
Under review as a conference paper at ICLR 2022

ON THE VULNERABILITY OF RECURRENT NEURAL
NETWORKS TO MEMBERSHIP INFERENCE ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the privacy implications of deploying recurrent neural networks in ma-
chine learning. We consider membership inference attacks (MIAs) in which an
attacker aims to infer whether a given data record has been used in the training of
a learning agent. Using existing MIAs that target feed-forward neural networks,
we empirically demonstrate that the attack accuracy wanes for data records used
earlier in the training history. Alternatively, recurrent networks are specifically
designed to better remember their past experience; hence, they are likely to be
more vulnerable to MIAs than their feed-forward counterparts. We develop a pair
of MIA layouts for two primary applications of recurrent networks, namely, deep
reinforcement learning and sequence-to-sequence tasks. We use the first attack
to provide empirical evidence that recurrent networks are indeed more vulnerable
to MIAs than feed-forward networks with the same performance level. We use
the second attack to showcase the differences between the effects of overtraining
recurrent and feed-forward networks on the accuracy of their respective MIAs.
Finally, we deploy a differential privacy mechanism to resolve the privacy vul-
nerability that the MIAs exploit. For both attack layouts, the privacy mechanism
degrades the attack accuracy from above 80% to 50%, which is equal to guessing
the data membership uniformly at random, while trading off less than 10% utility.

1 INTRODUCTION

In many machine learning applications, such as those in healthcare and financial services, the train-
ing datasets contain personally identifiable information that could be used to breach the privacy of
the individuals who provide them. Often protecting the privacy of the training datasets for such
systems is required by law, e.g., the US Health Insurance Probability and Accountability Act 1996,
which applies to processing healthcare data. Additionally, privacy protection may have strategic val-
ues irrespective of any enacted legislation. For example, market analysis providers that are subject
to data scraping, such as LinkedIn (Dai et al., 2015), must prevent their machine learning algorithms
from oversharing the information that empowers their analysis. As a result, it is essential to study
the privacy implications of machine learning models before deploying them.

Recurrent neural networks (RNNs) are beneficial in a variety of machine learning tasks such as
speech and handwriting recognition (Sak et al., 2014; Li & Wu, 2015; Graves et al., 2008), and
deep reinforcement learning (Li et al., 2015; Liu et al., 2017). However, little is known about the
potential privacy risks associated with these networks, in contrast to the case for feed-forward neural
networks. The potential privacy risks may be directly exploited by cyber attackers to compromise
data confidentiality or may be used for spear phishing to advance other destructive cyber attacks
(Halevi et al., 2015). We therefore follow the three fundamental steps to any cyber attack analysis
laid out by Chesney (2020). These steps are: vulnerability identification, exploit implementation,
and developing a patch to remedy the vulnerability. In the sequel, we will state our respective
contributions under each of these steps to study the privacy implications of RNNs.

For vulnerability identification, we consider membership inference attacks (MIAs) in which the
attackers aim to infer whether a given data record has been used in the training of a model. Using an
existing MIA on image classification models by Shokri et al. (2017), we find that images that have
been used earlier in the history of training are more vulnerable to the MIA than those that have been
used closer to the attack’s execution. It is plausible that the diminishing vulnerability is attributed

1

Under review as a conference paper at ICLR 2022

to feed-forward networks’ lack of memory to remember their past observations. On the other hand,
state-of-the-art RNN architectures, such as long short-term memory (LSTM) (Dupond, 2019), use
memory cells that allow them to remember training data far back in the training history. Hence, we
conjecture that these models are more vulnerable to MIAs than their feed-forward counterparts.

In the second contribution, we confirm our conjecture by designing MIAs that effectively exploit the
speculated vulnerabilities. We first design an MIA layout for deep reinforcement learning algorithms
in which both feed-forward and recurrent networks are commonly used. The MIA infers whether its
victim model has visited a specific region of a map, compromising the model’s location privacy. We
use the MIA to attack two agents with similar performance levels: one that uses LSTM units and
one that does not. Measuring the attack accuracy of the MIA on both of the agents, we find that the
attack is roughly 98% successful for the RNN agent, whereas the success rate for the feed-forward
agent is 91%. Furthermore, we examine the temporal order of the regions that the MIA correctly
labels as a member or not a member. We find that the lower attack accuracy on the feed-forward
agent corresponds to the regions visited earlier in the training history.

We also design an MIA layout for machine translation tasks, which are examples of sequence-to-
sequence tasks. RNNs are widely used in machine translation because they allow for processing
sentences with arbitrary lengths (Dupond, 2019). We use the MIA to compare the effects of over-
training recurrent and feed-forward networks on their vulnerability to their respective MIAs. RNNs
often do not lose their generalization power due to overtraining, as opposed to feed-forward networks
(Song & Shmatikov, 2019). The experimental results indicate that overtraining RNNs may have a
marginal effect on the MIA’s accuracy, as opposed to the case for the feed-forward model. There-
fore, existing defense methods for feed-forward networks that prevent overfitting, such as those in
(Shokri et al., 2017; Salem et al., 2018), may not be suitable for RNNs.

In the final contribution, we patch the identified vulnerability by deploying the Dirichlet mechanism,
introduced by Gohari et al. (2021). In both sequence-to-sequence tasks and deep reinforcement
learning tasks, the model outputs cast a probability distribution over the candidate words and the
environment actions, respectively. The Dirichlet mechanism enforces differential privacy by obfus-
cating these probability values. Differential privacy mechanisms typically face a trade-off between
privacy and utility (Dwork & Roth, 2014). We therefore evaluate the performance of the Dirichlet
mechanism with respect to two criteria: effectiveness against the MIA and utility loss. Against both
of the attack layouts that we develop, the Dirichlet mechanism can reduce the attack accuracy from
above 80% to 50%, which is equivalent to making uniformly at random inferences. Moreover, the
utility loss in both tasks was found to be no more than 10% of the original performance levels.

