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ABSTRACT

We propose Word-Frequency-based Image-Text Pair Pruning (WFPP), a novel
data pruning method that improves the efficiency of VLMs. Unlike MetaCLIP,
our method does not need metadata for pruning, but selects text-image pairs to
prune based on the content of the text. Specifically, WFPP prunes text-image
pairs containing high-frequency words across the entire training dataset. The
effect of WFPP is to reduce the dominance of frequent words. The result a better
balanced word-frequency distribution in the dataset, which is known to improve
the training of word embedding models. After pre-training on the pruned subset,
we fine-tuned the model on the entire dataset for one additional epoch to achieve
better performance. Our experiments demonstrate that applying WFPP when
training a CLIP model improves performance on a wide range of downstream tasks.
WEFPP also provides the advantage of speeding up pre-training by using fewer
samples. Additionally, we analyze the training data before and after pruning to
visualize how WFPP changes the balance of word frequencies. We hope our work
encourages researchers to consider the distribution of words in the training data
when pre-training VLMs, not limited to CLIP.

1 INTRODUCTION

Large-scale pre-trained Vision-Language Models (VLMs) are gaining popularity, because of their
remarkable zero-shot transferability (Radford et al.,[2021} ILi et al.| [2023b} |Zhai et al.| 2022; Jia et al.}
2021} Kim et al., [2021). This makes the VLM a foundational model with wide applicability in a
variety of downstream tasks (Rombach et al., 2022} Ramesh et al.,|2022). The success of VLMs
rests on two key points: (1) Large-scale image-text pair datasets crawled from the Internet (Sharma
et al.,2018; |Changpinyo et al.,[2021} Thomee et al., 2016; Schuhmann et al.|[2022)). (2) Large-scale
transformers used as image and text encoder (Dosovitskiy et al.,|2021}; |Vaswanti et al., 2017).

Despite the importance of the scale of large-scale datasets, previous work has shown that pruning
the training dataset can lead to improvements. MetaCLIP (Xu et al.| 2024) employs a strategy that
leverages metadata associated with text-image pairs in order to create a subset of CLIP training
data. MetaCLIP pruning results in a new dataset that is balanced at the level of metadata categories
(called “entries"), such that the number of texts associated with any given category does not exceed a
threshold. The improvements of pruning are accompanied by the computational speed-up that results
when the size of the training dataset is reduced.

In this paper, we propose that the decision to prune an image-text pair should be based directly
on information about the frequency of words in that pair. Our method, Word-Frequency-based
Image-Text Pair Pruning (WFPP) is inspired by observations of the importance of balancing word
frequencies for training word embedding models. Specifically, Mikolov et al.|(2013) introduced a
technique that subsamples frequent words in text data, in order to speed up the training and enhance
the quality of word representations. Like Mikolov et al.|(2013)), we consider a dataset to be better
balanced in terms of word-frequency when the frequencies of frequent words are less dramatically
higher than the frequencies of infrequent words. Our idea is also consistent with work that has
demonstrated that neural networks tend to learn more from the majority class due to the higher
number of examples available (Ross & Dollar, 2017; Buda et al., 2018)).



Under review as a conference paper at ICLR 2025

Comparison of Zero-Shot Accuracy On ImageNet-1K

35 .3x speedup

34 A

33 A

321

314

Zero-shot accuracy (%)

301

—e— w ft WFPP
w/o ft WFPP
—— CLIP

294

28 1

140 160 180 200 220 240 260 280
Samples seen (Million)

Figure 1: Zero-shot accuracy on ImageNet-1K classification. CLIP is trained on the CC12M
dataset (Changpinyo et al., [2021). Using our Word-Frequency-based Image-Text Pair Pruning
(WFPP), we achieve comparable performance, while using only approximately 77% of the image-text
pairs (1.3x speedup). The image encoder is ViT-B-16 (Dosovitskiy et al., 2021)). The "ft" is fine-
tuning. The w/o ft is without fine-tuning. “Samples seen” refers to the number of samples processed
during pre-training.

WEFPP uses a simple yet effective text-level score based on word probabilities to prune image-text
pairs from the data set in which the text contains frequent words. Word balance could also be
improved by removing individual words from the training data, such as proposed by |Liang & Larson
(2023). However, such an approach does not remove images, which is disadvantageous since the
image encoder usually accounts for a large portion of the training time. WFPP in contrast selects
entire image-text pairs for removal. Note that the WFPP manner of removing texts does not impact
the overall vocabulary richness, measured in vocabulary size, which is important to maintain.

Figure[T|demonstrates that our method effectively speeds up zero-shot classification tasks by 1.3x
while maintaining the performance of CLIP trained on the full training set. Moreover, our findings
demonstrate that WFPP outperforms CLIP in a variety of downstream tasks, including zero-shot
classification and zero-shot image-text retrieval across multiple datasets.

WEFPP offers two advantages over the data pruning proposed by MetaCLIP. First, WFPP selects
image-text pairs on the basis of an individual score. In contrast, MetaCLIP selects image-text pairs
on the basis of the metadata category they are associated with, meaning that the selection process is
less specific. Second, WFPP selects image-text pairs directly using the content of the training data
and without the need for a list of metadata categories. Often, the data collection process for training
sets involves the use of queries, which can be adopted as the metadata categories for the training
examples, as in CLIP. However, it is not a given that the dataset was created in this way. Further, the
set of categories use to collect one dataset might not be optimal to subsample another dataset, e.g.,
with a different topical distribution. The contributions of this work can be summarized as follows:

* Image-text-pair-level pruning: We introduce an image-text pair pruning method based
on word frequency, which substantially reduces the computational requirements while
pre-training VLMs without compromising performance.

* Word balance: Our approach contributes to the evidence on the importance of word balance,
the importance of good design decisions for large-scale datasets, rather than just scaling
them up.

* We provide extensive experiments and analyses that CLIP trained on a dataset sampled with
our approach outperforms CLIP trained on an unsampled dataset.
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Our code is available onlineﬂ

2 RELATED WORK

Due to its remarkable zero-shot transferability, the visual-semantic embedding model as a foundational
model has received sustained attention from researchers. In this section, we describe the pre-training
methods for vision-language models and discuss related works to accelerate their pre-training.

Vision-Language Models: DeViSE (Frome et al.,[2013) learns visual-semantic embedding from
labeled embeddings which are generated from pre-trained skip-gram on 5.7 million documents (5.4
billion words) extracted from wikipedia.org. The semantic knowledge learned from language provides
the zero-shot prediction capability of a visual model, which improves performance on unseen data.
To enhance visual-semantic embeddings and achieve good zero-shot performance, CLIP and ALIGN
scale the data to 400M to learn the better visual-semantic embedding that achieves remarkable
zero-shot performance across 27 datasets (Radford et al., 2021}, Jia et al.l [2021). These models are
pre-trained by contrastive learning, which pushes positive image-text pairs closer to each other and
separates negative image-text pairs, aligning the vision and language by acquiring a visual-semantic
embedding from the natural language supervision. However, pre-training VLMs on large-scale data

are quite expensive, demanding thousands of GPU days (Cherti et al.} 2023} Radford et al., 202T).

