
Exact Multi-objective Path Finding with Negative Weights and Negative Cycles

Primary Keywords: None

Abstract

The point-to-point Multi-objective Shortest Path (MOSP)
problem is a classic yet challenging task that involves finding
all Pareto-optimal paths between two points in a graph with
multiple edge costs. Recent studies have shown that employ-
ing A* search can lead to state-of-the-art performance in solv-5

ing point-to-point MOSP instances with non-negative costs.
In this paper, we propose a novel A*-based multi-objective
search framework that not only handles graphs with negative
costs and even negative cycles but also incorporates multiple
speed-up techniques to enhance the efficiency of exhaustive10

search with A*. Through extensive experiments on large re-
alistic test cases, our algorithm demonstrates remarkable suc-
cess in solving difficult MOSP instances, outperforming the
state of the art by up to an order of magnitude.

Introduction15

The point-to-point Multi-objective Shortest Path Problem
(MOSP) is a classic network optimisation problem that in-
volves finding all Pareto-optimal paths between a pair of
(Origin, Destination) locations in graphs with multiple link
attributes. The problem has a wide range of real-world ap-20

plications in diverse areas such as transportation planning,
telecommunication networks, and robotics. MOSP can be
modelled to plan paths that are optimal in terms of fuel con-
sumption, distance, and arrival time in maritime transporta-
tion (Wang, Mao, and Eriksson 2019), to select emergency25

routes for major chemical accidents (Xu, mei Gai, and Salhi
2021), or to simultaneously minimise difficulty, risk, and el-
evation of planned paths for mobile robots in harsh situations
(Jeddisaravi, Alitappeh, and Guimarães 2016).

MOSP and its bi-objective variant BOSP (Bi-objective30

Shortest Path) are well-studied topics in both network op-
timisation and AI literature, and have attracted growing in-
terest in recent years. Salzman et al. present an overview
of some of the existing MOSP algorithms and their key
features, highlighting the significance of heuristic-guided35

search, in particular A* (Hart, Nilsson, and Raphael 1968),
in reducing overall computation time of MOSP. BOSP can
be considered as the most basic variant of MOSP. Currently,
there are several specialised algorithms designed to tackle
BOSP on a large scale, such as Bi-objective search with A*40

(Ulloa et al. 2020; Ahmadi et al. 2021a). Among the recent
attempts at optimally solving MOSP for more than two ob-

jectives, three novel exact solutions, namely EMOA* (Ren
et al. 2022), TMDA (Maristany de las Casas et al. 2023),
and LTMOA* (Hernández et al. 2023), have been successful 45

in efficiently utilising best-first search to address the prob-
lem. EMOA* follows the search strategy of NAMOA*dr of
Pulido, Mandow, and Pérez-de-la-Cruz (2015a) but employs
balanced binary search trees to store non-dominated partial
paths expanded during the search. The recent TMDA algo- 50

rithm adapts one-to-all MDA of de las Casas, Sedeño-Noda,
and Borndörfer (2021) to a point-to-point MOSP solution
using heuristic-guided search. Despite NAMOA*dr where
the search priority queue contains all unexplored paths,
the multi-objective search of TMDA follows a Dijkstra- 55

like queueing approach (Dijkstra 1959) and stores at most
one (best) path per graph node into the priority queue. LT-
MOA* is another A*-based algorithm that performs linear-
time dominance check prior to expanding partial paths. The
dominance check is necessary to insures the (partial) path is 60

not dominated by any previously expanded path in all ob-
jectives, thus reducing the search effort by avoiding unnec-
essary expansions. Based on the results, it is evident that
all EMOA*, TMDA, and LTMOA* outperform NAMOA*dr,
with LTMOA* demonstrating superior performance com- 65

pared to EMOA*. However, a direct comparison between
LTMOA* and TMDA is currently unavailable.

MOSP with negative weights and negative cycles:
Many real-world applications of MOSP need to be mod-
elled with graphs containing negative edge weights. Energy 70

requirement, for example, can be observed in both posi-
tive (consumption) and negative (generation) forms. Unfor-
tunately, none of the aforementioned point-to-point MOSP
solutions are capable of handling such graphs. While there
are a few existing solutions to MOSP with negative weights, 75

it has remained a relatively underexplored topic. The one-
to-all MDA algorithm of de las Casas, Sedeño-Noda, and
Borndörfer (2021), build on the basis of Martin’s Princi-
ple of Optimality (Martins 1984), can solve MOSP with
negative weights. MDA can only solve bounded MOSP in- 80

stances. Thus, the graph must be free of negative cycles (Sas-
try, Janakiraman, and Mohideen 2003). Note that one-to-
all MOSP exhibits a larger search space than the point-to-
point variant, demanding far larger computation time. The
path-ranking method of Sastry, Janakiraman, and Mohideen 85

(2005) and the label setting approach of Kurbanov, Cuchý,

and Vokrı́nek (2022) are two other MOSP approaches that
can deal with negative weights. These solutions are not ex-
act as they do not compute all Pareto-optimal solutions.

This paper introduces NWMOA*, a point-to-point Multi-90

Objective A* search framework that can deal with both Neg-
ative Weights and negative cycles. NWMOA* adapts the
best-first search strategy of A* to problems with negative at-
tributes, and introduces novel speedup techniques to further
enhance the search performance, including time-efficient95

dominance test and queueing strategies. The result of our ex-
tensive experiments on a new set of large realistic instances
show the success of NWMOA* in solving large MOSP in-
stances faster than all existing methods.

Notation and Problem Formulation100

Consider a MOSP problem provided as directed graph G =
(S,E) with a finite set of states S and a set of edges E ⊆ S×
S. Every edge e ∈ E of the graph has k ∈ N attributes that
can be accessed via the cost function cost : E → Rk and we
have cost = (cost1, cost2 , . . . , costk) as a form of vector. A105

path is a sequence of states si ∈ S with i ∈ {1, . . . , n}. The
cost vector of path π = {u1, u2, u3, . . . , un} is then the sum
of corresponding attributes on all the edges constituting the
path, namely cost(π) =

∑n−1
i=1 cost(ui, ui+1). Since costs

can be negative values, we say path π forms an elementary110

negative cycle on costi if i) cost i(π) < 0; ii) ui ̸= uj for any
i, j ∈ {1 . . . n − 1, i ̸= j}; iii) u1 = un. The point-to-point
MOSP aims to find a set of cost-unique Pareto-optimal paths
between a given pair of start ∈ S and goal ∈ S, a set in
which every individual solution offers a path that minimises115

the multi-criteria problem in all dimensions.
Following the conventional notation in the heuristic

search literature, we define our search objects to be nodes
(equivalent to partial paths). A node x is a tuple that con-
tains the main information of the partial path to s(x), where120

s(x) is a function returning the state associated with x.
Node x traditionally stores a cost vector g(x) which mea-
sures the cost of a concrete path from the start state to
state s(x). In addition, node x is associated with the cost
vector f(x), which estimates the cost of a complete path125

from start to goal via s(x); and also a reference parent(x)
which indicates the parent node of x. Further, the operator
Tr(v) truncates the cost1 of the cost vector v. For example,
(g2(x), . . . , gk(x)) is the truncated vector of g(x).