2 RELATED WORKS

We first review some of the the existing MIA methods in the literature. The idea of MIAs was first
introduced by Homer et al. (2008) to determine whether an individual’s record is within complex
genomic DNA mixtures. Shokri et al. (2017) later developed the first MIA that targets the training
dataset of a machine learning model. The subsequent works either enhanced the performance of
the existing MIAs (Salem et al., 2018), uncovered unknown vulnerabilities, such as the vulnerabil-
ity of training datasets with correlated data to MIAs in (Gomrokchi et al., 2021), or expanded the
application domain of MIAs to more sophisticated machine learning tasks, examples of which are
federated learning (Melis et al., 2019), reinforcement learning (Pan et al., 2019), and natural lan-
guage processing (Song & Shmatikov, 2019). We refer the reader to (Jia et al., 2019; Truex et al.,
2019) and the references therein for a comprehensive literature study on MIAs.

The work in (Hisamoto et al., 2020) develops an MIA for sequence-to-sequence tasks and is related
to the current paper; however, the sequence-to-sequence models that they study do not deploy RNNs,
whereas we focus on RNNs. In another work, Song & Shmatikov (2019) propose an MIA that
targets sequence-to-sequence models that deploy RNNs. However, the proposed method truncates
the sequences that it processes, whereas we use an RNN in the attack model which allows for
processing arbitrary-length sequences. Furthermore, we empirically demonstrate that we outperform
the existing MIA in the benchmarks.

We next review the related MIA studies in the reinforcement learning domain. Pan et al. (2019)
developed the first MIA that targets deep reinforcement learning agents. However, the MIA infers

2

Under review as a conference paper at ICLR 2022

the transition probabilities of the environment, while we target the agent itself. Concurrently with
and independently of this paper, Gomrokchi et al. (2021) develop an MIA for deep reinforcement
learning agents which, similar to our work, infers the membership of roll-out trajectories. The above
work develops the MIA to study agents with correlated training datasets, whereas we develop the
MIA to study the vulnerability of agents that deploy RNNs. Moreover, we use RNNs to process
trajectories with arbitrary lengths and the MIA in (Gomrokchi et al., 2021) truncates the trajectories.

We now review the works that study defending machine learning models against MIAs. The defense
methods either use regularization or noise-additive methods, or a combination thereof. Examples
of regularization defense methods are `2-regularization (Shokri et al., 2017), dropout and model
stacking (Salem et al., 2018), and max-min game (Nasr et al., 2018). The noise-additive methods
inject an external noise to different attributes of the network to either directly mislead MIAs through
adversarial examples (Hunt et al., 2018; Jia et al., 2019), or to enforce differential privacy (Rahman
et al., 2018; Abadi et al., 2016; Ji et al., 2014).

Differential privacy defense methods are often the most effective against MIAs; however, in doing
so, they typically degrade the utility of the model under protection (Carlini et al., 2019; Jia et al.,
2019). The Dirichlet mechanism is a non-invasive privacy mechanism in the sense that it does not
require access to the internal attributes of the protected network and only perturbs the output post
training. Applications of the Dirichlet mechanism have been studied in load ensemble control (Has-
san et al., 2021), constant function market makers (Chitra, 2021), and policy synthesis in Markov
decision processes (Gohari et al., 2020). To the best of our knowledge, we are the first to empirically
study the Dirichlet mechanism’s effectiveness in defending machine learning models against MIAs.

3 ATTACK METHOD

In this section, we develop two MIA layouts to attack sequence-to-sequence and deep reinforcement
learning models, respectively. Throughout the rest of this paper, we refer to the model under attack
as the victim model. An MIA is a binary classifier that, by observing the victim model’s output to a
given data record, labels it as either ‘in’ or ‘out’. The former label refers to when the data record has
been a member of the victim’s training dataset, and the latter refers to the opposite case. The main
challenge in designing an MIA is populating the dataset by which we train the binary classifier.

Following the design method in (Shokri et al., 2017), we train shadow models to populate the binary
classifier’s training dataset. The outputs of a shadow model must approximate the victim model’s
outputs. However, the shadow model may not have access to the victim model’s training dataset. As
an example, in designing a shadow model for image classifiers, Shokri et al. (2017) train the shadow
model on a separate dataset that has different images than the victim model’s training dataset under
the same image categories.

As the attacker trains the shadow models itself, it knows which data records have been used in the
training of the shadow model. The attacker subsequently assigns the label ‘in’ to the data records
that it used during the training of the shadow models and gathers a collection of data records that it
did not use in the training of the shadow model and labels them as ‘out’. The attacker then populates
the binary classifier’s training dataset with the above ‘in’ and ‘out’ data records. Upon training the
binary classifier with the resulting training dataset, the classifier can be used to infer the membership
of new data records corresponding to the victim model.

3.1 ATTACKING SEQUENCE-TO-SEQUENCE MODELS

In sequence-to-sequence tasks, the model must map a sequential input to a sequential output from
possibly different domains. We consider machine translation tasks wherein the agent must translate a
word sequence from a source language to a target language. Machine translation tasks are instances
of supervised learning tasks, for which there exist a handful of powerful MIA methods. However, a
machine translation model may generate sequences with arbitrary lengths and the attackers must be
able to process such sequences.

