
Exploiting Interpretable Capabilities with
Concept-Enhanced Diffusion and Prototype Networks

Alba Carballo-Castro, Sonia Laguna, Moritz Vandenhirtz, Julia E. Vogt
Department of Computer Science

ETH Zürich
Switzerland

Abstract

Concept-based machine learning methods have increasingly gained importance
due to the growing interest in making neural networks interpretable. However, con-
cept annotations are generally challenging to obtain, making it crucial to leverage
all their prior knowledge. By creating concept-enriched models that incorporate
concept information into existing architectures, we exploit their interpretable capa-
bilities to the fullest extent. In particular, we propose Concept-Guided Conditional
Diffusion, which can generate visual representations of concepts, and Concept-
Guided Prototype Networks, which can create a concept prototype dataset and
leverage it to perform interpretable concept prediction. These results open up new
lines of research by exploiting pre-existing information in the quest for rendering
machine learning more human-understandable.

1 Introduction

With an increasing number of decision-making processes relying on Machine Learning (ML) methods,
the field of Interpretable ML has gained significant importance (Doshi-Velez & Kim, 2017; Lipton,
2016) with concept-based methods being a prominent focus of the recent literature in this area.
Concepts can be defined as variables that encode human-understandable information and can be used
to provide explanations. Concept-based methods have been explored in prior work (Lampert et al.,
2009; Kumar et al., 2009), with Concept Bottleneck Models (CBMs) (Koh et al., 2020), Concept
Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) Concept Activation Vectors (CAVs)
(Kim et al., 2018), and Concept Whitening (Z. Chen et al., 2020) among the most popular.

In this work, we explore how concept information can help increase interpretability beyond its current
use by integrating it into pre-existing methods. We propose different means to leverage concept
knowledge and obtain visual concept representations by introducing Concept-Guided Conditional
Diffusion and Concept-Guided Prototype Networks. The former is based on diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), particularly on conditional diffusion (Ho & Salimans, 2021),
to use the concept information for guidance and obtain visual representations of the concepts. The
latter builds on already interpretable methods such as Prototypical Part Networks (C. Chen et al.,
2019) to obtain prototypical patches (prototypes). They characterize concept information and allow
for concept prediction and the creation of a concept prototype dataset.

Contributions This work contributes to the line of research on concept-based methods in several
ways by introducing concept-enhanced methods to leverage concept knowledge and exploit their
interpretable capabilities. (i) We present Concept-Guided Conditional Diffusion, a generative method
that incorporates concept knowledge to guide the generation of concept-based samples. (ii) We
introduce Concept-Guided Prototype Networks, which allow us to (a) obtain interpretable concept
predictions and (b) create a concept prototype dataset including a visual representation of the concepts.
(iii) We illustrate the success of these methods through real-world dataset applications.

Interpretable AI: Past, Present and Future Workshop at NeurIPS 2024



Figure 1: Overview of the introduced concept-enhanced models. (a) Example of explored CUB and
AWA2 datasets. (b, c) Summary of the methodology of Concept-Guided Conditional Diffusion and
Prototype Networks. The resulting generations and prototype visualizations are shown in purple.

2 Related Work
Concept-based methods Initially, concept-based methods aimed at attribute based classifica-
tion (Lampert et al., 2009; Kumar et al., 2009). Later on, Concept Activation Vectors (TCAV) (Kim
et al., 2018) and Invertible Concept-based Explanations (ICE) (Zhang et al., 2021) were proposed
as methods to interpret neural networks through human-understandable concepts. Koh et al. (2020)
proposed Concept Bottleneck Models (CBM), which enforce an intermediate layer to correspond
to concepts. Derivative works find ways to relax the bottleneck (Espinosa Zarlenga et al., 2022),
don’t require concept information during training (Oikarinen et al., 2023; Yuksekgonul et al., 2023;
Laguna et al., 2024), or improve the modeling capabilities (Sawada & Nakamura, 2022; Havasi
et al., 2022; Vandenhirtz et al., 2024). More recent works consider the concept bottleneck in the
context of generative methods (Marconato et al., 2022; Ismail et al., 2024). Contrary to the restrictive
enforcing of a concept bottleneck, our proposed generative method conditions on the complete
concept information, allowing steerable generations of not only positive concept information (i.e.,
images containing a concept) but also negative, exploiting concept knowledge more exhaustively.

Diffusion models Diffusion models were originally introduced by Sohl-Dickstein et al. (2015),
and have been followed by a series of works focusing on image generation and improved perfor-
mance, such as noise conditional score network (NCSN) (Y. Song & Ermon, 2019), Denoising
Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) or Denoising Implicit Diffusion Models
(DDIM) (J. Song et al., 2022). Further works have dealt with Conditional Diffusion using a classifier
as guidance (Dhariwal & Nichol, 2021) or without making use of it (Ho & Salimans, 2021).

Prototype networks They perform classification by computing the similarity of the encoded
input with a prototypical embedding (Li et al., 2018), which can be restricted to match an actual
image patch (C. Chen et al., 2019). Other related works are ProtoPShare (Rymarczyk et al., 2021),
ProtoTrees (Nauta et al., 2021), ProtoPool (Rymarczyk et al., 2022) and ProtoConcepts (Ma et al.,
2023), that learn prototypical concepts from the data rather than using a pre-annotated concept set.

3 Methods

Concept-based methods are trained on triplets {(xi, yi, ci}ni=1, where x ∈ Rd are the inputs, y ∈ R
is the target, and c ∈ {0, 1}k are different human-understandable concepts. Given K concepts
c = c1, . . . cK , we propose to incorporate this information into pre-existing methods by adapting the

2



optimization problem to the multi-binary-label case, creating concept-enhanced models1. This way,
we aim to acquire visual representations of concepts to enhance human interpretability. A summary
of our methods is illustrated in Figure 1. In the following, we explore two ways to infuse pre-existing
methods with concept information to obtain visual representations.

