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Abstract

Recent advancements have seen a dramatic in-
crease in the use of large language models
(LLMs) due to their impressive text genera-
tion capabilities. However, these models often
produce confident yet inaccurate predictions,
highlighting the critical need for effective un-
certainty assessment. Various approaches to
estimate uncertainty have emerged, primarily
utilizing the token probabilities in model pre-
dictions, yet the relationship and distinctions
among these methods warrant deeper explo-
ration. This study investigates the essential
design elements of current uncertainty estima-
tion techniques and introduces a comprehensive
framework for evaluating uncertainty in LLMs.
Our findings reveal that uncertainty informa-
tion is dispersed across tokens, and the model’s
certainty about its uncertainty strengthens after
making a prediction. Additionally, we present
a novel, efficient supervised method, Adap-
tive Uncertainty Probing (AUP), which signif-
icantly surpasses previous methods in perfor-
mance. Through extensive experiments across
multiple models on five distinct datasets, we
validate the effectiveness, generalizability, and
efficiency of our method.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various nat-
ural language processing (NLP) tasks, including
question answering, summarization, and conversa-
tion generation (Touvron et al., 2023; Zeng et al.,
2022; Singhal et al., 2022; Brown et al., 2020).
Despite their success, LLMs often face reliability
issues such as hallucinations and factual inaccura-
cies (Hu et al., 2023; Amayuelas et al., 2023; Yin
et al., 2023). These challenges are particularly con-
cerning because users might unknowingly trust in-
correct information generated by LLMs due to their
confident and convincing language output. There-
fore, accurately estimating the confidence of the

model’s predictions becomes crucial. Uncertainty
estimation aims to generate a value indicating the
confidence level of an LLM’s prediction, which
helps filter out potentially harmful information be-
fore it reaches the user, thus mitigating the impact
of hallucinations.

The estimation of uncertainty has been widely
studied before the emergence of large language
models. Following Gal, the uncertainty of a neu-
ral network is typically classified into aleatoric
uncertainty and epistemic uncertainty. Aleatoric
uncertainty typically arises from noise present in
the training data, which can stem from inaccuracies
or outdated information. Conversely, epistemic un-
certainty is attributed to variations in a model’s pa-
rameters, as a multitude of potential models could
explain a particular training dataset. This paper
concentrates on the estimation of predictive un-
certainty, which combines both aleatoric uncer-
tainty and epistemic uncertainty and represents the
model’s confidence in a prediction.

The estimation of uncertainty has been exten-
sively studied (Gal and Ghahramani; Gal; Malinin
et al., 2017; Lahlou et al., 2023). Several heuris-
tic and empirical methods have been proposed
to estimate the uncertainty of an LLM’s predic-
tions. These methods primarily rely on reasonable
priors derived from observations of LLM behav-
ior and can generally be categorized into single-
inference and multi-inference methods. Single-
inference methods operate on the assumption that
the probability of a token serves as a partial indi-
cator of the model’s uncertainty. However, using
token probability for uncertainty estimation has
drawbacks, such as overconfidence (Zhang et al.,
2023), where the model assigns higher probabili-
ties to words that have been previously mentioned
in the text. Another issue is the generation inequal-
ity problem (Duan et al., 2023), where irrelevant
token probability values can disrupt accurate esti-
mation of sentence-level uncertainty. In contrast,
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Figure 1: Ilustration of the unified framework and various types of uncertainty estimation methods.

multi-inference methods (Lin et al., 2022b; Kuhn
et al., 2023) suggest that the entropy of the genera-
tion space increases with the model’s uncertainty.
However, these methods incur high computational
costs as they require sampling multiple responses
and constructing a similarity matrix from these
responses. Despite the variety of methods avail-
able, the relationship between different categories
of uncertainty estimation methods has not been
thoroughly investigated.

In this paper, we will focus on the following
three critial questions in uncertainty estimation of
LLM. Firstly, we examine the comparative effec-
tiveness and efficiency of single-inference versus
multi-inference methods, detailed in Section 3.1.
Secondly, we address the challenges and limita-
tions associated with using token probability as
a measure of uncertainty, as these methods often
fail to capture true uncertainty accurately. Lastly,
we identify and discuss the key design elements
that differentiate the most effective methods for
estimating uncertainty, elaborating on how these
elements enhance the accuracy and reliability of
the estimates in Section 3.2.

To answer these questions, we conduct exten-
sive experiments and develop several variants of
internal state-based uncertainty estimation meth-
ods. We introduce a novel method, Adaptive Un-
certainty Probing (AUP), which incorporates the
optimal design choices identified in our analysis.

Our method significantly outperforms existing tech-
niques in terms of effectiveness, generalization, and
efficiency.

Our contributions can be summarized as follows:

* Unified Framework for Uncertainty Es-
timation: We introduce a comprehensive
framework that systematically organizes exist-
ing uncertainty estimation methods in LLMs
into two main categories: single-inference and
multi-inference approaches. This framework
clarifies the differences and linkages between
the methods, enhancing our understanding of
their foundational principles and enabling a
clearer comparison and evaluation. This or-
ganization aims to advance the field of un-
certainty estimation by providing a structured
base for further research and development.

* Experimental Insights: Utilizing our uni-
fied framework, we conduct extensive experi-
ments to examine key design choices within
various uncertainty estimation methods. Our
findings affirm that uncertainty information
remains consistent across different token posi-
tions, and that the model’s internal state is crit-
ical for accurate uncertainty prediction. These
insights highlight the need for a detailed anal-
ysis of model internals and underscore the
importance of empirical validation in refining
design choices to enhance method effective-



ness.