We first train a shadow model to approximate the outputs of the victim model. We subsequently
construct the binary classifier’s dataset as previously discussed to train the classifier. Compared
with the related MIA in (Song & Shmatikov, 2019), our design has two notable differences. First we

3

Under review as a conference paper at ICLR 2022

use an RNN architecture for the classifier which allows for processing arbitrary-length sequences.
Furthermore, as opposed to using the rank of the probabilities according to which the victim model
generates its sentences, we use the values to infer the membership of a given sentence.

3.2 ATTACKING DEEP REINFORCEMENT LEARNING AGENTS

Reinforcement learning agents interact with an environment that is typically modeled as a Markov
decision process (Sutton & Barto, 2018). A Markov decision process consists of a state and an action
space, transition probabilities, and a reward function. The goal in a reinforcement learning task is
to learn a reward-maximizing policy, which casts a probability distribution over the action space at
every state, without knowing the transition probabilities a priori.

Deep reinforcement learning agents deploy neural networks to approximate the value of every state,
with respect to their expected cumulative reward, and to generate the policy at every given state. The
agents update their neural networks using the trajectories, i.e., a temporal sequences of state, action,
and immediate rewards, that they collect from interacting with the environment.

Assume that the state space of the environment is a union of disjoint regions. Our goal in designing
an MIA for reinforcement learning agents is to obtain a trajectory from the victim model, at a given
region of the environment and subsequent to its training, and infer whether the victim model has
visited the region while being trained. In robotics or autonomous driving applications, the states
often represent the location of the agent and MIAs with such inference capabilities compromise
their victim’s location privacy.

The existing MIA methods that target supervised learning models are ill-suited to attacking a re-
inforcement learning agent. The existing methods typically use the labels of the shadow model’s
training dataset to populate the binary classifier’s training dataset, e.g., (Shokri et al., 2017). How-
ever, in reinforcement learning, there does not exist a labeled training dataset. Moreover, the action
probabilities do not necessarily represent the model’s confidence in taking each of the actions. In
contrast, in supervised learning tasks such as image classification, the values of the output layer
often represent the model’s confidence.

As an example, consider that an image classifier with two categories assigns probabilities 0.6 and 0.4
to the respective categories. The MIA may reconcile the prediction probabilities with the image’s
label and correctly infer that the image as ‘out’ due to the agent’s low confidence. However, in
reinforcement learning, assigning the same probabilities to the actions may be an optimal stochastic
policy and correspond to an ‘in’ data record.

To remedy the above challenges, we train a separate model for every region that the MIA targets
to find the optimal policy, and therefore, call the model as a label model. We then train a shadow
model from which we populate the training dataset of the binary classifier. While populating the
dataset, we concatenate the sequence of policies that we obtain from the shadow model with the
corresponding label model’s policy sequence. Finally, we train the binary classifier to complete the
attack. Similar to the sequence-to-sequence attack, we use an RNN for the binary classifier because
the policy sequences may have arbitrary lengths.

4 DEFENSE METHOD

In this section, we review the definition of differential privacy and the Dirichlet mechanism. Dif-
ferential privacy is a quantitative definition of data privacy and is a characteristic of an algorithm
(Dwork & Roth, 2014). An algorithm that satisfies differential privacy makes it difficult for ob-
servers with arbitrary computation powers to attribute the observed outputs to their respective in-
puts. Often when an algorithm does not satisfy differential privacy by itself, an external privacy
mechanism modifies the algorithm to satisfy differential privacy.

Differential privacy is suitable for situations in which the algorithm’s outputs represent aggregate
statistics of a dataset whose individual entries contain sensitive information. For example, the US
Census Bureau adopts differential privacy to protect its publications (Abowd, 2018). In classical
global differential privacy (Dwork & Roth, 2014), the aggregator must generate almost-identical
outputs to input datasets that differ in one entry. Such datasets are called adjacent. In local dif-
ferential privacy, the individuals deploy a privacy mechanism prior to sharing their data with the

4

Under review as a conference paper at ICLR 2022

aggregator (Duchi et al., 2013). Therefore, the participating individuals need not trust the aggre-
gator and are in charge of their own data privacy. The adjacency relationship in local differential
privacy often defines two data records to be adjacent if their distance with respect to a fixed measure
is upper bounded by a constant. We now formally define both global and local differential privacy.

Definition 1 (GLOBAL DIFFERENTIAL PRIVACY) Fix an algorithm A with domain D and range
R. Define two datasets D and D′, both in D, globally adjacent if the number of entries in which
the two datasets hold different values is at most one. Fix a probability space (Ω,F , µ) and letM
be a σ-algebra such that the space (R,M) is measurable. For given ε ≥ 0 and δ ∈ [0, 1), A is
(ε, δ)-differenetially private if, for all S ⊆ R and all globally adjacent D and D′,

Pr[A(D) ∈ S] ≤ exp(ε)Pr[A(D′) ∈ S] + δ. (1)

Definition 2 (LOCAL DIFFERENTIAL PRIVACY) Fix an algorithmA with domainX and range Y ,
and a local adjacency relationship d : X × X 7→ {0, 1}. Let (Ω,F , µ) be a probability space and
M be a σ-algebra such that the space (Y,M) is measurable. For given ε ≥ 0 and δ ∈ [0, 1), A is
(ε, δ)-locally differnetially private if, for all S ⊆ Y and all x and x′ such that d(x, x′) = 1,

Pr[A(x) ∈ S] ≤ exp(ε)Pr[A(x′) ∈ S] + δ. (2)

Due to the Composition Theorem (Dwork & Roth, 2014), subsequent queries from differential pri-
vacy mechanisms weaken the overall privacy protections. In particular, the composition of n (ε, δ)-
differential privacy mechanisms results in (nε, nδ)-differential privacy. The privacy parameters of a
sequence of differential privacy mechanisms are often referred to as the privacy budget. Local dif-
ferential privacy mechanisms often consume a significantly higher privacy budget than their global
differential privacy counterparts. However, they may still provide a strong privacy shield while
consuming high privacy budgets (Bhowmick et al., 2018).

