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Abstract

Recent advancements have seen a dramatic in-001
crease in the use of large language models002
(LLMs) due to their impressive text genera-003
tion capabilities. However, these models often004
produce confident yet inaccurate predictions,005
highlighting the critical need for effective un-006
certainty assessment. Various approaches to007
estimate uncertainty have emerged, primarily008
utilizing the token probabilities in model pre-009
dictions, yet the relationship and distinctions010
among these methods warrant deeper explo-011
ration. This study investigates the essential012
design elements of current uncertainty estima-013
tion techniques and introduces a comprehensive014
framework for evaluating uncertainty in LLMs.015
Our findings reveal that uncertainty informa-016
tion is dispersed across tokens, and the model’s017
certainty about its uncertainty strengthens after018
making a prediction. Additionally, we present019
a novel, efficient supervised method, Adap-020
tive Uncertainty Probing (AUP), which signif-021
icantly surpasses previous methods in perfor-022
mance. Through extensive experiments across023
multiple models on five distinct datasets, we024
validate the effectiveness, generalizability, and025
efficiency of our method.026

1 Introduction027

Large Language Models (LLMs) have demon-028

strated remarkable capabilities across various nat-029

ural language processing (NLP) tasks, including030

question answering, summarization, and conversa-031

tion generation (Touvron et al., 2023; Zeng et al.,032

2022; Singhal et al., 2022; Brown et al., 2020).033

Despite their success, LLMs often face reliability034

issues such as hallucinations and factual inaccura-035

cies (Hu et al., 2023; Amayuelas et al., 2023; Yin036

et al., 2023). These challenges are particularly con-037

cerning because users might unknowingly trust in-038

correct information generated by LLMs due to their039

confident and convincing language output. There-040

fore, accurately estimating the confidence of the041

model’s predictions becomes crucial. Uncertainty 042

estimation aims to generate a value indicating the 043

confidence level of an LLM’s prediction, which 044

helps filter out potentially harmful information be- 045

fore it reaches the user, thus mitigating the impact 046

of hallucinations. 047

The estimation of uncertainty has been widely 048

studied before the emergence of large language 049

models. Following Gal, the uncertainty of a neu- 050

ral network is typically classified into aleatoric 051

uncertainty and epistemic uncertainty. Aleatoric 052

uncertainty typically arises from noise present in 053

the training data, which can stem from inaccuracies 054

or outdated information. Conversely, epistemic un- 055

certainty is attributed to variations in a model’s pa- 056

rameters, as a multitude of potential models could 057

explain a particular training dataset. This paper 058

concentrates on the estimation of predictive un- 059

certainty, which combines both aleatoric uncer- 060

tainty and epistemic uncertainty and represents the 061

model’s confidence in a prediction. 062

The estimation of uncertainty has been exten- 063

sively studied (Gal and Ghahramani; Gal; Malinin 064

et al., 2017; Lahlou et al., 2023). Several heuris- 065

tic and empirical methods have been proposed 066

to estimate the uncertainty of an LLM’s predic- 067

tions. These methods primarily rely on reasonable 068

priors derived from observations of LLM behav- 069

ior and can generally be categorized into single- 070

inference and multi-inference methods. Single- 071

inference methods operate on the assumption that 072

the probability of a token serves as a partial indi- 073

cator of the model’s uncertainty. However, using 074

token probability for uncertainty estimation has 075

drawbacks, such as overconfidence (Zhang et al., 076

2023), where the model assigns higher probabili- 077

ties to words that have been previously mentioned 078

in the text. Another issue is the generation inequal- 079

ity problem (Duan et al., 2023), where irrelevant 080

token probability values can disrupt accurate esti- 081

mation of sentence-level uncertainty. In contrast, 082
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Figure 1: Illustration of the unified framework and various types of uncertainty estimation methods.

multi-inference methods (Lin et al., 2022b; Kuhn083

et al., 2023) suggest that the entropy of the genera-084

tion space increases with the model’s uncertainty.085

However, these methods incur high computational086

costs as they require sampling multiple responses087

and constructing a similarity matrix from these088

responses. Despite the variety of methods avail-089

able, the relationship between different categories090

of uncertainty estimation methods has not been091

thoroughly investigated.092

In this paper, we will focus on the following093

three critial questions in uncertainty estimation of094

LLM. Firstly, we examine the comparative effec-095

tiveness and efficiency of single-inference versus096

multi-inference methods, detailed in Section 3.1.097

Secondly, we address the challenges and limita-098

tions associated with using token probability as099

a measure of uncertainty, as these methods often100

fail to capture true uncertainty accurately. Lastly,101

we identify and discuss the key design elements102

that differentiate the most effective methods for103

estimating uncertainty, elaborating on how these104

elements enhance the accuracy and reliability of105

the estimates in Section 3.2.106

To answer these questions, we conduct exten-107

sive experiments and develop several variants of108

internal state-based uncertainty estimation meth-109

ods. We introduce a novel method, Adaptive Un-110

certainty Probing (AUP), which incorporates the111

optimal design choices identified in our analysis.112

Our method significantly outperforms existing tech- 113

niques in terms of effectiveness, generalization, and 114

efficiency. 115

Our contributions can be summarized as follows: 116

• Unified Framework for Uncertainty Es- 117

timation: We introduce a comprehensive 118

framework that systematically organizes exist- 119

ing uncertainty estimation methods in LLMs 120

into two main categories: single-inference and 121

multi-inference approaches. This framework 122

clarifies the differences and linkages between 123

the methods, enhancing our understanding of 124

their foundational principles and enabling a 125

clearer comparison and evaluation. This or- 126

ganization aims to advance the field of un- 127

certainty estimation by providing a structured 128

base for further research and development. 129

• Experimental Insights: Utilizing our uni- 130

fied framework, we conduct extensive experi- 131

ments to examine key design choices within 132

various uncertainty estimation methods. Our 133

findings affirm that uncertainty information 134

remains consistent across different token posi- 135

tions, and that the model’s internal state is crit- 136

ical for accurate uncertainty prediction. These 137

insights highlight the need for a detailed anal- 138

ysis of model internals and underscore the 139

importance of empirical validation in refining 140

design choices to enhance method effective- 141
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ness.142

