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IMPORTANCE There is urgent need to improve the limited prognostic accuracy of clinical
instruments to predict psychosis onset in individuals at clinical high risk (CHR) for psychosis.
As yet, no reliable biological marker has been established to delineate CHR individuals who
will develop psychosis from those who will not.

OBJECTIVES To investigate abnormalities in a graph-based gyrification connectome in the
early stages of psychosis and to test the accuracy of this systems-based approach to predict
a transition to psychosis among CHR individuals.

DESIGN, SETTING, AND PARTICIPANTS This investigation was a cross-sectional magnetic
resonance imaging (MRI) study with follow-up assessment to determine the transition status
of CHR individuals. Participants were recruited from a specialized clinic for the early detection
of psychosis at the Department of Psychiatry (Universitäre Psychiatrische Kliniken [UPK]),
University of Basel, Basel, Switzerland. Participants included individuals in the following
4 study groups: 44 healthy controls (HC group), 63 at-risk mental state (ARMS) individuals
without later transition to psychosis (ARMS-NT group), 16 ARMS individuals with later
transition to psychosis (ARMS-T group), and 38 antipsychotic-free patients with first-episode
psychosis (FEP group). The study dates were November 2008 to November 2014. The dates
of analysis were March to November 2017.

MAIN OUTCOMES AND MEASURES Gyrification-based structural covariance networks
(connectomes) were constructed to quantify global integration, segregation, and
small-worldness. Group differences in network measures were assessed using functional data
analysis across a range of network densities. The extremely randomized trees algorithm with
repeated 5-fold cross-validation was used to delineate ARMS-T individuals from ARMS-NT
individuals. Permutation tests were conducted to assess the significance of classification
performance measures.

RESULTS The 4 study groups comprised 161 participants with mean (SD) ages ranging from
24.0 (4.7) to 25.9 (5.7) years. Small-worldness was reduced in the ARMS-T and FEP groups
and was associated with decreased integration and increased segregation in both groups
(Hedges g range, 0.666-1.050). Using the connectome properties as features, a good
classification performance was obtained (accuracy, 90.49%; balanced accuracy, 81.34%;
positive predictive value, 84.47%; negative predictive value, 92.18%; sensitivity, 66.11%;
specificity, 96.58%; and area under the curve, 88.30%).

CONCLUSIONS AND RELEVANCE These findings suggest that there is poor integration in the
coordinated development of cortical folding in patients who develop psychosis. These results
further suggest that gyrification-based connectomes might be a promising means to generate
systems-based measures from anatomical data to improve individual prediction of
a transition to psychosis in CHR individuals.
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P redicting psychosis onset in individuals at clinical high
risk (CHR) for psychosis1 is essential to administer pre-
ventive interventions. However, it is not yet possible to

make any personalized prediction of psychosis onset relying
only on the initial clinical assessment.2 Therefore, research is
striving for reliable brain markers to improve the prediction
of psychosis onset in these individuals.3,4

To date, most studies have used structural magnetic
resonance imaging (MRI) to investigate the alterations in
regional gray matter volume (GMV) in CHR individuals.5

However, most of the available evidence shows that GMV
reductions seen in patients occur before the transition to
psychosis, during the transition, or in the immediate poston-
set phase, which may indicate that morphometric methods,
such as the measurement of gyrification, are perhaps more
sensitive to detect the pathophysiology in the prodromal
phase.6 Indeed, altered local gyrification indexes (LGIs) have
been reported not only in patients with schizophrenia7 but
also in patients with first-episode psychosis (FEP),8 those at
genetic risk for schizophrenia,9,10 and CHR individuals,11 as
well as in those who later developed an overt psychotic
disorder.12-14 However, these localized regional changes fail
to quantify the association between concomitant changes in
different brain areas.15 The gross morphology of the devel-
oping brain undergoes several well-coordinated matura-
tional events to establish neural networks,16 and develop-
mental disturbances in the topological organization of these
networks can result in various psychiatric disorders, such as
schizophrenia.17,18 Maldevelopment of the structural con-
nectome can be inferred by studying the covariance of mor-
phology using graph theory.15 Such graph-based network
studies capture an important aspect of developmental matu-
ration that is crucial for understanding the pathophysiology
of psychotic disorders.19,20 Previous studies reported
reduced small-worldness of structural brain networks in
patients with schizophrenia,21-23 CHR individuals,24 people
at increased familial risk for schizophrenia,25-27 and those
with subclinical psychotic experiences,28 characterized by
increased segregation and decreased interaction of anatomi-
cal covariance (see the published reviews18,19,29-31 of net-
work analyses in schizophrenia). Of various regional mor-
phometric properties that can be assessed for structural
covariance, gyrification is a compelling marker of early neu-
rodevelopment. The overall pattern of cortical gyrification is
established by year 2 of human life and remains consistent
for most of the adult life.32 Perinatal complications that
affect brain development result in aberrant gyrification.33,34