Having stated the definition of differential privacy, we now review the Dirichlet mechanism. The
Dirichlet mechanism is a well-suited privacy mechanism for systems whose outputs cast a proba-
bility measure over a finite set. The Dirichlet mechanism enforces local differential privacy without
altering the system’s internal algorithm; therefore, it is a post-hoc privacy mechanism. The Dirichlet
mechanism is parameterized by a scalar k > 0 and takes as input a vector within the interior of the
unit simplex, i.e.,

∆n :=

{
x ∈ Rn |

n∑
i=1

xi = 1,∀i ∈ {1, . . . , n} : xi ≥ 0

}
. (3)

We denote the interior of the unit simplex by ∆◦n. For all p ∈ ∆◦n, we denote the Dirichlet mech-
anism itself by Dirk(p). The Dirichlet mechanism maintains the structure of its input because it
generates its outputs according to the Dirichlet distribution whose support is the unit simplex itself.
Specifically, for all p ∈ ∆◦n,

Pr (Dirk(p) = x) =
1

B(kp)

n∏
i=1

xkpi−1
i I{x∈∆n}, (4)

where I{A} is an indicator function that equals one if the predicate A is true, and zero otherwise,
and B(·) is the multivariate beta function. We now state a lemma establishing that, for all values of
k > 0, the Dirichlet mechanism satisfies local differential privacy with bounded ε and δ < 1.

Lemma 1 (Gohari et al. (2021)) Fix a Dirichlet mechanism with parameter k and let ∆n(η) :=
∆n ∩ {x ∈ Rn | ∀i ∈ {1, . . . , n} : xi ∈ [η, 1− η]}, for all applicable η. Define the local adjacency
relationship d(·, ·) as

d(p, p′) = I{∃(i,j) s.t. ‖p−p′‖1≤b and p−(i,j)
=p′−(i,j)

}, (5)

where b is a constant, ‖ · ‖1 denotes the 1-norm of a vector, and p−(i,j) is the vector p excluding its
i and jth components. Fix δ ∈ [0, 1) and η, and let p∗ = [η, . . . , η, 1 − (n − 1)η]>. Let k and τ
satisfy

δ ≤ 1−
∫
x∈∆n(τ)

1

B (kp∗)

n−1∏
i=1

x
kp∗i−1
i dx. (6)

Then, the Dirichlet mechanism with parameter k satisfies (ε, δ)-local differential privacy, where

ε ≤ 2k(1− η)− 3 +
kb

2
|log (1− (n− 1)τ)− log(τ)| . (7)

5

Under review as a conference paper at ICLR 2022

0 50 100

0.5

0.6

0.7

0.8

0.9

A
tta

ck
A

cc
ur

ac
y

0 50 100

0.2

0.4

0.6

0.8

1

Training Epochs

C
la

ss
ifi

ca
tio

n
Sc

or
e

Training Score Testing Score Attack Accuracy

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

Batch Number

A
tta

ck
A

cc
ur

ac
y

Figure 1: Attacking an image classification model using the CIFAR10 dataset. Left: the victim
model’s performance and the corresponding attack accuracy as functions of the training time. Right:
the attack accuracy as a function of the order of the batches in the history of training.

5 EXPERIMENTS

In this section, we perform three sets of experiments using the attack and defense methods that we
laid out in the previous sections. In the first set of experiments, we compare the vulnerability of
recurrent and feed-forward neural networks to MIAs. We then perform experiments to investigate
the effects of overtraining RNNs on their vulnerability to MIAs. In the last set of experiments, we
deploy the Dirichlet mechanism to defend against the MIAs that we develop.

5.1 VULNERABILITY

In the first experiment, we focus on the accuracy of MIAs across the training history of their victim
model. To this end, we consider an existing MIA designed by Shokri et al. (2017) for image classifi-
cation models. We use the CIFAR10 dataset (Krizhevsky et al., 2009) to train the model. However,
instead of using the entire dataset to train the model at once, we divide the dataset into 10 batches and
sequentially train the model on each of these batches. Once the model is fully trained, we separately
apply the MIA to each of the batches and report the percentage of the MIA’s correct inferences as the
attack accuracy. The results in Figure 1 indicate that the attack accuracy monotonically decreases
from roughly 80% to 50% as we move backwards in the history of training.

The above experiment suggests that, upon updating feed-forward neural networks with a new batch
of data, the new batches wipe off the traces of their predecessors. On the other hand, RNNs are
especially designed to remember their past experiences for extended periods of time. Therefore, we
conjecture that RNNs are more vulnerable to MIAs than feed-forward neural networks.

In the next experiment, we confirm the above conjecture. We compare the vulnerability of recur-
rent and feed-forward networks to MIAs using the attack method that we designed for reinforce-
ment learning tasks in Section 3.2. In these tasks, both recurrent and feed-forward architectures are
commonly used. RNNs often outperform their feed-forward counterparts; however, training them
is computationally more expensive. In the experiments, we fine-tune the agents’ hyperparameters
such that that their converging performance levels are similar in order to perform a fair comparison
between the agents.