Efficient Language-Image Pre-training for CLIP: Several methods have been proposed to enhance

the efficiency of CLIP models. DeCLIP[Li et al leverages additional self-supervised losses

to improve image and text representations which extends CLIP by incorporating intra-modal self-
supervision, cross-modal multi-view supervision, and nearest-neighbor supervision. FILIP[Yao et al]
(2022)) introduces a cross-modal late interaction module that refines the contrastive objective by using

token-wise maximum similarity between visual and textual tokens. UniCLIP [Lee et al] unifies

inter-domain (image-text) and intra-domain (image-image, text-text) contrastive losses into a single

universal embedding space, capturing comprehensive relationships across and within modalities.
Knowledge distillation approaches such as TinyCLIP[Wu et al | and MoPE-CLIP [Lin et al]
transfer knowledge from large pre-trained models to smaller ones via cross-modal distillation

to reduce the pre-training budget. Additionally, methods like MobileCLIP [Vasu et al| (2024) and

ALIP [Yang et al. generate synthetic captions using models pre-trained on large datasets

(CoCa|Yu et al|(2022) and OFA _base[Wang et al|(2022)), respectively) to improve CLIP pre-training.
Although these proposed pre-training strategies and synthetic caption methods are efficient, they may

still exhibit imbalanced word distributions of pre-training data. Applying WFPP to these methods

can further improve training efficiency. Moreover, Fast Language-Image Pre-training (FLIP)
2023b) removes a large portion of image patches to speed up pre-training VLMs. FLIP uses

ViT as an image encoder, reducing computation by 2-4x by removing 50%-75% patches of the

image while obtaining better accuracy than the unmasked model 2023b). In addition, they

randomly masked 50% of the text to pre-train the VLMs, However, this approach does not work

well in text encoders, and the performance of zero-shot classification on ImageNet is decreased.
Resource-efficient CLIP (RECLIP) employs a smaller version of images for the

initial pre-training of CLIP and subsequently fine-tunes the models using larger versions of the

images. The pre-training RECLIP with an image size of 64 x 64 reduces compute resource usage by

approximately 80% while still outperforming CLIP on image-text retrieval tasks (Li et al.| 2023a).
Subsampling of Frequent Words for Contrastive Language-Image Pre-training (SW-CLIP) (Liang &
proposed a frequency-based word subsampling technique to reduce text length by half
for pre-training VLMs, but does not remove image-text pairs.

Data Puning in VLMs: Several data pruning methods have been developed for Natural Language
Processing [Sorscher et al| (2022)); [Marion et al (2023)) and Computer Vision (2024).
However, in this work, we focus on multimedia data pruning. Metadata-Curated Language-Image
Pre-training (MetaCLIP) 2024) creates a balanced subset based on the metadata distribution
to pre-train VLMs. To balance the training data, MetaCLIP selects image-text pairs from the data
pool where the text contains a metadata entry. These metadata entries consist of four components:
WordNet synsets, Wiki unigram, Wiki bigram, and Wiki titles. MetaCLIP utilizes a rich metadata
source with 500k entries covering a wide range of concepts. However, it only seeks a balance at
the level of the entries (metadata categories), which could lead to certain words being under or

"https://anonymous.4open.science/r/ WFPP-1656/



Under review as a conference paper at ICLR 2025

Table 1: Two example texts. In the probability row, we show the probability of removing words in
the text. Then, the last column is the probability of a text being removed from the data; it is the joint
probability of the words in the text. The value of ¢ in Equation is setto 1077,

. — S(t;)
text a picture o arcode
Flw:) | 09980 09861 09978 0.8342 | %-2047°
text a picture of dog
Flw:) | 09980 09861 09978 09878 | 24249

over-represented in the sampled training data. In this paper, we prune image-text pairs based on word
frequency to create a more balanced subset for pre-training VLMs. Our approach is also easier to
implement, as it does not require collecting and filtering thousands of entries or engaging in complex,
time-consuming curation processes.

3 METHOD

In this section, we present WFPP, a method designed to enhance the pre-training of Vision-Language
Models (VLMs) by strategically selecting image-text data from the dataset based on word frequency.
Following the data pruning process, we can effectively pre-train the VLM using a reduced portion of
the dataset without compromising its performance.

Following our proposed principles for building more balanced data, we remove as much text as
possible from the dataset that contains higher-frequency words. The removal probability of a text is
defined by the joint probability of the words in the text. This approach maintains the diversity of the
data when filtering the information, as well as maintaining a balance between frequent and infrequent
words.

To achieve our goal, we first compute the frequency of words using the equation:

c(w;)

Z?:l c(w;)

In this equation, f(w;) represents the frequency of the word w;, and ¢(w;) stands for the word count
for w;. Next, we determine the probability of a word being discarded according to Eq. [2}

P(wi)Z{l_m flw) >t N
1

flw;) = ey

otherwise

In this equation, ¢ serves as the threshold controlling the probability of a word being discarded
(Mikolov et al.,2013). We set P(w;) to 1 if f(w;) <= t, in this way, very rare words do not affect
the probability of the text being discarded. Due to the limited number of rare words occurring in the
dataset, the impact on model performance is very slight.

Lastly, we calculate the joint probability of a text being discarded from the dataset according to Eq.

S(t;) = =[] Plw:) 3)

In this equation, ¢; represents the j — th text, while S(¢;) represents both the joint probability of
words being discarded and the probability of the text being discarded from the dataset. n is the
length of the text, and the maximum value of n is equal to the maximum value of the input text. The
advantage of this equation is that it filters out text containing frequent words to create a subset of the
dataset with a balanced word distribution.

In Table[I] the rows display the probabilities of text being discarded from the dataset. On one hand,
text containing infrequent words has a low probability of being discarded from the dataset (row
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Table 2: The details of pre-training and fine-tuning setup.