Notably, experimental introduction of white matter lesions
in early life produces localized changes in cortical folding in
distant regions that are axonally connected.35 Therefore,
aberrations in structural covariance of gyrification can pro-
vide an index of the integrity of cortical connectivity in early
life. It has previously been shown that the gyrification-based
structural connectome is indeed not normal in patients with
schizophrenia, with an abnormally segregated pattern of
cortical folding in distributed brain regions, especially in
those with more severe illness36 and in nonresponders to
antipsychotics.37

This study explored the topological organization of gyri-
fication networks in the following 4 study groups: 44 healthy
controls (HC group), 63 at-risk mental state (ARMS) individu-
als without later transition to psychosis (ARMS-NT group), 16
ARMS individuals with later transition to psychosis (ARMS-T
group), and 38 antipsychotic-free patients with FEP (FEP
group). The study dates were November 2008 to November
2014. The dates of analysis were March to November 2017. Our
aims were to investigate whether the network properties of the
gyrification-based connectome differed at baseline among the
4 study groups and to test if this information was sufficiently
discriminatory to delineate ARMS individuals transitioning vs
nontransitioning to psychosis.

Methods
Patients
We recruited 44 HCs, 79 ARMS individuals, and 38
antipsychotic-free patients with FEP in our specialized clinic
for the early detection of psychosis at the Department of
Psychiatry (Universitäre Psychiatrische Kliniken [UPK]), Uni-
versity of Basel, Basel, Switzerland. All participants provided
written informed consent, and the study was approved by
the local ethics committee (Ethikkommission Nordwest-und
Zentralschweiz).

The ARMS and FEP statuses were assessed using the Ba-
sel Screening Instrument for Psychosis (BSIP),38 the Brief Psy-
chiatric Rating Scale (BPRS),39 the Scale for the Assessment of
Negative Symptoms (SANS),40 and the Global Assessment of
Functioning (GAF).41 In addition, we recorded current and pre-
vious psychotropic medication, as well as nicotine and illegal
drug consumption, by using a semistructured interview. The
following exclusion criteria were applied to all study groups:
history of a psychotic disorder; psychotic symptoms second-
ary to an organic disorder; substance abuse according to In-
ternational Statistical Classification of Diseases and Related
Health Problems, 10th Revision (ICD-10) research criteria; psy-
chotic symptoms associated with a bipolar disorder, major de-
pression, or a borderline personality disorder; age younger than

Key Points
Question Do patients at high risk of psychosis exhibit
disorganized gyrification network properties, and is it possible to
predict transition to a first episode of psychosis on the basis of
gyrification?

Findings In this cross-sectional magnetic resonance imaging
study among 161 individuals in 4 study groups, patients who later
develop psychosis exhibit disorganized gyrification network
properties even at a clinically high-risk state. Gyrification network
measures predict the future outcome of transition with more than
80% accuracy.

Meaning Constructing gyrification-based networks from
structural magnetic resonance imaging may facilitate individual
prediction of future psychosis in those at clinical high risk for
psychosis.
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18 years; inadequate knowledge of the German language; and
IQ less than 70, measured with the Mehrfachwahl-Wortschatz-
Test Form B.42