We use the MiniGrid toolkit (Chevalier-Boisvert et al., 2018) as the underlying testbed and use the
RL-Starter-Files library (Willems, 2018) to train the deep reinforcement learning agents. From the
MiniGrid environments, we choose the Multi-Room environment, wherein the agent must learn how
to navigate its way through a series of connected rooms to reach a target destination. Upon reaching
either the destination or a fixed number of time-steps, the environment resets to a new map; however,
the task remains the same. Assuming that each new map represents a specific region of a larger map,
we use the MIA to infer whether the agent has visited a given region in its training.

6

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100

0

0.5

1

Epoch

R
ew

ar
d

Feed-Forward Agent RNN Agent

0 20 40 60 80 100

0

0.5

1

Epoch

0 20 40 60 80 100

0.4

0.6

0.8

1

Epoch

A
tta

ck
A

cc
ur

ac
y

1 2 3 4 5 6 7 8 9 10111213141516
0.2

0.4

0.6

0.8

1

Seed Number

Figure 2: RNN vs. feed-forward neural networks in deep reinforcement learning. Top left: training
performance vs. training time. Top right: validation performance vs. training time. Bottom left:
attack accuracy vs. training time. Bottom right: attack accuracy as a function of the environment
seed when the agents are sequentially trained form seed 1 to 16.

We use the PPO algorithm (Schulman et al., 2017) to train two agents: the first agent uses a feed-
forward and the second agent uses a recurrent network architecture. In particular, the first agent uses
a multi-layer perceptron (MLP) network while the second agent uses the same MLP with additional
LSTM units. We use 16 environment seeds to train both of the agents and another 16 seeds to
validate the agents’ respective performance levels. In the top row of Figure 2, we plot the respective
performance level of the two agents as a function of their training time.

In the next step, we use the MIA layout in Section 3.2 and perform two experiments. In the first
experiment, we stop the training of the agents at a range of stopping times and evaluate the MIA’s
attack accuracy as a function of the training time. The results in Figure 2 show that across all training
times, the attack accuracy on the RNN agent is higher than the feed-forward agent.

In the next experiment, we sequentially train the agents from seed 1 to 16 and examine the MIA’s
accuracy with respect to each of the seeds. The results in Figure 2 indicate that, similar to the case for
the attack on the image classifier, the MIA’s inference accuracy is not uniformly distributed across
the training history of the agents. In particular, for both agents, the MIA’s accuracy progressively
decreases as we move backwards in the training history; however, the attack accuracy on the RNN
agent is always above the corresponding attack accuracy on the feed-forward agent.

We conclude the first set of experiments with the empirical evidence that RNNs may be more vul-
nerable to MIAs than their feed-forward counterparts, and the excessive vulnerability corresponds
to the RNNs’ ability to memorize their past experience data.

5.2 OVERTRAINING

In this section, we design a series of experiments to study how overtraining RNNs affects their
vulnerability to MIAs. We change the task from deep reinforcement learning to machine translation
to cover another mainstream application of RNNs.

We use the algorithm developed by Luong et al. (2015) and the Multi30K (Elliott et al., 2016) and
SATED (Michel & Neubig, 2018) datasets to train models. We use the bilingual evaluation under-
study (BLEU) score (Papineni et al., 2002) to evaluate the performance of the machine translation
models that we train. A BLEU score takes values between 0 and 1, and is an indication of the

7

Under review as a conference paper at ICLR 2022

0 50 100

0.5

0.6

0.7

0.8

0.9

A
tta

ck
A

cc
ur

ac
y

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

Batch Number

A
tta

ck
A

cc
ur

ac
y

0 50 100

0.2

0.4

0.6

0.8

1

Training Epochs

B
L

E
U

Sc
or

e

Training Score Tesing Score Attack Accuracy

Figure 3: Attacking a machine translation model using the Multi30K dataset. Left: the victim
model’s performance and the corresponding attack accuracy as functions of training time when
using the entirety of the dataset. Right: the attack accuracy as a function of the order of the batches
in the history of training. In comparison with the image classification agent in Figure 1, the early
batches of the machine translation model are more vulnerable to the MIA than the early batches of
the image classification model.

similarity of the agent’s output sentence to that of a human translator. The perfect value for BLEU
score is 1; however, the perfect score may not be achievable, even by human translators, because the
similarity is evaluated with respect to a fixed dataset of reference texts.

The existing MIAs on feed-forward neural networks are sensitive to their target model’s general-
ization power. In particular, as feed-forward models overfit their training data, they become more
vulnerable to MIAs Shokri et al. (2017). Overtraining sequence-to-sequence models that use RNNs
may also render them more vulnerable to MIAs; however, the validation performance of these mod-
els may remain constant (Song & Shmatikov, 2019).

In the first experiment, we train a machine translation agent using the Multi30K dataset. We then
evaluate the accuracy of the MIA that we develop according to Section 3.1 as a function of the
training time of the victim model.

The results in Figure 3 uncover an important difference between MIAs on RNNs and feed-forward
networks. In Figure 1, which corresponds to the image classification task, the agent has the highest
generalization power when trained for 10 epochs, for which the corresponding MIA accuracy is
roughly 70%. Once we overtrain the agent past 10 epochs, the accuracy increases to almost 90%.
As a result, methods that prevent overfitting, such as `2-regularization and dropout, are effective
against the MIA. On the other hand, in Figure 3, the agent’s validation score reaches its highest
value at the 20th epoch and remains at that value thereafter. Once we overtrain the model, the attack
accuracy increases by only a small margin. As a result, regularization methods may have marginal
effects on RNNs.

In the supplementary materials, we present additional results on the SATED dataset. We also bench-
mark our MIA against the existing method by Song & Shmatikov (2019) and show that we outper-
form the existing MIA.