• Adaptive Uncertainty Probing: Building on143

the insights from our framework and exper-144

imental findings, we propose Adaptive Un-145

certainty Probing (AUP), a new lightweight146

supervised method optimized for uncertainty147

estimation. AUP is evaluated against several148

benchmark methods across diverse datasets,149

showing superior performance in terms of150

effectiveness, generalization, and efficiency.151

AUP exemplifies how theoretical advance-152

ments can translate into practical applications,153

offering a significant improvement over exist-154

ing methods.155

2 Related Work156

Following Huang et al. (2023), we categorize ex-157

isting methods for uncertainty estimation in LLM158

into two main types: single-inference and multi-159

inference methods.160

Single-Inference Methods: Single-inference161

methods utilize the token probability distribution162

information of a single LLM prediction to esti-163

mate the uncertainty of the sentence. Malinin164

and Gales (2021) explore uncertainty estimation165

in auto-regressive structured prediction tasks using166

a unified and interpretable probabilistic ensemble-167

based framework. Duan et al. (2023) introduce168

the SAR series techniques, which simultaneously169

assess the importance of individual tokens and sen-170

tences, and readjust attention during uncertainty171

estimation. These approaches use the token prob-172

ability of the model’s prediction to gauge uncer-173

tainty in an unsupervised fashion. However, the174

token probability lacks calibration with uncertainty,175

resulting in sub-optimal performance.176

Multi-Inference Methods: Multi-inference177

methods leverage the stochasticity of the model178

in generating text by perturbing the model’s gen-179

eration slightly and then estimating uncertainty us-180

ing the divergence among those predictions. Lin181

et al. (2022b) introduce Lexical Similarity, which182

calculates uncertainty by the similarity of the gener-183

ated response strings. Kuhn et al. (2023) introduce184

Semantic Entropy, which utilizes a bi-directional185

entailment algorithm to cluster semantically equiv-186

alent samples for better uncertainty estimation.187

Manakul et al. (2023) introduce SelfCheckGPT, a188

sampling-based method for hallucination detection.189

Zhang et al. (2024) introduce LUQ, a new approach190

for assessing sentence-level consistency in lengthy191

textual contexts. Gao et al. (2024) propose a new 192

perturbation sampling-based uncertainty quantifi- 193

cation framework designed specifically for LLMs. 194

These methods still operate under the same assump- 195

tion as single-inference methods. Additionally, the 196

process of sampling multiple answers may pose 197

computational challenges. Li et al. (2024) intro- 198

duce a novel self-detection paradigm that consid- 199

ers the comprehensive answer space beyond LLM- 200

generated answers. 201

Other Related Works: Recently, there emerge 202

some internal state-based uncertainty estimation 203

methods.Azaria and Mitchell (2023) first discov- 204

ered that the internal state of large language models 205

can be used for true and false judgment. Xiong 206

et al. (2023) perform a comparative assessment of 207

verbalized-based and consistency-based techniques 208

for uncertainty estimation. Lin et al. (2022a) dis- 209

covered that the fine-tuned GPT-3 model can pro- 210

vide confidence in its responses using natural lan- 211

guage. Kadavath et al. (2022) explore fine-tuning a 212

large language model with an extra value head to 213

determine which questions the models can answer. 214

Ahdritz et al. (2024) explore detecting epistemic un- 215

certainty by employing a more extensive language 216

model for guidance, which focuses on separating 217

epistemic uncertainty from aleatoric uncertainty. 218

Liang et al. (2024) introduce the Knowledge State 219

Probing method. Initially, it explores estimating 220

uncertainty within model internal states, but it only 221

uses the internal states of the question when esti- 222

mating uncertainty. Kossen et al. (2024) proposed 223

SEPs that directly estimate SE from the hidden 224

states within a single generation. Chen et al. (2024) 225

propose EigenScore to better evaluate responses’ 226

self-consistency. However, these works employ 227

simple mean pooling or last pooling for uncertainty 228

aggregation. As a result, they are unable to model 229

the significance of different internal states across 230

the layer and tokens. Main difference of AUP: Our 231

proposed method, Adaptive Uncertainty Probing 232

(AUP), distinguishes itself from existing methods 233

by focusing on the internal states of LLMs to esti- 234

mate uncertainty. Unlike single-inference methods 235

that rely on token probability, which often leads to 236

overconfidence and multi-inference methods that 237

are computationally expensive, AUP leverages the 238

optimal design choices identified through our uni- 239

fied framework and empirical validation. Specifi- 240

cally, AUP uses a lightweight supervised approach 241

to probe the internal states of LLMs, capturing 242

both epistemic and aleatoric uncertainty without 243
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Method Information Source Probing Function Pooling Function

Probability-Based
Single Inference Method HA[−1] probability-based sum/mean/...
Multi Inference Method HQ probability-based entropy

Internal State-Based
Knowledge State Probing HQ internal state-based last
Adaptive Knowledge State Probing HQ internal state-based adaptive
Last Uncertainty Probing HA internal state-based last
Mean Uncertainty Probing HA internal state-based mean
Adaptive Uncertainty Probing HA internal state-based adaptive

Table 1: We examine the key design choices of different uncertainty estimation methods by comparing existing
methods across various categories and proposing some variants.