* Adaptive Uncertainty Probing: Building on
the insights from our framework and exper-
imental findings, we propose Adaptive Un-
certainty Probing (AUP), a new lightweight
supervised method optimized for uncertainty
estimation. AUP is evaluated against several
benchmark methods across diverse datasets,
showing superior performance in terms of
effectiveness, generalization, and efficiency.
AUP exemplifies how theoretical advance-
ments can translate into practical applications,
offering a significant improvement over exist-
ing methods.

2 Related Work

Following Huang et al. (2023), we categorize ex-
isting methods for uncertainty estimation in LLM
into two main types: single-inference and multi-
inference methods.

Single-Inference Methods: Single-inference
methods utilize the token probability distribution
information of a single LLM prediction to esti-
mate the uncertainty of the sentence. Malinin
and Gales (2021) explore uncertainty estimation
in auto-regressive structured prediction tasks using
a unified and interpretable probabilistic ensemble-
based framework. Duan et al. (2023) introduce
the SAR series techniques, which simultaneously
assess the importance of individual tokens and sen-
tences, and readjust attention during uncertainty
estimation. These approaches use the token prob-
ability of the model’s prediction to gauge uncer-
tainty in an unsupervised fashion. However, the
token probability lacks calibration with uncertainty,
resulting in sub-optimal performance.

Multi-Inference Methods: Multi-inference
methods leverage the stochasticity of the model
in generating text by perturbing the model’s gen-
eration slightly and then estimating uncertainty us-
ing the divergence among those predictions. Lin
et al. (2022b) introduce Lexical Similarity, which
calculates uncertainty by the similarity of the gener-
ated response strings. Kuhn et al. (2023) introduce
Semantic Entropy, which utilizes a bi-directional
entailment algorithm to cluster semantically equiv-
alent samples for better uncertainty estimation.
Manakul et al. (2023) introduce SelfCheckGPT, a
sampling-based method for hallucination detection.
Zhang et al. (2024) introduce LUQ, a new approach
for assessing sentence-level consistency in lengthy

textual contexts. Gao et al. (2024) propose a new
perturbation sampling-based uncertainty quantifi-
cation framework designed specifically for LL.Ms.
These methods still operate under the same assump-
tion as single-inference methods. Additionally, the
process of sampling multiple answers may pose
computational challenges. Li et al. (2024) intro-
duce a novel self-detection paradigm that consid-
ers the comprehensive answer space beyond LLM-
generated answers.

Other Related Works: Recently, there emerge
some internal state-based uncertainty estimation
methods.Azaria and Mitchell (2023) first discov-
ered that the internal state of large language models
can be used for true and false judgment. Xiong
et al. (2023) perform a comparative assessment of
verbalized-based and consistency-based techniques
for uncertainty estimation. Lin et al. (2022a) dis-
covered that the fine-tuned GPT-3 model can pro-
vide confidence in its responses using natural lan-
guage. Kadavath et al. (2022) explore fine-tuning a
large language model with an extra value head to
determine which questions the models can answer.
Ahdritz et al. (2024) explore detecting epistemic un-
certainty by employing a more extensive language
model for guidance, which focuses on separating
epistemic uncertainty from aleatoric uncertainty.
Liang et al. (2024) introduce the Knowledge State
Probing method. Initially, it explores estimating
uncertainty within model internal states, but it only
uses the internal states of the question when esti-
mating uncertainty. Kossen et al. (2024) proposed
SEPs that directly estimate SE from the hidden
states within a single generation. Chen et al. (2024)
propose EigenScore to better evaluate responses’
self-consistency. However, these works employ
simple mean pooling or last pooling for uncertainty
aggregation. As a result, they are unable to model
the significance of different internal states across
the layer and tokens. Main difference of AUP: Our
proposed method, Adaptive Uncertainty Probing
(AUP), distinguishes itself from existing methods
by focusing on the internal states of LLMs to esti-
mate uncertainty. Unlike single-inference methods
that rely on token probability, which often leads to
overconfidence and multi-inference methods that
are computationally expensive, AUP leverages the
optimal design choices identified through our uni-
fied framework and empirical validation. Specifi-
cally, AUP uses a lightweight supervised approach
to probe the internal states of LLMs, capturing
both epistemic and aleatoric uncertainty without



Method

Information Source

Probing Function Pooling Function

Probability-Based

Single Inference Method Ha[-1] probability-based sum/mean/...

Multi Inference Method Hg probability-based entropy
Internal State-Based

Knowledge State Probing Hg internal state-based last

Adaptive Knowledge State Probing Hg internal state-based adaptive

Last Uncertainty Probing Hy internal state-based last

Mean Uncertainty Probing Hy internal state-based mean

Adaptive Uncertainty Probing Hy internal state-based adaptive

Table 1: We examine the key design choices of different uncertainty estimation methods by comparing existing
methods across various categories and proposing some variants.

the need for multiple sampling or perturbations.
Compared to existing internal state-based methods,
AUP models the importance of activations from
different tokens to probing uncertainty information
through an Adaptive Pooling Mechanism. This
approach not only improves the accuracy of uncer-
tainty estimation but also enhances the efficiency
and generalization across various datasets. Our
method’s ability to integrate insights from different
design elements into a coherent and effective un-
certainty estimation technique marks a significant
advancement over previous methods.