Configuration Pre-training Value Fine-tuning Value

Optimizer AdamW (Loshchilov & Hutter|[2019) AdamW (Loshchilov & Hutter|[2019)
Learning rate le-3 le-5

Weight decay 0.1 0.05

Optimizer momentum | 81, 52 = 0.9,0.999 (Chen et al.|[2020) B1, 52 = 0.9,0.999 (Chen et al.|[2020)
Learning rate schedule | Cosine decay (Loshchilov & Hutter|[2017) | Cosine decay (Loshchilov & Hutter![2017)
‘Warmup steps 10k 10%

Epochs 30 1

Numerical precision Automatic mixed precision Automatic mixed precision

Augmentation RandomResizedCrop RandomResizedCrop

1). On the other hand, texts containing frequent words, as illustrated in the second row of Table El,
have a high probability of being discarded from the dataset. After pruning the data based on word
frequency, we obtain a new balanced dataset that maintains the diversity of the data while reducing
the training samples. Subsequently, we sort the texts by their joint probability S(¢;) and select a
specific number of samples in order to pre-train the model. We pre-trained the model using different
sampling proportions to identify the proportion of data that achieves comparable performance to the
model pre-trained on the entire dataset.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset In our experiments, we utilize CC3M and CC12M to pre-train our model which includes
about 3M and 12M image-text pairs (Sharma et al., 2018} |Changpinyo et al.|[2021). These datasets
were chosen because they collect a large number of different image-text pairs, providing diverse
content for pre-training effective VLMs. We employed various methods for subsampling the dataset,
including random selection, and frequency-based sampling. This comparative analysis aims to
illustrate the advantage of more diverse data over less diverse data in the context of pre-training
models. As a result, we have successfully downloaded 2.72 million data items for CC3M, and 9.30
million data items for CC12M (Sharma et al.| 2018} |Changpinyo et al., [2021). In these datasets,
each image has an associated text. We also use the COCO (Lin et al., 2014) and Flick30K (Young
et al.| 2014)) to evaluate the zero-shot retrieval performance, and in these datasets, each image has five
associated texts to describe the context of the image.

Architecture For the image encoder, we used ViT-B-16 (Dosovitskiy et al.,2021)) to encode the image
and the input size of the image is 224. We use a Transformer-based model (Vaswani et al., 2017) as
the text encoder and the text length is 32 (Li et al.,[2023b). Following CLIP and OpenCLIP (Radford
et al., [2021}; |Cherti et al.| [2023), we compute the similarity score based on the cosine similarity
between image and text embeddings. The model is pre-trained by InfoNCE loss (Oord et al., 2018),
and the similarity scores are scaled by a learnable temperature parameter (Radford et al., 2021}).

Training and Fine-tuning We first pre-trained the model on the entire dataset, as well as on random
and WFPP subsets, for 30 epochs. Then, we fine-tuned the models pre-trained on the subsets using
the entire dataset for an additional epoch. This additional epoch of fine-tuning aims to bridge the
distribution gap between the pre-training and inference stages and to account for any unknown
concepts that may have been present in the initially removed data. The value of ¢ in Eq. [2]is set to
1077, and the details of pre-training and fine-tuning configuration are shown in Table

4.2 EVALUATION

To evaluate the zero-shot classification performance on ImageNet, where the model correctly classifies
data into never-before-seen categories during training. We follow the prompt engineering of CLIP
and OpenCLIP (Radford et al.|l 2021} |Cherti et al., 2023)), utilizing their codebase, which includes
a set of 80 templates. We then calculated the cosine similarity score between the image and text
embeddings to evaluate the correspondence.



Under review as a conference paper at ICLR 2025

Table 3: Zero-shot classification accuracy on ImageNet-1K. We pre-train models by sampling
image-text pairs sorted according to Equation [3| at sampling rates ranging from 50% to 90%. The
pre-training dataset is CC12M (Changpinyo et al.| 2021, and the image encoder used is ViT-B-
16 (Dosovitskiy et al.,|2021)). “Samples seen” refers to the proportion of the dataset processed during
pre-training, with 100% set as 1.00. w/ft and w/o/ft is with and without fine-tuning.

Method  Sample Size  w/o/ft w/ft Samples seen (w/ft)

9.30M %8 X 1.00x
CLIP 4 65M (50%) 282 302 0.53%
365M (50%) 298 313 0.53%
5.58M (60%) 323 333 0.63
WEPP  6.51M (70%) 334 34.4 0.73x
744M (80%) 343 350 0.83x
8.37M (90%) 349 35.5 0.93x

Table 4: Zero-shot robustness evaluation, Comparison of zero-shot accuracy performance between
CLIP trained on the original datasets and on data pruned with WFPP on various classification
benchmarks.

WEPP

Dataset CLIP |\ so0  60%  70% 80%  90%
TmageNet-A 769 | 671 779 749 811  8.15
ImageNet-O 38.05 | 3580 36.85 3670 39.15 3845
ImageNet-R 45.02 | 3594 3897 4132 4343 44.16
ImageNet Sketch | 22.89 | 17.17 18.82 2098 21.72 22.53
ImageNetV?2 30.15 | 2644 28.10 29.72 3041 30.90
ObjectNet 2073 | 1921 2091 2130 21.83 21.94
Average 7742 [ 2355 2504 12625 2744 27.69

Zero-shot ImageNet Classification. First of all, as shown in Figure [T] we pre-train the model
on different size subsets of CC12M. When we evaluate our method on zero-shot accuracy on
ImageNet-1K (Deng et al.| |2009) validation, we only need 80% of the computation to achieve a
better performance as the CLIP counterpart. Specifically, as detailed in the first (100%) and sixth
rows (80%) of Table 3} our model, utilizing just 83.3% of the computational resources compared
to the model trained on the full dataset, achieves better performance in the zero-shot ImageNet-1K
classification task, with scores of 35.0% versus 34.8%.

As shown in the second and third rows of Table 3] the model pre-trained on a subset pruned using
a word frequency-based method performs significantly better in the zero-shot image classification
task than the model trained with a randomly pruned subset (29.8% vs. 28.2%). The WFPP method
outperforms the random method by 1.7% before fine-tuning. After fine-tuning for an additional epoch
on the entire dataset, our method continues to outperform the random method by 1.1%. Notably, the
differences between the random and frequency-based methods become smaller after fine-tuning the
model on the entire dataset.

Subsampling more data. As demonstrated in Table [3] subsampling 90% of the image-text pairs
from the CC12M dataset allows us to attain comparable performance without needing to fine-tune
the model on the entire dataset. This observation suggests that excluding the 10% of image-text pairs
containing frequent words results in only a slight performance degradation of 0.1%. After fine-tuning
the model on the entire dataset, the model trained on WFPP-pruned data outperforms the original
CLIP by 0.7% on ImageNet-1K. Moreover, increasing the subsampling percentage from 50% to
60%, 70%, 80%, and 90% results in performance improvements of 2.5%, 1.1%, 0.9%, and 0.6%,
respectively. This indicates that data efficiency decreases as the amount of data increases. The latter
part of the data contains more high-frequency words than the former part of the data. Blindly adding
data becomes increasingly inefficient. As a result, the efficiency of adding more data indiscriminately
decreases over time. For the reason, we do not recommend to use the latter part of the data when
using WFPP data pruning.
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Table 5: Zero-shot accuracy on more classification datasets. Comparison of zero-shot classification
accuracy between CLIP trained on the original datasets and on data pruned with WFPP on various
classification benchmarks.