We consider all operations of the cost vectors to be130

done element-wise. For example, we define g(x) + g(y)
as (g1(x) + g1(y), . . . , gk(x) + gk(y)). We use ⪯ or ≤lex

symbols in direct comparisons of cost vectors, e.g. g(x) ⪯
g(y) denotes gi(x) ≤ gi(y) for all i ∈ {1, . . . , k} and
g(x) ≤lex g(y) means the cost vector g(x) is lexicographi-135

cally smaller than or equal to g(y). Analogously, we use ⊀
or ≰lex symbols if the relations cannot be satisfied.
Definition For the node pair (x, y), we say y is (weakly)
dominated by x if we have g(x) ⪯ g(y) or f(x) ⪯ f(y).

The main search in A*-based solution methods is guided140

by start-goal cost estimates or f-values, which are tradi-
tionally established based on a consistent and admissible
heuristic function h : S → Rk (Hart, Nilsson, and Raphael

1968). In other words, for every search node x, we have
f(x) = g(x) + h(s(x)) where h(s(x)) estimates lower 145

bounds on the cost of paths from state s(x) to the goal
state. One common method of computing a well-informed
hi function is solving a one-to-all single-objective shortest
path problem on cost i from the goal state on the graph G
with all links reversed, building a perfect heuristic function. 150

A perfect heuristic is consistent and admissible.
Definition hi : S → R is admissible iff hi(u) ≤ cost i(π

∗)
for every u ∈ S where π∗ is the optimal path on costp
from state u to the goal state. It is also consistent if we have
hi(u) ≤ costi(u, v) + hi(v) for every edge (u, v) ∈ E. 155

Multi-objective Search with A*
The multi-objective search with A* involves in general two
types of strategies: expand and prune. It performs a system-
atic search by expanding nodes in best-first order. That is,
the search is led by a partial path that shows the lowest cost 160

estimate or f -value. Each iteration involves three main steps:
i) Extraction: remove one (lexicographically) least-cost
node from a priority queue, known as Open list.
ii) Dominance check: ensure the extracted node is not dom-
inated by some previous expansions; 165

iii) Expansion: generate new (non-dominated) descendant
nodes and store them in Open for further expansion.

To commence the search, we initialise Open with a node
associated with start , g = 0 and f = h. Open always con-
tains generated (but not expanded) nodes. For the purpose 170

of further expansion, Open reorders its nodes according to
their f -value such that the lexicographically least-cost node
is always at the front of the list. More accurately, given the
cost vector (f1, f2, . . . , fk), Open first orders nodes based
on their f1-value, and then the truncated vector (f2, . . . , fk) 175

if it finds two (or more) of the nodes showing the same
f1-value. The latter operation is called tie-breaking. Once a
least-cost node is extracted from Open , it undergoes a rig-
orous dominance test to ensure the expansion of the node can
lead to a promising solution. This dominance rule usually in- 180

volves checking the cost of the extracted node against that
of the previously expanded nodes of the state, as well nodes
expanded with the goal state (established solutions). The
same strategy can be applied once a new descendant node
is generated (during expansion). It is always safe to prune 185

dominated nodes, essentially because their expansion will
never lead to an optimal solution. Nodes associated with the
goal state represent solution paths and can be stored in a so-
lution set. Since solution paths must be acyclic, A* does not
need to expand such solution nodes. Finally, multi-objective 190

A* terminates once there is no node in Open to explore.
With this introduction, we now describe our NWMOA*.

Multi-objective Search with Negative Weights
and Negative Cycles

Many real-world MOSP problems deal with attributes that 195

are negative in nature, or attributes that may exhibit negative
values in specific circumstances, such as energy recupera-
tion in electric vehicles. There might also be cases where the
graph contains negative cycles on (one or even all) cost com-

ponents. Our NWMOA* performs multi-objective search on200

the basis of A* and can deal with negative weights and neg-
ative cycles. We start with discussing the latter case.

Negative cycles: Although it is widely accepted in the
MOSP literature that the existence of negative cycles makes
MOSP inevitably unbounded, we now elaborate this is not205

always the case in the point-to-point variant. Consider the
sample graph of Figure 1 with three attributes shown on the
edges. The graph contains negative weights, as well as neg-
ative cycle (through the third cost component of the links
u4 ⇝ u5 ⇝ u6 ⇝ u4 shown in red). We aim to find opti-210

mal paths from us to ug . This MOSP instance is bounded, as
there are three optimal paths, none of them visiting the ver-
tices of the negative cycle. Given this important observation,
we can conclude that negative cycles are not problematic for
a point-to-point MOSP instance as long as they do not ap-215

pear on any start-goal path. Thus, we distinguish two cases:

1. There is negative cycle on any arbitrary path from start
to goal : The problem becomes unbounded, as there will
be at least one dimension on which we can take the neg-
ative cycle to further reduce cost of the path indefinitely.220

2. No path can be found from start to goal via a negative
cycle: The problem is bounded, as this essentially implies
that there is either no negative cycle present, or if there is
one, it cannot be reached from start or reach goal .

As described above, to determine whether the problem is225

bounded or not, we need to perform a simple (polynomial-
time) reachibility test: Let S′ be the set of states that are
reachable from start and can reach goal . The problem is
unbounded if we can find a negative cycle on G′ = (S′, E′)
with E′ ⊆ S′ × S′. In the sample graph of Figure 1, the230

three states consisting the only negative cycle of the graph
can reach ug (the goal state), but are not reachable from us

(the start state). Hence, we can assure that no negative cycle
can appear on any optimal path, and thus the multi-objective
search can be conducted safely. To accommodate this crucial235

preliminary test, we describe our NWMOA* in two levels.