The ARMS status required 1 or more of the following: (1)
attenuated psychoticlike symptoms, (2) brief limited inter-
mittent psychotic symptoms (BLIPS), or (3) a first-degree or
second-degree relative with a psychotic disorder plus at least
2 additional risk factors for or indicators of beginning psy-
chosis according to the BSIP screening instrument. Inclusion
because of attenuated psychotic symptoms required that
change in mental state had to be present at least several
times a week and for more than 1 week (a score of 2 or 3 on
the BPRS hallucination item or a score of 3 or 4 on BPRS
items for unusual thought content or suspiciousness). Inclu-
sion because of BLIPS required a score of 4 or higher on the
BPRS hallucination item or a score of 5 or higher on BPRS
items for unusual thought content, suspiciousness, or con-
ceptual disorganization, with each symptom lasting less
than 1 week before resolving spontaneously. After the base-
line assessment, ARMS individuals were followed up clini-
cally and received standard psychiatric case management
(mean [SD] follow-up, 3.8 [3.2] years). All ARMS individuals
were antipsychotic naive, while 29 were taking low-dose
antidepressants at the time of imaging (see the eMethods in
the Supplement). Sixteen ARMS individuals have transi-
tioned to psychosis (transition rate, 20%; mean [SD] time of
transition after MRI, 19.85 [19.60] months).

Patients with FEP were those who met the criteria for a
transition to psychosis according to the classification by
Yung et al.43 These patients already fulfilled criteria for acute
psychotic disorder according to the ICD-10 or the Diagnostic
and Statistical Manual of Mental Disorders (Fourth Edition)
(DSM-IV) but not yet for schizophrenia. Inclusion required a
score of 4 or higher on the BPRS hallucination item or a score
of 5 or higher on BPRS items for unusual thought content,
suspiciousness, or conceptual disorganization. The symp-
toms must have occurred at least several times a week and
persisted for more than 1 week. All patients with FEP were
antipsychotic free at the time of imaging. Six patients with
FEP were taking antidepressants (see the eMethods in the
Supplement).

Healthy controls were recruited from the same geo-
graphic area as the other groups. They had no current psychi-
atric disorder; no history of a psychiatric illness, head trauma,
neurologic illness, serious medical or surgical illness, or sub-
stance abuse; and no family history of any psychiatric disor-
der as assessed by an experienced psychiatrist in a detailed
clinical interview.

MRI Data Acquisition
Magnetic resonance imaging data were obtained in all partici-
pants. Details of the data acquisition protocol can be found in
the eMethods in the Supplement.

Computation of LGIs
Local gyrification indexes were obtained using the method
by Schaer et al,44 with images reconstructed via a software
program (FreeSurfer, version 5.3.0; http://surfer.nmr.mgh

.harvard.edu/).45 The LGIs were computed for 68 parcellated
brain regions according to the atlas by Desikan et al46 (see
eFigure 1 in the Supplement). More details can be found in
the eMethods in the Supplement.

Group Comparison on LGIs
Multiple analysis of covariance (MANCOVA) was performed.
The comparison used LGIs as dependent variables, group
as a fixed factor, and age, sex, and intracranial volume as
covariates.

Gyrification Network Construction
We first generated a 68 × 68 correlation matrix based on
LGIs for each of the 4 study groups, adjusted for the effect of
age, sex, and intracranial volume. We then used a jackknife
bias estimation procedure to determine each individual’s
contribution to the overall group-level covariance structure,
providing an individual-wise 68 × 68 distance matrix for the
4 study groups (see the eMethods in the Supplement for
more information).47,48 A graph analysis toolbox49 was used
for studying various topological properties. For the weighted
connectivity matrices obtained from each individual, a range
of network thresholds based on connection density (ie, 0.05-
0.25, with interval steps of 0.01) was applied to generate
binary undirected adjacency matrices. This choice of range
enabled between-group comparisons in topological mea-
sures across graphs with comparable number of edges but
without inducing disconnection or losing small-worldness.
Topological measures were normalized to equivalent values
derived from 20 random (“null”) networks with the same
degree of distribution. Figure 1 shows a flow diagram of the
graph analysis.