the need for multiple sampling or perturbations.244

Compared to existing internal state-based methods,245

AUP models the importance of activations from246

different tokens to probing uncertainty information247

through an Adaptive Pooling Mechanism. This248

approach not only improves the accuracy of uncer-249

tainty estimation but also enhances the efficiency250

and generalization across various datasets. Our251

method’s ability to integrate insights from different252

design elements into a coherent and effective un-253

certainty estimation technique marks a significant254

advancement over previous methods.255

3 Bridging the Gap - A Unified View256

3.1 A Unified Framework for single and multi257

inference methods258

Given an L layer large language model with the259

hidden size of D and vocabulary V , a tokenized260

question Q ∈ RNQ , a tokenized answer A to be261

evaluated, and a maximum new tokens NA for gen-262

eration. * Eq. 1 shows the LLM’s generation space,263

which comprises a total of |V |NA possible unique264

predictions. Each prediction consists of NA tokens,265

collectively forming a set S.266

S = {(x1, ..., xNA
) | xi ∈ V, 1 ≤ i ≤ NA}. (1)267

We utilize the LLM operator to describe the opera-268

tion of obtaining the internal state HX from a given269

text input X , as shown in Eq. 2. When each predic-270

tion in set S is combined with Q and applying the271

LLM operator, we get the hidden state matrix HS ,272

*Without loss of generality, we assume that A ∈ RNA .
For answers shorter than NA tokens in length, we can pad
the answer with special tokens (e.g., EOS) that have a token
probability of one.

which contains the internal state of all potential 273

predictions, as shown in Eq. 4. 274

LLM(X) = Stack({hl | 0 ≤ l ≤ L}). (2) 275

HS = LLM(Concat(Q,S)), (3) 276

HS ∈ R|V |NA×NA×L×D. (4) 277

Subsequently, the probability matrix PS is obtained 278

with the Unembed operator, which maps the final 279

layer of HS with HeadLM and applies the Softmax 280

function, denoted in Eq. 5. 281

PS = Unembed(HS), PS ∈ R|V |NA×NA . (5) 282

The element pj,k in probability matrix PS is the to- 283

ken probability of the k-th token in the j-th possible 284

prediction, which is an extremely high-dimensional 285

sparse matrix, as most of the predictions have a gen- 286

erative probability close to zero. 287

The connection and difference: The pooling 288

and entropy functions of predictive entropy are 289

listed in Eq. 6: 290

Usingle = −
NA∑
j

log(PS [iA]j) (6) 291

Umulti = −
|V |NA∑

i

NA∑
j

log(PSi,j)

NA∏
j

PSi,j (7) 292

Upon examining Eq. 6 and Eq. 7, it becomes ev- 293

ident that both single and multiple inference tech- 294

niques operate under a common assumption: a 295

higher token probability suggests reduced un- 296

certainty. The variance lies in how these methods 297

approach this notion. Single inference methods 298

focus on the absolute generative probability PA, 299

whereas multi-inference methods factor in the rela- 300

tive relationship between PA and PS . 301
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Figure 2: The proposed Adaptive Uncertainty Probing method.

3.2 Key design choice of existing methods302

SelfCheckGPT (Manakul et al., 2023) highlights a303

positive correlation between token probability and304

factuality in the LLM’s prediction. Nonetheless,305

the token probability is not flawless as it may not306

consistently signify the model’s certainty across307

all situations. A recent study (Zhang et al., 2023)308

reveals that the language model may exhibit ex-309

cessive confidence when the preceding context in-310

cludes superficial tokens that appear to be associ-311

ated with an imagined token, or when the context312

itself is affected by exposure bias because of the313

auto-regressive characteristic of the generative pro-314

cess. Another study (Duan et al., 2023) reveals that315

the probability of irrelevant tokens contributes little316

to the uncertainty of the sentence. While token317

probability occasionally touches on uncertainty,318

its primary connection lies with text generation,319

encompassing a nuanced concept beyond solely320

reflecting uncertainty. Therefore, a more robust321

and accurate feature is required to assess the uncer-322

tainty of a sentence due to the insufficient calibra-323

tion of probability about uncertainty.324

We summarize the key design choices of differ-325

ent methods in Table 1 and propose four variants.326

As shown in the table, We decompose the uncer-327

tainty estimation method into three defined design328

dimensions: The "Information Source" describes329

the specific method’s reliance on certain sources of330

information to estimate uncertainty. The "Probing331

Function" delineates the form of a function utilized332

by a specific method to extract uncertainty from333

the information source. The "Pooling Function"334

specifies the form of function employed by a spe-335

cific method to aggregate token-level uncertainty336

into sentence-level uncertainty. Building on this de-337

composition, we introduce our adaptive uncertainty338

probing method, which we will elaborate on in the 339

subsequent section and the experiment section. 340

4 Adaptive Uncertainty Probing 341

Following the findings of the preceding section, 342

token probability emerges as a feature derived via 343

the UnEmbedding operator through an unsuper- 344

vised method. However, despite its derivation, to- 345

ken probability lacks proper calibration with un- 346

certainty. Consequently, there arises a necessity 347

to extract a more refined feature from the internal 348

states of the model. 349

Motivated by these insights, we introduce Adap- 350

tive Uncertainty Probing (AUP), a lightweight su- 351

pervised approach. AUP utilizes probing heads to 352

extract uncertainty signals from the model’s inter- 353

nal states. Additionally, we integrate an adaptive 354

uncertainty pooling mechanism to detect uncertain 355

tokens, thereby improving sentence-level uncer- 356

tainty estimation. Direct Uncertainty Probing: 357

As shown in Figure 2, given a tokenized question 358

Q ∈ RHQ and answer A ∈ RHA , our initial step 359

involves employing the LLM operator to extract 360

the hidden state of the answer. NQ and NA are the 361

length of the question and answer. We denote The 362

internal states of Q and A in Eq. 10: 363

HQA = LLM(Concat(Q,A)) (8) 364

HQ = H[: NQ] ∈ RNQ×L×D (9) 365

HA = H[NQ :] ∈ RNA×L×D. (10) 366

Next, as shown in Figure 2, we present trainable 367

probing heads after every LLM layer that are struc- 368

tured as a 2-layer MLP with a moderately narrow 369

hidden size in between. The probing heads take 370

the hidden states of the model’s response HA as 371

input and assess the uncertainty score for each in- 372
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Question: Who proposed the theory of evolution by natural selection? 
Prediction: The theory of evolution by natural selection was proposed by Charles Darwin
Ground Truth: Darwin
Uncertainty: 0.01