WEPP
Dataset CLIP |\ so0  60%  70% 80%  90%
Food-101 4057 | 38.64 4077 4122 4230 4325
CIFAR-10 6328 | 5244 5755 6357 65.60 66.88
CIFAR-100 3225 | 27.10 3040 32.86 28.85 29.56
CUB200 813 | 820 830 877 942 875
SUN397 48.02 | 4551 47.67 4846 50.07 50.61
Cars 7.19 | 461 456 565 740 7.18
Aircraft 284 | 1.62 268 245 220 289
DTD 1543 | 1457 1574 17.18 1628 18.88

OxfordPets 56.11 | 4598 53.27 56.38 53.58 56.49
Caltech-101 70.16 | 64.56 66.54 68.01 6893 69.23
Kinetics700 24.23 | 21.96 2291 2341 2411 24.05

Flowers102 1.87 | 292 242 236 158 1.58
MNIST 949 | 18.08 1429 1454 1130 15.13
STL10 91.76 | 90.05 89.96 90.54 90.55 92.14
EuroSAT 22.00 | 17.66 2572 2256 26.14 24.32
Resisc45 36.57 | 35.30 3333 35.17 3324 36.59
GTSRB 1040 | 485 954 625 1055 5.05
KITTI 3643 | 36.83 34.89 39.04 34.89 37.30
Country211 435 | 439 450 444 410 4.96
PCAM 52.89 | 52.55 5276 5239 51.67 52.62
UCF101 38.14 | 35.74 3796 39.02 4142 39.02
CLEVR 18.27 | 17.74 1323 19.14 16.55 25.00
HatefulMemes | 52.62 | 53.26 54.30 50.09 50.79 51.53
SST2 50.47 | 45.85 50.03 48.27 51.29 50.03
ImageNet 3480 | 31.31 3333 3442 35.00 35.50
Average 33.13 | 30.87 3227 33.05 33.11 33.94

Zero-shot Robustness Evaluation Following the methodology of CLIP (Radford et al., [2021]),
we evaluate robustness in Table ] Using 80% of the image-text pairs, we achieve a comparable
average performance to CLIP (27.44% vs. 27.42%) on these 6 datasets. Consequently, adding an
additional 10% of image-text pairs results in only a 0.25% improvement, indicating that the efficiency
of indiscriminately adding data with frequent words decreases over time in these datasets as well.

Zero-shot Classification on More Datasets ImageNet is a general-purpose dataset for evaluating the
benchmark performance of VLMs, providing a benchmark for their effectiveness. While it provides
a performance reference for VLMs, it’s crucial to recognize that large-scale VLMs are destined
for application across diverse datasets and tasks. Consequently, evaluating our approach to various
datasets becomes imperative to underscore the significance of achieving a balance between data and
diversity. The datasets featured in Table 5| hail from various domains, illustrating the advantages
derived from this balanced approach to data diversity Specifically, within the CC12M dataset, WFPP
demonstrates comparable average performance to CLIP in the zero-shot classification task across
26 datasets. First, the model is pre-trained on 80% of the data to achieve a similar performance as
the model pre-trained on the entire dataset, which requires only 83.3% of CLIP’s computational
resources. Moreover, on the CC12M dataset—as shown in columns 2 and 4 of Table 5]—WFPP
requires only 63.3% of the computational resources compared to CLIP while achieving a similar
average performance across 26 datasets (33.13% vs. 32.27%). Furthermore, when using 90% of the
CC12M dataset, WFPP outperforms CLIP by an average of 0.83% across 26 datasets. The zero-shot
classification performance of the majority of the datasets demonstrates improvement due to the
diversity and balance in the data.

Zero-shot retrieval The task of image-text retrieval involves retrieving information from one modality
(text or image) based on the given information from another modality (image or text). We evaluate
WEPP for zero-shot image-text retrieval on COCO (Lin et al., [2014) and Flickr30K (Young et al.,
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Table 6: Zero-shot Image-Text Retrieval: We evaluate CLIP’s and WFPP image-text retrieval
performance on both COCO and Flickr30k datasets.

Text Retrieval Image Retrieval
Model  Sample Size Flickr30k COCo Flickr30k coco
R@l R@5 R@I10 | R@l R@5 R@I0 | R@l R@5 R@I10|R@]l R@5 R@I0
CLIP 9.30M 59.17 8540 9024 | 3432 61.14 7250 | 4538 7195 81.05 | 22.65 4694 58.86

4.65M (50%) | 50.99 78.50 85.40 | 30.16 54.72 66.88 | 36.90 64.77 74.14 | 18.67 40.69 52.74
5.58M (60%) | 57.00 81.56 88.07 | 31.88 57.70 69.38 | 39.47 67.50 76.82 | 19.79 43.04 54.92
WFPP  6.5IM (70%) | 56.51 8294 89.74 | 34.06 5946 71.18 | 41.03 6893 79.63 | 21.02 45.10 57.22
7.44M (80%) | 59.47 85.11 90.34 | 3398 60.88 72.06 | 4256 70.12 79.82 | 22.18 46.36 58.48
8.37M (90%) | 60.55 8491 89.94 | 3424 60.52 71.70 | 4349 71.18 80.10 | 22.61 46.30 58.34

Table 7: Zero-shot accuracy on ImageNet- Table 8: Zero-shot accuracy on ImageNet-1K
1K classification. Comparison of unpruned  classification. We compared WFPP with Meta-
CLIP and pruning with WFPP and the Meta-  CLIP, both of them pre-trained on 50% of the

CLIP method using the CC3M dataset. CC3M dataset.
Method ~ Sample Size  w/o/ft  w/ft  Samples seen (w/ft) Method S amp]e Size w/o/ft w/ft
100% 174 X 1.00
CLIP 50% 115 13.1 o.ssi CLIP 50% 11.5 13.1
50% 134 151 0.53x MetaCLIP 50% 12.9 14.8
60% 142 162 0.63x WFPP 50% 134 151
WEFPP 70% 159 174 0.74x
80% 167 179 0.83x
90% 169 17.5 0.93x

2014) datasets. Following (Karpathy & Li| 2015), we utilize 1000 and 5000 test set images
for evaluating performance zero-shot image-text retrieval on Flickr30K and COCO, respectively.
Recall@K scores (where K = 1, 5, 10) are reported, representing the percentage of total test samples
wherein the correct sample is present among the first K returned candidate samples.