3 Bridging the Gap - A Unified View

3.1 A Unified Framework for single and multi
inference methods

Given an L layer large language model with the
hidden size of D and vocabulary V, a tokenized
question Q € RMe, a tokenized answer A to be
evaluated, and a maximum new tokens V4 for gen-
eration. * Eq. 1 shows the LLM’s generation space,
which comprises a total of |V/|V4 possible unique
predictions. Each prediction consists of N4 tokens,
collectively forming a set S.

S = {(xl,...,xNA) ‘ r, eV, 1<i< NA}. (D)

We utilize the LL.M operator to describe the opera-
tion of obtaining the internal state H y from a given
text input X, as shown in Eq. 2. When each predic-
tion in set S is combined with () and applying the
LLM operator, we get the hidden state matrix Hg,

*Without loss of generality, we assume that A € R4,
For answers shorter than N4 tokens in length, we can pad
the answer with special tokens (e.g., EOS) that have a token
probability of one.

which contains the internal state of all potential
predictions, as shown in Eq. 4.

LLM(X) = Stack({h; |0 <1< L}). (2)
Hg = LLM(Concat (@, S)), 3)

HS e R‘V|NA><NA><L><D' (4)

Subsequently, the probability matrix Pg is obtained
with the Unembed operator, which maps the final
layer of Hg with Heady\ and applies the Softmax
function, denoted in Eq. 5.

Py = Unembed(Hg), Ps € RVI™xNa_ (5)

The element p; ; in probability matrix Pg is the to-
ken probability of the k-th token in the j-th possible
prediction, which is an extremely high-dimensional
sparse matrix, as most of the predictions have a gen-
erative probability close to zero.

The connection and difference: The pooling
and entropy functions of predictive entropy are
listed in Eq. 6:

Na
Usingle - - Z log(PS [ZA]J) (6)
J

[VINA N Na

Upatti = = Y > _10g(Psij) [[ Psiy @

i J J
Upon examining Eq. 6 and Eq. 7, it becomes ev-
ident that both single and multiple inference tech-
niques operate under a common assumption: a
higher token probability suggests reduced un-
certainty. The variance lies in how these methods
approach this notion. Single inference methods
focus on the absolute generative probability Py,
whereas multi-inference methods factor in the rela-

tive relationship between P4 and Pg.
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Figure 2: The proposed Adaptive Uncertainty Probing method.

3.2 Key design choice of existing methods

SelfCheckGPT (Manakul et al., 2023) highlights a
positive correlation between token probability and
factuality in the LLM’s prediction. Nonetheless,
the token probability is not flawless as it may not
consistently signify the model’s certainty across
all situations. A recent study (Zhang et al., 2023)
reveals that the language model may exhibit ex-
cessive confidence when the preceding context in-
cludes superficial tokens that appear to be associ-
ated with an imagined token, or when the context
itself is affected by exposure bias because of the
auto-regressive characteristic of the generative pro-
cess. Another study (Duan et al., 2023) reveals that
the probability of irrelevant tokens contributes little
to the uncertainty of the sentence. While token
probability occasionally touches on uncertainty,
its primary connection lies with text generation,
encompassing a nuanced concept beyond solely
reflecting uncertainty. Therefore, a more robust
and accurate feature is required to assess the uncer-
tainty of a sentence due to the insufficient calibra-
tion of probability about uncertainty.

We summarize the key design choices of differ-
ent methods in Table 1 and propose four variants.
As shown in the table, We decompose the uncer-
tainty estimation method into three defined design
dimensions: The "Information Source" describes
the specific method’s reliance on certain sources of
information to estimate uncertainty. The "Probing
Function" delineates the form of a function utilized
by a specific method to extract uncertainty from
the information source. The "Pooling Function"
specifies the form of function employed by a spe-
cific method to aggregate token-level uncertainty
into sentence-level uncertainty. Building on this de-
composition, we introduce our adaptive uncertainty

probing method, which we will elaborate on in the
subsequent section and the experiment section.

4 Adaptive Uncertainty Probing

Following the findings of the preceding section,
token probability emerges as a feature derived via
the UnEmbedding operator through an unsuper-
vised method. However, despite its derivation, to-
ken probability lacks proper calibration with un-
certainty. Consequently, there arises a necessity
to extract a more refined feature from the internal
states of the model.

Motivated by these insights, we introduce Adap-
tive Uncertainty Probing (AUP), a lightweight su-
pervised approach. AUP utilizes probing heads to
extract uncertainty signals from the model’s inter-
nal states. Additionally, we integrate an adaptive
uncertainty pooling mechanism to detect uncertain
tokens, thereby improving sentence-level uncer-
tainty estimation. Direct Uncertainty Probing:
As shown in Figure 2, given a tokenized question
Q € RHe and answer A € RY4, our initial step
involves employing the LLM operator to extract
the hidden state of the answer. Ng and V4 are the
length of the question and answer. We denote The
internal states of () and A in Eq. 10:

Hga = LLM(Concat(Q, A)) (8)
Hq = H[: Ng] € RNexLxD )
Hp = H[Ng :] € RNaxILxD (1)

Next, as shown in Figure 2, we present trainable
probing heads after every LLM layer that are struc-
tured as a 2-layer MLP with a moderately narrow
hidden size in between. The probing heads take
the hidden states of the model’s response H 4 as
input and assess the uncertainty score for each in-



Question: Who proposed the theory of evolution by natural selection?
Prediction: The theory of evolution by natural selection was proposed by Charles Darwin
Ground Truth: Darwin

Uncertainty: 0.01 /

Question: What can refer to a rope in a particular shape and a genetic structure involved in splicing?
Prediction: The correct option is "noose." A noose is a rope or cord that is used to hangor ...
Ground Truth: lariat