Question: What can refer to a rope in a particular shape and a genetic structure involved in splicing?
Prediction: The correct option is "noose." A noose is a rope or cord that is used to hang or ….
Ground Truth: lariat
Uncertainty: 0.31

Layer-wise Query Head Output 

Case 1

Layer-wise Query Head Output 

Case 2

Figure 3: Case study of the proposed Adaptive Uncertainty Probing method, we visualize the output of the query
head. Our method successfully identifies key tokens and assigns them high weight to improve the estimation of
sentence-level uncertainty

ternal state across all layers and tokens Hi,j , as373

represented in Eq. 11:374

ScoreA = Headprob(HA) (11)375

Adaptive Uncertainty Pooling: The uncer-376

tainty within a sentence can span various layers and377

token positions. The model’s confidence in gener-378

ating the last token does not necessarily indicate379

confidence in generating intermediate positions,380

and vice versa. The self-attention mechanism may381

not always aggregate the uncertainty information of382

the entire sentence. Thus, Instead of relying on the383

self-attention mechanism of the LLM to aggregate384

uncertainty information, we have devised an adap-385

tive uncertainty pooling mechanism to enhance386

sentence-level uncertainty pooling, just as we uti-387

lize the probing layer instead of the Unembedding388

operator to extract uncertainty information from389

the hidden state.390

As shown in Eq. 12, for each layer, a query head391

(which is also structured as a 2-layer MLP) is in-392

corporated to assess the significance of each acti-393

vation, and then we apply a softmax function to394

obtain WeightA, the weight of all activation. This395

allows for a more precise assessment of uncertainty396

across different layers and token positions.397

WeightA = Softmax(Headquery(HA) (12)398

Finally, we aggregate the scores of all activations399

to obtain the ultimate uncertainty for the entire400

sentence, which is shown in Eq. 13.401

Uncertainty = WeightA · ScoreA (13)402

We also present a case study of the proposed403

Adaptive Uncertainty Probing (AUP) method to404

illustrate its capability in pinpointing key tokens, 405

which are defined as those crucial for estimating the 406

sentence’s uncertainty. For instance, in one exam- 407

ple, "Charles Darwin" are identified as key tokens 408

within a prediction; in another, it is "noose". We 409

then apply AUP to two sample questions and visual- 410

ize the outputs from the query head, demonstrating 411

how the model identifies which tokens to focus 412

on when estimating sentence-level uncertainty. As 413

shown in Figure 3, the query head consistently tar- 414

gets the key token regardless of its position in the 415

sentence, showcasing a robust generalization capa- 416

bility. Importantly, the model achieved this without 417

specific supervision on the location of key tokens, 418

learning to identify them autonomously. 419

Training with pseudo label: As shown in Fig- 420

ure 2, we use the existing training splits from var- 421

ious question-answering datasets like SciQ, Triv- 422

iaQA, CoQA, MedMCQA, and MedQA. We first 423

get the correctness value of the model’s prediction 424

by calculating the correctness metric such as In- 425

clude, Rouge-L and SentSim. Then we use the 426

correctness value directly as the pseudo uncertainty 427

label for the training of the AUP module. The 428

LLM’s parameters are frozen and are used only to 429

generate the internal state, only the AUP module is 430

trained using binary cross-entropy loss. 431

5 Empirical Evaluation 432

5.1 Experiment Setup 433

Baselines: We compare our approach with vari- 434

ous baselines. For single-inference techniques, we 435

consider Predictive Entropy(PE) (Kadavath et al., 436

2022), Length-Normalized Predictive Entropy(LN- 437
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Single Inference Methods Multi Inference Methods Internal State Methods
Model Dataset

PE LN-PE TokenSAR SentSAR SAR LS SE KSP AUP(Ours)

Vicuna-7B SciQ 66.31 62.70 60.29 66.51 60.91 59.05 62.26 65.04 87.50
CoQA 63.43 65.09 47.99 64.13 54.13 60.69 63.93 65.16 76.70
TriviaQA 66.30 59.00 57.85 66.31 62.57 65.92 61.54 68.01 75.99
MedMCQA 62.84 65.59 59.07 62.34 60.96 61.09 51.11 65.90 77.04
MedQA 62.08 59.62 53.01 61.96 57.08 62.69 54.40 70.92 81.06
Average 64.19 62.40 55.64 64.25 59.13 61.89 58.65 67.00 79.66

Vicuna-13B SciQ 69.27 63.55 59.51 69.96 61.08 60.53 69.60 73.65 84.55
CoQA 64.03 66.25 50.42 65.09 53.05 59.16 64.91 73.79 80.25
TriviaQA 74.26 67.83 65.85 74.79 71.02 70.90 74.17 69.64 77.10
MedMCQA 63.15 62.61 59.86 63.52 59.70 59.33 60.86 68.70 76.12
MedQA 58.57 55.34 51.16 59.14 53.66 55.92 58.20 64.76 70.49
Average 65.86 63.12 57.36 66.50 59.70 61.17 65.55 70.11 77.70

Llama3-8B-IT SciQ 70.22 62.91 62.46 71.21 65.76 61.51 69.47 81.64 82.84
CoQA 67.84 58.50 45.63 66.77 56.58 57.72 65.57 71.33 73.61
TriviaQA 62.46 56.75 48.38 62.42 50.64 55.27 60.59 66.67 71.25
MedMCQA 67.97 61.57 62.02 67.83 66.49 65.15 67.22 70.88 73.49
MedQA 60.87 57.36 49.59 60.55 52.86 56.06 59.70 65.52 67.92
Average 65.87 59.42 53.62 65.76 58.47 59.14 64.51 71.21 73.82

Table 2: Main Results: We compare eight representative methods from various categories on the validation set of
five datasets. We evaluate the correctness of the answers using the metric include and assess the performance of
each method using AUROC. Detailed results with different correctness metrics can be found in the appendix E.