Even when using fewer training samples, WFPP demonstrates competitive performance compared to
the original CLIP model in zero-shot image-text retrieval tasks on the COCO and Flickr30K datasets.
As the sample size for WFPP increases from 50% to 90% of CLIP’s training data, its retrieval metrics
steadily improve across both datasets. Notably, at 90% sample size, WFPP surpasses CLIP in text
retrieval on Flickr30K, achieving an R@1 score of 60.55 compared to 59.17. These results suggest
that WFPP achieves similar or superior performance to CLIP while being more data-efficient.

Pre-training on Different Dataset. We also pre-trained the model on the smaller dataset
CC3M (Sharma et al.l 2018). As shown in Table [/} the performance of the model is similar,
with fine-tuning, the performance of subsampling 70% of the data is already the same as CLIP.
Increasing the subsampling percentage from 70% to 80% results in a further performance increase
of 0.8% without fine-tuning However, increasing the subsampling percentage from 80% to 90%
results in only a 0.2% increase. This suggests that the effect of adding text containing high-frequency
words is very insignificant. Notably, when we fine-tune the model pre-trained on the 90% subset,
the performance is 0.4% lower than the model pre-trained on the 80% subset. Furthermore, WFPP
outperforms MetaCLIP by 0.5% before fine-tuning and by 0.3% after fine-tuning.

4.3 COMPARISON WITH METACLIP

MetaCLIP also aims to create a balanced subset based on the metadata distribution. Therefore, we
compare our method to MetaCLIP pre-trained on the CC3M dataset. Using the open-source code
provided by MetaCLIP, we created a 50% training subset of CC3M. Table[§] presents the zero-shot
ImageNet-1K classification accuracy for CLIP, MetaCLIP, and WFPP. Without fine-tuning, MetaCLIP
achieves an accuracy of 12.9%, outperforming the baseline CLIP’s 11.5%. WFPP further improves
this result to 13.4%, surpassing MetaCLIP by 0.5%. Moreover, with fine-tuning, WFPP attains the
highest accuracy of 15.1%, exceeding both MetaCLIP (14.8%) and CLIP (13.1%). These findings
indicate that WFPP not only enhances performance over the baseline CLIP but also outperforms
MetaCLIP in zero-shot ImageNet-1K classification tasks.
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Table 9: Zero-shot accuracy on ImageNet-1K classification. We sorted the texts according to Eq.
and pre-trained the model separately on the first and second halves of the data. The pre-training
dataset is CC12M. “Samples seen” refers to the number of samples processed during pre-training.

Method Subsampling  Sample Size w/oft w/ft Samples seen (W/ ft)
CLIP Random 28.2  30.2 0.53x%
WEFPP-First First half 4.65M (50%) 29.8 313 0.53x
WFPP-Second  Second half 213 243 0.53x

Table 10: Zero-shot accuracy on ImageNet-1K classification. We selected image-text pairs based
on text length and compared the results with the random, length-based, and WFPP methods. The
dataset is CC12M and the image encoder is ViT-B-16. w/ft and w/o/ft is with and without fine-tuning.

Method Subsampling Sample Size  w/o/ft w/ft Samples seen (w/ft)

CLIP random 4.65M (50%) 282 302 0.53x%
length-based 4.65M (50%) 226 27.8 0.53x
WFPP  frequency-based 4.65M (50%) 29.8 31.3 0.53 %

4.4 IMPACT OF WORD FREQUENCY DISTRIBUTION

To investigate the benefits of pre-training with a better-balanced word distribution, we experiment
with a badly-balanced word distribution, as a contrast. Specifically, we sort CC12M by Eq.[3]and
pre-train on the second half, which is more likely to contain high-frequency words compared to the
first half, usually used by WFPP. As shown in Table[9] the model pre-trained on the first half of the
subset outperforms the model pre-trained on the second half by 8.7%. After fine-tuning, WFPP-First
still maintains a 7.0% advantage. In addition, WFPP-Second performs 6.9% worse than a model
pre-trained on a randomly selected 50% subset of CC12M. This result confirms the importance of
selecting texts in a way that balances word frequency by reducing the frequency of high-frequency
words.

4.5 IMPACT OF TEXT LENGTH AND TEXT LENGTH NORMALIZATION

Equation[3]is normalized by text length, indicating that length also affects our method. To examine
the impact of text length, we pruned the dataset based on text length, retaining only the longer texts.
As shown in Table [T0} pruning based on text length resulted in poorer performance compared to both
the random method (22.5 vs. 28.2) and the frequency-based method (22.5 vs. 29.8).

Additionally, Equation [3| without length normalization tends to retain longer texts. Therefore, we
removed text length normalization in Equation[3]to evaluate its impact on model performance. The
revised equation used to sort the text in the dataset is shown below:

n
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As shown in Table [T1] the length normalization operation improves the zero-shot classification
accuracy on ImageNet-1K for models pre-trained on the CC3M and CC12M datasets by 1.2% and
2.6%, respectively. After fine-tuning, the improvements remain at 0.8% and 0.4%, respectively.

4.6 DATA ANALYSIS

To gain insight into the nature of the impact of WFPP on word-frequency distribution, we visualize
word-frequency distribution before and after pruning in Figure 2] The figure reveals that high-
frequency words are removed at a higher rate compared to low-frequency words for WFPP. In random
pruning, each word has about a 50% chance of being pruned. In contrast, under WFPP, the retention
probabilities for most of these top 50 high-frequency words are lower than 50%, especially for words
like “person”, “illustration”, and “background”, whose retention rates are 34.59%, 22.81%, and
22.31%, respectively. For infrequent words not shown in the figure, such as “connector”, “swords”,

and “grille”, the retention rates are higher—84.53%, 55.55%, and 70.35%, respectively.
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1e6 Word Counts and Percentages

"™ Table 11: Zero-shot accuracy on
ImageNet-1K classification: We re-
moved length normalization from Equa-
**{  tion[3]to observe the improvement that
length normalization contributes.

tages (%)

oz Dataset Method wlo/ft  wi/ft
w/o normalization  12.6  14.3
020 cem w normalization 134 15.1

w/o normalization  27.2  29.9

CCci2M w normalization 29.8 313

. L . Table 12: Vocabulary Size Compari-
Figure 2: Word Distribution: The top-50 words in g¢p. Comparison of vocabulary size be-

CCI12M (Changpinyo et al} 2021) are shown after pruning ¢y and after applying WFPP. WFPP
50% of image-text pairs using Random (orange) and WFPP .. 4,ced the number of image-text pairs
(green) methods, and before pruning (black). We then cal- ;;, the CC12M dataset by 50%.

culate the word percentages for Random and WFPP before —— Froquency CLIP (100%) WEPE G0%)
and after pruning. Words are ordered by frequency before o a5 cccurrences 124323 99.923
pruning. The left Y-axis is the number of words and the _More than 100 occurrences 33,872 32476
left Y-axis is the percentage of words which is the number

of words before data pruning divided by the number of

words after data pruning.