5.3 DEFENSE

So far, we have studied the vulnerability of RNNs in deep reinforcement learning and sequence-to-
sequence tasks to the MIAs that we developed in Section 3. We now study how to defend these
models against their respective MIAs using the Dirichlet mechanism.

In the deep reinforcement learning task, the MIA infers the membership of a given region by observ-
ing the action probabilities that the victim model assigns to the states within a given trajectory. In
the sequence-to-sequence task, the MIA infers the membership of a given sequence by observing the
probabilities that the victim model assigns to each of the tokens within its output sequence. In both
cases, we use the Dirichlet mechanism to enforce differential privacy and obfuscate the probabilities.

8

Under review as a conference paper at ICLR 2022

Table 1: Deploying the Dirichlet mechanism to protect deep reinforcement learning agents

Configuration Attack Accuracy (± std) Total Reward (± std)
No Protection 99.19 (±0.35) % 0.9095 (±0.0429)
k = 100 98.74 (±0.58) % 0.9047 (±0.0425)
k = 10 55.87 (±2.58) % 0.8960 (±0.0475)
k = 1 50.59 (±1.09) % 0.8936 (±0.0498)
k = 0.1 50.00 (±0.00) % 0.8843 (±0.0487)
k = 0.01 50.00 (±0.00) % 0.8783 (±0.0516)

Table 2: Deploying the Dirichlet mechanism to protect sequence-to-sequence models

Configuration Attack Accuracy (± std) BLEU Score (± std)
No Protection 81.02 (±1.64) % 46.74 (±0.16) %
k = 100 67.53 (±1.59) % 46.53 (±0.17) %
k = 10 55.98 (±3.10) % 46.02 (±0.20) %
k = 1 53.42 (±3.67) % 44.57 (±0.19) %
k = 0.1 50.42 (±1.19) % 43.961 (±0.21)%
k = 0.01 50.34 (±0.43) % 43.74 (±0.22) %

In order to deploy the Dirichlet mechanism, we must choose the parameter k in equation 4. Irrespec-
tive of k, the Dirichlet mechanism has a bounded local differential privacy budget and the expected
value of its output coincides with its input. However, the value of k affects the concentration of the
outputs around the input and affects the privacy parameters. As a result, the value of k balances the
trade-off between the Dirichlet mechanism’s differential privacy and utility.

Increasing the value of k results in a decrease in the upper bound that Lemma 1 establishes on δ.
Additionally, increasing k reduces the variance of the perturbations. On the other hand, the upper
bound on ε increases linearly with k, which is not favorable. Conversely, decreasing k may yield an
upper bound on δ that is close to 1, which is not useful. As a result, for small values of k, it is not
possible to study the privacy-utility trade-off from Lemma 1.

For both reinforcement learning and sequence-to-sequence tasks, we use a range of k values when
using the Dirichlet mechanism. For every value tested, we measure the corresponding MIA’s at-
tack accuracy as well as the utility of the outputs that the Dirichlet mechanism generates. In the
reinforcement learning task, we measure the utility by evaluating the agent’s total rewards. In the
sequence-to-sequence task, we evaluate utility using the BLEU score. We report the results in Tables
1 and 2 for each of the tasks, respectively.

The results indicate that the Dirichlet mechanism is able to reduce the attack accuracy in both tasks
to 50%, which is equal to the accuracy of an MIA that makes uniformly at random guesses. In the
reinforcement learning task, the Dirichlet mechanism degrades the utility by less than 5%, and in
the machine translation task, it degrades the utility by less than 10%.

6 CONCLUSION

We initiated the study with the conjecture that RNN’s ability to keep a memory of their training data
renders them more vulnerable than feed-forward networks to MIAs. In order to confirm the conjec-
ture, we developed two MIA layouts for two mainstream applications of RNNs, one of which is the
first-of-its-kind and the other outperforms its existing counterpart in the benchmarks. In the experi-
ments, we confirmed that RNNs are indeed more vulnerable to MIAs than their feed-forward coun-
terparts. We also demonstrated that, despite providing a solid shield against MIAs for feed-forward
networks, regularization methods might have marginal effects on RNNs. Finally, we demonstrated
that the Dirichlet mechanism may significantly degrade the inference power of MIAs, and we studied
the utility trade-off associated with the privacy protection that the Dirichlet mechanism provides.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

John M Abowd. The US census bureau adopts differential privacy. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2867–2867,
2018.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protec-
tion against reconstruction and its applications in private federated learning. arXiv preprint
arXiv:1812.00984, 2018.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pp. 267–284, 2019.

Robert Chesney. Cybersecurity law, policy, and institutions (version 3.0). U of Texas Law, Public
Law Research Paper, 2020.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

T. Chitra. Differential privacy in constant function market makers. IACR Cryptol. ePrint Arch.,
2021:1101, 2021.

François Chollet et al. Keras. https://keras.io, 2015.

Kais Dai, Celia Gónzalez Nespereira, Ana Fernández Vilas, and Rebeca P Dı́az Redondo. Scrap-
ing and clustering techniques for the characterization of LinkedIn profiles. arXiv preprint
arXiv:1505.00989, 2015.

John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax
rates. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438.
IEEE, 2013.

Samuel Dupond. A thorough review on the current advance of neural network structures. Annual
Reviews in Control, 14:200–230, 2019.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3–4):211–407, August 2014. ISSN 1551-305X.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual English-
German image descriptions. Proceedings of the 5th Workshop on Vision and Language, 2016.
doi: 10.18653/v1/w16-3210.