PE) (Malinin and Gales, 2021), and TokenSAR438

(Duan et al., 2023). Regarding multi-inference439

methods, we analyze SentSAR, Lexical Similar-440

ity(LS) (Lin et al., 2022b), and Semantic En-441

tropy(SE) (Kuhn et al., 2023). Additionally, we in-442

corporate Knowledge State Probing (KSP) (Liang443

et al., 2024) as the current state-of-the-art internal444

state-based method.445

Datasets and Models: We study five diverse446

datasets: (1) SciQ with 13.7K science exam ques-447

tions (Welbl et al., 2017); (2) CoQA, tailored for448

Conversational Question Answering (Reddy et al.,449

2019); (3) TriviaQA, featuring over 650K question-450

answer-evidence triples (Joshi et al., 2017); (4)451

MedMCQA, a large-scale multi-subject medical452

question dataset (Pal et al., 2022); (5) MedQA,453

sourced from medical exams (Jin et al., 2020). For454

each dataset, we use 1000 samples from the valida-455

tion split for evaluation. We conduct experiments456

on the Vicuna-7B, Vicuna-13B and Llama-3-8B-IT457

models to verify the generalization of our method.458

Correctness Metric: We employ a rule-based459

template matching approach called include as our460

primary correctness metric. We also incorporate461

other commonly used metrics for question answer-462

ing: Rouge-L (Lin, 2004) and SentSim (Reimers463

and Gurevych, 2019). Detailed results with dif-464

ferent correctness metrics can be found in the ap-465

pendix G.466

Evaluation Metric: Following prior work 467

(Kuhn et al., 2023), we assess uncertainty by fram- 468

ing it as the task of determining whether to trust a 469

model’s prediction for a given prompt. We measure 470

this using the AUROC metric, which indicates the 471

probability that a correct answer has a lower uncer- 472

tainty score than an incorrect one. Higher AUROC 473

scores signify better uncertainty estimation. 474

Implementation Details: We generally fol- 475

lowed the setup in (Kuhn et al., 2023). For each 476

question, we generate up to 256 tokens and we sam- 477

ple 10 answers for multi-inference methods. For 478

internal state-based methods, we use 2000 samples 479

from the training split of the corresponding datasets 480

and 1000 samples from the validation split for test- 481

ing. We train models on a single A100 GPU for 10 482

epochs using Adam optimizer with a learning rate 483

of 1e-4 and a batch size of 16. The prompt template 484

and more implementation details are included in 485

appendix I 486

5.2 Main Results 487

We assess eight different methods representing var- 488

ious categories on the validation set of five datasets. 489

The accuracy of the responses is measured using 490

the include metric and the performance of each 491

method is evaluated based on AUROC. We include 492

more results of other correctness metrics (Rouge-L) 493

in appendix E. 494
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Ours Pooling Ablation Source Ablation
Model Dataset

AUP Mean Pooling Last Pooling Last Pooling Large Question Only

Vicuna-7B SciQ 87.21±0.21 74.25±0.01 83.57±0.06 83.91±0.77 64.86±0.42
CoQA 76.88±0.25 73.84±0.25 73.83±0.19 71.98±1.79 62.98±0.22
TriviaQA 75.56±0.21 73.98±0.27 75.10±0.05 75.17±0.58 68.33±0.07
MedMCQA 77.08±0.47 73.20±0.12 74.59±0.04 74.69±0.84 65.16±0.21
MedQA 80.82±0.03 76.16±0.00 74.82±0.15 74.57±1.11 65.80±1.43
Average 79.51±0.23 74.29±0.13 76.38±0.10 76.06±1.02 65.43±0.47

Vicuna-13B SciQ 84.71±0.57 76.45±0.00 79.79±0.13 79.13±0.42 71.56±0.00
CoQA 79.95±0.00 77.14±0.00 77.31±0.24 76.79±0.32 59.02±16.41
TriviaQA 76.74±0.13 75.47±0.23 75.70±0.25 75.62±0.14 69.13±0.29
MedMCQA 75.98±0.20 72.69±0.00 73.84±0.40 71.80±1.26 66.82±0.51
MedQA 69.68±0.85 66.81±0.03 65.25±0.17 64.07±0.71 60.91±0.23
Average 77.41±0.35 73.71±0.05 74.38±0.24 73.48±0.57 65.49±3.49

Table 3: Ablation Results: The results of the ablation study indicate a significant improvement in model performance
when the adaptive pooling mechanism is included in the architecture.