Uncertainty: 0.31 /
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Figure 3: Case study of the proposed Adaptive Uncertainty Probing method, we visualize the output of the query
head. Our method successfully identifies key tokens and assigns them high weight to improve the estimation of

sentence-level uncertainty

ternal state across all layers and tokens H; ;, as
represented in Eq. 11:

Scoreqs = Headpron(Ha) (11

Adaptive Uncertainty Pooling: The uncer-
tainty within a sentence can span various layers and
token positions. The model’s confidence in gener-
ating the last token does not necessarily indicate
confidence in generating intermediate positions,
and vice versa. The self-attention mechanism may
not always aggregate the uncertainty information of
the entire sentence. Thus, Instead of relying on the
self-attention mechanism of the LLM to aggregate
uncertainty information, we have devised an adap-
tive uncertainty pooling mechanism to enhance
sentence-level uncertainty pooling, just as we uti-
lize the probing layer instead of the Unembedding
operator to extract uncertainty information from
the hidden state.

As shown in Eq. 12, for each layer, a query head
(which is also structured as a 2-layer MLP) is in-
corporated to assess the significance of each acti-
vation, and then we apply a softmax function to
obtain Weight 4, the weight of all activation. This
allows for a more precise assessment of uncertainty
across different layers and token positions.

Weight s = Softmax(Headquery (Ha)  (12)

Finally, we aggregate the scores of all activations
to obtain the ultimate uncertainty for the entire
sentence, which is shown in Eq. 13.

Uncertainty = Weighta - Scorex (13)

We also present a case study of the proposed
Adaptive Uncertainty Probing (AUP) method to

illustrate its capability in pinpointing key tokens,
which are defined as those crucial for estimating the
sentence’s uncertainty. For instance, in one exam-
ple, "Charles Darwin" are identified as key tokens
within a prediction; in another, it is "noose". We
then apply AUP to two sample questions and visual-
ize the outputs from the query head, demonstrating
how the model identifies which tokens to focus
on when estimating sentence-level uncertainty. As
shown in Figure 3, the query head consistently tar-
gets the key token regardless of its position in the
sentence, showcasing a robust generalization capa-
bility. Importantly, the model achieved this without
specific supervision on the location of key tokens,
learning to identify them autonomously.

Training with pseudo label: As shown in Fig-
ure 2, we use the existing training splits from var-
ious question-answering datasets like SciQ, Triv-
1aQA, CoQA, MedMCQA, and MedQA. We first
get the correctness value of the model’s prediction
by calculating the correctness metric such as In-
clude, Rouge-L and SentSim. Then we use the
correctness value directly as the pseudo uncertainty
label for the training of the AUP module. The
LLM’s parameters are frozen and are used only to
generate the internal state, only the AUP module is
trained using binary cross-entropy loss.

5 Empirical Evaluation

5.1 Experiment Setup

Baselines: We compare our approach with vari-
ous baselines. For single-inference techniques, we
consider Predictive Entropy(PE) (Kadavath et al.,
2022), Length-Normalized Predictive Entropy(LN-



Single Inference Methods

Multi Inference Methods Internal State Methods

Model Dataset PE LN-PE TokenSAR | SentSAR SAR LS SE | KSP  AUP(Ours)
Vicuna-7B SciQ 6631 6270  60.29 6651 6091 59.05 62.26 | 65.04 87.50
CoQA 6343 6509  47.99 6413 5413 60.69 63.93 | 65.16 76.70
TriviaQA | 6630 359.00  57.85 6631 6257 6592 61.54 | 68.01 75.99
MedMCQA | 62.84 6559  59.07 6234 6096 61.09 5111 | 65.90 77.04
MedQA | 6208 59.62  53.01 6196 5708 62.69 5440 | 70.92 81.06
Average | 6419 6240  55.64 6425 59.13 6189 58.65 | 67.00 79.66
Vicuna-13B SciQ 6927 6355 5951 6996 61.08 6053 69.60 | 73.65 84.55
CoQA 6403 6625 5042 6509 5305 59.16 64.91 | 73.79 80.25
TriviaQA | 7426 6783 6585 7479 7102 7090 74.17 | 69.64 77.10
MedMCQA | 63.15 62.61  59.86 63.52 5970 5933 60.86 | 68.70 76.12
MedQA | 5857 5534 5116 5014 53.66 5592 5820 | 64.76 70.49
Average | 6586 6312  57.36 66.50 5970 61.17 6555 | 70.11 77.70
Llama3-8B-IT  SciQ 7022 6291 6246 7121 6576 6151 69.47 | 81.64 82.84
CoQA 6784 5850  45.63 6677 5658 5772 65.57 | 71.33 73.61
TriviaQA | 6246 5675 4838 6242 5064 5527 6059 | 66.67 71.25
MedMCQA | 67.97 6157  62.02 6783 6649 65.15 67.22 | 70.88 73.49
McdQA | 6087 5736  49.59 60.55 5286 56.06 59.70 | 65.52 67.92
Average | 6587 5942  53.62 6576 5847 59.14 6451 | 7121 73.82

Table 2: Main Results: We compare eight representative methods from various categories on the validation set of
five datasets. We evaluate the correctness of the answers using the metric include and assess the performance of
each method using AUROC. Detailed results with different correctness metrics can be found in the appendix E.

PE) (Malinin and Gales, 2021), and TokenSAR
(Duan et al., 2023). Regarding multi-inference
methods, we analyze SentSAR, Lexical Similar-
ity(LS) (Lin et al., 2022b), and Semantic En-
tropy(SE) (Kuhn et al., 2023). Additionally, we in-
corporate Knowledge State Probing (KSP) (Liang
et al., 2024) as the current state-of-the-art internal
state-based method.