Topological Properties of Gyrification Networks
In a gyrification-based connectome, the simplest measure of
the overall network strength is provided by the average
degree of individual nodes. Modular development and
regionally selective functional dependency within clusters
of high covariance result in a high degree of segregation. In
contrast, high integration indicates a coordinated matura-
tional process affecting the entire brain; this effect may
result from the presence of certain “central” hub regions
whose structure covaries with a large number of other brain
regions, leading to widely distributed structural coupling.
Such hub regions often show a preferential covariance
among each other, making the connectome resilient to
pathological processes affecting a single hub region. Assorta-
tivity is an index of such resilience. The presence of high
segregation in the context of optimum integration gives rise
to small-worldness, measured using the small-world index
(σ). The σ is the ratio between the normalized clustering
coefficient (ϒ) and the normalized characteristic path length
(λ). The ϒ is normalized for each node and averaged across
the network; hence, it is likely to be influenced dispropor-
tionately by low-degree (or weakly connected) nodes. Tran-
sitivity, another topological measure, is free of this bias
because it is normalized collectively, providing more intui-
tive information regarding segregated structural covariance.

Disorganized Gyrification Network Properties During the Transition to Psychosis Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry June 2018 Volume 75, Number 6 615

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 05/07/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2018.0391&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391
http://www.jamapsychiatry.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2018.0391


Figure 1. Steps in Processing the Gyrification-Based Connectome

Anatomical imageA Surface reconstruction and LGI estimationB Atlas-based parcellation of surfacesC
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Adjacency matrices from jackknife bias estimation for each individualE

Gyrification-based individual connectomesF

A, Acquisition of anatomical image. B, Surface reconstruction was carried out
using a software program (FreeSurfer, version 5.3.0; http://surfer.nmr.mgh
.harvard.edu/). Local gyrification index (LGI) estimation was performed using
the method by Schaer et al.44 C, The atlas by Desikan et al46 was used for
parcellating the cortical surface to 68 regions (34 on each hemisphere).
D, Association matrices were obtained by calculating the correlations between

regional gyrification across individuals within each group separately.
E, Binary adjacency matrices were derived from bias estimates using the
jackknife procedure for each individual within the 4 study groups.
F, Binarization used the selected range of cost densities whereby the resulting
graphs were always fully connected and had small-world properties.
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See the eMethods in the Supplement for formal descriptions
of these properties.

Group Comparisons on Network Measures
To perform statistical group comparisons across the range of
densities between 0.05 and 0.25, we first constructed curves
showing the change in the measures of interest as a function
of the density. Functional data analysis was performed with
topological measures treated as a function of y = f(x), allow-
ing summation across densities and obviating the need for
multiple testing. A 1-way analysis of variance was used, fol-
lowed by post hoc t tests to compare the density function as
obtained using functional data analysis among the 4 study
groups. Given that we examined 6 topological measures,
Bonferroni-corrected 2-tailed P = .05 divided by 6 (ie, .008)
was chosen as the threshold of statistical significance. The
unbiased effect size between-group comparisons were esti-
mated using Hedges g.50

Association Between Topological Measures
and Clinical Variables
Spearman rank correlations were used to test the association
between topological measures and clinical variables (BPRS,
SANS, and GAF total scores). These correlations were tested
for each patient group separately.

Individual Prediction of a Transition to Psychosis
The extremely randomized trees algorithm51 (see the
eMethods in the Supplement) with all 6 network measures
as features was used to delineate ARMS-NT individuals from
AMRS-T individuals. We were specifically interested in
whether we could improve the positive predictive value
(PPV) because clinical instruments have a limited ability to
rule in heightened risk of subsequent psychosis in CHR
individuals.2 While increasing PPV is important to make
clinically viable predictions, reducing the number of false-
positives to a minimum is essential, especially because treat-
ments to prevent transition are of uncertain efficacy at
present. In line with prior work,52 we thus calculated 2 diag-
nostic indexes in addition to pretest and posttest probabili-
ties and the positive likelihood ratio. These factors included
the predictive summary index (PSI) to quantify the total
amount of uncertainty reduced by the gyrification test
(PSI = [PPV + NPV] − 1) (where NPV indicates the negative
predictive value) and the number needed to predict (NNP)
(NNP = 1 / PSI),53 an estimate of the number of patients that
need to be examined to correctly predict diagnosis in one
person.