As shown in the table, our method outperforms495

the baseline approaches across all datasets by a496

large margin. Our method also surpasses Knowl-497

edge State Probing (KSP), the current leading in-498

ternal state-based method. This superiority may499

stem from two potential reasons: 1) KSP relies on500

the hidden state of the input question, neglecting501

the valuable information present in the model’s an-502

swer. 2) KSP exclusively utilizes the hidden state503

of the last token, which may lack comprehensive504

uncertainty information about the entire sentence.505

5.3 Ablation Study506

To evaluate the efficacy of our method, we do ab-507

lation study focusing on the influence of various508

components on the model’s overall performance.509

This included a comparison between Adaptive Un-510

certainty Probing and its four derivatives. Regard-511

ing the adaptive pooling mechanism, we tested512

three alternatives: Mean Pooling, which computes513

sentence-level uncertainty using the average score514

across the sentence; Last Pooling, which bases un-515

certainty assessment exclusively on the final token;516

and Last Pooling Large, an augmented version of517

Last Pooling that incorporates an increased param-518

eter count to assess the effect of model capacity519

on performance. For the information source ab-520

lation, we investigated the Question Only variant,521

which utilizes only the question’s internal state.522

The results clearly demonstrate that our model out-523

performs all variants, affirming the effectiveness524

of integrating the adaptive pooling mechanism into525

our framework. Further, the ablation study offers526

crucial insights:527

Distribution of Uncertainty Information 528

Across Tokens: The results from the pooling abla- 529

tion experiments suggest that neither using a mean 530

function, focusing solely on the last token, nor 531

simply enlarging the model parameters led to per- 532

formance improvements. This underscores the effi- 533

cacy of the adaptive pooling mechanism in effec- 534

tively aggregating uncertainty information across 535

different tokens, thereby underlining the necessity 536

for more sophisticated strategies to enhance model 537

performance. 538

Enhanced Certainty about Uncertainty Post- 539

Prediction: The findings from the source abla- 540

tion reveal that while leveraging information solely 541

from the question yields some benefit, it does not 542

match the effectiveness of utilizing the internal 543

state derived from the answer in the standard con- 544

figuration. This points to an increase in the model’s 545

certainty about its uncertainty following the predic- 546

tion, suggesting a more nuanced understanding of 547

uncertainty as the model processes the answer. 548

6 Conclusion 549

We develop a comprehensive unified framework 550

that integrates existing methods for uncertainty es- 551

timation in LLMs. Through extensive experiments 552

and analysis, we reveal that uncertainty information 553

is preserved across different token positions and 554

that the internal state of the answer is particularly 555

valuable for predicting uncertainty. We propose a 556

novel, lightweight supervised method named Adap- 557

tive Uncertainty Probing, and demonstrate that it 558

significantly outperforms existing methods in terms 559

of effectiveness, generalization, and efficiency. 560
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Limitations561

The Adaptive Uncertainty Probing method isn’t562

directly applicable to uncertainty estimation in563

closed-source models. However, applying our564

method to closed-source models is possible us-565

ing open-source proxy models, which we see as a566

promising research direction. Additionally, dataset567

bias may affect the generalization performance of568

our method. A promising research direction in-569

volves preventing the probing head from learning570

basic heuristic knowledge.571
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A Out-of-Domain Generalization 757

We assess the out-of-domain generalization capabil- 758

ity of the proposed approach using cross-validation. 759

Our model is trained on a specific dataset and then 760

tested on a different dataset. We compare our 761

method with KSP. The results are demonstrated 762

in Figure 4. As indicated in the table, our approach 763

demonstrates superior out-of-domain generaliza- 764

tion capability when compared to the KSP. Notably, 765

our method’s out-of-domain performance remains 766

better than non-internal state-based methods. 767

B Qualitative Analysis 768

We also present a case study of the proposed Adap- 769

tive Uncertainty Probing (AUP) method to illus- 770

trate its capability in pinpointing key tokens, which 771

are defined as those crucial for estimating the sen- 772

tence’s uncertainty. For instance, in one exam- 773

ple, "Charles Darwin" are identified as key tokens 774

within a prediction; in another, it is "noose". We 775

then apply AUP to two sample questions and visual- 776

ize the outputs from the query head, demonstrating 777
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AUP(Ours) KSP

Average ID Performance 79.15 67.02

Average OOD Performance 68.43 60.68
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Figure 4: Out-of-Domain Generalization Results: We assess the OOD performance of internal state-based
methods on five datasets. AUP represents our approach and KSP refers to Knowledge State Probing.

how the model identifies which tokens to focus778

on when estimating sentence-level uncertainty. As779

shown in Figure 3, the query head consistently tar-780

gets the key token regardless of its position in the781

sentence, showcasing a robust generalization capa-782

bility. Importantly, the model achieved this without783

specific supervision on the location of key tokens,784

learning to identify them autonomously.785

C Sensitivity Analysis786

In addition to the ablation study, we further inves-787

tigate the influence of various hyper-parameters788

within the AUP framework. This exploration789

specifically focuses on the hidden size of the MLP790

in the probing head and the scale of training data.791

Our analysis involves multiple iterations on the792

SciQ dataset employing the Vicuna-7B model, un-793

der diverse seeding conditions. As depicted in794

Figure 5, AUP demonstrates robustness against795

fluctuations in the MLP’s hidden size, maintain-796

ing stable performance throughout these variations.797

Furthermore, augmenting the volume of training798

data enhances the efficacy of AUP, although the799

incremental benefits diminish as the dataset size800

increases. These findings indicate an improved801

learning capacity and enhanced generalization, af-802

firming AUP’s adaptability across training datasets803

of varying magnitudes.804

Method Training
Inference

Total
Sampling Calculation

PE(LN-PE) - - 0.07s 0.07s
TokenSAR - - 18.83s 18.83s
SentSAR - 47.80s 5.72s 53.52s
LS - 47.80s 7.02s 54.82s
SE - 47.80s 778.51s 826.3s
KSP 8.23min - 28.13s 28.13s
AUP(Ours) 8.53min - 28.13s 28.13s

Table 4: The extra computational expenses incurred by
various uncertainty estimation techniques.

D Computation Efficiency 805

We also evaluate the computational efficiency of 806

various uncertainty estimation methods, including 807

our AUP framework, by examining the additional 808

computational overhead these methods introduce. 809

This assessment was carried out by performing 810

1000 inference runs on the SciQ dataset, where for 811

methods requiring multiple inferences per predic- 812

tion, such as ensemble techniques, we sampled 10 813

predictions to estimate uncertainty. This analysis 814

not only complements our understanding of AUP’s 815

performance scalability but also highlights its com- 816

putational practicality in operational environments. 817

As shown in Table 4, the additional computa- 818

tional load imposed by various uncertainty estima- 819

tion methods can be divided into two main cate- 820

gories: the direct computation of uncertainty and 821

the overhead linked to generating multiple predic- 822

tions (relevant for multi-inference methods). The 823
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Figure 5: Sensitivity analysis of training data size and MLP hidden size, revealing interesting trends in the
performance of the AUP when changing these hyper-parameters.