4.7 VOCABULARY SIZE ANALYSIS

To demonstrate that WFPP maintains the vocabulary diversity while improving the word-frequency
balance, we calculated the vocabulary size before and after applying WFPP. As shown in Table[12}
removing 50% of the image-text pairs, the number of vocabulary words with more than 100 occur-
rences has not decreased substantially. However, the number of words with frequencies between 5
and 100 decreases. Future work should investigate the impact of these words, which might be low,
given their low frequencies.

5 CONCLUSION AND OUTLOOK

In this paper, we introduce WFPP, a novel data-pruning method to enhance vision-language pre-
training. By pruning image-text pairs based on word frequencies in the corpus, we reduce the size of
the training dataset reducing the necessary computation to pre-train the model. We demonstrate that
pruning improves the word-frequency balance and we claim that this is the reason it is possible to
prune data without impacting performance. In fact, across a wide range of tasks and datasets, our
experiments demonstrate that after data pruning with WFPP, CLIP is actually able to achieve better
performance that CLIP trained on unpruned data. WFPP also outperforms MetaCLIP pruning, which
similarly aims to yield a balanced subset over the metadata distribution.

Moving forward, using WFPP to prune very large-scale datasets such as LAION-400M
would be an interesting direction to explore. As shown in Figure[I] the improvement in
zero-shot classification accuracy on ImageNet-1K increases substantially when 60% instead of 50%
of CC12M data is retained after pruning. When more than 60% is retained, the rate of improvement
falls off. We believe that between 50% to 60%, we are observing the linear scaling law demonstrated
in CLIP (Radford et al| 2021}, [Cherti et al.} [2023)), but after that CC12M offers insufficient image-text
pairs containing low-frequency words in order to maintain this rate of improvement. If we are
right, it means that starting with a larger data set like LAION-400M, we could improve zero-shot
classification accuracy would already exceed 40% with 280 million. The broader implication is
that WFPP would maintain and possibly enhance its ability to improve performance as size of the
dataset before pruning is increased. It would also be worthwhile to investigate alternative methods
for pruning image-text pair data, such as term frequency-inverse document frequency (TF-IDF).

10
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6 REPRODUCIBILITY STATEMENT

Our work builds upon open_cli;ﬂ which provides detailed usage instructions, including how to
download the dataset and pre-train the model. Because our experiments use datasets that are not
too large, our results are broadly reproducible, i.e., using typical resources available in academic
settings. Additionally, we have described our set up in detailed as also made all source code available,
including scripts for data preprocessing, training, and evaluation, at WFPPE
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Comparison of Zero-Shot Accuracy On ImageNet-1K
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Figure 3: Zero-shot accuracy on ImageNet-1K classification. The CC3M dataset (Sharma et al.,
2018)) was pruned with WFPP. We see that CLIP trained on the WFPP-pruned data achieved compa-
rable performance with CLIP trained on unpruned data, but uses only approximately 70% of original
training data (indicated by the 1.4x speed-up mark). On the left, we see examples of the performance
of data pruned with the MetaCLIP method, which remains below the performance of data pruned with
WEPP. The image encoder is ViT-B-16 (Dosovitskiy et al.,[2021)). The "ft" is an initial for fine-tuning.
“Samples seen” refers to the number of samples processed during pre-training.

A APPENDIX

A.1 MORE EVALUATION

For comparison with MetaCLIP, we pre-trained our model by pruning 50% of the data in CC3M
using the same metadata as MetaCLIP, with the same pre-training and fine-tuning settings as WFPP.
As shown in Figure 3] WFPP pre-trained on CC3M only requires 70% of the sample size required by
CLIP.

Zero-shot Robustness Evaluation: The performance of the pre-trained model on the CC3M (Sharma
et al., 2018)) dataset is consistent with the pre-trained model on the CC12M dataset, as seen in Table
When using an 80% subset of CC3M for pre-training, the model achieves the best average performance
on these datasets. Additionally, when comparing our method with MetaCLIP, our method outperforms
MetaCLIP on all datasets and exceeds MetaCLIP by an average of 0.29% in zero-shot robustness
evaluation.

Table 13: Zero-shot robustness evaluation: Comparison of zero-shot accuracy performance between
CLIP trained on the original data and CLIP trained on data pruned with the MetaCLIP method and
with WFPP, on various datasets. The image encoder is ViT-B-16, and the pre-trained dataset is
CC3M (Sharma et al.,[2018)). The model is fine-tuned for another epoch on the entire dataset.

MetaCLIP WEPP

Dataset CLIP 50% 50% 60% 70% 80%  90%
ImageNet-A 4.09 320 352 404 384 449 3.93
ImageNet-O 21.60 18.90 1920 2080 21.60 23.10 21.70
ImageNet-R 20.72 15.55 1631 17.48 1928 20.63 2026
ImageNet Sketch | 8.09 5.28 554 643 746 8.19  8.65
ImageNetV?2 14.74 12.79 13.02 1404 1463 1528 14.77
ObjectNet 10.15 8.25 9.12 934 10.09 10.67 10.95
Average 13.20 10.83 11.12 1202 1282 13.73 1338
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Table 14: Zero-shot accuracy on more classification datasets. The image encoder is ViT-B-16, and
the pre-training dataset is CC3M (Sharma et al.,|2018)). The model is fine-tuned for another epoch on
the entire dataset.

