NDCG 9.35±0.33 9.22±0.19 9.16±0.19 9.73±0.65 9.59±0.35 9.85±0.30 9.90±0.25 9.76±0.48 9.73±0.40 10.26±0.42* 3.64

HR 14.71±0.49 14.76±0.60 14.94±0.51 15.76±1.24 15.00±1.00 15.94±0.43 15.24±0.60 15.35±0.90 15.53±0.34 17.12±0.39* 7.40

All
NDCG 8.20±0.22 8.06±0.27 8.08±0.34 8.58±0.16 7.84±0.08 9.00±0.12 8.95±0.13 8.84±0.19 9.04±0.04 9.33±0.09* 3.22

HR 13.08±0.43 12.81±0.45 12.86±0.59 13.60±0.50 12.31±0.19 14.46±0.31 14.03±0.21 13.96±0.26 14.08±0.26 15.28±0.26* 5.64

"*" denotes statistically significant improvements (p < 0.05), as determined by a paired t-test comparison with the
second best result.

4.1 DATASETS

Following previous works [Cao et al., 2022c, Xu et al.,
2023c, Cao et al., 2022b, Xu et al., 2023b], we conducted of-
fline experiments on three widely used CDSR datasets from
Amazon across six domains: "Cloth-Sport”, and “Phone-
Elec”, and “Game-Video". All behavioral sequences were
collected in chronological order, and the data were split
into 80% training, 10% validation, and 10% testing. To sim-
ulate real-world recommendation scenarios, we included
non-overlapping users and controlled the overlapping ra-
tio (Ko) across domains. Detailed dataset information and
statistics are provided in Appendix B.

4.2 EXPERIMENT SETTING

Evaluation Protocol. To assess our approach across differ-
ent user types, we retain all overlapping (Ko = 100%) and
non-overlapping users in the training set, while randomly
selecting 20% of overlapping users from the test set and
treating them as cold-start users. We evaluate performance
on long-tailed users (interaction sequences shorter than the
bottom 80% average), cold-start users, and all users [Ma
et al., 2019, Cao et al., 2022c,a]. For fair comparison [Krich-
ene and Rendle, 2020, Zhao et al., 2020], we construct a
ranking candidate set by sampling 999 negative items per

user along with one positive ground-truth item. Performance
is measured by NDCG@10 [Järvelin and Kekäläinen, 2002]
and HR@10, where higher values indicate better perfor-
mance. Implementation details are provided in Appendix D.

Compared Methods. To verify the effectiveness of our
model, we compare i2VAE with the following SOTA base-
lines which can be divided into three branches including: (1)
single-domain recommendation methods (SDR), i.e., Multi-
VAE [Liang et al., 2018], SVAE [Sachdeva et al., 2019] and
SASRec [Kang and McAuley, 2018]. (2) cross-domain se-
quential recommendation methods (CDSR), i.e., Pi-Net [Ma
et al., 2019], DASL [Li et al., 2021] and C2DSR [Cao et al.,
2022a]. (3) cross-domain recommendation methods (CDR),
i.e., DisenCDR [Cao et al., 2022b], SA-VAE [Salah et al.,
2021] and CDRIB [Cao et al., 2022c]. Details are in Ap-
pendix C.

4.3 COMPARISON RESULTS (RQ1)

We compare the performance of i2VAE with state-of-the-
art baselines across multiple real-world CDSR datasets, as
shown in Table 1. While the extent of baseline improvements
varies across datasets and user types, i2VAE consistently
outperforms previous methods for long-tailed, cold-start,
and all users. In general, CDR/CDSR methods outperform



Table 2: Ablation study results (%) on the "Cloth-Sport"
dataset. "w/o" indicates the removal of the module.

