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ABSTRACT

We propose Word-Frequency-based Image-Text Pair Pruning (WFPP), a novel
data pruning method that improves the efficiency of VLMs. Unlike MetaCLIP,
our method does not need metadata for pruning, but selects text-image pairs to
prune based on the content of the text. Specifically, WFPP prunes text-image
pairs containing high-frequency words across the entire training dataset. The
effect of WFPP is to reduce the dominance of frequent words. The result a better
balanced word-frequency distribution in the dataset, which is known to improve
the training of word embedding models. After pre-training on the pruned subset,
we fine-tuned the model on the entire dataset for one additional epoch to achieve
better performance. Our experiments demonstrate that applying WFPP when
training a CLIP model improves performance on a wide range of downstream tasks.
WFPP also provides the advantage of speeding up pre-training by using fewer
samples. Additionally, we analyze the training data before and after pruning to
visualize how WFPP changes the balance of word frequencies. We hope our work
encourages researchers to consider the distribution of words in the training data
when pre-training VLMs, not limited to CLIP.

1 INTRODUCTION

Large-scale pre-trained Vision-Language Models (VLMs) are gaining popularity, because of their
remarkable zero-shot transferability (Radford et al., 2021; Li et al., 2023b; Zhai et al., 2022; Jia et al.,
2021; Kim et al., 2021). This makes the VLM a foundational model with wide applicability in a
variety of downstream tasks (Rombach et al., 2022; Ramesh et al., 2022). The success of VLMs
rests on two key points: (1) Large-scale image-text pair datasets crawled from the Internet (Sharma
et al., 2018; Changpinyo et al., 2021; Thomee et al., 2016; Schuhmann et al., 2022). (2) Large-scale
transformers used as image and text encoder (Dosovitskiy et al., 2021; Vaswani et al., 2017).

Despite the importance of the scale of large-scale datasets, previous work has shown that pruning
the training dataset can lead to improvements. MetaCLIP (Xu et al., 2024) employs a strategy that
leverages metadata associated with text-image pairs in order to create a subset of CLIP training
data. MetaCLIP pruning results in a new dataset that is balanced at the level of metadata categories
(called “entries"), such that the number of texts associated with any given category does not exceed a
threshold. The improvements of pruning are accompanied by the computational speed-up that results
when the size of the training dataset is reduced.

In this paper, we propose that the decision to prune an image-text pair should be based directly
on information about the frequency of words in that pair. Our method, Word-Frequency-based
Image-Text Pair Pruning (WFPP) is inspired by observations of the importance of balancing word
frequencies for training word embedding models. Specifically, Mikolov et al. (2013) introduced a
technique that subsamples frequent words in text data, in order to speed up the training and enhance
the quality of word representations. Like Mikolov et al. (2013), we consider a dataset to be better
balanced in terms of word-frequency when the frequencies of frequent words are less dramatically
higher than the frequencies of infrequent words. Our idea is also consistent with work that has
demonstrated that neural networks tend to learn more from the majority class due to the higher
number of examples available (Ross & Dollár, 2017; Buda et al., 2018).
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Figure 1: Zero-shot accuracy on ImageNet-1K classification. CLIP is trained on the CC12M
dataset (Changpinyo et al., 2021). Using our Word-Frequency-based Image-Text Pair Pruning
(WFPP), we achieve comparable performance, while using only approximately 77% of the image-text
pairs (1.3× speedup). The image encoder is ViT-B-16 (Dosovitskiy et al., 2021). The "ft" is fine-
tuning. The w/o ft is without fine-tuning. “Samples seen” refers to the number of samples processed
during pre-training.

WFPP uses a simple yet effective text-level score based on word probabilities to prune image-text
pairs from the data set in which the text contains frequent words. Word balance could also be
improved by removing individual words from the training data, such as proposed by Liang & Larson
(2023). However, such an approach does not remove images, which is disadvantageous since the
image encoder usually accounts for a large portion of the training time. WFPP in contrast selects
entire image-text pairs for removal. Note that the WFPP manner of removing texts does not impact
the overall vocabulary richness, measured in vocabulary size, which is important to maintain.

Figure 1 demonstrates that our method effectively speeds up zero-shot classification tasks by 1.3×
while maintaining the performance of CLIP trained on the full training set. Moreover, our findings
demonstrate that WFPP outperforms CLIP in a variety of downstream tasks, including zero-shot
classification and zero-shot image-text retrieval across multiple datasets.

WFPP offers two advantages over the data pruning proposed by MetaCLIP. First, WFPP selects
image-text pairs on the basis of an individual score. In contrast, MetaCLIP selects image-text pairs
on the basis of the metadata category they are associated with, meaning that the selection process is
less specific. Second, WFPP selects image-text pairs directly using the content of the training data
and without the need for a list of metadata categories. Often, the data collection process for training
sets involves the use of queries, which can be adopted as the metadata categories for the training
examples, as in CLIP. However, it is not a given that the dataset was created in this way. Further, the
set of categories use to collect one dataset might not be optimal to subsample another dataset, e.g.,
with a different topical distribution. The contributions of this work can be summarized as follows:

• Image-text-pair-level pruning: We introduce an image-text pair pruning method based
on word frequency, which substantially reduces the computational requirements while
pre-training VLMs without compromising performance.

• Word balance: Our approach contributes to the evidence on the importance of word balance,
the importance of good design decisions for large-scale datasets, rather than just scaling
them up.

• We provide extensive experiments and analyses that CLIP trained on a dataset sampled with
our approach outperforms CLIP trained on an unsampled dataset.
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Our code is available online1.

2 RELATED WORK

Due to its remarkable zero-shot transferability, the visual-semantic embedding model as a foundational
model has received sustained attention from researchers. In this section, we describe the pre-training
methods for vision-language models and discuss related works to accelerate their pre-training.

Vision-Language Models: DeViSE (Frome et al., 2013) learns visual-semantic embedding from
labeled embeddings which are generated from pre-trained skip-gram on 5.7 million documents (5.4
billion words) extracted from wikipedia.org. The semantic knowledge learned from language provides
the zero-shot prediction capability of a visual model, which improves performance on unseen data.
To enhance visual-semantic embeddings and achieve good zero-shot performance, CLIP and ALIGN
scale the data to 400M to learn the better visual-semantic embedding that achieves remarkable
zero-shot performance across 27 datasets (Radford et al., 2021; Jia et al., 2021). These models are
pre-trained by contrastive learning, which pushes positive image-text pairs closer to each other and
separates negative image-text pairs, aligning the vision and language by acquiring a visual-semantic
embedding from the natural language supervision. However, pre-training VLMs on large-scale data
are quite expensive, demanding thousands of GPU days (Cherti et al., 2023; Radford et al., 2021).