NWMOA*’s High-Level Description:
Algorithm 1 provides a high-level description of NWMOA*,
presenting it as a merged procedure for establishing heuris-
tic functions and detecting negative cycles. It first initialises240

h-value of all states with a vector of k large values, followed
by eliminating all states not reachable from start (e.g., using
breath-first search) to form a reduced graph. The algorithm
then conducts for each i ∈ {1, . . . , k} a backward one-to-all
single-objective search to compute cost i-optimal path from245

goal . This can be as simple as k runs of the Bellman-Ford
algorithm (Bellman 1958; Ford Jr 1956), or the Dijkstra’s al-
gorithm with re-expansions allowed (Johnson 1973). There
will be negative cycle on a start- goal path if the length
(number of edges) of the cost i-optimal path to any state of250

the reduced graph grows to be larger than or equal to |S|.
The condition hi(u) = −∞ at line 6 of Algorithm 1 de-
notes the situation where we can identify unbounded MOSP
instances through the growing length of optimal paths. Oth-
erwise, the problem is bounded and we can safely proceed255

with the NWMOA*’s lower-level search (via line 8).

Algorithm 1: NWMOA* High Level
Input: A MOSP Problem (G , start , goal , k)
Output: A cost-unique Pareto-optimal solution set

1 h(u)←∞ ∀u ∈ S
2 S ← Remove from S states not reachable form start
3 for i ∈ {1 . . . k} do
4 foreach u ∈ S do
5 hi(u)← cost i-optimal path from u to goal
6 if hi(u) = −∞ then
7 return ∅

8 Sols ←Multi-objective Search on (G , h, start , goal)
9 return Sols

Multi-objective Search of NWMOA*:
Our new search framework differs from existing methods in
three key aspects:
i) Nodes in NWMOA* are processed in order of their f1- 260

value, rather than any lexicographical ordering. This will re-
duce the cost of priority queue operations, and enable the
use of simpler yet efficient queueing data structures.
ii) The search is equipped with a novel constant-time dom-
inance check. This will help reduce the overall dominance 265

check attempts, and nodes generated during the search.
iii) Unlike LTMOA*, where truncated vectors are stored in
no specific order, NWMOA* stores truncated vectors in lex-
icographical order, reducing dominance checks per iteration.

Algorithm 2 shows the pseudo-code of the multi-objective 270

search of NWMOA*, with the new features highlighted in
blue. The algorithm starts with initialising the priority queue
Open , and the solution set Sols . It then sets up for every
state u ∈ S a list GTr

cl (u), responsible for storing the (non-
dominated) truncated cost-vector of previous (closed) ex- 275

pansions with state u. To reduce the number of costly domi-
nance checks, NWMOA* keeps track of the most recent ex-
pansion of u via a cost vector called gTr

last(u). This cost vec-
tor is initialised with large cost values (line 3) to allow for
capturing the first expansion. NWMOA* then initialises a 280

node with the start state and insert it into the priority queue.
Each iteration of the algorithm starts at line 7. Let Open

be a non-empty queue. NWMOA* extracts in each iteration
of the algorithm a node x with the smallest f1-value (line 8).

Quick dominance check: Most recent expansions are 285

generally more informed and can be seen as strong candi-
dates for dominance check. Node x is quickly checked for
dominance against the last expanded node of two states: goal
and the state associated with x, i.e., s(x) (line 9). As we
will show in the next section, NWMOA* processes nodes in 290

non-decreasing order of their f1-value. Because the first di-
mension is expanded in sorted f1 order, later expansions are
already dominated by previous f1-values. So, the dominance
test can be done by just comparing the truncated cost vector
of x, i.e., Tr(f(x)), with that of the two candidates. 295

Dominance check with IsDominated: If the ex-
tracted node cannot be quickly dominated, NWMOA* takes
Tr(g(x)) and Tr(f(x)) to conduct a rigorous dominance
check by comparing x against (potentially all) truncated vec-

Algorithm 2: Multi-objective Search of NWMOA*
Input: A MOSP Problem (G , h, start , goal)
Output: A cost-unique Pareto-optimal solution set

1 Open ← ∅ , Sols ← ∅
2 GTr

cl (u)← ∅ ∀u ∈ S

3 gTr
last(u)←∞ ∀u ∈ S

4 x← new node with s(x) = start
5 g(x)← 0 , f(x)← h(start) , parent(x)← null
6 Add x to Open
7 while Open ̸= ∅ do
8 Extract from Open node x with the smallest f1-value
9 if gTr

last(s(x)) ⪯ Tr(g(x)) or gTr
last(goal) ⪯ Tr(f(x))

then continue
10 if IsDominated(Tr(g(x)),GTr

cl (s(x))) or
IsDominated(Tr(f(x)),GTr

cl (goal)) then
11 continue

12 Consolidate(Tr(g(x)),GTr
cl)

13 gTr
last(s(x))← Tr(g(x))

14 if s(x) = goal then
15 i← |Sols|
16 while i >= 1 do
17 z ← Node at index i of Sols
18 if f1(x) ̸= f1(z) then break
19 if x ⪯ z then remove z from Sols
20 i← (i− 1)

21 Add x to the end of Sols
22 continue
23 foreach t ∈ Succ(s(x)) do
24 y ← new node with s(y) = v
25 g(y)← g(x) + cost(s(x), t)
26 f(y)← g(y) + h(t)
27 parent(y)← x

28 if gTr
last(t) ⪯ Tr(g(y)) or gTr

last(goal) ⪯ Tr(f(y))
then continue

29 Add y to Open

30 return Sols

tors of previous expansions with both s(x) and goal . Algo-300

rithm 3 shows the details of this procedure. GTr
cl (s(x)) stores

in a lexicographical order all non-dominated truncated cost
vectors derived from previous expansions with s(x). Thus,
the dominance test of Algorithm 3 does not need to traverse
the entire GTr

cl (s(x)) list, and can terminate early when it305

discovers a candidate with a truncated cost vector not lexi-
cographically smaller than that of x (line 3 of Algorithm 3).

Lexicographical ordering with Consolidate: Let x be
a non-dominated node. Thus, its truncated cost vector, i.e.,
Tr(g(x)), must be stored in GTr

cl (s(x)) for the purpose of310

future dominance checks with s(x). However, it is possi-
ble that Tr(g(x)) dominates some vectors of GTr

cl (s(x)).
Truncated vectors lexicographically smaller than Tr(g(x))
cannot be dominated. Thus, Consolidate, described in Al-
gorithm 4, iterates backward through GTr

cl (s(x)) to remove315

dominated vectors (line 7), and stops as soon as it finds
Tr(g(x)) no longer lexicographically smaller than the can-
didate vector in Tr(g(x)). It then inserts Tr(g(x)) after the
last attempted candidate (line 9), ensuring GTr

cl (s(x)) main-

Algorithm 3: IsDominated
Input: A cost vector v and a set of cost vectors V
Output: true or false

1 for i ∈ {1 . . . |V|} do
2 v′ ← Cost vector at index i of V
3 if v′ ≰lex v then
4 return false

5 if v′ ⪯ v then
6 return true

7 return false

Algorithm 4: Consolidate
Input: A cost vector v and a set of cost vectors V
Output: V updated

1 i ← |V|
2 while i ≥ 1 do
3 v′ ← Cost vector at index i of V
4 if v ≰lex v′ then
5 break
6 if v ⪯ v′ then
7 Remove v′ from V

8 i ← (i − 1)

9 Insert v to index (i + 1) of V
10 return

tains its lexicographical order. A similar strategy is used in 320

TMDA (Maristany de las Casas et al. 2023). Once Tr(g(x))
is captured, NWMOA* stores a copy of it into gTr

last(s(x)) as
the most recent expansion (line 13 of Algorithm 2).