Results
Demographic and Clinical Features
The 4 study groups comprised 161 participants with mean
(SD) ages ranging from 24.0 (4.7) to 25.9 (5.7) years. The 4
study groups were well matched on age, handedness, canna-
bis consumption, and antidepressant treatment, but they
differed on sex, years of education and premorbid IQ, intra-

cranial volume, cigarettes per day and alcohol consumption,
and global functioning. The 3 clinical groups differed on
the BPRS and GAF total scores but not on the SANS total
score (Table 1). Because premorbid IQ differed between
study groups as a feature of the illness, it was not included
as a covariate in all group comparisons (see eTable 1 in
the Supplement for correlations between IQ and graph
variables).

Group Differences in Raw LGIs
MANCOVA revealed no group effect on regional LGIs
(F = 0.9, P = .666). eTable 2 in the Supplement lists the raw
LGI values.

Gyrification Network Properties
We noted statistically significant group differences in the to-
pological properties of λ, σ, and transitivity but not in the over-
all network strength, assortativity, or ϒ (Table 2 and Figure 2).
Post hoc comparisons revealed that small-worldness σ was re-
duced in the ARMS-T and FEP groups compared with the HC
and ARMS-NT groups, with differences between the ARMS-NT
and ARMS-T groups showing large effect sizes (Hedges g, >1).
Characteristic path length λ was significantly higher in the
ARMS-T and FEP groups, indicating reduced integration com-
pared with the HC and ARMS-NT groups. In both cases (for
small-worldness σ and characteristic path length λ), there was
no difference between the ARMS-T and FEP groups, indicat-
ing that these parameters are observable before the transi-
tion to psychosis and remain unaltered in the presence of FEP.
In addition, we found that transitivity (segregation) was sig-
nificantly higher in the ARMS-T and FEP groups compared with
the HC and ARMS-NT groups. Transitivity was higher in the
FEP group compared with the ARMS-T group.

Association Between Graph Metrics
and Clinical Symptoms
Associations between BPRS, SANS, and GAF total scores and
the 6 network measures were tested for each patient group
(ARMS-NT, ARMS-T, and FEP) separately. There were no sig-
nificant correlations between clinical variables and network
metrics.

Classification Analysis
Using network measures as features (see the eResults and
eTable 3 in the Supplement for classification performance on
the raw LGIs), we obtained a good classification performance
(Table 3 and eFigure 2 in the Supplement). With 5000 per-
mutations, both balanced accuracy (classification value,
0.813; permutation mean, 0.499; permutation SD, 0.029)
and area under the curve (classification value, 0.883; permu-
tation mean, 0.499; permutation SD, 0.094) reached statisti-
cal significance (P < .001) (see eFigure 3 in the Supplement
for supporting data on permutation tests). eTable 4 in the
Supplement lists details for all permutation tests. Based on
this test performance, we estimated a range of diagnostic
indexes (Table 3). Notably, the posttest probability of a tran-
sition to psychosis increased by more than 60%, up to 83%
and 87% compared with the pretest probability, based on
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standard clinical assessment both in our sample and com-
pared with meta-analytic validity of psychometric CHR
interviews.2 We estimated the PSI to be 0.76 and the NNP to
be 1.30. These estimates indicate that the use of gyrification
connectomes can reduce the uncertainty in predicting a
transition to psychosis by 76%, a large gain that is likely to be
clinically significant. The NNP of 1.30 also indicates that the
overall testing burden is likely to be tolerable to gain the
improved precision as observed in this study.

Discussion

To our knowledge, this is the first gyrification-based connec-
tomic study to predict the transition to psychosis from a CHR
state. We had 3 major findings. First, we found that ARMS in-
dividuals who later transition to FEP already show abnormali-
ties in the gyrification connectome, indicating subtle
neurodevelopmental aberrations in this group. In particular,

Table 1. Clinical and Demographic Characteristics of the Study Samplea

Variable
HC
(n = 44)

ARMS-NT
(n = 63)

ARMS-T
(n = 16)

FEP
(n = 38) Group Statistic P Value

Age, mean (SD), yb 25.52 (4.27) 24.03 (4.67) 25.63 (7.08) 25.87 (5.67) F3,160 = 1.36 .26

Sex, No. (%)c

Men 17 (39) 49 (78) 8 (50) 34 (89)
χ 2

3 = 30.13 <.001
Women 27 (61) 14 (22) 8 (50) 4 (11)