Efficient Language-Image Pre-training for CLIP: Several methods have been proposed to enhance
the efficiency of CLIP models. DeCLIP Li et al. (2022b) leverages additional self-supervised losses
to improve image and text representations which extends CLIP by incorporating intra-modal self-
supervision, cross-modal multi-view supervision, and nearest-neighbor supervision. FILIP Yao et al.
(2022) introduces a cross-modal late interaction module that refines the contrastive objective by using
token-wise maximum similarity between visual and textual tokens. UniCLIP Lee et al. (2022) unifies
inter-domain (image-text) and intra-domain (image-image, text-text) contrastive losses into a single
universal embedding space, capturing comprehensive relationships across and within modalities.
Knowledge distillation approaches such as TinyCLIP Wu et al. (2023) and MoPE-CLIP Lin et al.
(2024) transfer knowledge from large pre-trained models to smaller ones via cross-modal distillation
to reduce the pre-training budget. Additionally, methods like MobileCLIP Vasu et al. (2024) and
ALIP Yang et al. (2023) generate synthetic captions using models pre-trained on large datasets
(CoCa Yu et al. (2022) and OFA_base Wang et al. (2022), respectively) to improve CLIP pre-training.
Although these proposed pre-training strategies and synthetic caption methods are efficient, they may
still exhibit imbalanced word distributions of pre-training data. Applying WFPP to these methods
can further improve training efficiency. Moreover, Fast Language-Image Pre-training (FLIP) (Li
et al., 2023b) removes a large portion of image patches to speed up pre-training VLMs. FLIP uses
ViT as an image encoder, reducing computation by 2-4× by removing 50%-75% patches of the
image while obtaining better accuracy than the unmasked model (Li et al., 2023b). In addition, they
randomly masked 50% of the text to pre-train the VLMs, However, this approach does not work
well in text encoders, and the performance of zero-shot classification on ImageNet is decreased.
Resource-efficient CLIP (RECLIP) (Li et al., 2023a) employs a smaller version of images for the
initial pre-training of CLIP and subsequently fine-tunes the models using larger versions of the
images. The pre-training RECLIP with an image size of 64 × 64 reduces compute resource usage by
approximately 80% while still outperforming CLIP on image-text retrieval tasks (Li et al., 2023a).
Subsampling of Frequent Words for Contrastive Language-Image Pre-training (SW-CLIP) (Liang &
Larson, 2023) proposed a frequency-based word subsampling technique to reduce text length by half
for pre-training VLMs, but does not remove image-text pairs.

Data Puning in VLMs: Several data pruning methods have been developed for Natural Language
Processing Sorscher et al. (2022); Marion et al. (2023) and Computer Vision Tan et al. (2024).
However, in this work, we focus on multimedia data pruning. Metadata-Curated Language-Image
Pre-training (MetaCLIP) (Xu et al., 2024) creates a balanced subset based on the metadata distribution
to pre-train VLMs. To balance the training data, MetaCLIP selects image-text pairs from the data
pool where the text contains a metadata entry. These metadata entries consist of four components:
WordNet synsets, Wiki unigram, Wiki bigram, and Wiki titles. MetaCLIP utilizes a rich metadata
source with 500k entries covering a wide range of concepts. However, it only seeks a balance at
the level of the entries (metadata categories), which could lead to certain words being under or

1https://anonymous.4open.science/r/WFPP-1656/
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Table 1: Two example texts. In the probability row, we show the probability of removing words in
the text. Then, the last column is the probability of a text being removed from the data; it is the joint
probability of the words in the text. The value of t in Equation 2 is set to 10−7.

S(tj)
text a picture of barcode 0.20479
f(wi) 0.9980 0.9861 0.9978 0.8342
text a picture of dog 0.24249
f(wi) 0.9980 0.9861 0.9978 0.9878

over-represented in the sampled training data. In this paper, we prune image-text pairs based on word
frequency to create a more balanced subset for pre-training VLMs. Our approach is also easier to
implement, as it does not require collecting and filtering thousands of entries or engaging in complex,
time-consuming curation processes.

3 METHOD

In this section, we present WFPP, a method designed to enhance the pre-training of Vision-Language
Models (VLMs) by strategically selecting image-text data from the dataset based on word frequency.
Following the data pruning process, we can effectively pre-train the VLM using a reduced portion of
the dataset without compromising its performance.

Following our proposed principles for building more balanced data, we remove as much text as
possible from the dataset that contains higher-frequency words. The removal probability of a text is
defined by the joint probability of the words in the text. This approach maintains the diversity of the
data when filtering the information, as well as maintaining a balance between frequent and infrequent
words.

To achieve our goal, we first compute the frequency of words using the equation:

f(wi) =
c(wi)∑n
i=1 c(wi)

(1)

In this equation, f(wi) represents the frequency of the word wi, and c(wi) stands for the word count
for wi. Next, we determine the probability of a word being discarded according to Eq. 2:

P (wi) =

{
1−

√
t

f(wi)
f(wi) > t

1 otherwise
(2)

In this equation, t serves as the threshold controlling the probability of a word being discarded
(Mikolov et al., 2013). We set P (wi) to 1 if f(wi) <= t, in this way, very rare words do not affect
the probability of the text being discarded. Due to the limited number of rare words occurring in the
dataset, the impact on model performance is very slight.

Lastly, we calculate the joint probability of a text being discarded from the dataset according to Eq. 3:

S(tj) =
1

n

n∏
i=1

P (wi) (3)

In this equation, tj represents the j − th text, while S(tj) represents both the joint probability of
words being discarded and the probability of the text being discarded from the dataset. n is the
length of the text, and the maximum value of n is equal to the maximum value of the input text. The
advantage of this equation is that it filters out text containing frequent words to create a subset of the
dataset with a balanced word distribution.

In Table 1, the rows display the probabilities of text being discarded from the dataset. On one hand,
text containing infrequent words has a low probability of being discarded from the dataset (row
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Table 2: The details of pre-training and fine-tuning setup.