Capturing solution paths: Let x represent a tentative
solution path, i.e., we have s(x) = goal (line 14 of Algo- 325

rithm 2). If Sols is empty, we simply capture x as a tentative
solution and add it to the solution set (line 21). Otherwise,
since NWMOA* does not explore nodes in a lexicographical
order, it is possible for x to dominate some previous solu-
tion nodes in Sols . NWMOA* takes care of such situation 330

via lines 15-20. To remove any dominated solutions from
the list, NWMOA* (linearly) iterates backward through Sols
and checks the new solution x against those tied with x, i.e.,
those showing the same f1-value. Solution nodes with f1-
value smaller than f1(x) cannot be dominated by x. Thus, a 335

full traversal of Sols may not be necessary (line 18).
Expansion: Let x be a non-dominated node other than

a solution node. Expansion of x involves generating new
descendant nodes through s(x)’s successors. Consistent
with lazy dominance checks in recent MOSP solutions, 340

NWMOA* delays the (full) dominance check of descendant
nodes until they are extracted from Open . Nonetheless, the
quick dominance check against the most recent expansion of
each successor state can still be applied (see line 28). Such
quick pruning during expansion can reduce the queue size 345

and consequently improve the search performance.
Finally, the algorithm returns Sols, as a cost-unique

Pareto-optimal solution set to a bounded MOSP instance.
Example: We further elaborate on the key steps of

us

(-2,0,2)
u1

(2,2,2)
u5

(3,3,–)

u2

(1,1,1)
u4

(1,1,–)

u3

(2,1,1)
ug

(0,0,0)
u6

(2,2,–)

(-4,1,3)

(1,-1,1)

(1,
1,1

)

(1,1,1)

(2,1,1)

(1,1,1)

(1,
1,1

)

(1,1,1)

(1,1,-3)

(1,
1,1

)(1,1,1)

(1,
1,1

)

Figure 1: An example graph with three edge attributes and nega-
tive cycle. Triples inside the states denote h-value.

NWMOA* by solving a sample MOSP instance with three350

cost components, depicted in Figure 1. us and ug denote
start and goal , respectively. Although the graph contains
negative cycle, the problem is bounded because the cycle is
not on any start-goal path. For the states reachable from
start , the triple inside the state denotes h-value, calculated355

in the higher level of NWMOA*. We briefly explain all itera-
tions (It.) of NWMOA* for the given instance, with the trace
of generated nodes and sets illustrated in Table 1. Since none
of the nodes in this simple instance is quickly dominated, we
do not display the changes on gTr

last of states.360

It.1-4: The first four iterations of the algorithm expand all
states on the cost1-optimal path, namely us, u1, u2 and ug .
At the end of the fourth iteration, we have one truncated cost
vector stored in the GTr

cl list of each of the expanded states,
as shown in third column of Table 1. x5 is our first solution.365

It.5: x2, the second descendant node of x0, is extracted.
x2’s truncated cost Tr(g(x2)) = (1,1) dominates the only
vector available in GTr

cl (u2). Thus, (1,1) replaces (2,4) in
GTr

cl (u2). x2 is non-dominated and should be expanded. The
new node x6 is added to Open upon expansion of x2.370

It.6: x6 is extracted from Open . This node appears non-
dominated, and is a tentative solution. GTr

cl (ug) is then up-
dated with the new truncated cost (2,2). The existing vector
(3,5) is dominated and removed. x6 is added to Sols .
It.7: NWMOA* undergoes the first expansion with state u3375

via x3. Two new nodes, x7 and x8, are added to the queue.
It.8: Both x7 and x8 exhibit the same f1-value. In the ab-
sence of tie-breaking, we may extract x7 first. x7 appears
non-dominated. Thus, we can add its truncated cost (0,2) to
GTr

cl (u2). Its expansion leads to ug via the new node x9.380

It.9: Both x8 and x9 exhibit the same f1-value. Assume x9

is extracted first. x9 is a non-dominated solution node, so we
can update both GTr

cl (ug) and Sols with the new node. This
solution does not dominate any previous solutions.
It.10: x8 is the only node in the queue. x8 is a non-dominated385

solution node, and its truncated cost (0,2) dominates all vec-
tors in GTr

cl (ug). x8 should be added to Sols . However, the
new solution x8 dominates the previous solution x9 (both
showing the same f1-value). Thus, x9 is removed from Sols .
It.11: Open is empty, and all optimal solutions are in Sols .390

The example above shows how NWMOA* processes
nodes in the order of their f1-value. As we observed in It.9,

It. Open : [f(x),g(x), s(x)] GTr
cl Sols

1 ∗x0=[(-2,0,2), (0,0,0), us] GTr
cl (us)=[(0,0)]

2 ∗x1=[(-2,3,5), (-4,1,3), u1] GTr
cl (u1)=[(1,3)]

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

3 ∗x4=[(-2,3,5), (-3,2,4), u2] GTr
cl (u2)=[(2,4)]

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

4 ∗x5=[(-2,3,5), (-2,3,5), ug] GTr
cl (ug)=[(3,5)] x5

x2=[(2,2,2), (1,1,1), u2]
x3=[(3,0,2), (1,-1,1), u3]

5 ∗x2=[(2,2,2), (1,1,1), u2] GTr
cl (u2)=[(1,1)] x5

x3=[(3,0,2), (1,-1,1), u3]

6 ∗x6=[(2,2,2), (2,2,2), ug] GTr
cl (ug)=[(2,2)] x5,6

x3=[(3,0,2), (1,-1,1), u3]

7 ∗x3=[(3,0,2), (1,-1,1), u3] GTr
cl (u3)=[(-1,-1)] x5,6

8 ∗x7=[(3,1,3), (2,0,2), u2] GTr
cl (u2)=[(0,2),(1,1)] x5,6

x8=[(3,0,2), (3,0,2), ug]

9 ∗x9=[(3,1,3), (3,1,3), ug] GTr
cl (ug)=[(1,3),(2,2)] x5,6,9

x8=[(3,0,2), (3,0,2), ug]

10 ∗x8=[(3,0,2), (3,0,2), ug] GTr
cl (ug)=[(0,2)] x5,6,8

11 empty x5,6,8

Table 1: Trace of Open and Sols in each iteration (It.) of
NWMOA*. We mark extracted node of each iteration with
symbol ∗. The third column shows changes on GTr

cl lists.