DomainUser Types Metric
Model Variants

i2VAE
w/o PSG w/o CD-R&DS-R w/o DN-R

Cloth

Tailed
NDCG 2.41±0.14 2.38±0.09 2.39±0.14 2.52 ±0.07

HR 4.59±0.12 4.49±0.21 4.45±0.21 4.73 ±0.16

Cold-Start
NDCG 3.21±0.22 3.23±0.12 3.30±0.17 3.45 ±0.35

HR 6.21±0.23 6.27±0.34 6.46±0.58 6.77 ±0.51

All
NDCG 2.54±0.12 2.54±0.11 2.54±0.12 2.59 ±0.11

HR 4.92±0.20 4.84±0.26 4.89±0.23 5.00 ±0.17

Sport

Tailed
NDCG 3.35±0.12 3.28±0.11 3.27±0.07 3.36 ±0.10

HR 6.51±0.24 6.39±0.16 6.33±0.18 6.66 ±0.17

Cold-Start
NDCG 5.26±0.26 5.18±0.30 5.19±0.28 5.43 ±0.29

HR 10.24±0.46 9.90±0.34 10.10±0.43 10.30 ±0.46

All
NDCG 4.36±0.05 4.31±0.16 4.32±0.15 4.40 ±0.10

HR 8.44±0.14 8.41±0.25 8.44±0.24 8.53 ±0.14

SDR models by capturing cross-domain interests, which is
particularly beneficial in sparse data settings. Among the
most challenging groups, long-tailed users see only limited
improvements from most baselines, as their sparse interac-
tion histories constrain learning capacity. In contrast, i2VAE
surpasses the second-best model by 0.43% to 5.00% by syn-
thesizing pseudo-sequences and applying denoising regular-
ization to filter out irrelevant information, thereby enhanc-
ing recommendation quality. Similarly, for cold-start users,
i2VAE achieves significant performance gains of 1.17% to
15.20% over the second-best model by leveraging ry(zyt |y)
and rx(zxt |x) to learn cross-domain representations for both
overlapping and non-overlapping users while mitigating neg-
ative transfer caused by domain-specific information, further
refining inference quality. These results highlight i2VAE’s
robustness across different user groups and its ability to
effectively model interest representations in long-tailed and
cold-start scenarios.

4.4 ABLATION STUDY (RQ2)

We assess the importance of each module by examining their
impact on performance. Analysis shows that replacing PSG-
generated pseudo-sequences with random ones decreases
performance across all user types, confirming that even
imperfect recall models enhance user interest understanding.
Removing informative and disentangle regularizers (CD-R
& DS-R) similarly reduces performance, with the strongest
impact on cold-start users, highlighting the importance of
structured representations and non-overlapping user training.
Finally, removing DN-R degrades performance, particularly
for long-tailed users, demonstrating the need to denoise
pseudo sequences while leveraging augmented interests.

4.5 MODEL ANALYSIS (RQ3)

To verify the performance of i2VAE in CDSR scenarios
with varying data densities, we conduct studies by varying
the data density Ds in {25%, 50%, 75%, 100%}. As the
density decreases, the actual user-item interaction records in

the training and testing sets are down-sampled to test the ro-
bustness of i2VAE and the second-best SA-VAE on sparser
datasets. We re-run experiments on the ’Cloth-Sport’ dataset
with other settings as in Sections 3.2.1 and 3.2.3. The results
are presented in Table 3. All experiments are conducted five
times with different random seeds, and average values are
reported. As expected, both models’ performance decreases
with lower data density due to the increased challenge in
interest learning. SA-VAE shows a significant performance
decline because it relies heavily on rich user interactions
within each domain. In contrast, i2VAE generally achieves
better recommendation results with less performance degra-
dation. This is mainly due to the PSG and the denoise regu-
larizer supplementing the sparse interaction data. We also
designed experiments to test our model’s performance with
fewer cross-domain overlapping users, and the results can
be found in Appendix F.1. Moreover, the investigate results
of the parameter sensitivity of sequence length T and the
harmonic factors λa and λc can be found in Appendix F.2.
These additional experiments confirm that i2VAE remains
effective across different levels of overlapping users and ex-
hibits stable performance under hyperparameter variations.

5 RELATED WORK

Cross-Domain Sequential Recommendation [Ma et al.,
2019, Sun et al., 2021, Xu et al., 2023c] aims to improve
sequential recommendation (SR) performance by utilizing
user behavior sequences from multiple related domains. Pi-
Net[Ma et al., 2019] and PSJNet [Sun et al., 2021] design
gating mechanism to learn and transfer cross-domain infor-
mation on overlapping users. The attentive learning-based
model DASL [Li et al., 2021] uses dual attentive learning
to transfer the user’s latent interests bidirectionally across
two domains. Similarly, DA-GCN[Guo et al., 2021] and
MIFN[Ma et al., 2022] build user-item bipartite graphs to
facilitate cross-domain information transferring on over-
lapping users. Moreover, C2DSR [Cao et al., 2022a] em-
ploys GNNs as sequential attentive encoder to learn the
collaborative signals and utilize contrastive learning to align
single- and cross-domain user representations. However,
these methods heavily depend on overlapping users, limit-
ing their effectiveness for long-tailed and cold-start users.

Cross-Domain Recommendation [Zhu et al., 2020a, Zhang
et al., 2018, Zhao et al., 2019, Zhu et al., 2020b, Ouyang
et al., 2020, Salah et al., 2021] leverages multi-domain be-
havior patterns to address data sparsity and cold-start issues
in single-domain recommendation. Recent studies focus on
transfer learning [Hu et al., 2018, Liu et al., 2020], using
transfer modules to map and fuse representations across do-
mains, or modeling domain-shared information [Cao et al.,
2022a,b]. DisenCDR [Cao et al., 2022b] assumes fully over-
lapping users and employs mutual-information-based regu-
larizers to disentangle domain-specific and domain-shared



Table 3: Experiment results (%) on "Cloth-Sport" dataset
with different density (Ds).