Right-handedness, No. (%)c 40 (91) 59 (94) 16 (100) 36 (95) χ 2
6 = 3.61 .73

Years of education, mean (SD)b 15.45 (2.65) 13.65 (2.58) 13.81 (3.00) 13.11 (3.04) F3,160 = 5.78 .001

HC>ARMS-NT .006

HC>FEP .001

Premorbid IQ on the MWT-B,
mean (SD)b

118.48 (12.13) 114.19 (14.88) 105.36 (11.84) 106.61 (15.40) F3,111 = 4.36 .006

HC>ARMS-T .04

HC>FEP .02

Intracranial volume, mean (SD),
cm3b

1613.78 (154.73) 1687.59 (153.70) 1585.14 (133.96) 1644.44 (143.67) F3,160 = 3.17 .03

Cigarettes per day,
mean (SD), No.b

2.45 (5.74) 7.35 (8.91) 6.81 (8.42) 11.11 (10.89) F3,160 = 6.90 <.001

HC<ARMS-NT .03

HC<FEP .001

Alcohol consumption, No. (%)c

None 5 (11) 6 (9) 7 (44) 14 (37)

χ 2
6 = 23.00 .001Moderate 37 (84) 47 (75) 8 (50) 22 (58)

Uncontrolled 2 (5) 10 (16) 1 (6) 2 (5)

Cannabis consumption, No.c

Yes 5 (11) 20 (32) 4 (25) 11 (29)
χ 2

3 = 6.23 .10
No 39 (89) 43 (68) 12 (75) 27 (71)

BPRS total score, mean (SD)d NA 36.90 (8.33) 38.00 (6.64) 50.03 (13.42) F2,116 = 20.99 <.001

ARMS-NT<FEP <.001

ARMS-T < FEP <.001

SANS total score, mean (SD)d NA 13.87 (11.97) 18.06 (11.94) 18.26 (13.57) F2,116 = 1.74 .18

GAF total score, mean (SD)b 90.34 (4.68) 70.98 (12.54) 63.38 (13.84) 54.74 (17.21) F3,160 = 58.41 <.001

HC>ARMS-NT <.001

HC>ARMS-T <.001

HC>FEP <.001

Antidepressant treatment,
No. (%)e

Yes NA 23 (37) 6 (38) 7 (18)
χ 2

2 = 4.03 .133
No NA 40 (63) 10 (63) 31 (82)

Abbreviations: ARMS-NT, at-risk mental state nontransition; ARMS-T, at-risk
mental state transition; BPRS, Brief Psychiatric Rating Scale; FEP, first-episode
psychosis; GAF, Global Assessment of Functioning; HC, healthy control; MWT-B,
Mehrfachwahl-Wortschatz-Test Form B; NA, not applicable; SANS, Scale for the
Assessment of Negative Symptoms.
a Controlling for group effect, there is a significant negative association

between years of education and cigarettes per day (r = −0.277, P = .003) and a
significant positive association between years of education and premorbid IQ
(r = 0.262, P = .005). Controlling for group effect, cannabis consumption is
positively associated with cigarettes per day (F = 12.822, P = .001) but not

years of education (F = 0.231, P = .63) or premorbid IQ (F = 0.193, P = .66).
Controlling for group effect, alcohol consumption is not associated with years
of education (F = 0.385, P = .68), premorbid IQ (F = 1.991, P = .14), or
cigarettes per day (F = 0.811, P = .45).

b Analysis of variance between all 4 study groups.
c χ2 Test between all 4 study groups.
d Analysis of variance between ARMS-NT, ARMS-T, and FEP.
e χ2 Test between ARMS-NT, ARMS-T, and FEP.
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those who later transition to psychosis demonstrate a highly
segregated but poorly integrated pattern in structural covari-
ance of cortical folding compared with nonconverters and
healthy individuals. Second, the alterations in the gyrifica-
tion connectome seen in the ARMS-T group were also present
in antipsychotic-free patients with FEP. Third, by using topo-
logical measures of the gyrification connectome, we were able
to predict the future outcome of a transition to psychosis with
81.34% balanced accuracy.