Configuration Pre-training Value Fine-tuning Value
Optimizer AdamW (Loshchilov & Hutter, 2019) AdamW (Loshchilov & Hutter, 2019)
Learning rate 1e-3 1e-5
Weight decay 0.1 0.05
Optimizer momentum β1, β2 = 0.9, 0.999 (Chen et al., 2020) β1, β2 = 0.9, 0.999 (Chen et al., 2020)
Learning rate schedule Cosine decay (Loshchilov & Hutter, 2017) Cosine decay (Loshchilov & Hutter, 2017)
Warmup steps 10k 10%
Epochs 30 1
Numerical precision Automatic mixed precision Automatic mixed precision
Augmentation RandomResizedCrop RandomResizedCrop

1). On the other hand, texts containing frequent words, as illustrated in the second row of Table 1,
have a high probability of being discarded from the dataset. After pruning the data based on word
frequency, we obtain a new balanced dataset that maintains the diversity of the data while reducing
the training samples. Subsequently, we sort the texts by their joint probability S(ti) and select a
specific number of samples in order to pre-train the model. We pre-trained the model using different
sampling proportions to identify the proportion of data that achieves comparable performance to the
model pre-trained on the entire dataset.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset In our experiments, we utilize CC3M and CC12M to pre-train our model which includes
about 3M and 12M image-text pairs (Sharma et al., 2018; Changpinyo et al., 2021). These datasets
were chosen because they collect a large number of different image-text pairs, providing diverse
content for pre-training effective VLMs. We employed various methods for subsampling the dataset,
including random selection, and frequency-based sampling. This comparative analysis aims to
illustrate the advantage of more diverse data over less diverse data in the context of pre-training
models. As a result, we have successfully downloaded 2.72 million data items for CC3M, and 9.30
million data items for CC12M (Sharma et al., 2018; Changpinyo et al., 2021). In these datasets,
each image has an associated text. We also use the COCO (Lin et al., 2014) and Flick30K (Young
et al., 2014) to evaluate the zero-shot retrieval performance, and in these datasets, each image has five
associated texts to describe the context of the image.

Architecture For the image encoder, we used ViT-B-16 (Dosovitskiy et al., 2021) to encode the image
and the input size of the image is 224. We use a Transformer-based model (Vaswani et al., 2017) as
the text encoder and the text length is 32 (Li et al., 2023b). Following CLIP and OpenCLIP (Radford
et al., 2021; Cherti et al., 2023), we compute the similarity score based on the cosine similarity
between image and text embeddings. The model is pre-trained by InfoNCE loss (Oord et al., 2018),
and the similarity scores are scaled by a learnable temperature parameter (Radford et al., 2021).

Training and Fine-tuning We first pre-trained the model on the entire dataset, as well as on random
and WFPP subsets, for 30 epochs. Then, we fine-tuned the models pre-trained on the subsets using
the entire dataset for an additional epoch. This additional epoch of fine-tuning aims to bridge the
distribution gap between the pre-training and inference stages and to account for any unknown
concepts that may have been present in the initially removed data. The value of t in Eq. 2 is set to
10−7, and the details of pre-training and fine-tuning configuration are shown in Table 2.

4.2 EVALUATION

To evaluate the zero-shot classification performance on ImageNet, where the model correctly classifies
data into never-before-seen categories during training. We follow the prompt engineering of CLIP
and OpenCLIP (Radford et al., 2021; Cherti et al., 2023), utilizing their codebase, which includes
a set of 80 templates. We then calculated the cosine similarity score between the image and text
embeddings to evaluate the correspondence.
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Table 3: Zero-shot classification accuracy on ImageNet-1K. We pre-train models by sampling
image-text pairs sorted according to Equation 3 at sampling rates ranging from 50% to 90%. The
pre-training dataset is CC12M (Changpinyo et al., 2021), and the image encoder used is ViT-B-
16 (Dosovitskiy et al., 2021). “Samples seen” refers to the proportion of the dataset processed during
pre-training, with 100% set as 1.00. w/ft and w/o/ft is with and without fine-tuning.

Method Sample Size w/o/ft w/ft Samples seen (w/ft)

CLIP 9.30M 34.8 ✗ 1.00×
4.65M (50%) 28.2 30.2 0.53×

WFPP

4.65M (50%) 29.8 31.3 0.53×
5.58M (60%) 32.3 33.3 0.63×
6.51M (70%) 33.4 34.4 0.73×
7.44M (80%) 34.3 35.0 0.83×
8.37M (90%) 34.9 35.5 0.93×

Table 4: Zero-shot robustness evaluation, Comparison of zero-shot accuracy performance between
CLIP trained on the original datasets and on data pruned with WFPP on various classification
benchmarks.

Dataset CLIP WFPP
50% 60% 70% 80% 90%

ImageNet-A 7.69 6.71 7.79 7.49 8.11 8.15
ImageNet-O 38.05 35.80 36.85 36.70 39.15 38.45
ImageNet-R 45.02 35.94 38.97 41.32 43.43 44.16
ImageNet Sketch 22.89 17.17 18.82 20.98 21.72 22.53
ImageNetV2 30.15 26.44 28.10 29.72 30.41 30.90
ObjectNet 20.73 19.21 20.91 21.30 21.83 21.94
Average 27.42 23.55 25.24 26.25 27.44 27.69

Zero-shot ImageNet Classification. First of all, as shown in Figure 1, we pre-train the model
on different size subsets of CC12M. When we evaluate our method on zero-shot accuracy on
ImageNet-1K (Deng et al., 2009) validation, we only need 80% of the computation to achieve a
better performance as the CLIP counterpart. Specifically, as detailed in the first (100%) and sixth
rows (80%) of Table 3, our model, utilizing just 83.3% of the computational resources compared
to the model trained on the full dataset, achieves better performance in the zero-shot ImageNet-1K
classification task, with scores of 35.0% versus 34.8%.

As shown in the second and third rows of Table 3, the model pre-trained on a subset pruned using
a word frequency-based method performs significantly better in the zero-shot image classification
task than the model trained with a randomly pruned subset (29.8% vs. 28.2%). The WFPP method
outperforms the random method by 1.7% before fine-tuning. After fine-tuning for an additional epoch
on the entire dataset, our method continues to outperform the random method by 1.1%. Notably, the
differences between the random and frequency-based methods become smaller after fine-tuning the
model on the entire dataset.

Subsampling more data. As demonstrated in Table 3, subsampling 90% of the image-text pairs
from the CC12M dataset allows us to attain comparable performance without needing to fine-tune
the model on the entire dataset. This observation suggests that excluding the 10% of image-text pairs
containing frequent words results in only a slight performance degradation of 0.1%. After fine-tuning
the model on the entire dataset, the model trained on WFPP-pruned data outperforms the original
CLIP by 0.7% on ImageNet-1K. Moreover, increasing the subsampling percentage from 50% to
60%, 70%, 80%, and 90% results in performance improvements of 2.5%, 1.1%, 0.9%, and 0.6%,
respectively. This indicates that data efficiency decreases as the amount of data increases. The latter
part of the data contains more high-frequency words than the former part of the data. Blindly adding
data becomes increasingly inefficient. As a result, the efficiency of adding more data indiscriminately
decreases over time. For the reason, we do not recommend to use the latter part of the data when
using WFPP data pruning.
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Table 5: Zero-shot accuracy on more classification datasets. Comparison of zero-shot classification
accuracy between CLIP trained on the original datasets and on data pruned with WFPP on various
classification benchmarks.