Parham Gohari, Matthew Hale, and Ufuk Topcu. Privacy-preserving policy synthesis in Markov
decision processes. In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 6266–
6271. IEEE, 2020.

Parham Gohari, Bo Wu, Calvin Hawkins, Matthew Hale, and Ufuk Topcu. Differential privacy on
the unit simplex via the Dirichlet mechanism. IEEE Transactions on Information Forensics and
Security, 16:2326–2340, 2021.

Maziar Gomrokchi, Susan Amin, Hossein Aboutalebi, Alexander Wong, and Doina Precup. Where
did you learn that from? Surprising effectiveness of membership inference attacks against tempo-
rally correlated data in deep reinforcement learning. arXiv preprint arXiv:2109.03975, 2021.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jürgen
Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855–868, 2008.

10

https://github.com/maximecb/gym-minigrid
https://keras.io

Under review as a conference paper at ICLR 2022

Tzipora Halevi, Nasir Memon, and Oded Nov. Spear-phishing in the wild: A real-world study
of personality, phishing self-efficacy and vulnerability to spear-phishing attacks. Phishing Self-
Efficacy and Vulnerability to Spear-Phishing Attacks (January 2, 2015), 2015.

Ali Hassan, Deepjyoti Deka, and Yury Dvorkin. Privacy-aware load ensemble control: A linearly-
solvable mdp approach. arXiv preprint arXiv:2103.10828, 2021.

Sorami Hisamoto, Matt Post, and Kevin Duh. Membership inference attacks on sequence-to-
sequence models: Is my data in your machine translation system? Transactions of the Association
for Computational Linguistics, 8:49–63, 2020.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill Muehling,
John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W Craig. Resolving indi-
viduals contributing trace amounts of DNA to highly complex mixtures using high-density snp
genotyping microarrays. PLoS genetics, 4(8):e1000167, 2008.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chiron:
Privacy-preserving machine learning as a service. arXiv preprint arXiv:1803.05961, 2018.

Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential privacy and machine learning: a
survey and review. arXiv preprint arXiv:1412.7584, 2014.

Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang Gong. Memguard:
Defending against black-box membership inference attacks via adversarial examples. In Pro-
ceedings of the 2019 ACM SIGSAC conference on computer and communications security, pp.
259–274, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

Xiangang Li and Xihong Wu. Constructing long short-term memory based deep recurrent neural
networks for large vocabulary speech recognition. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4520–4524. IEEE, 2015.

Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and Ji He. Recurrent
reinforcement learning: A hybrid approach, 2015.

Fangyu Liu, Shuaipeng Li, Liqiang Zhang, Chenghu Zhou, Rongtian Ye, Yuebin Wang, and Jiwen
Lu. 3dcnn-dqn-rnn: A deep reinforcement learning framework for semantic parsing of large-scale
3d point clouds. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017. doi:
10.1109/iccv.2017.605. URL http://dx.doi.org/10.1109/ICCV.2017.605.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation, 2015.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP),
pp. 691–706. IEEE, 2019.

Paul Michel and Graham Neubig. Extreme adaptation for personalized neural machine translation.
arXiv preprint arXiv:1805.01817, 2018.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with membership privacy using
adversarial regularization. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 634–646, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356930.

Xinlei Pan, Weiyao Wang, Xiaoshuai Zhang, Bo Li, Jinfeng Yi, and Dawn Song. How you act
tells a lot: Privacy-leaking attack on deep reinforcement learning. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 368–376, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135.

11

http://dx.doi.org/10.1109/ICCV.2017.605

Under review as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Md Atiqur Rahman, Tanzila Rahman, Robert Laganière, Noman Mohammed, and Yang Wang.
Membership inference attack against differentially private deep learning model. Trans. Data
Priv., 11(1):61–79, 2018.

Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling, 2014.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
Ml-leaks: Model and data independent membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. 2017 IEEE Symposium on Security and Privacy (SP), May
2017. doi: 10.1109/sp.2017.41. URL http://dx.doi.org/10.1109/SP.2017.41.

Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 196–206, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Demystifying membership
inference attacks in machine learning as a service. IEEE Transactions on Services Computing,
2019.

Lucas Willems. Rl-starter-files. https://github.com/lcswillems/
rl-starter-files, 2018.

A APPENDIX

A.1 REPRODUCIBILITY INFORMATION

In this section, we state the hyperparameters that we used in the experiments.

MIA on the reinforcement learning agent: We use the PPO algorithm to train the agents, for
which we use the default parameters set by the RL-Starter-Files toolbox, unless stated below. The
feed-forward agent uses an MLP with two hidden layers, each of which consists of 64 neurons.
The RNN agent uses the same MLP architecture with 8 additional LSTM units. The first layer is
activated by tanh functions and the last layer is activated by a softmax function. We train the agents
on seeds 1 to 16 for both agents.

For the implementation of the MIA, we use an MLP with 5 ReLU-activated hidden layers and 1
LSTM unit. We use 6400 ‘in’ trajectories and 6400 ‘out’ trajectories to generate the binary classi-
fier’s training dataset. We train the binary classifier using Adam optimizer and the cross-entropy loss
function for 15 epochs, each of which consists of 100 gradient updates. We use the Keras library
Chollet et al. (2015) to train the binary classifier with learning rate 0.001 and default parameters,
unless stated above.