In search of the neural mechanisms that contribute to
emerging psychosis, developmental processes are increas-
ingly being recognized to be crucial for a transition to
psychosis.54 Structural covariance based on morphometric
measures, especially gyrification, represents synchronized
developmental changes.55-57 When developmental lesions are
experimentally induced in the white matter, covarying proxi-
mal and distal changes occur in gyrification patterns,35 indi-
cating the influence of axonal integrity during early life. Be-
cause most cortical folding is complete in fetal life,32 it is likely
that the topological abnormalities associated with a transi-
tion to psychosis that we report herein had been already present
in early childhood. Various perinatal insults and defenses
against these insults could result in a pattern of segregated cor-
tical development.33,34 Nevertheless, the lack of regional
changes in the degree of cortical folding among the 4 study
groups indicates that either these insults were widespread (not
localized) but brief or were partially compensated by other fac-
tors controlling the morphogenesis.58

As argued by Van Os and Delespaul,59 the number of CHR
individuals who need to be treated to prevent one case of full-
blown psychotic disorder relates directly to both the PPV of the
prognostic test used and the success rate of the preventiveTa

bl
e

2.
Gr

ap
h

Va
ria

bl
es

an
d

Th
ei

rE
ff

ec
tS

iz
es

in
th

e
H

C,
AR

M
S-

N
T,

AR
M

S-
T,

an
d

An
tip

sy
ch

ot
ic

-F
re

e
FE

P
Gr

ou
ps

Gr
ap

h
Va

ria
bl

e

M
ea

n
(S

D)

F
Sc

or
e

P Va
lu

e

H
C

vs
AR

M
S-

N
T

H
C

vs
AR

M
S-

T
H

C
vs

FE
P

AR
M

S-
N

T
vs

FE
P

AR
M

S-
T

vs
FE

P
AR

M
S-

N
T

vs
AR

M
S-

T

H
C

(n
=

44
)

AR
M

S-
N

T
(n

=
63

)
AR

M
S-

T
(n

=
16

)
FE

P
(n

=
38

)
H

ed
ge

sg
P Va

lu
e

H
ed

ge
sg

P Va
lu

e
H

ed
ge

sg
P Va

lu
e

H
ed

ge
sg

P Va
lu

e
H

ed
ge

sg
P Va

lu
e

H
ed

ge
sg

P Va
lu

e

λ
0.

96
9

(0
.1

35
)

0.
95

3
(0

.1
28

)
1.

09
5

(0
.1

07
)

1.
04

6
(0

.1
32

)
7.

87
1

<.
00

1
0.

12
1

.5
35

−0
.9

69
.0

01
−0

.5
71

.0
11

−0
.7

13
<.

00
1

0.
38

5
.1

95
−1

.1
32

<.
00

1

ϒ
1.

96
0

(0
.0

86
)

1.
96

1
(0

.1
04

)
1.

95
8

(0
.0

66
)

1.
91

4
(0

.1
07

)
2.

16
2

.0
95

−0
.0

10
.9

58
0.

02
4

.9
33

0.
47

3
.0

34
0.

44
4

.0
32

0.
44

7
.1

34
0.

03
0

.9
13

σ
2.

17
0

(0
.2

93
)

2.
20

7
(0

.2
76

)
1.

92
1

(0
.2

42
)

1.
97

9
(0

.2
73

)
8.

58
1

<.
00

1
−0

.1
30

.5
07

0.
87

6
.0

04
0.

66
6

.0
03

0.
82

3
<.

00
1

−0
.2

16
.4

65
1.

05
0

<.
00

1

Tr
an

si
tiv

ity
0.

64
7

(0
.0

31
)

0.
66

2
(0

.0
34

)
0.

60
2

(0
.0

33
)

0.
62

3
(0

.0
34

)
20

.5
18

<.
00

1
−0

.4
54

.0
22

1.
40

9
<.

00
1

0.
73

3
.0

01
1.

13
8

<.
00

1
−0

.6
14

.0
42

1.
75

7
<.

00
1

Av
er

ag
e

de
gr

ee
10

.1
26

(0
.0

07
)

10
.1

23
(0

.0
09

)
10

.1
23

(0
.0

02
)

10
.1

22
(0

.0
06

)
2.

22
9

.0
87

0.
36

1
.0

67
0.

48
4

.0
98

0.
60

4
.0

07
0.

12
4

.5
45

0.
19

0
.5

20
0.