NWMOA* may perform extra expansions due to not break-
ing ties between nodes before extractions. More accurately,
x7 would not be expanded if we processed nodes lexico- 395

graphically. However, we observed in It.10 how NWMOA*
refines the optimal solution set in such circumstances.

Always Logarithmic Dominance Check with k = 3
In case of three objectives, truncated cost vectors consist
of two cost components only. Since GTr

cl lists store non- 400

dominated truncated vectors in lexicographical order, we
can achieve logarithmic-time dominance check via binary
search. Let v = (g2, g3) be the truncated cost vector of x,
and v′ = (g′2, g

′
3) be the predecessor of v in GTr

cl (s(x)), ob-
tained by binary search. Since v′ ≤lex v, we should have: 405

1. g′2 = g2 and g′3 = g3: thus v′ weakly dominates v
2. or g′2 = g2 and g′3 < g3: thus v′ dominates v
3. or g′2 < g2: there are two cases, either g′3 ≤ g3 or

g′3 > g3. The former denotes v′ dominates v. The latter,
however, confirms v is non-dominated, because all other 410

lexicographically smaller candidates in GTr
cl (s(x)), i.e.,

vectors before the predecessor v′, do not exhibit smaller
cost3 than g′3 and thus cannot dominate v.

Theoretical Results
This section provides a formal proof for the correctness of 415

multi-objective search of NWMOA*, providing theoretical

results on why NWMOA* can solve bounded MOSP in-
stances with negative weights. That is, we assume negative
cycles have already been handled via Algorithm 1.
Lemma 1 Suppose NWMOA*’s search is led by small-420

est (possibly negative) f1-values. Let xi and xi+1 be
nodes extracted from Open in two consecutive iterations of
NWMOA*. We have f1(xi) ≤ f1(xi+1) if h1 is consistent.
Proof Sketch We distinguish two cases: i) if xi+1 was avail-
able in Open at the time xi was extracted, the lemma is425

trivially true. ii) otherwise, xi+1 is the descendant node of
xi. For the edge linking state s(xi) to its successor s(xi+1),
the consistency requirement of h1 ensures h1(s(xi)) ≤
h1(s(xi+1))+cost1(s(xi), s(xi+1)). Adding the cost g1(xi)
to both sides of the inequality yields f1(xi) ≤ f1(xi+1). □430

Corollary 1 Let (x1, x2, ..., xt) be the sequence of nodes
extracted from Open . The (perfect) heuristic function h
is consistent and admissible. Then, under the premises of
Lemma 1, i ≤ j implies f1(xi) ≤ f1(xj), meaning f1-value
of extracted nodes are monotonically non-decreasing.435

Lemma 2 Suppose xj is extracted after xi and s(xi) =
s(xj). xi (weakly) dominates xj if Tr(g(xi)) ⪯ Tr(g(xj)).
Proof Sketch xj is extracted after xi, so we have
f1(xi) ≤ f1(xj) according to Corollary 1. Given
h1(s(xi)) = h1(s(xj)), we obtain g1(xi) ≤ g1(xj). The440

other condition Tr(g(xi)) ⪯ Tr(g(xj)) means g2(xi) ≤
g2(xj), . . . , gk(xi) ≤ gk(xj). Thus, g(xj) is no smaller
than g(xi) in all dimensions. □
Lemma 3 Suppose xj is extracted after xi with s(xi) =
goal . Extending xj towards the goal state will not lead to a445

non-dominated solution node if Tr(g(xi)) ⪯ Tr(f(xj)).
Proof Sketch Node xj is extracted after xi, so we have
f1(xi) ≤ f1(xj), or equivalently g1(xi) ≤ f1(xj). Ex-
panding the condition Tr(g(xi)) ⪯ Tr(f(xj)), we have
g2(xi) ≤ f2(xj), . . . , gk(xi) ≤ fk(xj). Thus, f(xj) is no450

smaller than g(xi) in all dimensions. Since h is admissible,
we can guarantee that all subsequent expansions of xj to-
wards goal will exhibit the same condition. Thus, xj and all
its descendant nodes will be (weakly) dominated by xi. □
Lemma 4 Dominated nodes cannot lead to any cost-optimal455

start-goal solution path.
Proof Sketch We prove this lemma by assuming the con-
trary, namely by claiming that dominated nodes can lead to
a cost-optimal start-goal solution paths. Let x and y be two
nodes associated with the same state where y is dominated460

by x. Suppose that π∗ is a cost-optimal start-goal solution
path via the dominated node y. Since x dominates y, one
can replace the subpath represented by y with that of x on
π∗ to further reduce the cost of the start-goal optimum path
for at least one attribute. However, being able to reduce the465

cost of the established optimal solution path would contra-
dict our assumption on the optimality of the solution path π∗.
Therefore, we conclude that dominated nodes cannot form
any cost-optimal start-goal solution path. □
Lemma 5 Let y be a node weakly dominated by node x and470

s(x) = s(y). If y’s expansion leads to a cost-optimal solu-
tion path, x’s expansion will also lead to an optimal solution.
Proof Sketch We prove this lemma by assuming the con-
trary, namely that x cannot lead to any cost-optimal so-
lution path. Since y is weakly dominated by x, we have475

g1(x) ≤ g1(y), . . . , gk(x) ≤ gk(y), meaning that x offers
a better cost at least in one dimension, or cost equal to the
cost of y. In such condition, one can replace the partial path
represented by y with that of x, and nominate a path lexico-
graphically smaller than or equal to the optimal solution path 480

via y. The existence of a better solution path in the former
case would contradict our assumption on the optimality of
the solution path via node y. The later case means both paths
are equal in terms of cost and thus should be non-optimal,
contradicting our assumption. Therefore, node x will defi- 485

nitely lead to a cost-optimal solution path if node y leads to
an optimal solution. □
Theorem 1 NWMOA* computes a cost-unique Pareto-
optimal solution set for any bounded MOSP instance.
Proof Sketch NWMOA* enumerates all partial paths from 490

the start state towards the goal state in best-first order, in
search of all optimal solutions. The dominance rules utilised
by NWMOA* (Lemmas 2 and 3) ensure that removal of
(weakly) dominated nodes is safe, as they will not lead
to cost-unique optimal solution paths (Lemmas 4 and 5). 495