Domain User Metric
Ds = 25% Ds = 50% Ds = 75% Ds = 100%

SA-VAE i2VAE SA-VAE i2VAE SA-VAE i2VAE SA-VAE i2VAE

Cloth

Tailed
NDCG 1.39 1.51 1.40 1.53 1.40 1.46 2.40 2.52

HR 2.75 2.96 2.69 2.88 2.85 2.95 4.43 4.73

Cold-Start
NDCG 0.84 0.85 0.90 1.12 1.41 1.72 3.25 3.45

HR 1.94 1.82 2.26 2.26 2.82 3.32 5.89 6.77

All
NDCG 1.38 1.49 1.39 1.53 1.42 1.57 2.52 2.59

HR 2.74 2.95 2.71 2.92 2.95 3.27 4.81 5.00

Sport

Tailed
NDCG 2.35 2.53 2.47 2.72 2.80 3.26 3.29 3.36

HR 4.27 4.62 4.41 5.09 4.86 5.66 6.31 6.66

Cold-Start
NDCG 0.71 0.76 0.99 1.06 1.88 2.14 5.05 5.43

HR 1.62 1.67 2.02 2.02 3.57 3.84 9.63 10.30

All
NDCG 2.49 2.70 3.03 3.28 3.18 3.70 4.31 4.40

HR 4.46 4.84 5.47 6.16 5.62 6.60 8.06 8.53

interests, but fails to handle cold-start users effectively. SA-
VAE [Salah et al., 2021] pre-trains a VAE on the source
domain and aligns latent variables between source and tar-
get domain VAEs, but rely fully on the overlappping users.
CDRIB [Cao et al., 2022c] applies the information bot-
tleneck principle and contrastive learning for overlapping
users but lacks generalizability for long-tailed users and
compresses the rich inner-domain interest data, limiting its
robustness compared to our variational regularizers.

6 CONCLUSION

In this paper, we propose i2VAE to enhance the performance
of long-tailed and cold-start users. Our model introduces
interest-enhancing regularizers, which enable the learning
of distinct inner- and cross-domain interests and extract
relevant information from pseudo-sequences to enrich users’
sparse interaction. Empirical experiments demonstrate that
i2VAE achieves SOTA performance across all user types.
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A THEORETICAL DERIVATION

A.1 PROOF OF PROPOSITION 1

Proposition 2. Let ZX ∈ Rd represent the domain-specific interest in domain X , and ZY
t ∈ Rd denote the cross-domain

transferable interest from domain Y to X . To effectively disentangle domain-specific and cross-domain interests, we aim to
minimize their mutual information, I(ZX ;ZY

t ), which is equivalent to:

max
{
− I(X;ZX)− I(X;ZY

t ) + I(X;ZX ,ZY
t )

}
.

Proof. The mutual information between cross-domain representations I(ZX ;ZY
t ) can be decomposed into three compo-

nents using the chain rule of mutual information as follows. This decomposition provides key insights about information
flow across domains.

I(ZX ;ZY
t ) = I(ZX ;X)− I(ZX ;X|ZY

t ) + I(ZX ;ZY
t |X)

Due to our disentangling assumption, ZX only represents the domain-specific interest, q(zx|x) = q(zx|x, zyt ) holds.
Therefore, the last term above, I(ZX ;ZY

t |X), vanishes:

I(ZX ;ZY
t |X) = H(ZX |X)−H(ZX |X,ZY

t )

= H(ZX |X)−H(ZX |X) = 0.

This results in the following derivation of −I(ZX ;ZY
t ), which maintains equality based on the chain rule of mutual

information[Cover, 1999]:

−I(ZX ;ZY
t ) = −I(X;ZX) + I(ZX ;X|ZY

t )

= −I(X;ZX)− I(X;ZY
t ) + I(X;ZX ,ZY

t ).

This equation illustrates that ZX and ZY
t should collectively provide valuable information for domain X (the third term),

while the individual amount of information of ZX and ZY
t are penalized (the first and second terms) to avoid redundancy

and ensure non-overlapping information. The proof is completed.

*Equal contribution.
†Correspondence to: Wujiang Xu <wujiang.xu@rutgers.edu>.
§Equal contribution.
¶Correspondence to: Wujiang Xu <wujiang.xu@rutgers.edu>.



A.2 DETAILED DERIVATION FOR LI(X;ZX ,ZY
t )

We rewrite I(X;ZX ,ZY
t ) in the form of an expectation and derive its lower bound using the generative distribution

pθ(x | zx, zyt ).