Dataset CLIP WFPP
50% 60% 70% 80% 90%

Food-101 40.57 38.64 40.77 41.22 42.30 43.25
CIFAR-10 63.28 52.44 57.55 63.57 65.60 66.88
CIFAR-100 32.25 27.10 30.40 32.86 28.85 29.56
CUB200 8.13 8.20 8.30 8.77 9.42 8.75
SUN397 48.02 45.51 47.67 48.46 50.07 50.61
Cars 7.19 4.61 4.56 5.65 7.40 7.18
Aircraft 2.84 1.62 2.68 2.45 2.20 2.89
DTD 15.43 14.57 15.74 17.18 16.28 18.88
OxfordPets 56.11 45.98 53.27 56.38 53.58 56.49
Caltech-101 70.16 64.56 66.54 68.01 68.93 69.23
Kinetics700 24.23 21.96 22.91 23.41 24.11 24.05
Flowers102 1.87 2.92 2.42 2.36 1.58 1.58
MNIST 9.49 18.08 14.29 14.54 11.30 15.13
STL10 91.76 90.05 89.96 90.54 90.55 92.14
EuroSAT 22.00 17.66 25.72 22.56 26.14 24.32
Resisc45 36.57 35.30 33.33 35.17 33.24 36.59
GTSRB 10.40 4.85 9.54 6.25 10.55 5.05
KITTI 36.43 36.83 34.89 39.04 34.89 37.30
Country211 4.35 4.39 4.50 4.44 4.10 4.96
PCAM 52.89 52.55 52.76 52.39 51.67 52.62
UCF101 38.14 35.74 37.96 39.02 41.42 39.02
CLEVR 18.27 17.74 13.23 19.14 16.55 25.00
HatefulMemes 52.62 53.26 54.30 50.09 50.79 51.53
SST2 50.47 45.85 50.03 48.27 51.29 50.03
ImageNet 34.80 31.31 33.33 34.42 35.00 35.50
Average 33.13 30.87 32.27 33.05 33.11 33.94

Zero-shot Robustness Evaluation Following the methodology of CLIP (Radford et al., 2021),
we evaluate robustness in Table 4. Using 80% of the image-text pairs, we achieve a comparable
average performance to CLIP (27.44% vs. 27.42%) on these 6 datasets. Consequently, adding an
additional 10% of image-text pairs results in only a 0.25% improvement, indicating that the efficiency
of indiscriminately adding data with frequent words decreases over time in these datasets as well.

Zero-shot Classification on More Datasets ImageNet is a general-purpose dataset for evaluating the
benchmark performance of VLMs, providing a benchmark for their effectiveness. While it provides
a performance reference for VLMs, it’s crucial to recognize that large-scale VLMs are destined
for application across diverse datasets and tasks. Consequently, evaluating our approach to various
datasets becomes imperative to underscore the significance of achieving a balance between data and
diversity. The datasets featured in Table 5 hail from various domains, illustrating the advantages
derived from this balanced approach to data diversity Specifically, within the CC12M dataset, WFPP
demonstrates comparable average performance to CLIP in the zero-shot classification task across
26 datasets. First, the model is pre-trained on 80% of the data to achieve a similar performance as
the model pre-trained on the entire dataset, which requires only 83.3% of CLIP’s computational
resources. Moreover, on the CC12M dataset—as shown in columns 2 and 4 of Table 5—WFPP
requires only 63.3% of the computational resources compared to CLIP while achieving a similar
average performance across 26 datasets (33.13% vs. 32.27%). Furthermore, when using 90% of the
CC12M dataset, WFPP outperforms CLIP by an average of 0.83% across 26 datasets. The zero-shot
classification performance of the majority of the datasets demonstrates improvement due to the
diversity and balance in the data.

Zero-shot retrieval The task of image-text retrieval involves retrieving information from one modality
(text or image) based on the given information from another modality (image or text). We evaluate
WFPP for zero-shot image-text retrieval on COCO (Lin et al., 2014) and Flickr30K (Young et al.,
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Table 6: Zero-shot Image-Text Retrieval: We evaluate CLIP’s and WFPP image-text retrieval
performance on both COCO and Flickr30k datasets.

Model Sample Size
Text Retrieval Image Retrieval

Flickr30k COCO Flickr30k COCO
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 9.30M 59.17 85.40 90.24 34.32 61.14 72.50 45.38 71.95 81.05 22.65 46.94 58.86

WFPP

4.65M (50%) 50.99 78.50 85.40 30.16 54.72 66.88 36.90 64.77 74.14 18.67 40.69 52.74
5.58M (60%) 57.00 81.56 88.07 31.88 57.70 69.38 39.47 67.50 76.82 19.79 43.04 54.92
6.51M (70%) 56.51 82.94 89.74 34.06 59.46 71.18 41.03 68.93 79.63 21.02 45.10 57.22
7.44M (80%) 59.47 85.11 90.34 33.98 60.88 72.06 42.56 70.12 79.82 22.18 46.36 58.48
8.37M (90%) 60.55 84.91 89.94 34.24 60.52 71.70 43.49 71.18 80.10 22.61 46.30 58.34

Table 7: Zero-shot accuracy on ImageNet-
1K classification. Comparison of unpruned
CLIP and pruning with WFPP and the Meta-
CLIP method using the CC3M dataset.

Method Sample Size w/o/ft w/ft Samples seen (w/ft)

CLIP 100% 17.4 ✗ 1.00×
50% 11.5 13.1 0.53×

WFPP

50% 13.4 15.1 0.53×
60% 14.2 16.2 0.63×
70% 15.9 17.4 0.74×
80% 16.7 17.9 0.83×
90% 16.9 17.5 0.93×

Table 8: Zero-shot accuracy on ImageNet-1K
classification. We compared WFPP with Meta-
CLIP, both of them pre-trained on 50% of the
CC3M dataset.

Method Sample Size w/o/ft w/ft
CLIP 50% 11.5 13.1
MetaCLIP 50% 12.9 14.8
WFPP 50% 13.4 15.1

2014) datasets. Following (Karpathy & Li, 2015), we utilize 1000 and 5000 test set images
for evaluating performance zero-shot image-text retrieval on Flickr30K and COCO, respectively.
Recall@K scores (where K = 1, 5, 10) are reported, representing the percentage of total test samples
wherein the correct sample is present among the first K returned candidate samples.