Thus, we just need to show that Sols does not contain a
(weakly) dominated solution when NWMOA* terminates.
NWMOA* captures all nodes reaching the goal state. How-
ever, since it does not process nodes lexicography, some ten-
tative solutions may later appear dominated. Let x be a new 500

non-dominated solution extracted after solution z. We have
f1(z) ≤ f1(x). There are two cases: i) if f1(z) < f1(x),
the tentative solution x confirms the optimality of z because
the older solution z cannot be dominated by x and all future
solutions. ii) if f1(z) = f1(x), a dominance check is per- 505

formed to ensure the optimality of z, or remove z from Sols
if it is deemed to be (weakly) dominated by x, as scripted
in lines 15-20 of Algorithm 2. Therefore, we conclude that
NWMOA* terminates with returning a set of cost-unique
Pareto-optimal solution set, even with negative weights. □ 510

Experimental Results
This section compares the performance of NWMOA*
against the recent MOSP algorithms: LTMOA* (Hernández
et al. 2023), TMDA (Maristany de las Casas et al. 2023),
EMOA* (Ren et al. 2022) and also the lazy variant of 515

NAMOA*dr (Pulido, Mandow, and Pérez-de-la-Cruz 2015b)
studied in Maristany de las Casas et al. (2023).

Implementation: We implemented our NWMOA* algo-
rithm in C++ and used the publicly available version of the
other algorithms, all implemented in C++. The implementa- 520

tion of TMDA and Lazy-NAMOA*dr utilises linked lists to
store truncated vectors. However, we found both algorithms
performing faster when vectors are handled via dynamic ar-
rays (nearly 30%). Hence, we used the faster array-based im-
plementation. For the LTMOA* algorithm, we were unable 525

to obtain the original implementation and instances. We,
therefore, implemented the fast performing variant of the al-
gorithm (Lazy-LTMOA*-A) in C++ based on the descrip-
tions provided in the original paper. All algorithms utilise
dynamic arrays to store truncated vectors. We ran all experi- 530

ments on a single core of an Intel Xeon Gold 5220R proces-
sor running at 2.2 GHz and with 32 GB of RAM, under the

CentOs Linux 7 environment and with a two-hour timeout.
All C++ code was compiled using the GCC7.5 compiler.

The Open list: Since NWMOA* processes nodes based535

on their f1-value only, we can utilise simpler yet efficient
data structures to implement the priority queue, such as
bucket-based queues (Denardo and Fox 1979; Cherkassky,
Goldberg, and Radzik 1996). It can be shown that the dif-
ference between the largest and smallest f1-values available540

in Open in any arbitrary iteration of NWMOA* is bounded
by max{h1(v)− h1(u) + cost1(u, v)|(u, v) ∈ E, h1(v) ̸=
∞}. Thus, we implemented Open using a cyclic fixed-size
bucket-based queue, with bucket width of one. Linked lists
were used to handle queue operations via the Last-In, First-545

Out (LIFO) strategy.
Benchmark instances: We used the New York map

from the 9th DIMACS Implementation Challenge: Short-
est Paths1 to generate MOSP instances. The map contains
two cost components only: distance and time. To extend550

the dimensions, following Storandt (2012), we enriched the
map with Shuttle Radar Topography Mission2 height in-
formation and set the third dimension to be the positive
height difference of the endpoints of each link, i.e., we set
cost3(u, v) = |height(v)−height(u)| for each (u, v) ∈ E.555

For the fourth edge attribute, following Ren et al. (2022),
we calculate the average (out)degree of the link, i.e., num-
ber of adjacent vertices of each end point, namely cost4 =
⌊(deg(u) + deg(v))/2⌋ for each (u, v) ∈ E. Finally, as
in Maristany de las Casas et al. (2023), we set the fifth560

cost of each edge to 1, with cost5 of paths denoting the
number of edges traversed. We then generated 100 random
(start , goal) pairs, and evaluated all algorithms on the same
set of instances but with 3-5 cost components. Our code and
benchmark instances will be made publicly available.565

Since all algorithms use the same approach to compute
heuristic functions, we report the runtime of the main search
only. Table 2 presents the runtime statistics for all of the
studied algorithms with 3-5 cost components, as well as for
the variant of NWMOA* with logarithmic-time dominance570

check for k = 3, denoted by NWMOA*log. We report both
arithmetic and geometric mean, and the runtime of unsolved
cases is considered to be the timeout. ϕ in the last column
represents the average slow-down factor (of runtime) over
the mutually solved instances when compared to the virtual575

best oracle. The virtual oracle is given the best runtime of all
algorithms for every mutually solved instance. ϕ = 1 means
the algorithm is as good as the virtual best oracle.

Comparing the performance of the algorithms with k = 3,
we find that NWMOA*log is best performer, dominating580

other algorithms in all individual instances with ϕ = 1.
This variant performs on average 20% faster than the stan-
dard NWMOA*, 4.2 times faster than Lazy-LTMOA*, and
above one order of magnitude faster than others. Our de-
tailed results show that the number of dominance checks585

is reduced by 71% on average when binary search is used
for dominance check in NWMOA* with k = 3. Compar-
ing the results for instances with four and five cost compo-

1http://www.diag.uniroma1.it/ challenge9/download.shtml
2https://www2.jpl.nasa.gov/srtm/

Runtime(s)

Algorithm |S| Min. MeanA MeanG Max. ϕ

NY with 3 cost components (avg(|Sols|)=5,090)
NWMOA*log 100 0.01 3.2 1.1 15.1 1.0
NWMOA* 100 0.01 4.0 1.4 22.4 1.2
L-LTMOA* 100 0.05 14.1 4.7 75.5 4.2
TMDA 100 0.40 100.6 33.5 737.1 30.4
L-NAMOA*dr 100 0.37 109.7 36.2 845.5 33.0
EMOA* 100 2.59 671.1 225.5 4980.4 202.3

NY with 4 cost components (avg(|Sols|)=86,134)
NWMOA* 100 0.17 728.0 146.0 5190.7 1.0
L-LTMOA* 97 0.39 1578.7 337.3 7200.0 2.3
TMDA 49 5.21 4779.0 2494.6 7200.0 37.8
L-NAMOA*dr 45 5.12 4860.3 2598.5 7200.0 41.3
EMOA* 27 23.35 5870.2 4276.7 7200.0 172.2