I(X;ZX ,ZY
t ) = Eq(zx,z

y
t |x)pD(x)

[
log

q(x|zx, zyt )
pD(x)

]
= H(X) + Eq(zx,z

y
t |x)pD(x) [log q(x|z

x, zyt )] + Eq(zx,z
y
t |x)pD(x) [log p(x|z

x, zyt )− log p(x|zx, zyt )]

= H(X) + Eq(zx,z
y
t |x)pD(x) [log p(x|z

x, zyt )] + Eq(zx,z
y
t ) [DKL (q(x|zx, zyt )∥p(x|z

x, zyt ))]

≥ H(X) + Eq(zx,z
y
t |x)pD(x) [log p(x|z

x, zyt )] . (13)

The final inequality in Eq. (A.2) is derived from the non-negativity of the KL divergence. Next, we expand and rewrite the
second term in Eq. (A.2) using the integral form of the expectation as follows:

Eq(zx,z
y
t |x)pD(x) [log p(x|z

x, zyt )] =

∫
q(zx, zyt |x)pD(x) log p(x|zx, zyt ) dx dzx dzyt

=

∫
pD(x)

(∫
q(zx, zyt |x, y)pD(y|x) dy

)
log p(x|zx, zyt ) dx dzx dzyt

=

∫
pD(x)q(zx|x)

(∫
q(zyt |x, y)pD(y|x)dy

)
log p(x|zx, zyt )dxdz

xdzyt

=

∫
pD(x, y)q(zx|x)q(zyt |x, y) log p(x|z

x, zyt ) dx dy dzx dzyt

= EpD(x,y)q(zx|x)q(zyt |x,y) [log p(x|z
x, zyt )] . (14)

We then substitute the derived variant in Eq. (14) back into Eq. (A.2) to obtain the lower bound of I(X;ZX ,ZY
t ):

I(X;ZX ,ZY
t ) ≥ H(X) + EpD(x,y)q(zx|x)q(zyt |x,y) [log p(x|z

x, zyt )] .

A.3 DETAILED DERIVATION FOR L−I(X;ZY
t |Y )

We expand −I(X;ZY
t |Y ) into the form of an expectation. Since q(zyt |y) cannot be directly obtained within our framework,

we utilize ry(zyt |y) to approximate it.

−I(X;ZY
t |Y ) = −EpD(x,y)q(z

y
t |x,y)

[
log

q(zyt |x, y)
q(zyt |y)

]
= −EpD(x,y)q(z

y
t |x,y)

[
log

{q(zyt |x, y)
ry(zyt |y)

· r
y(zyt |y)
q(zyt |y)

}]
= −EpD(x,y) [DKL (q(zyt |x, y)∥r

y(zyt |y))] + EpD(x,y) [DKL (q(zyt |y)∥r
y(zyt |y))]

≥ −EpD(x,y) [DKL (q(zyt |x, y)∥r
y(zyt |y))] . (15)

The final inequality in Eq. (15) is derived from the non-negativity of the KL divergence.

A.4 DETAILED DERIVATION FOR L−I(X;ZX)

We expand and rewrite I(ZX ;ZX
a ) as follows to extract the optimizable component:

I(ZX ;ZX
a ) = Eq(zx,zxa |x)

[
log

q(zxa , z
x|x)

q(zx|x)q(zxa |x)

]
= Eq(zx|x)q(zxa |zx,x)

[
log

q(zxa |x)
q(zx|x) + log

q(zx|zxa , x)
q(zxa |x)

]
= −Eq(zxa |zx,x) [DKL (q(zx|x)∥q(zxa |x))] + Eq(zx,zxa |x)

[
log

q(zx|zxa , x)
q(zxa |x)

]
= −Eq(zxa |zx,x) [DKL (q(zx|x)∥q(zxa |x))] + ϵ,

which is decomposed into two terms, one of which is an optimizable KL divergence. The first term in our framework is
optimizable, while the remaining intractable term is denoted as ϵ. We primarily focus on optimizing the first term.



B DATASET

We conducted experiments on the Amazon 14 dataset1 across six cross-domain pairs: "Cloth-Sport”, “Phone-Elec”, “Game-
Video", following previous works [Cao et al., 2022c, Xu et al., 2023c, Cao et al., 2022b, Xu et al., 2023b]. The dataset
statistics are summarized in Table 4. All behavioral sequences were collected in chronological order. To ensure a realistic
evaluation setting, we included both non-overlapping and overlapping users, adjusting the overlapping ratio (Ko) to control
the number of shared users across domains. Furthermore, to evaluate performance on cold-start users, a certain proportion of
overlapping users (Kcs) were randomly designated as cold-start users for validation and testing phases, in which we randomly
remove the sequence from one domain of the selected overlapping users while retaining the last user-item interaction as the
ground truth.