Datasets and Models: We study five diverse
datasets: (1) SciQ with 13.7K science exam ques-
tions (Welbl et al., 2017); (2) CoQA, tailored for
Conversational Question Answering (Reddy et al.,
2019); (3) TriviaQA, featuring over 650K question-
answer-evidence triples (Joshi et al., 2017); (4)
MedMCQA, a large-scale multi-subject medical
question dataset (Pal et al., 2022); (5) MedQA,
sourced from medical exams (Jin et al., 2020). For
each dataset, we use 1000 samples from the valida-
tion split for evaluation. We conduct experiments
on the Vicuna-7B, Vicuna-13B and Llama-3-8B-IT
models to verify the generalization of our method.

Correctness Metric: We employ a rule-based
template matching approach called include as our
primary correctness metric. We also incorporate
other commonly used metrics for question answer-
ing: Rouge-L (Lin, 2004) and SentSim (Reimers
and Gurevych, 2019). Detailed results with dif-
ferent correctness metrics can be found in the ap-
pendix G.

Evaluation Metric: Following prior work
(Kuhn et al., 2023), we assess uncertainty by fram-
ing it as the task of determining whether to trust a
model’s prediction for a given prompt. We measure
this using the AUROC metric, which indicates the
probability that a correct answer has a lower uncer-
tainty score than an incorrect one. Higher AUROC
scores signify better uncertainty estimation.

Implementation Details: We generally fol-
lowed the setup in (Kuhn et al., 2023). For each
question, we generate up to 256 tokens and we sam-
ple 10 answers for multi-inference methods. For
internal state-based methods, we use 2000 samples
from the training split of the corresponding datasets
and 1000 samples from the validation split for test-
ing. We train models on a single A100 GPU for 10
epochs using Adam optimizer with a learning rate
of 1e-4 and a batch size of 16. The prompt template
and more implementation details are included in
appendix |

5.2 Main Results

We assess eight different methods representing var-
ious categories on the validation set of five datasets.
The accuracy of the responses is measured using
the include metric and the performance of each
method is evaluated based on AUROC. We include
more results of other correctness metrics (Rouge-L)
in appendix E.



Model Dataset Ours Pooling Ablation Source Ablation
AUP Mean Pooling Last Pooling Last Pooling Large | Question Only

Vicuna-7B  SciQ 87.21+0.21 | 74.25+0.01 83.57+0.06 83.91+0.77 64.86+0.42
CoQA 76.88+0.25 | 73.84+0.25 73.83+0.19 71.98+1.79 62.98+0.22
TriviaQA 75.56+0.21 | 73.98+0.27 75.10+0.05 75.17+0.58 68.33+0.07
MedMCQA | 77.08+0.47 | 73.20+0.12 74.59+0.04 74.69+0.84 65.16+0.21
MedQA 80.82+0.03 | 76.16+0.00 74.82+0.15 74.57+1.11 65.80+1.43
Average 79.51+0.23 | 74.29+0.13 76.38+0.10 76.06+1.02 65.43+0.47

Vicuna-13B  SciQ 84.71+0.57 | 76.45+0.00 79.79+0.13 79.13+0.42 71.56+0.00
CoQA 79.95+0.00 | 77.14+0.00 77.31+0.24 76.79+0.32 59.02+16.41
TriviaQA 76.74+0.13 | 75.47+0.23 75.70+0.25 75.62+0.14 69.13+0.29
MedMCQA | 75.98+0.20 | 72.69+0.00 73.84+0.40 71.80+1.26 66.82+0.51
MedQA 69.68+0.85 | 66.81+0.03 65.25+0.17 64.07+0.71 60.91+0.23
Average 77.41+0.35 | 73.71+0.05 74.38+0.24 73.48+0.57 65.49+3.49

Table 3: Ablation Results: The results of the ablation study indicate a significant improvement in model performance
when the adaptive pooling mechanism is included in the architecture.

As shown in the table, our method outperforms
the baseline approaches across all datasets by a
large margin. Our method also surpasses Knowl-
edge State Probing (KSP), the current leading in-
ternal state-based method. This superiority may
stem from two potential reasons: 1) KSP relies on
the hidden state of the input question, neglecting
the valuable information present in the model’s an-
swer. 2) KSP exclusively utilizes the hidden state
of the last token, which may lack comprehensive
uncertainty information about the entire sentence.

5.3 Ablation Study

To evaluate the efficacy of our method, we do ab-
lation study focusing on the influence of various
components on the model’s overall performance.
This included a comparison between Adaptive Un-
certainty Probing and its four derivatives. Regard-
ing the adaptive pooling mechanism, we tested
three alternatives: Mean Pooling, which computes
sentence-level uncertainty using the average score
across the sentence; Last Pooling, which bases un-
certainty assessment exclusively on the final token;
and Last Pooling Large, an augmented version of
Last Pooling that incorporates an increased param-
eter count to assess the effect of model capacity
on performance. For the information source ab-
lation, we investigated the Question Only variant,
which utilizes only the question’s internal state.
The results clearly demonstrate that our model out-
performs all variants, affirming the effectiveness
of integrating the adaptive pooling mechanism into
our framework. Further, the ablation study offers
crucial insights:

Distribution of Uncertainty Information
Across Tokens: The results from the pooling abla-
tion experiments suggest that neither using a mean
function, focusing solely on the last token, nor
simply enlarging the model parameters led to per-
formance improvements. This underscores the effi-
cacy of the adaptive pooling mechanism in effec-
tively aggregating uncertainty information across
different tokens, thereby underlining the necessity
for more sophisticated strategies to enhance model
performance.