NY with 5 cost components (avg(|Sols|)=120,011)
NWMOA* 82 0.21 2363.2 502.0 7200.0 1.0
L-LTMOA* 68 0.49 3125.6 891.4 7200.0 2.2
TMDA 33 7.09 5597.8 3631.8 7200.0 34.4
L-NAMOA*dr 31 7.45 5649.8 3738.5 7200.0 37.9
EMOA* 17 31.31 6301.7 5179.3 7200.0 162.3

Table 2: Runtime statistics of the algorithms (in seconds)
with k=3,4,5. We report both Arithmetic (MeanA) and Ge-
ometric (MeanG) Mean. |S| is the number of solved cases
(out of 100), and ϕ shows the average slowdown factor of
mutually solved cases compared to the virtual best oracle.
The runtime of unsolved cases is considered to be two hour.

nents, we can find NWMOA* performing better in every mu-
tually solved instances with ϕ = 1. Extending dimensions 590

of the problem would not only enlarge the search space,
but also make dominance checks more expensive. Nonethe-
less, NWMOA* consistently outperforms other algorithms
for k = 4, 5. It is more than two times faster than Lazy-
LTMOA*, and above one order of magnitude faster than oth- 595

ers. Note that our comparison with Lazy-LTMOA* can be
considered head-to-head since it is implemented on the same
framework as NWMOA*.

Ablation study: To gain a deeper understanding of how
the key features of NWMOA* impact search performance, 600

we performed detailed performance analyses on three vari-
ants of NWMOA*, namely: NWMOA* without quick dom-
inance check and/or NWMOA* without lexicographical or-
dering of node in GTr

cl . We also compare how Lazy-LTMOA*
performs against these variants. The detailed results are pre- 605

sented in Table 3 for mutually solved instances for k = 4,
where ϕ denotes average percentage increase in runtime
when compared to standard NWMOA*. |per | also denotes
the average number of percolations (total swaps performed)
in the binary heap of Lazy-LTMOA*, and the total number 610

of buckets traversed in the priority queue of NWMOA*.
Comparing the results, we see all variants expanding the

same number of nodes on average (slightly larger than Lazy-
LTMOA*), and consuming nearly the same amount of mem-
ory. Interestingly, the quick dominance check of NWMOA* 615

effectively prunes two third of dominated nodes, reducing
the number of generated nodes by 20% on average. We see

Variant ϕ Mem. |generated| |expansions| |prunedl| |prunedq| |check| |per|

NWMOA* - 0.74 147.45×106 59.80×106 82.09×106 46.37×106 230.05×109 163.73×103
NWMOA*w/o qdc 18.81% 0.70 185.33×106 59.80×106 125.45×106 0.00×100 256.28×109 163.73×103
NWMOA*w/o lex 107.81% 0.74 147.45×106 59.80×106 82.09×106 43.37×106 302.81×109 163.73×103
NWMOA*w/o (lex+qdc) 108.83% 0.70 185.33×106 59.80×106 125.45×106 0.00×100 310.85×109 163.73×103
L-LTMOA* 165.63% 0.77 184.92×106 59.68×106 125.16×106 0.00×100 310.47×109 5.04×109

Table 3: NWMOA*’s performance compared against variants without quick dominance check (w/o qdc), and/or without lexi-
cographical ordering (w/o lex), and L-LTMOA*. The results are for 98 mutually solved instances with k = 4. We report the
averages of: percentage increase in runtime w.r.t. NWMOA* (ϕ), memory (in GB), number of generated, expanded, linearly
pruned (prunedl), and quickly pruned (prunedq) nodes, total dominance checks (|check |) and queue percolation (|per|).

Table 4: NWMOA*’s performance with three different types of
priority queues, with/without tie breaking. Results for 71 mutually
solved instances of the randomised NY map with 4 cost compo-
nents. We show averages of runtime (in seconds), memory (in GB),
number of expansions (|exp|), and queue percolation (|per|).

Queue Runtime Mem. |exp| |per|

Bucket-LIFO 997.3 1.3 123.9×106 2.7×103
Bucket-FIFO 1270.6 1.7 135.0×106 2.7×103
Hybrid w/o tie 1078.9 1.4 123.9×106 0.2×109
Hybrid w tie 1343.0 2.8 122.5×106 5.2×109
Heap w/o tie 1434.5 1.5 127.1×106 7.2×109
Heap w tie 1424.8 2.8 122.5×106 6.8×109

18.8% increase in runtime when no quick dominance check
is in place. The impact is more severe when non-dominated
truncated costs are not stored lexicographically, where we620

observe a runtime increase of over 100%. In this situation,
the number of dominance checks is raised drastically, requir-
ing a linear traversal of the entire GTr

cl list. The performance
decline is less pronounced if quick dominance checks are not
performed alongside the latter case (the second last variant625

of Table 3). Even with both features removed, this down-
graded variant still preforms better than Lazy-LTMOA* due
to its simpler node queueing strategy and far lower |per |.

Negative weights and priority queues: For the last
experiment of this study, we analyse the performance of630

NWMOA* using different data structures for Open . Further,
to evaluate our algorithm on large graphs with both nega-
tive and non-correlated edge attributes, we changed the edge
cost vector of the NY map with four new attributes as fol-
lows: cost1 is the energy consumption along the link. We use635

the energy model of Ahmadi et al. (2021b) to produce real-
istic, potentially negative, energy estimates for an electric
vehicle with three passengers on board. We did not bound
the battery capacity, thus the plain NWMOA* can be used
to find energy efficient paths. The second cost is now a pe-640

nalised height function. We set cost2 of link (u, v) ∈ E to be
height(v) − height(u) if height(v) ≤ height(u) (down-
hill links), and 2× (height(v)− height(u)) otherwise (up-
hill links). For the third and fourth costs, we choose random
integers in the [1,100] range. The resulting graph is free of645

negative cycles, thus all MOSP instances would be bounded.
We report in Table 4 the performance results for three

types of priority queues in two variations: Bucket (with
LIFO or First-In, First-Out strategy), Hybrid and Heap
queues (with or without tie-breaking). Our Hybrid queue is 650

a two-level bucket-based queue, with a bucket list and heap
used for the higher and lower levels, respectively (Denardo
and Fox 1979). Nodes may be inserted to either of the data
structures (depending on f1-value), but are always extracted
from the lower level. We set the bucket width to one in both 655

Bucket and Hybrid queues. Hybrid queue can handle both
integer and non-integer costs. We use the same timeout and
(start , goal) pairs as in the previous experiment, and report
the average number of expansions, memory consumed, and
queue percolation for all mutually solved instances. 660

As we expected, the minimum number of expansions is
achieved when tie-breaking is in place for Heap and Hy-
brid queues. However, this seems costly in terms of space,
with the memory consumption nearly doubled when com-
pared with the variant without tie-breaking. Although we see 665

slight improvement in the runtime of heap queue with tie-
breaking, the effort is not paid off in the Hybrid queue and
NWMOA* performs around 20% faster when not breaking
ties. NWMOA* performs best with Bucket queue using the
LIFO strategy. It undergoes minimal queue effort and mem- 670

ory use, while expanding only 1% extra nodes. The Bucket
queue with FIFO strategy, however, shows the largest num-
ber of expansions, and is outperformed by Hybrid queue
without tie-breaking. This observation highlights the signif-
icance of prioritising most recent (better informed) expan- 675

sions in multi-objective search with A*.