Table 4: Statistics on three Amazon’s CDSR datasets.
Dataset |U| |V| |E| #O |S| Density

Cloth 41,454 17,939 175,552
9,721

4.50 0.024%
Sport 27,209 12,654 159,098 6.10 0.046%

Phone 27,320 9,478 140,886
20,342

5.36 0.054%
Elec 107,580 40,446 758,374 8.00 0.017%

Game 24,929 12,314 146,639
2,171

6.23 0.048%
Video 19,347 8,746 139,236 7.66 0.082%

#O: the number of overlapping users across domains.

C COMPARING METHODS

In this section, we provide a detailed introduction to our compared baselines. We also include the official code used for their
implementation, and for methods without official code, we have reproduced the implementations based on the descriptions
in the papers.

Single-domain recommendation methods:

• Multi-VAE2[Liang et al., 2018]: Multi-VAE is a variational autoencoder (VAE)-based model that enhances traditional
linear factorization methods through Bayesian inference. It addresses data sparsity by learning latent preference distributions,
making it more effective than traditional matrix factorization.

• SVAE3[Sachdeva et al., 2019]: Sequential Variational Autoencoder (SVAE) integrates RNNs into a VAE framework to
capture the temporal dynamicss of user behavior, balancing short-term and long-term preferences. SVAE is particularly
effective for time-dependent user interactions, such as video or music recommendations.

• SASRec4[Kang and McAuley, 2018]: SASRec uses self-attention mechanisms to model long-range dependencies in user
behavior sequences. Unlike RNNs, it efficiently handles long sequences by balancing model complexity with capturing
subtle user preferences.

Cross-domain sequential recommendation methods:

• Pi-Net5[Ma et al., 2019]: Pi-Net generates shared user embeddings using a gating mechanism to differentiate behaviors
across domains. It excels in scenarios requiring integrated information from multiple domains, such as combining video and
music user behavior.

• DASL6[Li et al., 2021]: DASL employs a dual-attention mechanism to enhance cross-domain recommendation accuracy
by focusing on user behaviors in both source and target domains. It effectively captures cross-domain behavior patterns,
making it suitable for scenarios where precise cross-domain behavior modeling is needed.

1Available at http://jmcauley.ucsd.edu/data/amazon/index_2014.html
2https://github.com/dawenl/vae_cf
3https://github.com/noveens/svae_cf
4https://github.com/pmixer/SASRec.pytorch
5https://github.com/mamuyang/PINet
6https://github.com/lpworld/DASL

http://jmcauley.ucsd.edu/data/amazon/index_2014.html
https://github.com/dawenl/vae_cf
https://github.com/noveens/svae_cf
https://github.com/pmixer/SASRec.pytorch
https://github.com/mamuyang/PINet
https://github.com/lpworld/DASL


• C2DSR7[Cao et al., 2022a]: C2DSR leverages graphical attention encoders and contrastive learning to jointly model intra-
and cross-domain preferences. This method is particularly effective in addressing data sparsity and cold-start issues by
capturing global user interests.

Cross-domain recommendation methods:

• EMCDR [Man et al., 2017]: EMCDR uses MLPs to learn domain-specific representations and maps them across domains
using overlapping user information. It’s especially useful when user behavior in one domain needs to be mapped to another,
though it relies heavily on overlapping users.

• SA-VAE [Salah et al., 2021]: SA-VAE aligns latent spaces between source and target domains using VAE, exploring both
rigid and soft alignment strategies. It is effective for cross-domain recommendations in cold-start and sparse data scenarios
by leveraging shared features across domains.

• CDRIB8[Cao et al., 2022c]: CDRIB applies the information bottleneck principle to extract domain-shared features,
improving recommendation effectiveness and addressing cold-start challenges.

D IMPLEMENTATION DETAILS

D.1 HYPERPARAMETER SETTINGS

To ensure fair evaluation, we standardize hyperparameters across all methods. Model-specific hyperparameters for each
baseline are set according to their original papers or official code implementations. Across all models, we set the embedding
dimension to d = 128, the batch size to 512, and train for 100 epochs using Adam, with the learning rate chosen from
{3× 10−4, . . . , 8× 10−4}. The historical behavior length T is set to 20, and in our method, the pseudo-sequence length T ′

is set to 40. The hyperparameters λc and λa are selected from {5× 10−4, . . . , 5× 10−3}.

To ensure reliable results, each method is run five times with different random seeds, and the best model is selected based
on the highest NDCG@10 performance on the validation set via grid search. For the PSG module in I2VAE, we follow
LightGCN’s default settings9, using 20% of the training set as validation data and selecting the best checkpoint after 100
epochs for pseudo-sequence recall.