Even when using fewer training samples, WFPP demonstrates competitive performance compared to
the original CLIP model in zero-shot image-text retrieval tasks on the COCO and Flickr30K datasets.
As the sample size for WFPP increases from 50% to 90% of CLIP’s training data, its retrieval metrics
steadily improve across both datasets. Notably, at 90% sample size, WFPP surpasses CLIP in text
retrieval on Flickr30K, achieving an R@1 score of 60.55 compared to 59.17. These results suggest
that WFPP achieves similar or superior performance to CLIP while being more data-efficient.

Pre-training on Different Dataset. We also pre-trained the model on the smaller dataset
CC3M (Sharma et al., 2018). As shown in Table 7, the performance of the model is similar,
with fine-tuning, the performance of subsampling 70% of the data is already the same as CLIP.
Increasing the subsampling percentage from 70% to 80% results in a further performance increase
of 0.8% without fine-tuning However, increasing the subsampling percentage from 80% to 90%
results in only a 0.2% increase. This suggests that the effect of adding text containing high-frequency
words is very insignificant. Notably, when we fine-tune the model pre-trained on the 90% subset,
the performance is 0.4% lower than the model pre-trained on the 80% subset. Furthermore, WFPP
outperforms MetaCLIP by 0.5% before fine-tuning and by 0.3% after fine-tuning.

4.3 COMPARISON WITH METACLIP

MetaCLIP also aims to create a balanced subset based on the metadata distribution. Therefore, we
compare our method to MetaCLIP pre-trained on the CC3M dataset. Using the open-source code
provided by MetaCLIP, we created a 50% training subset of CC3M. Table 8 presents the zero-shot
ImageNet-1K classification accuracy for CLIP, MetaCLIP, and WFPP. Without fine-tuning, MetaCLIP
achieves an accuracy of 12.9%, outperforming the baseline CLIP’s 11.5%. WFPP further improves
this result to 13.4%, surpassing MetaCLIP by 0.5%. Moreover, with fine-tuning, WFPP attains the
highest accuracy of 15.1%, exceeding both MetaCLIP (14.8%) and CLIP (13.1%). These findings
indicate that WFPP not only enhances performance over the baseline CLIP but also outperforms
MetaCLIP in zero-shot ImageNet-1K classification tasks.
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Table 9: Zero-shot accuracy on ImageNet-1K classification. We sorted the texts according to Eq. 3
and pre-trained the model separately on the first and second halves of the data. The pre-training
dataset is CC12M. “Samples seen” refers to the number of samples processed during pre-training.

Method Subsampling Sample Size w/o ft w/ft Samples seen (w/ ft)
CLIP Random

4.65M (50%)
28.2 30.2 0.53×

WFPP-First First half 29.8 31.3 0.53×
WFPP-Second Second half 21.3 24.3 0.53×

Table 10: Zero-shot accuracy on ImageNet-1K classification. We selected image-text pairs based
on text length and compared the results with the random, length-based, and WFPP methods. The
dataset is CC12M and the image encoder is ViT-B-16. w/ft and w/o/ft is with and without fine-tuning.

Method Subsampling Sample Size w/o/ft w/ft Samples seen (w/ft)

CLIP random 4.65M (50%) 28.2 30.2 0.53×
length-based 4.65M (50%) 22.6 27.8 0.53×

WFPP frequency-based 4.65M (50%) 29.8 31.3 0.53×

4.4 IMPACT OF WORD FREQUENCY DISTRIBUTION

To investigate the benefits of pre-training with a better-balanced word distribution, we experiment
with a badly-balanced word distribution, as a contrast. Specifically, we sort CC12M by Eq. 3 and
pre-train on the second half, which is more likely to contain high-frequency words compared to the
first half, usually used by WFPP. As shown in Table 9, the model pre-trained on the first half of the
subset outperforms the model pre-trained on the second half by 8.7%. After fine-tuning, WFPP-First
still maintains a 7.0% advantage. In addition, WFPP-Second performs 6.9% worse than a model
pre-trained on a randomly selected 50% subset of CC12M. This result confirms the importance of
selecting texts in a way that balances word frequency by reducing the frequency of high-frequency
words.

4.5 IMPACT OF TEXT LENGTH AND TEXT LENGTH NORMALIZATION

Equation 3 is normalized by text length, indicating that length also affects our method. To examine
the impact of text length, we pruned the dataset based on text length, retaining only the longer texts.
As shown in Table 10, pruning based on text length resulted in poorer performance compared to both
the random method (22.5 vs. 28.2) and the frequency-based method (22.5 vs. 29.8).

Additionally, Equation 3 without length normalization tends to retain longer texts. Therefore, we
removed text length normalization in Equation 3 to evaluate its impact on model performance. The
revised equation used to sort the text in the dataset is shown below:

S(tj) =

n∏
i=1

P (wi) (4)

As shown in Table 11, the length normalization operation improves the zero-shot classification
accuracy on ImageNet-1K for models pre-trained on the CC3M and CC12M datasets by 1.2% and
2.6%, respectively. After fine-tuning, the improvements remain at 0.8% and 0.4%, respectively.

4.6 DATA ANALYSIS

To gain insight into the nature of the impact of WFPP on word-frequency distribution, we visualize
word-frequency distribution before and after pruning in Figure 2. The figure reveals that high-
frequency words are removed at a higher rate compared to low-frequency words for WFPP. In random
pruning, each word has about a 50% chance of being pruned. In contrast, under WFPP, the retention
probabilities for most of these top 50 high-frequency words are lower than 50%, especially for words
like “person”, “illustration”, and “background”, whose retention rates are 34.59%, 22.81%, and
22.31%, respectively. For infrequent words not shown in the figure, such as “connector”, “swords”,
and “grille”, the retention rates are higher—84.53%, 55.55%, and 70.35%, respectively.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Word Distribution: The top-50 words in
CC12M (Changpinyo et al., 2021) are shown after pruning
50% of image-text pairs using Random (orange) and WFPP
(green) methods, and before pruning (black). We then cal-
culate the word percentages for Random and WFPP before
and after pruning. Words are ordered by frequency before
pruning. The left Y-axis is the number of words and the
left Y-axis is the percentage of words which is the number
of words before data pruning divided by the number of
words after data pruning.

Table 11: Zero-shot accuracy on
ImageNet-1K classification: We re-
moved length normalization from Equa-
tion 3 to observe the improvement that
length normalization contributes.

Dataset Method w/o/ft w/ft

CC3M w/o normalization 12.6 14.3
w normalization 13.4 15.1

CC12M w/o normalization 27.2 29.9
w normalization 29.8 31.3

Table 12: Vocabulary Size Compari-
son: Comparison of vocabulary size be-
fore and after applying WFPP. WFPP
reduced the number of image-text pairs
in the CC12M dataset by 50%.