12

http://dx.doi.org/10.1109/SP.2017.41
https://github.com/lcswillems/rl-starter-files
https://github.com/lcswillems/rl-starter-files

Under review as a conference paper at ICLR 2022

MIA on the sequence-to-sequence model: We use an LSTM encoder-decoder network with dot
product attention mechanism (Luong et al., 2015) to construct the sequence-to-sequence model. We
use the Multi30K dataset (Elliott et al., 2016) which consists of 30,000 sentence pairs for training and
1,000 pairs for testing. We use 5,000 sentence pairs to train the shadow model and a negative likeli-
hood loss to update gradients. The shadow model is trained for 20 epochs, with a word-embedding
dimension 150, a hidden dimension 200, a learning rate of 0.001, and a dropout rate of 0.2. We
use PyTorch (Paszke et al., 2019) to implement and train the victim model with default parameters
unless specified above. Once the shadow model is fine-tuned, we use 2,000 output sequences to
populate the training dataset of the MIA’s binary classifier.

The binary classifier consists of 1 LSTM unit, two linear layers, a ReLU-activated layer, and a
softmax layer. We implement the MIA classifier using PyTorch and train it using the cross-entropy
loss function for 20 epochs with the default parameters.

A.2 ADDITIONAL EXPERIMENTS: BENCHMARKING THE SEQUENCE-TO-SEQUENCE MIA

Recall that our MIA layout in Section 3.1 uses the value of the probabilities that the model assigns
to the tokens of a sequence, whereas, in (Song & Shmatikov, 2019), the MIA uses the rank of the
tokens. As a result, we refer to our MIA as the probability value MIA (PVMIA) and the existing
work as the probability rank MIA (PRMIA).

We now benchmark PVMIA against PRMIA on two datasets, namely, the Multi30K and the SATED
datasets. The SATED dataset contains 2324 transcripts from TED talks, with approximately 270K
sentences in each of the following language pairs: English-German, English-French, and English-
Spanish. We use the English-French subset of the dataset in this benchmark.

For both datasets, we train the victim models using a range of training dataset sizes. For every
training dataset size, we measure the victim model’s BLEU score as well as the attack accuracy
corresponding to the PVMIA and PRMIA. We also measure the effects of overtraining the victim
model on the attack accuracy corresponding to both of the MIAs. The results in Figures 4 to 7
indicate that the PVMIA, the MIA that we develop, outperforms the existing method.

A.3 ADDITIONAL EXPERIMENTS: MODEL MISMATCH BETWEEN THE SHADOW AND THE
VICTIM MODELS

An MIA need not train the shadow models with the exact same hyperparameters as the victim model.
In this section we investigate the effects of model mismatch between the shadow model and the
victim model on the resulting MIA’s accuracy.

MIA on reinforcement learning agents: We train a collection of victim reinforcement learning
agents with 4 LSTM units (as opposed to the shadow model’s 8 units) and hidden-layer sizes 32
or 128 (as opposed to the shadow model’s hidden-layer size set that is 64). Then, we apply the
resulting MIA on these victim agents. The attack maintains its accuracy around 99% despite the
model mismatch between the shadow and the victim models.

MIA on sequence-to-sequence models: We now test the attack model whose shadow model uses
the hyperparameters in Section A.1 on a victim model with word-embedding dimension 300, hidden
dimension 150, and dropout rate 0. The attack model is able to achieve over 80% accuracy on both
Multi30k and SATED datasets.

13

Under review as a conference paper at ICLR 2022

1,000 2,000 3,000 4,000 5,000
0.6

0.7

0.8

0.9

Training Dataset Size

A
tta

ck
A

cc
ur

ac
y

PVMIA Accuracy
PRMIA Accuracy

1,000 2,000 3,000 4,000 5,000

20

25

30

35

B
L

E
U

Sc
or

e

Validation Score

Figure 4: Benchmarking PVMIA against PRMIA using the SATED dataset. The victim model was
trained for 20 epochs at every training dataset size.

1,000 2,000 3,000 4,000 5,000
0.6

0.7

0.8

0.9

Training Dataset Size

A
tta

ck
A

cc
ur

ac
y

PVMIA Accuracy
PRMIA Accuracy

1,000 2,000 3,000 4,000 5,000

38

40

42

44

46

B
L

E
U

Sc
or

e

Validation Score

Figure 5: Benchmarking PVMIA against PRMIA using the Multi30K dataset. The victim model
was trained for 20 epochs at every training dataset size.

14

Under review as a conference paper at ICLR 2022

1,000 2,000 3,000 4,000 5,000

0.6

0.7

0.8

0.9

Training Dataset Size

A
tta

ck
A

cc
ur

ac
y PVMIA Accuracy at 10 Epochs

PVMIA Accuracy at 20 Epochs
PVMIA Accuracy at 40 Epochs
PRMIA Accuracy at 10 Epochs
PRMIA Accuracy at 20 Epochs
PRMIA Accuracy at 40 Epochs

Figure 6: Benchmarking PVMIA against PRMIA using the SATED dataset.

1,000 2,000 3,000 4,000 5,000

0.6

0.7

0.8

0.9

Training Dataset Size

A
tta

ck
A

cc
ur

ac
y PVMIA Accuracy at 10 epochs

PVMIA Accuracy at 20 epochs
PVMIA Accuracy at 40 epochs
PRMIA Accuracy at 10 epochs
PRMIA Accuracy at 20 epochs
PRMIA Accuracy at 40 epochs

Figure 7: Benchmarking PVMIA against PRMIA using the Multi30K dataset.

15

	Introduction
	Related Works
	Attack Method
	Attacking Sequence-to-Sequence Models
	Attacking Deep Reinforcement Learning Agents

	Defense Method
	Experiments
	Vulnerability
	Overtraining
	Defense

	Conclusion
	Appendix
	Reproducibility Information
	Additional Experiments: Benchmarking the Sequence-to-Sequence MIA
	Additional Experiments: Model Mismatch between the Shadow and the Victim Models