D.2 IMPLEMENTATION OF DIFFERENT ENCODERS IN I2VAE

Our variational encoders parameterize the posterior distributions using MLPs. For domain-specific posteriors, the mean
and standard deviation are computed as: µx = MLPµ(SX), σx = MLPσ(SX). A similar approach is used for pseudo-
sequence posteriors, taking inputs SX

a and SY
a . For cross-domain posteriors, we employ multi-head attention. Specifically,

the unaggregated user interest representations—i.e., those that have not undergone mean pooling—SX′
= {hSX

1
, · · · ,hSX

T
}

serve as the query, while SY ′
= {hSY

1
, · · · ,hSY

T
} is used as both the key and value for obtaining the cross-domain

transferable interest from domain Y to domain X . The mean vector µy
t is computed as:

µy
t = MLP(Mean-Pooling(Attention(SX′

,SY ′
,SY ′

))),

with σy
t derived similarly. The same symmetric process is applied to compute the posteriors of the cross-domain interest

representation ZX
t .

7https://github.com/cjx96/C2DSR
8https://github.com/cjx96/CDRIB
9https://github.com/gusye1234/LightGCN-PyTorch

https://github.com/cjx96/C2DSR
https://github.com/cjx96/CDRIB
https://github.com/gusye1234/LightGCN-PyTorch


E PERFORMANCE COMPARISON RESULTS

We compare the performance of i2VAE with state-of-the-art baselines across three real-world CDSR datasets: "Cloth-
Sport", "Phone-Elec", and "Game-Video", as shown in the following table. The baselines are categorized into three groups:
Single-domain recommendation (SDR) models, CDR-sequential models, and CDR models. We conduct evaluations across
three user types—long-tailed, cold-start, and all users—and report recommendation performance in both domains. The
results demonstrate that i2VAE consistently outperforms baselines across different user groups and domains, highlighting its
effectiveness in capturing user interests and improving recommendation quality.

Table 5: Experimental Results (%) across different types of users, including long-tailed(tailed), cold-start, and all users, on three CDSR
datasets. We highlight the methods with the best and second-best average performances.

Datasets User Types Metric
SDR CDR-sequential CDR Ours

↑(%)
Multi-VAE SVAE SASRec DASL PiNet C2DSR DisenCDR SA-VAE CDRIB i2VAE

Cloth

Tailed
NDCG 2.31±0.08 2.07±0.16 2.09±0.20 2.28±0.17 2.11±0.17 2.29±0.09 2.20±0.06 2.40±0.14 2.27±0.10 2.52±0.07* 5.00

HR 4.15±0.12 3.99±0.34 3.99±0.31 4.46±0.24 4.15±0.36 4.38±0.32 4.21±0.15 4.43±0.22 4.21±0.21 4.73±0.16* 6.05

Cold-start
NDCG 3.23±0.29 3.41±0.35 2.86±0.50 3.28±0.18 3.04±0.66 3.08±0.65 2.95±0.29 3.25±0.24 3.00±0.39 3.45±0.35* 1.17

HR 6.08±0.38 6.39±0.43 5.64±0.86 6.27±0.40 5.58±1.24 5.96±0.95 5.58±0.23 5.89±0.46 5.52±0.58 6.77±0.51* 5.95

All
NDCG 2.20±0.10 2.18±0.10 2.11±0.15 2.43±0.09 2.18±0.10 2.40±0.07 2.30±0.05 2.52±0.10 2.39±0.06 2.59±0.11* 2.78

HR 4.25±0.12 4.28±0.28 4.15±0.30 4.82±0.11 4.24±0.18 4.63±0.18 4.48±0.18 4.81±0.19 4.56±0.09 5.00±0.17* 3.73

Sport

Tailed
NDCG 3.02±0.14 2.90±0.16 2.80±0.21 3.31±0.36 2.96±0.15 3.06±0.15 3.14±0.10 3.29±0.15 3.12±0.11 3.36±0.10* 1.51

HR 6.06±0.50 5.76±0.34 5.72±0.22 6.29±0.57 5.89±0.25 6.03±0.22 5.94±0.19 6.31±0.42 5.81±0.10 6.66±0.17* 5.55

Cold-start
NDCG 4.33±0.49 4.19±0.24 3.92±0.40 4.48±0.42 4.24±0.31 4.65±0.53 4.93±0.18 5.05±0.29 4.95±0.25 5.43±0.29* 7.52

HR 8.89±0.66 8.62±0.73 7.88±0.62 8.15±0.94 8.28±0.27 9.36±0.54 8.54±0.59 9.63±0.73 9.09±0.43 10.30±0.46* 6.96

All
NDCG 3.79±0.07 3.89±0.15 3.70±0.18 3.93±0.14 3.68±0.08 4.13±0.17 4.21±0.13 4.31±0.13 4.27±0.09 4.40±0.10* 2.20