01
1

.9
96

As
so

rt
at

iv
ity

−0
.3

95
(0

.1
14

)
−0

.3
77

(0
.1

08
)

−0
.4

03
(0

.0
83

)
−0

.4
09

(0
.1

07
)

0.
82

9
.4

80
0.

16
2

.4
09

−0
.0

73
.7

98
−0

.1
25

.5
70

−0
.2

95
.1

51
−0

.0
59

.8
42

−0
.2

49
.3

73

Ab
br

ev
ia

tio
ns

:A
RM

S-
N

T,
at

-r
isk

m
en

ta
ls

ta
te

no
nt

ra
ns

iti
on

;A
RM

S-
T,

at
-r

isk
m

en
ta

ls
ta

te
tr

an
sit

io
n;

FE
P,

fir
st

-e
pi

so
de

ps
yc

ho
sis

;H
C,

he
al

th
y

co
nt

ro
l;

.λ
,c

ha
ra

ct
er

ist
ic

pa
th

le
ng

th
;ϒ

,c
lu

st
er

in
g

co
ef

fic
ie

nt
;σ

,s
m

al
l-w

or
ld

in
de

x.

Figure 2. Graph Variable Comparisons for the HC, ARMS-NT, ARMS-T,
and FEP Groups
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a P < .001 compared with HC.
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treatment. Assuming the latter to be 50%,59 we would need a
PPV greater than 50% to obtain a number needed to treat of
4. Given that only 4% to 5% of patients who eventually de-
velop FEP seek help for CHR features even in specialized
settings,60,61 it is important that false-negatives are kept to a
minimum. To date, approaches like the North American Pro-
drome Longitudinal Study risk calculator62 and the polyenvi-
romic risk score risk prediction tool63 have not provided a high
PPV alongside a high sensitivity. The gyrification connec-
tome offers predictors that appear to achieve both high PPV
and moderate sensitivity.

Our results are comparable with the findings of GMV-
based transition prediction biomarkers.64-66 While we achieved
comparable balanced accuracy and higher PPV, NPV, and speci-
ficity, our sensitivity was lower. Low sensitivity may relate to
sampling imbalance (63 ARMS-NT vs 16 ARMS-T), although it
reflects the true base rates in this population. Furthermore,
pathophysiological (ie, GMV vs gyrification67) and method-
ological differences (support vector machine vs extremely ran-
domized trees algorithm, as well as different cross-validation
strategies) may also explain the divergent results. Gyrifica-

tion connectomes may be well suited as part of sequential test-
ing approaches to improve psychosis prediction.3 Our results
need to be validated in larger, enriched samples to ensure their
real-world utility.

Limitations
Several limitations of our study merit comment. It is not
yet clear what is the best way of defining individual nodes when
constructing graph networks.68 We used neuroanatomically de-
fined boundaries of cortical folding to generate intuitively
meaningful values of gyrification that can be applied invari-
ably across different groups being compared and be reliably
replicated in future studies. This approach is also likely
to provide greater convergence with developmental changes.57

We did not assess perinatal complications and thus could not
explore whether developmental problems have driven the to-
pological abnormalities seen in those transitioning to psychosis.
Also, we did not consider other developmentally influenced
brain measures, such as surface area, that might facilitate im-
prove psychosis prediction.69 Furthermore, we had approxi-
mately a 20% transition rate in our sample during almost 4 years
of follow-up. Although the transition to psychosis generally pla-
teaus the first 2 years after the initial clinical assessment and
the transition rate after this period is likely to be small,70 the
duration of the follow-up period should be considered when
testing the predictive accuracy of gyrification networks. The
lack of a significant association between topological altera-
tions and symptom expression should be considered with cau-
tion; disorganized gyrification could also be a marker of poor
cognitive or functional outcomes not assessed in this study.

Conclusions
In summary, we provide the first report to date that a transi-
tion to psychosis is associated with developmental disrup-
tions in the morphogenesis of cortical folding. This observa-
tion makes perturbed neurodevelopment directly relevant to
the neurobiology of psychosis onset in a sample with clini-
cally defined ARMS. Gyrification connectomes can poten-
tially be used to provide sample enrichment among CHR
individuals to promote prevention of psychosis.
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