Enhanced Certainty about Uncertainty Post-
Prediction: The findings from the source abla-
tion reveal that while leveraging information solely
from the question yields some benefit, it does not
match the effectiveness of utilizing the internal
state derived from the answer in the standard con-
figuration. This points to an increase in the model’s
certainty about its uncertainty following the predic-
tion, suggesting a more nuanced understanding of
uncertainty as the model processes the answer.

6 Conclusion

We develop a comprehensive unified framework
that integrates existing methods for uncertainty es-
timation in LLMs. Through extensive experiments
and analysis, we reveal that uncertainty information
is preserved across different token positions and
that the internal state of the answer is particularly
valuable for predicting uncertainty. We propose a
novel, lightweight supervised method named Adap-
tive Uncertainty Probing, and demonstrate that it
significantly outperforms existing methods in terms
of effectiveness, generalization, and efficiency.



Limitations

The Adaptive Uncertainty Probing method isn’t
directly applicable to uncertainty estimation in
closed-source models. However, applying our
method to closed-source models is possible us-
ing open-source proxy models, which we see as a
promising research direction. Additionally, dataset
bias may affect the generalization performance of
our method. A promising research direction in-
volves preventing the probing head from learning
basic heuristic knowledge.
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Figure 4: Out-of-Domain Generalization Results: We assess the OOD performance of internal state-based
methods on five datasets. AUP represents our approach and KSP refers to Knowledge State Probing.

how the model identifies which tokens to focus
on when estimating sentence-level uncertainty. As
shown in Figure 3, the query head consistently tar-
gets the key token regardless of its position in the
sentence, showcasing a robust generalization capa-
bility. Importantly, the model achieved this without
specific supervision on the location of key tokens,
learning to identify them autonomously.

C Sensitivity Analysis

In addition to the ablation study, we further inves-
tigate the influence of various hyper-parameters
within the AUP framework. This exploration
specifically focuses on the hidden size of the MLP
in the probing head and the scale of training data.
Our analysis involves multiple iterations on the
SciQ dataset employing the Vicuna-7B model, un-
der diverse seeding conditions. As depicted in
Figure 5, AUP demonstrates robustness against
fluctuations in the MLP’s hidden size, maintain-
ing stable performance throughout these variations.
Furthermore, augmenting the volume of training
data enhances the efficacy of AUP, although the
incremental benefits diminish as the dataset size
increases. These findings indicate an improved
learning capacity and enhanced generalization, af-
firming AUP’s adaptability across training datasets
of varying magnitudes.
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. Inference
Method Training Sampling  Calculation Total
PE(LN-PE) - - 0.07s 0.07s
TokenSAR - - 18.83s 18.83s
SentSAR - 47.80s 5.72s 53.52s
LS - 47.80s 7.02s 54.82s
SE - 47.80s 778.51s 826.3s
KSP 8.23min - 28.13s 28.13s
AUP(Ours) | 8.53min - 28.13s 28.13s

Table 4: The extra computational expenses incurred by
various uncertainty estimation techniques.

D Computation Efficiency

We also evaluate the computational efficiency of
various uncertainty estimation methods, including
our AUP framework, by examining the additional
computational overhead these methods introduce.
This assessment was carried out by performing
1000 inference runs on the SciQ dataset, where for
methods requiring multiple inferences per predic-
tion, such as ensemble techniques, we sampled 10
predictions to estimate uncertainty. This analysis
not only complements our understanding of AUP’s
performance scalability but also highlights its com-
putational practicality in operational environments.

As shown in Table 4, the additional computa-
tional load imposed by various uncertainty estima-
tion methods can be divided into two main cate-
gories: the direct computation of uncertainty and
the overhead linked to generating multiple predic-
tions (relevant for multi-inference methods). The
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Figure 5: Sensitivity analysis of training data size and MLP hidden size, revealing interesting trends in the
performance of the AUP when changing these hyper-parameters.

Model Dataset Single Inference Methods Multi Inference Methods Internal State Methods
PE LN-PE TokenSAR | SentSAR SAR LS SE KSP AUP(Ours)

Vicuna-7B  SciQ 68.29  60.50 61.00 67.35 61.98 59.66 62.51 | 66.79 87.73
CoQA 73.15 68.74 51.44 7226  52.63 6731 70.18 | 76.73 86.41
TriviaQA 82.59 54.45 53.56 81.78 67.08 76.15 77.73 | 75.70 86.69
MedMCQA | 62.92  59.56 55.81 63.55 5237 5452 4690 | 73.52 84.36
MedQA 67.74  63.99 55.86 65.62 5629 61.62 47.58 | 70.41 83.47
Average 70.94 6145 55.53 70.11 58.07 63.85 60.98 | 72.63 85.73

Vicuna-13B  SciQ 77.57 6230 60.62 77.03 62.16 63.87 75.73 | 70.39 88.68
CoQA 76.07 74.13 58.10 7620  50.14 68.23 74.70 | 80.60 88.04
TriviaQA 81.03 69.26 67.89 81.21 7476 76.71 81.15 | 72.95 82.67
MedMCQA | 67.44 62.22 59.51 67.45 60.64 6292 63.56 | 73.90 84.15
MedQA 69.98 62.47 55.89 68.99 5593 60.04 64.87 | 72.65 80.90
Average 7442 66.08 60.40 74.17 60.72 66.36 72.00 | 74.10 84.89

Table 5: Main Results using Rouge-L as the correctness metric: The correctness threshold is adjusted individually
for each dataset to maintain the model’s accuracy consistent.