Model Dataset
Single Inference Methods Multi Inference Methods Internal State Methods
PE LN-PE TokenSAR SentSAR SAR LS SE KSP AUP(Ours)

Vicuna-7B SciQ 68.29 60.50 61.00 67.35 61.98 59.66 62.51 66.79 87.73
CoQA 73.15 68.74 51.44 72.26 52.63 67.31 70.18 76.73 86.41
TriviaQA 82.59 54.45 53.56 81.78 67.08 76.15 77.73 75.70 86.69
MedMCQA 62.92 59.56 55.81 63.55 52.37 54.52 46.90 73.52 84.36
MedQA 67.74 63.99 55.86 65.62 56.29 61.62 47.58 70.41 83.47
Average 70.94 61.45 55.53 70.11 58.07 63.85 60.98 72.63 85.73

Vicuna-13B SciQ 77.57 62.30 60.62 77.03 62.16 63.87 75.73 70.39 88.68
CoQA 76.07 74.13 58.10 76.20 50.14 68.23 74.70 80.60 88.04
TriviaQA 81.03 69.26 67.89 81.21 74.76 76.71 81.15 72.95 82.67
MedMCQA 67.44 62.22 59.51 67.45 60.64 62.92 63.56 73.90 84.15
MedQA 69.98 62.47 55.89 68.99 55.93 60.04 64.87 72.65 80.90
Average 74.42 66.08 60.40 74.17 60.72 66.36 72.00 74.10 84.89

Table 5: Main Results using Rouge-L as the correctness metric: The correctness threshold is adjusted individually
for each dataset to maintain the model’s accuracy consistent.

AUP method distinguishes itself by its significantly824

reduced additional computational overhead com-825

pared to other techniques. This efficiency stems826

from its ability to compute the uncertainty score827

directly during the inference phase without the ne-828

cessity for sampling multiple answers.829

E Main Results with Different830

Correctness Metrics831

We conduct a comparison of our method against832

seven other baseline models using two additional833

correctness metrics: Rouge-L and SentSim. As834

shown in Table 5 and Table 6, our method con-835

sistently outperforms the baselines across all eval-836

uated metrics, thereby demonstrating its superior837

performance under various correctness criteria.838

F More Experiments with839

Llama3-8B-Instruct840

We conducted more experiments with the newer841

and more popular Llama3-8B-Instruct backbone.842

As show in Table 7, our approach maintains a843

strong performance advantage on newer LLM back-844

bones. This demonstrates the excellent generaliza- 845

tion of the approach. 846

G Correctness Metric 847

The primary correctness metric, denoted as include, 848

is defined as follows: the model’s prediction should 849

contain only the correct answer in the predicted text. 850

In datasets without answer choices (such as CoQA 851

and TriviaQA), a prediction is deemed correct if 852

the correct answer is found in the first sentence of 853

the prediction. Conversely, in datasets with answer 854

choices (such as SciQ, MedMCQA, and MedQA), 855

a prediction is considered accurate if the correct 856

answer is present in the first sentence of the pre- 857

diction, and any incorrect choices are not included 858

in that first sentence. This rule-based metric has 859

proven to be simple and effective when an appro- 860

priate prompt is given, as it eliminates the need for 861

manually setting a judgment threshold as required 862

by Rouge-L and SentSim. 863

For Rouge-L and SentSim, we utilize the F1 864

score of these metrics as the measure of correct- 865

ness. When calculating the AUROC metric during 866

evaluation, a correctness threshold is required to 867

12



Model Dataset
Single Inference Methods Multi Inference Methods Internal State Methods
PE LN-PE TokenSAR SentSAR SAR LS SE KSP AUP(Ours)

Vicuna-7B SciQ 64.18 59.41 56.00 64.35 57.15 57.11 58.50 75.73 87.03
CoQA 61.01 60.83 51.08 61.21 51.50 58.49 61.01 79.62 85.64
TriviaQA 82.32 53.29 53.27 82.44 66.49 75.55 78.45 76.89 87.59
MedMCQA 60.85 59.86 55.05 60.93 53.27 53.12 47.61 69.16 81.18
MedQA 65.30 63.79 55.48 64.68 56.79 60.08 51.59 69.69 82.48
Average 66.73 59.44 54.18 66.72 57.04 60.87 59.43 74.22 84.78

Vicuna-13B SciQ 64.06 56.54 55.27 64.53 56.19 56.04 63.67 78.77 86.10
CoQA 65.18 68.24 56.00 65.77 49.84 62.51 65.68 84.81 89.16
TriviaQA 81.02 68.51 66.93 81.31 74.87 76.19 81.15 76.15 83.74
MedMCQA 65.03 61.42 58.67 66.04 58.08 57.81 60.56 70.26 79.68
MedQA 64.16 58.43 51.49 64.15 54.95 59.03 61.73 67.47 75.58
Average 67.89 62.63 57.67 68.36 58.79 62.31 66.56 75.49 82.85

Table 6: Main Results using SentSim as the correctness metric: The correctness threshold is adjusted individually
for each dataset to maintain the model’s accuracy consistent.

Correctness Metric Dataset
Single Inference Methods Multi Inference Methods Internal State Methods
PE LN-PE TokenSAR SentSAR SAR LS SE KSP AUP(Ours)

Include SciQ 70.22 62.91 62.46 71.21 65.76 61.51 69.47 81.64 82.84
CoQA 67.84 58.50 45.63 66.77 56.58 57.72 65.57 71.33 73.61
TriviaQA 62.46 56.75 48.38 62.42 50.64 55.27 60.59 66.67 71.25
MedMCQA 67.97 61.57 62.02 67.83 66.49 65.15 67.22 70.88 73.49
MedQA 60.87 57.36 49.59 60.55 52.86 56.06 59.70 65.52 67.92
Average 65.87 59.42 53.62 65.76 58.47 59.14 64.51 71.21 73.82

Rouge-L SciQ 75.79 47.55 40.30 74.15 55.08 63.90 73.03 81.02 93.31
CoQA 75.00 57.37 53.35 74.32 49.38 66.14 73.30 73.51 84.03
TriviaQA 58.27 43.86 45.51 58.87 51.73 51.25 55.73 69.07 78.59
MedMCQA 71.54 65.01 62.11 71.08 68.65 68.94 69.29 73.03 75.77
MedQA 63.09 60.34 50.91 62.83 53.60 59.42 61.47 68.19 69.23
Average 68.74 54.83 50.44 68.25 55.69 61.93 66.56 72.96 80.19