Word Frequency CLIP (100%) WFPP (50%)
More than 5 occurrences 124,323 99,923
More than 100 occurrences 33,872 32,476

4.7 VOCABULARY SIZE ANALYSIS

To demonstrate that WFPP maintains the vocabulary diversity while improving the word-frequency
balance, we calculated the vocabulary size before and after applying WFPP. As shown in Table 12,
removing 50% of the image-text pairs, the number of vocabulary words with more than 100 occur-
rences has not decreased substantially. However, the number of words with frequencies between 5
and 100 decreases. Future work should investigate the impact of these words, which might be low,
given their low frequencies.

5 CONCLUSION AND OUTLOOK

In this paper, we introduce WFPP, a novel data-pruning method to enhance vision-language pre-
training. By pruning image-text pairs based on word frequencies in the corpus, we reduce the size of
the training dataset reducing the necessary computation to pre-train the model. We demonstrate that
pruning improves the word-frequency balance and we claim that this is the reason it is possible to
prune data without impacting performance. In fact, across a wide range of tasks and datasets, our
experiments demonstrate that after data pruning with WFPP, CLIP is actually able to achieve better
performance that CLIP trained on unpruned data. WFPP also outperforms MetaCLIP pruning, which
similarly aims to yield a balanced subset over the metadata distribution.

Moving forward, using WFPP to prune very large-scale datasets such as LAION-400M (Schuhmann
et al., 2021) would be an interesting direction to explore. As shown in Figure 1, the improvement in
zero-shot classification accuracy on ImageNet-1K increases substantially when 60% instead of 50%
of CC12M data is retained after pruning. When more than 60% is retained, the rate of improvement
falls off. We believe that between 50% to 60%, we are observing the linear scaling law demonstrated
in CLIP (Radford et al., 2021; Cherti et al., 2023), but after that CC12M offers insufficient image-text
pairs containing low-frequency words in order to maintain this rate of improvement. If we are
right, it means that starting with a larger data set like LAION-400M, we could improve zero-shot
classification accuracy would already exceed 40% with 280 million. The broader implication is
that WFPP would maintain and possibly enhance its ability to improve performance as size of the
dataset before pruning is increased. It would also be worthwhile to investigate alternative methods
for pruning image-text pair data, such as term frequency-inverse document frequency (TF-IDF).
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6 REPRODUCIBILITY STATEMENT

Our work builds upon open_clip2, which provides detailed usage instructions, including how to
download the dataset and pre-train the model. Because our experiments use datasets that are not
too large, our results are broadly reproducible, i.e., using typical resources available in academic
settings. Additionally, we have described our set up in detailed as also made all source code available,
including scripts for data preprocessing, training, and evaluation, at WFPP 3.
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Figure 3: Zero-shot accuracy on ImageNet-1K classification. The CC3M dataset (Sharma et al.,
2018) was pruned with WFPP. We see that CLIP trained on the WFPP-pruned data achieved compa-
rable performance with CLIP trained on unpruned data, but uses only approximately 70% of original
training data (indicated by the 1.4x speed-up mark). On the left, we see examples of the performance
of data pruned with the MetaCLIP method, which remains below the performance of data pruned with
WFPP. The image encoder is ViT-B-16 (Dosovitskiy et al., 2021). The "ft" is an initial for fine-tuning.
“Samples seen” refers to the number of samples processed during pre-training.

A APPENDIX

A.1 MORE EVALUATION

For comparison with MetaCLIP, we pre-trained our model by pruning 50% of the data in CC3M
using the same metadata as MetaCLIP, with the same pre-training and fine-tuning settings as WFPP.
As shown in Figure 3, WFPP pre-trained on CC3M only requires 70% of the sample size required by
CLIP.

Zero-shot Robustness Evaluation: The performance of the pre-trained model on the CC3M (Sharma
et al., 2018) dataset is consistent with the pre-trained model on the CC12M dataset, as seen in Table 13.
When using an 80% subset of CC3M for pre-training, the model achieves the best average performance
on these datasets. Additionally, when comparing our method with MetaCLIP, our method outperforms
MetaCLIP on all datasets and exceeds MetaCLIP by an average of 0.29% in zero-shot robustness
evaluation.

Table 13: Zero-shot robustness evaluation: Comparison of zero-shot accuracy performance between
CLIP trained on the original data and CLIP trained on data pruned with the MetaCLIP method and
with WFPP, on various datasets. The image encoder is ViT-B-16, and the pre-trained dataset is
CC3M (Sharma et al., 2018). The model is fine-tuned for another epoch on the entire dataset.

Dataset CLIP MetaCLIP WFPP
50% 50% 60% 70% 80% 90%

ImageNet-A 4.09 3.20 3.52 4.04 3.84 4.49 3.93
ImageNet-O 21.60 18.90 19.20 20.80 21.60 23.10 21.70
ImageNet-R 20.72 15.55 16.31 17.48 19.28 20.63 20.26
ImageNet Sketch 8.09 5.28 5.54 6.43 7.46 8.19 8.65
ImageNetV2 14.74 12.79 13.02 14.04 14.63 15.28 14.77
ObjectNet 10.15 8.25 9.12 9.34 10.09 10.67 10.95
Average 13.20 10.83 11.12 12.02 12.82 13.73 13.38
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Table 14: Zero-shot accuracy on more classification datasets. The image encoder is ViT-B-16, and
the pre-training dataset is CC3M (Sharma et al., 2018). The model is fine-tuned for another epoch on
the entire dataset.