MetaCLIP WEPP
Dataset CLIP 50% 50% 60% 70% 80%  90%
Food-101 1136 | 1070 | 1136 1136 1139 12.00 1028
CIFAR-10 4307 | 4472 | 3960 3995 4149 41.63 3947
CIFAR-100 1818 | 1729 | 1556 1753 1951 2053 16.30
CUB200 3.30 3.00 326 312 295 350 3.78
SUN397 3330 | 2830 | 2838 3043 33.12 3450 33.46
Cars 0.88 0.88 072 087 102 062 091
Aircraft 0.75 1.02 154 133 138 102 133
DTD 1032 | 1064 | 11.81 1340 13.09 11.06 12.13

OxfordPets 11.90 9.26 1256  10.04 1394 1425 12.08
Caltech-101 46.40 39.82 40.80 4215 46.46 46.22 46.73
Kinetics700 13.12 11.43 11.89 12.72 1352 13.40 13.18

Flowers102 1.90 1.22 257  1.63 1.66 1.64 1.89
MNIST 10.10 10.09 892 954 1258 777 13.26
STL10 80.51 72.69 7648 7620 79.16 82.09 81.03
EuroSAT 16.10 11.68 18.64 14.02 20.00 7.70 18.56
Resisc45 20.02 16.52 17.83 16.70 18.70 20.52 20.30
GTSRB 8.65 4.77 5.87 424 835 693 6.29
KITTI 34.63 39.10 22.39 28.88 40.64 2934 28.68
Country211 0.69 0.62 060 057 064 080 0.61
PCAM 56.14 50.05 50.05 60.18 50.00 50.01 56.30
UCF101 25.09 21.25 20.20 21.78 23.02 2540 24.21
CLEVR 12.09 19.93 13.22 11.60 11.90 1339 9.57
HatefulMemes | 50.94 52.97 49.61 5271 5595 5438 50.74
SST2 50.08 48.76 50.08 50.08 49.48 4926 49.92
ImageNet 17.36 14.78 15.16 1623 17.37 1791 17.50
Average 23.08 16.72 21.18 2349 2349 2263 2274

Table 15: Zero-shot Image-Text Retrieval: We evaluate CLIP trained on the original data vs.
CLIP trained on data pruned with the MetaCLIP methods and with WFPP in terms of image-text
retrieval performance on both COCO and Flickr30k datasets. The image encoder is ViT-B-16, and
the pre-trained dataset is CC3M (Sharma et al., 2018)). The model is fine-tuned for another epoch on
the entire dataset.

Text Retrieval Image Retrieval
Model Sample Size Flickr30k COCO Flickr30k COCO
R@] R@5 R@I0 | R@] R@5 R@I0|R@]! R@5 R@10|R@] R@5 R@I0
CLIP 100% 24779 4830 5848 | 1191 2956 4020 | 31.56 60.16 70.22 | 1598 37.52 49.06
MetaCLIP 50% 17.02 37.02 4811 | 1242 30.14 4058 | 23.67 4694 58.19 | 890 23.05 32.87
50% 17.24 37.04 47.04 | 838 23.09 3285 | 23.18 4527 58.68 | 11.28 29.08 39.90
60% 19.59 4122 5201 | 986 2590 36.03 | 2574 5049 61.64 | 14.16 31.96 43.18
WEPP 70% 22.07 4627 56.79 | 11.02 28.10 38.60 | 29.59 56.11 67.85 | 1528 3492 4586
80% 2420 47.02 57.53 | 1195 29.75 4053 | 31.07 5740 66.77 | 1634 37.24 48.52
90% 2550 48.60 59.59 | 12.36 30.64 4139 | 30.18 61.54 70.61 | 16.14 37.46 49.40

Zero-shot Classification on More Datasets The zero-shot classification performance across 25
datasets is consistent with the results from the model pre-trained on the CC3M dataset, as shown
in Table[T4] CLIP trained on data pruned with WFPP achieves the best average performance when
using a 70% subset, outperforming CLIP pre-trained on the entire dataset by 0.41%. Additionally,
compared to CLIP trained on data pruned with the MetaCLIP method, our method substantially
exceeds its average performance by 4.46%.

Zero-shot Retrieval As shown in Table models pre-trained on the CC3M dataset demonstrate
that CLIP trained on data pruned with WFPP has a substantial advantage in zero-shot image-text
retrieval tasks compared to CLIP trained on the original data and CLIP trained on data pruned with
the MetaCLIP method.
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Table 16: Zero-shot classification accuracy on ImageNet-1K. We pre-trained models by sampling
image-text pairs sorted according to Equation 3] with sampling rates of 50% based on different

thresholds ¢, specifically 1e-6, le-7, and 1e-8. The pre-training dataset is CC12M (Changpinyo et al.|

2021)), and the image encoder used is ViT-B-16 (Dosovitskiy et al[2021)). “Samples seen” refers to
the proportion of the dataset processed during pre-training, with 100% set as 1.00. w/ft and w/o/ft is

with and without fine-tuning.

Method  Sample Size  threshold w/o/ft w/ft Samples seen (w/ft)

CLIP  4.65M (50%) X 28.2 302 0.53 x
4.65M (50%) le-6 29.0  30.7 0.53 %
WFPP  4.65M (50%) le-7 29.8 313 0.53x
4.65M (50%) le-8 29.7 312 0.53 x

Table 17: Zero-shot classification accuracy on ImageNet-1K. We use BLIP[Li et al|(20224)) to
generate synthetic captions for the CC3M dataset. We then prune 50% of these synthetic captions
using random and WFPP methods. The model is pre-trained for 30 epochs and fine-tuned on the
original dataset for 1 epoch. The image encoder employed is ViT-B-16 [Dosovitskiy et al.| (202T]). The
threshold value ¢ in Equationis setto 1077,

Method data Sample Size w/o/ft w/ft Samples seen (w/ft)
CLIP svnthefic cantions 50% 7.7 12.6 0.53x
wrpp %Y P 50% 78 13.0 0.53x

A.2 THRESHOLD SELECTION FOR WFPP

Based on the idea that high-frequency and low-frequency words should be treated differently, we
select the threshold using Equation2} We aim to decrease the sampling probability of high-frequency
words while retaining low-frequency words. For words with frequency f(w;) less than ¢ (i.e., very
rare words), we set P(w;) to 1. These very rare words do not affect the probability of the text being
discarded. Specifically, for the cc12m dataset, setting ¢ to 1e-6 means words with count less than
206 are assigned P(w;) = 1; setting ¢ to le-7 corresponds to words with a count less than 20 being
assigned P(w;) = 1; when ¢ is set to le-8, all words are considered by Equation(since no words
have frequency less than t). We also provide zero-shot classification accuracy with three different
thresholds: 1e-6, le-7, and 1e-8, As shown in Table[T6] When we set the threshold ¢ to 1e-6, the
zero-shot classification accuracy is lower than when ¢ is le-7 or le-8, but it still outperforms the
random pruning method. The performances for thresholds 1 x 107 and 1 x 10~% are similar.

A.3 SYNTHETIC CAPTIONS

Some works utilize synthetic image captions to pre-train CLIP [Vasu et al|(2024);|Yang et al|(2023).
While these synthetic captions are of higher quality than web captions, they do not ensure a balanced
word distribution. To address this imbalance, WFPP can be applied to the synthetic captions datasets.
As shown in Table[T7] we generated synthetic captions for the CC3M dataset using BLIP|Li et al]|
(20224). We then pruned 50% of the synthetic data using random pruning and WFPP to pre-train
CLIP. Our results show that WFPP outperforms the random pruning method by 0.4% in zero-shot
classification accuracy on the zero-shot ImageNet-1k classification.