HR 7.23±0.27 7.27±0.29 7.00±0.17 7.45±0.32 6.90±0.33 7.84±0.33 7.90±0.22 8.06±0.26 7.88±0.33 8.53±0.14* 5.80

Phone

Tailed
NDCG 3.58±0.13 3.51±0.11 3.41±0.13 4.10±0.15 3.68±0.17 3.81±0.17 4.01±0.14 4.06±0.31 4.01±0.23 4.23±0.21* 3.17

HR 6.90±0.34 6.74±0.20 6.58±0.32 8.06±0.27 7.17±0.20 7.47±0.39 7.78±0.39 7.96±0.61 7.92±0.38 8.17±0.27* 1.36

Cold-start
NDCG 3.16±0.19 3.15±0.30 2.97±0.38 3.63±0.25 3.51±0.38 3.73±0.37 3.80±0.33 3.83±0.48 4.00±0.35 4.39±0.21* 9.75

HR 6.26±0.39 6.11±0.42 6.03±0.45 7.40±0.39 7.18±0.51 7.18±0.74 7.56±0.56 7.94±0.85 7.56±0.51 8.63±0.19* 8.69

All
NDCG 3.98±0.19 3.89±0.06 3.88±0.14 4.40±0.17 4.13±0.14 4.36±0.21 4.52±0.15 4.49±0.29 4.46±0.19 5.79±0.29* 3.23

HR 7.59±0.39 7.33±0.14 7.36±0.27 8.54±0.32 7.77±0.34 8.30±0.38 8.68±0.22 8.54±0.50 8.66±0.29 10.61±0.22* 2.35

Elec

Tailed
NDCG 6.96±0.23 6.74±0.25 6.78±0.29 7.63±0.19 7.09±0.24 7.78±0.13 7.64±0.10 7.60±0.30 7.77±0.11 8.00±0.10* 2.96

HR 11.65±0.48 11.39±0.47 11.49±0.53 12.83±0.41 11.66±0.56 13.05±0.28 12.45±0.25 12.56±0.39 12.66±0.28 13.49±0.19* 5.14

Cold-start
NDCG 9.35±0.33 9.22±0.19 9.16±0.19 9.73±0.65 9.59±0.35 9.85±0.30 9.90±0.25 9.76±0.48 9.73±0.40 10.26±0.42* 3.64

HR 14.71±0.49 14.76±0.60 14.94±0.51 15.76±1.24 15.00±1.00 15.94±0.43 15.24±0.60 15.35±0.90 15.53±0.34 17.12±0.39* 7.40

All
NDCG 8.20±0.22 8.06±0.27 8.08±0.34 8.58±0.16 7.84±0.08 9.00±0.12 8.95±0.13 8.84±0.19 9.04±0.04 9.33±0.09* 3.22

HR 13.08±0.43 12.81±0.45 12.86±0.59 13.60±0.50 12.31±0.19 14.46±0.31 14.03±0.21 13.96±0.26 14.08±0.26 15.28±0.26* 5.64

Game

Tailed
NDCG 5.08±0.14 5.17±0.08 5.12±0.19 4.64±0.25 4.64±0.25 5.04±0.08 5.25±0.22 5.31±0.15 5.23±0.14 5.51±0.12* 3.77

HR 9.48±0.38 9.46±0.14 9.39±0.34 8.45±0.38 8.45±0.38 9.34±0.17 9.73±0.35 9.95±0.39 9.68±0.35 10.09±0.18* 1.41

Cold-start
NDCG 9.13±0.64 9.97±1.37 8.61±1.92 7.46±0.93 7.46±0.93 9.18±1.57 8.91±1.44 9.69±1.09 7.72±1.63 10.92±0.70* 9.53

HR 20.00±3.95 19.15±1.90 16.60±2.48 15.32±1.59 15.32±1.59 16.17±2.89 16.60±2.48 19.57±1.59 15.74±2.89 22.55±2.17* 15.20

All
NDCG 5.39±0.15 5.40±0.09 5.57±0.10 4.82±0.21 4.82±0.21 5.53±0.11 5.49±0.14 5.51±0.09 5.30±0.05 5.79±0.12* 4.01

HR 9.95±0.30 9.94±0.18 10.20±0.30 8.87±0.22 8.87±0.22 10.28±0.23 10.28±0.23 10.32±0.04 9.92±0.19 10.61±0.15* 2.77

Video

Tailed
NDCG 6.79±0.11 6.86±0.10 6.82±0.18 6.32±0.18 6.32±0.18 6.75±0.20 6.89±0.16 6.88±0.10 7.05±0.08 7.08±0.14* 0.43