Dataset CLIP MetaCLIP WFPP
50% 50% 60% 70% 80% 90%

Food-101 11.36 10.70 11.36 11.36 11.39 12.00 10.28
CIFAR-10 43.07 44.72 39.60 39.95 41.49 41.63 39.47
CIFAR-100 18.18 17.29 15.56 17.53 19.51 20.53 16.30
CUB200 3.30 3.00 3.26 3.12 2.95 3.50 3.78
SUN397 33.30 28.30 28.38 30.43 33.12 34.50 33.46
Cars 0.88 0.88 0.72 0.87 1.02 0.62 0.91
Aircraft 0.75 1.02 1.54 1.33 1.38 1.02 1.33
DTD 10.32 10.64 11.81 13.40 13.09 11.06 12.13
OxfordPets 11.90 9.26 12.56 10.04 13.94 14.25 12.08
Caltech-101 46.40 39.82 40.89 42.15 46.46 46.22 46.73
Kinetics700 13.12 11.43 11.89 12.72 13.52 13.40 13.18
Flowers102 1.90 1.22 2.57 1.63 1.66 1.64 1.89
MNIST 10.10 10.09 8.92 9.54 12.58 7.77 13.26
STL10 80.51 72.69 76.48 76.20 79.16 82.09 81.03
EuroSAT 16.10 11.68 18.64 14.02 20.00 7.70 18.56
Resisc45 20.02 16.52 17.83 16.70 18.70 20.52 20.30
GTSRB 8.65 4.77 5.87 4.24 8.35 6.93 6.29
KITTI 34.63 39.10 22.39 28.88 40.64 29.34 28.68
Country211 0.69 0.62 0.60 0.57 0.64 0.80 0.61
PCAM 56.14 50.05 50.05 60.18 50.00 50.01 56.30
UCF101 25.09 21.25 20.20 21.78 23.02 25.40 24.21
CLEVR 12.09 19.93 13.22 11.60 11.90 13.39 9.57
HatefulMemes 50.94 52.97 49.61 52.71 55.95 54.38 50.74
SST2 50.08 48.76 50.08 50.08 49.48 49.26 49.92
ImageNet 17.36 14.78 15.16 16.23 17.37 17.91 17.50
Average 23.08 16.72 21.18 23.49 23.49 22.63 22.74

Table 15: Zero-shot Image-Text Retrieval: We evaluate CLIP trained on the original data vs.
CLIP trained on data pruned with the MetaCLIP methods and with WFPP in terms of image-text
retrieval performance on both COCO and Flickr30k datasets. The image encoder is ViT-B-16, and
the pre-trained dataset is CC3M (Sharma et al., 2018). The model is fine-tuned for another epoch on
the entire dataset.

Model Sample Size
Text Retrieval Image Retrieval

Flickr30k COCO Flickr30k COCO
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 100% 24.79 48.30 58.48 11.91 29.56 40.20 31.56 60.16 70.22 15.98 37.52 49.06
MetaCLIP 50% 17.02 37.02 48.11 12.42 30.14 40.58 23.67 46.94 58.19 8.90 23.05 32.87

WFPP

50% 17.24 37.04 47.04 8.38 23.09 32.85 23.18 45.27 58.68 11.28 29.08 39.90
60% 19.59 41.22 52.01 9.86 25.90 36.03 25.74 50.49 61.64 14.16 31.96 43.18
70% 22.07 46.27 56.79 11.02 28.10 38.60 29.59 56.11 67.85 15.28 34.92 45.86
80% 24.20 47.02 57.53 11.95 29.75 40.53 31.07 57.40 66.77 16.34 37.24 48.52
90% 25.50 48.60 59.59 12.36 30.64 41.39 30.18 61.54 70.61 16.14 37.46 49.40

Zero-shot Classification on More Datasets The zero-shot classification performance across 25
datasets is consistent with the results from the model pre-trained on the CC3M dataset, as shown
in Table 14. CLIP trained on data pruned with WFPP achieves the best average performance when
using a 70% subset, outperforming CLIP pre-trained on the entire dataset by 0.41%. Additionally,
compared to CLIP trained on data pruned with the MetaCLIP method, our method substantially
exceeds its average performance by 4.46%.

Zero-shot Retrieval As shown in Table 15, models pre-trained on the CC3M dataset demonstrate
that CLIP trained on data pruned with WFPP has a substantial advantage in zero-shot image-text
retrieval tasks compared to CLIP trained on the original data and CLIP trained on data pruned with
the MetaCLIP method.
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Table 16: Zero-shot classification accuracy on ImageNet-1K. We pre-trained models by sampling
image-text pairs sorted according to Equation 3, with sampling rates of 50% based on different
thresholds t, specifically 1e-6, 1e-7, and 1e-8. The pre-training dataset is CC12M (Changpinyo et al.,
2021), and the image encoder used is ViT-B-16 (Dosovitskiy et al., 2021). “Samples seen” refers to
the proportion of the dataset processed during pre-training, with 100% set as 1.00. w/ft and w/o/ft is
with and without fine-tuning.

Method Sample Size threshold w/o/ft w/ft Samples seen (w/ft)
CLIP 4.65M (50%) ✗ 28.2 30.2 0.53×

WFPP
4.65M (50%) 1e-6 29.0 30.7 0.53×
4.65M (50%) 1e-7 29.8 31.3 0.53×
4.65M (50%) 1e-8 29.7 31.2 0.53×

Table 17: Zero-shot classification accuracy on ImageNet-1K. We use BLIP Li et al. (2022a) to
generate synthetic captions for the CC3M dataset. We then prune 50% of these synthetic captions
using random and WFPP methods. The model is pre-trained for 30 epochs and fine-tuned on the
original dataset for 1 epoch. The image encoder employed is ViT-B-16 Dosovitskiy et al. (2021). The
threshold value t in Equation 2 is set to 10−7.

Method data Sample Size w/o/ft w/ft Samples seen (w/ft)
CLIP synthetic captions 50% 7.7 12.6 0.53×
WFPP 50% 7.8 13.0 0.53×

A.2 THRESHOLD SELECTION FOR WFPP

Based on the idea that high-frequency and low-frequency words should be treated differently, we
select the threshold using Equation 2. We aim to decrease the sampling probability of high-frequency
words while retaining low-frequency words. For words with frequency f(wi) less than t (i.e., very
rare words), we set P (wi) to 1. These very rare words do not affect the probability of the text being
discarded. Specifically, for the cc12m dataset, setting t to 1e-6 means words with count less than
206 are assigned P (wi) = 1; setting t to 1e-7 corresponds to words with a count less than 20 being
assigned P (wi) = 1; when t is set to 1e-8, all words are considered by Equation 2 (since no words
have frequency less than t). We also provide zero-shot classification accuracy with three different
thresholds: 1e-6, 1e-7, and 1e-8, As shown in Table 16. When we set the threshold t to 1e-6, the
zero-shot classification accuracy is lower than when t is 1e-7 or 1e-8, but it still outperforms the
random pruning method. The performances for thresholds 1× 10−7 and 1× 10−8 are similar.

A.3 SYNTHETIC CAPTIONS

Some works utilize synthetic image captions to pre-train CLIP Vasu et al. (2024); Yang et al. (2023).
While these synthetic captions are of higher quality than web captions, they do not ensure a balanced
word distribution. To address this imbalance, WFPP can be applied to the synthetic captions datasets.
As shown in Table 17, we generated synthetic captions for the CC3M dataset using BLIP Li et al.
(2022a). We then pruned 50% of the synthetic data using random pruning and WFPP to pre-train
CLIP. Our results show that WFPP outperforms the random pruning method by 0.4% in zero-shot
classification accuracy on the zero-shot ImageNet-1k classification.