A.4 WORD AND TOKEN FREQUENCY
We also evaluate the model’s performance through token frequency data pruning. As indicated in
Table[I8] the performance based on word and token frequency is similar. This is because most words

correspond to individual tokens. Although some words are tokenized into two or more tokens, this
has a limited impact on overall performance.

A.5 DATA ANALYSIS

We analyzed the data categories before and after applying WFPP. According to Table [T9} there is not
a significant change in the percentage of word categories. However, when this data is combined with
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Table 18: Zero-shot classification accuracy on ImageNet-1K. We pre-train models by sampling
image-text pairs sorted according to Equation [§]at sampling rates 50% based on word frequency
and token frequency. The pre-training dataset is CC12M (Changpinyo et al.,[2021), and the image

encoder used is ViT-B-16 (Dosovitskiy et al} 2021).

£

Method  Sample Size  tokenizer w/o/ft w/ft Samples seen (w/ft)
WEPP 4.65M (50%) word 298 313 0.53x
4.65M (50%) token 29.8 315 0.53 %
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Figure 4: Word Distribution: The top-100 words in CC12M (Changpinyo et al.}[2021)) are shown
after pruning 50% of image-text pairs using Random (orange) and WFPP (green) methods, and before
pruning (black). We then calculate the word percentages for Random and WFPP before and after
pruning. Words are ordered by frequency before pruning. The left Y-axis is the number of words and
the left Y-axis is the percentage of words which is the number of words before data pruning divided
by the number of words after data pruning.

the analysis presented in Figure ] it becomes apparent that WFPP prunes more high-frequency noun
words while retaining more low-frequency nouns. WFPP improves word distribution by selectively
pruning high-frequency words, thereby achieving a more balanced distribution. In addition, we
visualize the word distribution for the first and second part of the data after applying WFPP, as
shown in Figure )] The second part has many more high-frequency words than the first part and
the high-frequency words percentage of the second part is substantially higher than 50%. Moreover,
we also analyzed human-labeled datasets by applying WFPP, such as COCO [Lin et al|(2014) and
VG [Krishna et al| (2017). As illustrated in Figure[6]and Figure[7] the patterns observed in these figures
are similar to those in the CC12M dataset. By applying the WFPP method, more high-frequency
words are pruned from the first part of the dataset, while the second part retains a higher number of
these words.

Table 19: We analyzed the percentages and counts resulting from random and frequency-based
pruning methods. Using the CC12M dataset, we pruned 50% of the original texts. NN means noun,
JJ means adjective, VB means verb.

Method NN JJ VB OTHER Total

Before sampling | 103,469,117 (50.34%) | 10,245,828 (4.98%) | 10,649,943 (5.18%) | 81,351,966 (39.61%) | 205,716,854
Random 51,648,996 (50.25%) | 5,120,215 (4.98%) | 5,319,414 (5.18%) | 40,666,145 (39.59%) | 102,754,770
WPFF 47,149,193  (50.48%) | 4491,732 (4.81%) | 5,153,531 (5.52%) | 36,596,727 (39.19%) | 93,391,183
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Figure 5: Word Distribution: The top 100 words from CC12M (Changpinyo et al., 2021) are
presented in two parts: the first and second 50% of the image-text pairs using the WFPP method.
We then calculate the word percentages for WFPP before and after pruning. Words are ordered by
frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the percentage
of words which is the number of words before data pruning divided by the number of words after
data pruning.
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Figure 6: COCO Dataset Word Distribution: The top 100 words from COCO
dataset are presented in two parts: the first and second 50% of the image-text pairs using the WFPP
method. We then calculate the word percentages for WFPP before and after pruning. Words are
ordered by frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the
percentage of words which is the number of words before data pruning divided by the number of
words after data pruning.
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Figure 7: VG Dataset Word Distribution: The top 100 words from VG (Krishna et al.}[2017)) dataset
are presented in two parts: the first and second 50% of the image-text pairs using the WFPP method.
We then calculate the word percentages for WFPP before and after pruning. Words are ordered by
frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the percentage
of words which is the number of words before data pruning divided by the number of words after
data pruning.

B DATA EXAMPLES

We randomly select example words from the dictionary and list them with their corresponding P(w;)
values. As shown in Table 20] frequent words have a higher probability of being discarded than
infrequent words.

Table 20: Randomly selected words and their P(w;) values.

Word P(w;) Word P(w;) Word P(w;)
, 0.9996 the 0.9995 person 0.9993
in 0.9992 > 0.9991 it 0.9976
dream 0.9792 latest 0.9736  material 0.9572
prepared 0.9305 brighten 0.9015 macau 0.8777
lesser 0.8467 billionaire 0.8321 lawns 0.8252
authenticity 0.8249 raging 0.8090 apricots 0.7670
fidget 0.7309  decathlon 0.7240  quadratic 0.7084
natura 0.7078 momo 0.6963  squaw 0.6619
pats 0.6511 futurist 0.6425 ardmore 0.6220
knott 0.5615  dungarees 0.5464  hairdryer 0.5347
ankole 0.5051 escolta 0.4991 incubation 0.4831
kalibo 0.4240 okefenokee 0.4240 lusitano 0.3710
whe 0.3649  hubcap 0.3384 compromises 0.3239
bydgoszcz ~ 0.3239 ews 0.3162 zar 0.2737
actuators 0.2333  skeet 0.2333 tawang 0.2333
dregs 0.2222  urad 0.1982  alternated 0.1982
essequibo 0.1854 ilent 0.1719  cline 0.1719
holtz 0.0929 sacramental 0.0742 barish 0.0742
stippled 0.0742  junina 0.0543  rafted 0.0103
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Additionally, we randomly selected texts from the CC12M dataset and calculated their corresponding
S(w;) values. The results are presented in Table[21]

Table 21: Randomly selected example texts and their corresponding S(w;). The texts are select from
CCI12M (Changpinyo et al., 2021).

Texts S(w;)

Girona Beach with <PERSON> 0.06019
Black Canyon of the Gunnison 0.05801
The Sutton Condominium Residents Lounge Couch 0.05748
Sagas of the Gray Seas: Sleipnir’s Hoof 0.05624
<PERSON>- The Boiler Room 0.02104
<PERSON>deep in a drift 0.02041
New chef at the Portsea Hotel, <PERSON> 0.02033

A bed or beds in a room at <PERSON>’s Guest House and Tours | 0.00892
Creative Design For Blue Red And An Orange Wallpaper Photo | 0.00882

The Lord of the Rings Game HD Wallpaper 1920x1080 0.00861
A small dog stock photography 0.00792
<PERSON>family with a child 0.00662
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