AUP method distinguishes itself by its significantly
reduced additional computational overhead com-
pared to other techniques. This efficiency stems
from its ability to compute the uncertainty score
directly during the inference phase without the ne-
cessity for sampling multiple answers.

E Main Results with Different
Correctness Metrics

We conduct a comparison of our method against
seven other baseline models using two additional
correctness metrics: Rouge-L and SentSim. As
shown in Table 5 and Table 6, our method con-
sistently outperforms the baselines across all eval-
uated metrics, thereby demonstrating its superior
performance under various correctness criteria.

F More Experiments with
Llama3-8B-Instruct

We conducted more experiments with the newer
and more popular Llama3-8B-Instruct backbone.
As show in Table 7, our approach maintains a
strong performance advantage on newer LLM back-
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bones. This demonstrates the excellent generaliza-
tion of the approach.

G Correctness Metric

The primary correctness metric, denoted as include,
is defined as follows: the model’s prediction should
contain only the correct answer in the predicted text.
In datasets without answer choices (such as CoQA
and TriviaQA), a prediction is deemed correct if
the correct answer is found in the first sentence of
the prediction. Conversely, in datasets with answer
choices (such as SciQ, MedMCQA, and MedQA),
a prediction is considered accurate if the correct
answer is present in the first sentence of the pre-
diction, and any incorrect choices are not included
in that first sentence. This rule-based metric has
proven to be simple and effective when an appro-
priate prompt is given, as it eliminates the need for
manually setting a judgment threshold as required
by Rouge-L and SentSim.

For Rouge-L and SentSim, we utilize the F1
score of these metrics as the measure of correct-
ness. When calculating the AUROC metric during
evaluation, a correctness threshold is required to



Single Inference Methods

Multi Inference Methods Internal State Methods

Model Dataset PE LN-PE TokenSAR | SentSAR SAR LS SE | KSP  AUP(Ours)
Vicuna-7B  SciQ 6418 5941  56.00 6435 5715 57.11 5850 | 75.73 87.03
CoQA 6101 6083  51.08 6121 5150 5849 61.01 | 79.62 85.64
TriviaQA | 8232 5329 5327 8244 6649 7555 7845 | 76.89 87.59
MedMCQA | 60.85 59.86  55.05 60.93 5327 53.12 4761 | 69.16 81.18
MedQA | 6530 6379 5548 6468 5679 60.08 5159 | 69.69 82.48
Average | 6673 5944 5418 6672 5704 6087 5943 | 7422 84.78
Vicuna-13B  SciQ 6406 5654 5527 6453 5619 5604 63.67 | 78.77 86.10
CoQA 6518 6824  56.00 6577 4984 6251 65.68 | 84.81 89.16
TriviaQA | 81.02 68.51  66.93 8131 7487 7619 81.15|76.15 83.74
MedMCQA | 65.03 6142  58.67 66.04 5808 57.81 6056 | 70.26 79.68
MedQA | 6416 5843  51.49 64.15 5495 5903 61.73 | 67.47 75.58
Average | 67.89 62.63  57.67 6836 5879 6231 6656 | 75.49 82.85

Table 6: Main Results using SentSim as the correctness metric: The correctness threshold is adjusted individually
for each dataset to maintain the model’s accuracy consistent.

Correctness Metric  Dataset Single Inference Methods Multi Inference Methods Internal State Methods
PE LN-PE TokenSAR | SentSAR SAR LS SE KSP AUP(Ours)
Include SciQ 70.22 6291 62.46 71.21 65.76 61.51 69.47 | 81.64 82.84
CoQA 67.84 58.50 45.63 66.77 56.58 57.72 65.57 | 71.33 73.61
TriviaQA 62.46  56.75 48.38 6242  50.64 55.27 60.59 | 66.67 71.25
MedMCQA | 67.97 61.57 62.02 67.83 66.49 65.15 67.22 | 70.88 73.49
MedQA 60.87 57.36 49.59 60.55 52.86 56.06 59.70 | 65.52 67.92
Average 65.87 59.42 53.62 65.76 5847 59.14 64.51 | 71.21 73.82
Rouge-L SciQ 75779  47.55 40.30 74.15 55.08 63.90 73.03 | 81.02 93.31
CoQA 75.00 57.37 53.35 7432 49.38 66.14 73.30 | 73.51 84.03
TriviaQA 5827 43.86 45.51 58.87 51.73 51.25 55.73 | 69.07 78.59
MedMCQA | 71.54  65.01 62.11 71.08 68.65 68.94 69.29 | 73.03 75.77
MedQA 63.09 60.34 50.91 62.83 53.60 59.42 61.47 | 68.19 69.23
Average 68.74  54.83 50.44 68.25 55.69 6193 66.56 | 72.96 80.19
SentSim SciQ 7425 61.27 59.15 75.10  67.82 65.03 73.07 | 77.72 79.11
CoQA 70.61 53.37 47.44 69.68 52.81 63.59 68.02 | 79.37 87.07
TriviaQA 56.14  41.07 45.19 56.47 51.84 48.15 52.86 | 74.99 86.72
MedMCQA | 68.11  62.16 61.34 68.49 67.67 6724 66.81 | 72.53 75.30
MedQA 63.82 61.16 49.62 63.97 54.11 5993 62.33 | 69.78 72.71
Average 66.59 55.81 52.55 66.74  58.85 60.79 64.62 | 74.88 80.18

Table 7: Main Results with Llama3-8B-Instruct. The correctness threshold of the Rouge-L and SentSim is adjusted
individually for each dataset to maintain the model’s accuracy consistent.

categorize predictions into true and false classes.
Following the primary correctness metric, we set
the correctness threshold separately to keep the ac-
curacy under this correctness threshold coherent
with the accuracy when using the primary correct-
ness metric. We provided the correctness threshold
of each dataset in the Table.