A.4 WORD AND TOKEN FREQUENCY

We also evaluate the model’s performance through token frequency data pruning. As indicated in
Table 18, the performance based on word and token frequency is similar. This is because most words
correspond to individual tokens. Although some words are tokenized into two or more tokens, this
has a limited impact on overall performance.

A.5 DATA ANALYSIS

We analyzed the data categories before and after applying WFPP. According to Table 19, there is not
a significant change in the percentage of word categories. However, when this data is combined with
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Table 18: Zero-shot classification accuracy on ImageNet-1K. We pre-train models by sampling
image-text pairs sorted according to Equation 3 at sampling rates 50% based on word frequency
and token frequency. The pre-training dataset is CC12M (Changpinyo et al., 2021), and the image
encoder used is ViT-B-16 (Dosovitskiy et al., 2021).

Method Sample Size tokenizer w/o/ft w/ft Samples seen (w/ft)

WFPP 4.65M (50%) word 29.8 31.3 0.53×
4.65M (50%) token 29.8 31.5 0.53×

Figure 4: Word Distribution: The top-100 words in CC12M (Changpinyo et al., 2021) are shown
after pruning 50% of image-text pairs using Random (orange) and WFPP (green) methods, and before
pruning (black). We then calculate the word percentages for Random and WFPP before and after
pruning. Words are ordered by frequency before pruning. The left Y-axis is the number of words and
the left Y-axis is the percentage of words which is the number of words before data pruning divided
by the number of words after data pruning.

the analysis presented in Figure 4, it becomes apparent that WFPP prunes more high-frequency noun
words while retaining more low-frequency nouns. WFPP improves word distribution by selectively
pruning high-frequency words, thereby achieving a more balanced distribution. In addition, we
visualize the word distribution for the first and second part of the data after applying WFPP, as
shown in Figure 5. The second part has many more high-frequency words than the first part and
the high-frequency words percentage of the second part is substantially higher than 50%. Moreover,
we also analyzed human-labeled datasets by applying WFPP, such as COCO Lin et al. (2014) and
VG Krishna et al. (2017). As illustrated in Figure 6 and Figure 7, the patterns observed in these figures
are similar to those in the CC12M dataset. By applying the WFPP method, more high-frequency
words are pruned from the first part of the dataset, while the second part retains a higher number of
these words.

Table 19: We analyzed the percentages and counts resulting from random and frequency-based
pruning methods. Using the CC12M dataset, we pruned 50% of the original texts. NN means noun,
JJ means adjective, VB means verb.

Method NN JJ VB OTHER Total
Before sampling 103,469,117 (50.34%) 10,245,828 (4.98%) 10,649,943 (5.18%) 81,351,966 (39.61%) 205,716,854
Random 51,648,996 (50.25%) 5,120,215 (4.98%) 5,319,414 (5.18%) 40,666,145 (39.59%) 102,754,770
WPFF 47,149,193 (50.48%) 4,491,732 (4.81%) 5,153,531 (5.52%) 36,596,727 (39.19%) 93,391,183
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Figure 5: Word Distribution: The top 100 words from CC12M (Changpinyo et al., 2021) are
presented in two parts: the first and second 50% of the image-text pairs using the WFPP method.
We then calculate the word percentages for WFPP before and after pruning. Words are ordered by
frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the percentage
of words which is the number of words before data pruning divided by the number of words after
data pruning.

Figure 6: COCO Dataset Word Distribution: The top 100 words from COCO (Lin et al., 2014)
dataset are presented in two parts: the first and second 50% of the image-text pairs using the WFPP
method. We then calculate the word percentages for WFPP before and after pruning. Words are
ordered by frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the
percentage of words which is the number of words before data pruning divided by the number of
words after data pruning.
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Figure 7: VG Dataset Word Distribution: The top 100 words from VG (Krishna et al., 2017) dataset
are presented in two parts: the first and second 50% of the image-text pairs using the WFPP method.
We then calculate the word percentages for WFPP before and after pruning. Words are ordered by
frequency before pruning. The left Y-axis is the number of words and the left Y-axis is the percentage
of words which is the number of words before data pruning divided by the number of words after
data pruning.

B DATA EXAMPLES

We randomly select example words from the dictionary and list them with their corresponding P (wi)
values. As shown in Table 20, frequent words have a higher probability of being discarded than
infrequent words.

Table 20: Randomly selected words and their P (wi) values.

Word P (wi) Word P (wi) Word P (wi)

, 0.9996 the 0.9995 person 0.9993
in 0.9992 > 0.9991 it 0.9976
dream 0.9792 latest 0.9736 material 0.9572
prepared 0.9305 brighten 0.9015 macau 0.8777
lesser 0.8467 billionaire 0.8321 lawns 0.8252
authenticity 0.8249 raging 0.8090 apricots 0.7670
fidget 0.7309 decathlon 0.7240 quadratic 0.7084
natura 0.7078 momo 0.6963 squaw 0.6619
pats 0.6511 futurist 0.6425 ardmore 0.6220
knott 0.5615 dungarees 0.5464 hairdryer 0.5347
ankole 0.5051 escolta 0.4991 incubation 0.4831
kalibo 0.4240 okefenokee 0.4240 lusitano 0.3710
whe 0.3649 hubcap 0.3384 compromises 0.3239
bydgoszcz 0.3239 ews 0.3162 zar 0.2737
actuators 0.2333 skeet 0.2333 tawang 0.2333
dregs 0.2222 urad 0.1982 alternated 0.1982
essequibo 0.1854 ilent 0.1719 cline 0.1719
holtz 0.0929 sacramental 0.0742 barish 0.0742
stippled 0.0742 junina 0.0543 rafted 0.0103
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Additionally, we randomly selected texts from the CC12M dataset and calculated their corresponding
S(wi) values. The results are presented in Table 21.

Table 21: Randomly selected example texts and their corresponding S(wi). The texts are select from
CC12M (Changpinyo et al., 2021).

Texts S(wi)
Girona Beach with <PERSON> 0.06019
Black Canyon of the Gunnison 0.05801
The Sutton Condominium Residents Lounge Couch 0.05748
Sagas of the Gray Seas: Sleipnir’s Hoof 0.05624
<PERSON>- The Boiler Room 0.02104
<PERSON>deep in a drift 0.02041
New chef at the Portsea Hotel, <PERSON> 0.02033
A bed or beds in a room at <PERSON>’s Guest House and Tours 0.00892
Creative Design For Blue Red And An Orange Wallpaper Photo 0.00882
The Lord of the Rings Game HD Wallpaper 1920x1080 0.00861
A small dog stock photography 0.00792
<PERSON>family with a child 0.00662
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