HR 12.43±0.19 12.50±0.18 12.26±0.39 11.46±0.36 11.46±0.36 12.34±0.35 12.57±0.29 12.57±0.25 12.68±0.22 12.95±0.26* 2.13

Cold-start
NDCG 7.40±2.13 8.19±1.50 7.93±1.39 8.10±3.21 8.10±3.21 8.73±1.17 8.57±1.31 8.54±2.13 8.26±1.71 9.62±1.58* 10.10

HR 18.67±2.67 21.78±3.27 20.00±2.43 17.78±4.66 17.78±4.66 21.78±2.59 22.22±2.81 19.11±3.61 20.44±2.18 22.67±2.18* 2.03

All
NDCG 6.49±0.09 6.59±0.10 6.50±0.11 5.87±0.15 5.87±0.15 6.46±0.19 6.04±0.19 6.58±0.16 6.67±0.11 6.79±0.09* 1.80

HR 12.10±0.16 12.18±0.14 11.97±0.31 10.92±0.22 10.92±0.22 12.14±0.25 11.25±0.30 12.32±0.29 12.33±0.16 12.67±0.18* 2.76

"*" denotes statistically significant improvements (p < 0.05), as determined by a paired t-test comparison with the second best result.

F MODEL ANALYSIS

F.1 ANALYSIS OF OVERLAPPING RATIO

We designed experiments to test our model’s performance with fewer cross-domain overlapping users by randomly
downsampling the proportion of overlapping users (Ko) in the training set while keeping the test set unchanged. We
compared our model with SA-VAE at Ko values of {25%, 50%, 75%, 100%}. This experiment simulates real-world
scenarios, requiring the model to maintain stable performance with few overlapping users. Results are shown in Table 6.



As the number of overlapping users decreases, both SA-VAE and our model’s performance decline due to the increased
difficulty in capturing cross-domain signals. However, our model consistently outperforms SA-VAE at every Ko level. This
is because our model does not rely solely on overlapping users. While capturing cross-domain information becomes harder,
our denoised pseudo-sequence effectively captures intra-domain interests. Additionally, the cross-domain and disentangle
regularizers allow better inference on non-overlapping users for cross-domain signals based on behaviors in one domain.

Table 6: Experiment results (%) on "Cloth-Sport" dataset with the varying overlapping ratio (Ko).

Domain User Metric
Ko = 25% Ko = 50% Ko = 75% Ko = 100%

SA-VAE i2VAESA-VAE i2VAESA-VAE i2VAESA-VAE i2VAE

Cloth

Tailed
NDCG 0.93 1.32 1.69 1.87 2.25 2.30 2.40 2.52

HR 2.02 2.72 3.24 3.70 4.26 4.50 4.43 4.73

Cold-Start
NDCG 0.95 1.62 2.19 2.52 3.26 3.27 3.25 3.45

HR 2.07 3.39 4.83 5.20 6.27 6.21 5.89 6.77

All
NDCG 0.92 1.31 1.71 1.93 2.29 2.42 2.52 2.59

HR 1.94 2.71 3.43 3.97 4.40 4.75 4.81 5.00

Sport

Tailed
NDCG 1.15 1.92 2.31 2.77 3.07 3.36 3.29 3.36

HR 2.48 4.06 4.59 5.60 5.82 6.62 6.31 6.66

Cold-Start
NDCG 1.58 2.93 3.57 4.48 4.80 5.27 5.05 5.43

HR 3.37 6.13 6.80 8.82 9.29 10.51 9.63 10.30

All
NDCG 1.45 2.65 3.08 3.85 4.03 4.28 4.31 4.40

HR 2.97 5.35 5.88 7.53 7.65 8.22 8.06 8.53

F.2 ANALYSIS OF PARAMETER SENSITIVITY

In this section, we investigate the parameter sensitivity of sequence length T and the harmonic factors λa and λc. Figures
3(a) and (d) show the impact of sequence length T on model performance (HR@10) in the Cloth and Sport domains, with T
varying in {10, 15, 20, 25, 30}. The model performs best when T = 20. Increasing T from 10 to 20 improves performance
due to richer historical information, but performance decreases for T > 20 due to padding items. Figures 3(b) and (e) show
the impact of λa on model performance with λa varying in {0.001, 0.002, ..., 0.010} and λc fixed at 0.001. The model
performs best when λa is around 0.004 or 0.005, indicating effective denoising without depressing the classification loss.
Similarly, Figures 3(c) and (f) show the impact of λc on model performance with λa fixed at 0.005. The model achieves
superior results when λc is set to 0.001 or 0.005.
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Figure 3: Experiment results (%) of parameter sensitivity on the "Cloth" and "Sport" domains, respectively.
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