H Sensitivity to Correctness Threshold

We investigate the sensitivity of our methods to
correctness threshold. Figure 6 and Figure show
the effects of applying different thresholds of cor-
rectness metrics. Higher thresholds mean stricter
correctness standards. We also visualize the ac-
curacy curve under different thresholds. As the
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metrics become stricter, the performances of un-
certainty quantization are affected. However, our
methods consistently outperform baseline methods.
8

I Prompt Template and Data Samples

We utilize the standard system prompt from the Vi-
cuna series models to structure the question within
the training and testing dataset. For the SciQ,
MedMCQA, CoQA, and MedQA datasets, we shuf-
fle the options randomly and organize the ques-
tions with a fixed template; For TriviaQA, we use
a 10-shot prompt. To streamline predictions, only
the first sentence of the model’s output is retained.
In Figure 8, we present a few examples from our
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Figure 6: The performance of different methods over various Rouge-L thresholds. Results are obtained from the
Vicuna-7B model on the SciQ dataset.
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Figure 7: The performance of different methods over various Sentence Similarity thresholds. Results are obtained
from the Vicuna-7B model on the SciQ dataset.
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Vn

N
Dataset: SciQ J

Prompt:
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers
to the user's questions. USER:Question:How many cycles do cells have? Options:two, four, six, seven Answer: ASSISTANT:

Prediction(Vicuna-7B):
Cells have one cycle.

\
Dataset: CoQA J

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers
to the user's questions. USER:Context:One day Poppy the puppy went outside to play. He ran around the yard as fast as he
could. After running, Poppy began to play with his ball. When Poppy was tired of that, Poppy play catch with Mary. Poppy
was very happy when Mary wanted to play with him. Poppy would jump on Mary and start to lick her face. Mary was happy
when Poppy showed her all that love. Later on Mary and Poppy went inside to eat and take a nap. Question:Who is Poppy?
Answer: ASSISTANT:

Prediction(Vicuna-7B):
Poppy is a puppy who went outside to play.

\
Dataset: TriviaQA J

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers
to the user's questions. USER:Question:Do You Know Where You're Going To? was the theme from which film?
Answer:mahogany Question:Which actor had a Doberman Pinscher called Kirk? Answer:william shatner Question:Which
musical featured the song Thank Heaven for Little Girls? Answer:gigi Question:The VS-300 was a type of what?
Answer:helicopter Question:Where in England was Dame Judi Dench born? Answer:york Question:Who won Super Bowl
XX? Answer:chicago bears Question:Which American-born Sinclair won the Nobel Prize for Literature in 1930?
Answer:sinclair lewis Question:Stapleton international airport is in which US state? Answer:colorado Question:How is
musician William Lee Conley better known? Answer:william lee conley broonzy, big bill broonzy, bill broonzy
Question:Who wrote the novel Evening Class? Answer:maeve binchy Question:In which state is Camp David? Answer:
ASSISTANT:

Prediction(Vicuna-7B):
Maryland.

\
Dataset: MedMCQA J

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers
to the user's questions. USER:Question:The intermediate host for T. Saginata is: Options:Man, Cow, Dog, Pig Answer:
ASSISTANT:

Prediction(Vicuna-7B):
The intermediate host for T.

\
Dataset: MedQA J

Prompt:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers
to the user's questions. USER:Question:A group of scientists is verifying previous research on DNA replication. In the picture
is the theoretical structure for tRNA. Where is the binding site for an amino acid? Options:A, B, D, C Answer: ASSISTANT:

Prediction(Vicuna-7B):
The binding site for an amino acid on tRNA is located in the anticodon loop region.

Figure 8: Data Samples of the testing datasets
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Table 8: Test Accuracy and Correctness Threshold of different correctness metrics for different datasets.

dataset.

Model Dataset ‘ Test Accuracy  Thresholdroyger,  Thresholdsentsim
Vicuna-7B  SciQ 66.1 0.11 0.44
CoQA 62.6 0.17 0.41
TriviaQA 35.7 0.40 0.80
MedMCQA 21.8 0.24 0.54
MedQA 26.6 0.17 0.54
Vicuna-13B  SciQ 71.5 0.12 0.44
CoQA 64.8 0.12 0.40
TriviaQA 40.5 0.50 0.86
MedMCQA 30.8 0.22 0.51
MedQA 31.6 0.18 0.58
Llama3-8B  SciQ 92.0 0.33 0.64
CoQA 76.4 0.20 0.47
TriviaQA 46.7 0.22 0.59
MedMCQA 56.0 0.50 0.76
MedQA 58.6 0.25 0.63

16



	Introduction
	Related Work
	Bridging the Gap - A Unified View
	A Unified Framework for single and multi inference methods
	Key design choice of existing methods

	Adaptive Uncertainty Probing
	Empirical Evaluation
	Experiment Setup
	Main Results
	Ablation Study

	Conclusion
	Out-of-Domain Generalization
	Qualitative Analysis
	Sensitivity Analysis
	Computation Efficiency
	Main Results with Different Correctness Metrics
	More Experiments with Llama3-8B-Instruct
	Correctness Metric
	Sensitivity to Correctness Threshold
	Prompt Template and Data Samples