SentSim SciQ 74.25 61.27 59.15 75.10 67.82 65.03 73.07 77.72 79.11
CoQA 70.61 53.37 47.44 69.68 52.81 63.59 68.02 79.37 87.07
TriviaQA 56.14 41.07 45.19 56.47 51.84 48.15 52.86 74.99 86.72
MedMCQA 68.11 62.16 61.34 68.49 67.67 67.24 66.81 72.53 75.30
MedQA 63.82 61.16 49.62 63.97 54.11 59.93 62.33 69.78 72.71
Average 66.59 55.81 52.55 66.74 58.85 60.79 64.62 74.88 80.18

Table 7: Main Results with Llama3-8B-Instruct. The correctness threshold of the Rouge-L and SentSim is adjusted
individually for each dataset to maintain the model’s accuracy consistent.

categorize predictions into true and false classes.868

Following the primary correctness metric, we set869

the correctness threshold separately to keep the ac-870

curacy under this correctness threshold coherent871

with the accuracy when using the primary correct-872

ness metric. We provided the correctness threshold873

of each dataset in the Table.874

H Sensitivity to Correctness Threshold875

We investigate the sensitivity of our methods to876

correctness threshold. Figure 6 and Figure show877

the effects of applying different thresholds of cor-878

rectness metrics. Higher thresholds mean stricter879

correctness standards. We also visualize the ac-880

curacy curve under different thresholds. As the881

metrics become stricter, the performances of un- 882

certainty quantization are affected. However, our 883

methods consistently outperform baseline methods. 884

8 885

I Prompt Template and Data Samples 886

We utilize the standard system prompt from the Vi- 887

cuna series models to structure the question within 888

the training and testing dataset. For the SciQ, 889

MedMCQA, CoQA, and MedQA datasets, we shuf- 890

fle the options randomly and organize the ques- 891

tions with a fixed template; For TriviaQA, we use 892

a 10-shot prompt. To streamline predictions, only 893

the first sentence of the model’s output is retained. 894

In Figure 8, we present a few examples from our 895
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Figure 6: The performance of different methods over various Rouge-L thresholds. Results are obtained from the
Vicuna-7B model on the SciQ dataset.

Figure 7: The performance of different methods over various Sentence Similarity thresholds. Results are obtained
from the Vicuna-7B model on the SciQ dataset.
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Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers 

to the user's questions. USER:Question:How many cycles do cells have? Options:two, four, six, seven Answer: ASSISTANT:

Prediction(Vicuna-7B):

Cells have one cycle.

Dataset: SciQ

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers 

to the user's questions. USER:Context:One day Poppy the puppy went outside to play. He ran around the yard as fast as he 

could. After running, Poppy began to play with his ball. When Poppy was tired of that, Poppy play catch with Mary. Poppy 

was very happy when Mary wanted to play with him. Poppy would jump on Mary and start to lick her face. Mary was happy 

when Poppy showed her all that love. Later on Mary and Poppy went inside to eat and take a nap.  Question:Who is Poppy? 

Answer: ASSISTANT:

Prediction(Vicuna-7B):

Poppy is a puppy who went outside to play.

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers 

to the user's questions. USER:Question:Do You Know Where You're Going To? was the theme from which film? 

Answer:mahogany Question:Which actor had a Doberman Pinscher called Kirk? Answer:william shatner Question:Which

musical featured the song Thank Heaven for Little Girls? Answer:gigi Question:The VS-300 was a type of what? 

Answer:helicopter Question:Where in England was Dame Judi Dench born? Answer:york Question:Who won Super Bowl 

XX? Answer:chicago bears Question:Which American-born Sinclair won the Nobel Prize for Literature in 1930? 

Answer:sinclair lewis Question:Stapleton international airport is in which US state? Answer:colorado Question:How is 

musician William Lee Conley better known? Answer:william lee conley broonzy, big bill broonzy, bill broonzy

Question:Who wrote the novel Evening Class? Answer:maeve binchy Question:In which state is Camp David? Answer: 

ASSISTANT:

Prediction(Vicuna-7B):

Maryland.

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers 

to the user's questions. USER:Question:The intermediate host for T. Saginata is: Options:Man, Cow, Dog, Pig Answer: 

ASSISTANT:

Prediction(Vicuna-7B):

The intermediate host for T.

Dataset: CoQA

Dataset: TriviaQA

Dataset: MedMCQA

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers 

to the user's questions. USER:Question:A group of scientists is verifying previous research on DNA replication. In the picture 

is the theoretical structure for tRNA. Where is the binding site for an amino acid? Options:A, B, D, C Answer: ASSISTANT:

Prediction(Vicuna-7B):

The binding site for an amino acid on tRNA is located in the anticodon loop region.

Dataset: MedQA

Figure 8: Data Samples of the testing datasets
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Model Dataset Test Accuracy ThresholdRougeL ThresholdSentSim

Vicuna-7B SciQ 66.1 0.11 0.44
CoQA 62.6 0.17 0.41
TriviaQA 35.7 0.40 0.80
MedMCQA 21.8 0.24 0.54
MedQA 26.6 0.17 0.54

Vicuna-13B SciQ 71.5 0.12 0.44
CoQA 64.8 0.12 0.40
TriviaQA 40.5 0.50 0.86
MedMCQA 30.8 0.22 0.51
MedQA 31.6 0.18 0.58

Llama3-8B SciQ 92.0 0.33 0.64
CoQA 76.4 0.20 0.47
TriviaQA 46.7 0.22 0.59
MedMCQA 56.0 0.50 0.76
MedQA 58.6 0.25 0.63

Table 8: Test Accuracy and Correctness Threshold of different correctness metrics for different datasets.

dataset.896
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