Conclusion

We have introduced NWMOA*, an exact MOSP algorithm
that determines within polynomial time whether a point-to-
point MOSP problem instance is bounded. If the instance is 680

found to be bounded, NWMOA* can then compute a cost-
unique Pareto-optimal solution set, even in the presence of
negative weights. NWMOA* challenges the convention in
multi-criteria search by not processing paths in lexicograph-
ical order of their costs, while utilising novel strategies to 685

expedite the exhaustive search of A*. The results of our
extensive experiments over a new large set of realistic in-
stances show the success of NWMOA* in efficiently solving
difficult MOSPP instances in limited time, outperforming all
state-of-the-art algorithms by up to an order of magnitude. 690

References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021a. Bi-
Objective Search with Bi-Directional A*. In Mutzel, P.;
Pagh, R.; and Herman, G., eds., 29th Annual European Sym-
posium on Algorithms, ESA 2021, September 6-8, 2021, Lis-695

bon, Portugal (Virtual Conference), volume 204 of LIPIcs,
3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021b.
Vehicle Dynamics in Pickup-And-Delivery Problems Using700

Electric Vehicles. In Michel, L. D., ed., 27th International
Conference on Principles and Practice of Constraint Pro-
gramming, CP 2021, Montpellier, France (Virtual Confer-
ence), October 25-29, 2021, volume 210 of LIPIcs, 11:1–
11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.705

Bellman, R. 1958. On a routing problem. Quarterly of ap-
plied mathematics, 16(1): 87–90.
Cherkassky, B. V.; Goldberg, A. V.; and Radzik, T. 1996.
Shortest paths algorithms: Theory and experimental evalua-
tion. Math. Program., 73: 129–174.710

de las Casas, P. M.; Sedeño-Noda, A.; and Borndörfer, R.
2021. An Improved Multiobjective Shortest Path Algorithm.
Comput. Oper. Res., 135: 105424.
Denardo, E. V.; and Fox, B. L. 1979. Shortest-Route Meth-
ods: 1. Reaching, Pruning, and Buckets. Oper. Res., 27(1):715

161–186.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik, 1: 269–271.
Ford Jr, L. R. 1956. Network flow theory. Technical report,
Rand Corp Santa Monica Ca.720

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern., 4(2): 100–107.
Hernández, C.; Yeoh, W.; Baier, J. A.; Felner, A.; Salzman,
O.; Zhang, H.; Chan, S.-H.; and Koenig, S. 2023. Multi-725

objective search via lazy and efficient dominance checks. In
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, 7223–7230.
Jeddisaravi, K.; Alitappeh, R. J.; and Guimarães, F. G.
2016. Multi-objective mobile robot path planning based on730

a search. In 2016 6th International Conference on Computer
and Knowledge Engineering (ICCKE), 7–12. IEEE.
Johnson, D. B. 1973. A note on Dijkstra’s shortest path al-
gorithm. Journal of the ACM (JACM), 20(3): 385–388.
Kurbanov, T.; Cuchý, M.; and Vokrı́nek, J. 2022. Heuristics735

for Fast One-to-Many Multicriteria Shortest Path Search. In
25th IEEE International Conference on Intelligent Trans-
portation Systems, ITSC 2022, Macau, China, October 8-12,
2022, 594–599. IEEE.
Maristany de las Casas, P.; Kraus, L.; Sedeño-Noda, A.; and740

Borndörfer, R. 2023. Targeted multiobjective Dijkstra algo-
rithm. Networks, 82(3): 277–298.
Martins, E. Q. V. 1984. On a multicriteria shortest path
problem. European Journal of Operational Research, 16(2):
236–245.745

Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015a.
Dimensionality reduction in multiobjective shortest path
search. Comput. Oper. Res., 64: 60–70.
Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015b.
Dimensionality reduction in multiobjective shortest path 750

search. Comput. Oper. Res., 64: 60–70.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced Multi-Objective A* Using Balanced Bi-
nary Search Trees. In Chrpa, L.; and Saetti, A., eds., Pro-
ceedings of the Fifteenth International Symposium on Com- 755

binatorial Search, SOCS 2022, Vienna, Austria, July 21-23,
2022, 162–170. AAAI Press.
Salzman, O.; Felner, A.; Hernández, C.; Zhang, H.; Chan,
S.; and Koenig, S. 2023. Heuristic-Search Approaches for
the Multi-Objective Shortest-Path Problem: Progress and 760

Research Opportunities. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intel-
ligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, 6759–6768. ijcai.org.
Sastry, V.; Janakiraman, T.; and Mohideen, S. I. 2003. 765

New algorithms for multi objective shortest path problem.
Opsearch, 40: 278–298.
Sastry, V. N.; Janakiraman, T. N.; and Mohideen, S. I. 2005.
New polynomial time algorithms to compute a set of Pareto
optimal paths for multi-objective shortest path problems. 770

Int. J. Comput. Math., 82(3): 289–300.
Storandt, S. 2012. Route Planning for Bicycles - Exact Con-
strained Shortest Paths Made Practical via Contraction Hi-
erarchy. In McCluskey, L.; Williams, B. C.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna- 775

tional Conference on Automated Planning and Scheduling,
ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
AAAI.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A Simple and Fast Bi-Objective Search 780

Algorithm. In Beck, J. C.; Buffet, O.; Hoffmann, J.; Karpas,
E.; and Sohrabi, S., eds., Proceedings of the Thirtieth Inter-
national Conference on Automated Planning and Schedul-
ing, Nancy, France, October 26-30, 2020, 143–151. AAAI
Press. 785

Wang, H.; Mao, W.; and Eriksson, L. 2019. A Three-
Dimensional Dijkstra’s algorithm for multi-objective ship
voyage optimization. Ocean Engineering, 186: 106131.
Xu, K.; mei Gai, W.; and Salhi, S. 2021. Dynamic emer-
gency route planning for major chemical accidents: Models 790

and application. Safety Science, 135: 105113.