3.1 Concept-Guided Conditional Diffusion

Previous works on Conditional Diffusion use label information to guide the generations, but focus
mostly on the multi-class setting (Dhariwal & Nichol, 2021; Ho & Salimans, 2021). Our method
extends classifier-free guidance (Ho & Salimans, 2021) to the multi-binary-label case to leverage
concept knowledge, using the concept vector c to guide the diffusion process. The original approach
parametrizes conditional and unconditional diffusion models through a single neural network. In the
conditional model, label information is passed as an embedding. This label embedding is learned,
and the row corresponding to the class label is added to the timestep positional encoding. Our method
replaces the label information with a concept embedding with K rows, one per concept.

Each datapoint x has per-concept binary annotations, representing its presence in the image. To
allow for generated images to be guided by a subset of the available concepts, we introduce a user-
defined binary mask m activated (mk = 1) only for the concepts of interest. Given an embedding
E = (ek)

K
k=1, we select the rows of the mask-activated concepts in three different ways (we refer to

Figure 4 in Appendix A.1 for further details): Positive Embedding, where the selected embedding
rows ek are those activated by the mask mk

i = 1 and with positive concept values, cki = 1; Opposite
Embedding, selects all rows activated by the mask mk

i = 1 but inverting the values, −ek, in the case
of negative concepts cki = 0; and Double Embedding, which initializes two separate embeddings E1
and E2 and extracts the rows where mk

i = 1 from E1 when cki = 1, and E2 when cki = 0.

Finally, the extracted rows are averaged and added to the positional encoding of the timesteps, used
to guide the generations in the conditional model. Our proposed modeling allows us to introduce
the guidance of generations not only with positive concepts cki = 1 but also with negative concepts
cki = 0 (i.e., generations in which the concept of interest is not present).

3.2 Concept-Guided Prototype Networks

In this section, we introduce the extension of ProtoPNet (C. Chen et al., 2019) and its subsequent
work ProtoPools (Rymarczyk et al., 2022) to concept-enhanced methods by adapting them from the
multi-class to the multi-binary label setting, allowing for interpretable concept prediction. In addition,
prototypical image patches (prototypes) will be obtained for positive (cki = 1) and negative (cki = 0)
concepts, resulting in 2×K concept classes for prototype training but just K for concept prediction.

Concept-Guided ProtoPNet Given an input image x, ProtoPNet (C. Chen et al., 2019) is composed
by a CNN layer f that extracts image features z = f(x), a prototype layer gp to compute similarities
between prototypes and patches of the convolutional output, and a fully connected layer h for the
final classification task. A summary of the original training algorithm is available in Appendix A.2.

If P = {pj}mj=1 are the different m prototypes, Concept-Guided ProtoPNet is built by modifying the
loss function in Equation 5. The cross entropy loss will be changed to the binary cross entropy and
the cluster (Clst) and separation (Sep) costs are adapted as

Clst =
1

n

1

K

n∑
i=1

K∑
k=1

min
j:pj∈P

ck
i

k

min
z∈patches(f(xi))

∥z − pj∥22, (1)

and

Sep = − 1

n

1

K

n∑
i=1

K∑
k=1

min
j:pj∈P

c̄k
i

k

min
z∈patches(f(xi))

∥z − pj∥22, (2)

where cki is the binary value of the k-th concept for the i-th training sample and c̄ki = 1− cki .

Previously, Clst encouraged that there is at least one latent patch in every training image close to
at least one prototype of its own class. Now, it will encourage having at least one latent patch in

1The code is publicly available here: https://github.com/acarballocastro/ConceptEnhanced

3

https://github.com/acarballocastro/ConceptEnhanced


every training image close to at least one prototype of its concept class (which can be positive or
negative) for all the different K concepts. This is achieved by partitioning the initial prototype set

P = P
cki
k ∪ P

c̄ki
k into the subsets of prototypes assigned to the concept classes of the given training

image xi and those assigned to the opposite, respectively. Finally, Clst is calculated for all concepts
belonging to the first subset and averaging across them. Similarly, Sep encouraged all patches from a
training image to stay far from all the prototypes that are not of the same class. This was pertinent
since labels were mutually exclusive, unlike now where each image has K concepts associated.
Therefore, Sep will encourage that, for a given training image and each of the K concepts, there
are no latent patches close to the prototypes assigned to the opposite concept classes. This will be

achieved by calculating Sep for the subset P c̄ki
k and averaging across all concepts.

For the prototype projection step, the update remains unchanged while accounting for the subsets
of patches per concept being positive and negative. Finally, as the concepts are now not mutually
exclusive, the weights of the last layer are initialized as w(k,j)

h = 1 if pj ∈ P 1
k, and w

(l,j)
h = −1 if

pj /∈ P 0
k for a given concept k. That is, the weights linking a positive concept logit with its prototypes

are set to 1, whereas the ones linking the negative concept logits to its (negative) prototypes are set to
−1. The rest of the weights are set to 0, encouraging a better classification.

Concept-Guided ProtoPools In ProtoPools (Rymarczyk et al., 2022), prototypes can be shared
across classes, and the allocation of prototypes to classes is dynamical instead of predetermined. To
that end, the model uses prototype pool layer g, which learns a set of m prototypes P = {pj}mj=1
and a set of S distributions qs ∈ Rm per class. Each class has, therefore, S slots, and the distributions
represent the probability of a prototype being assigned to one of the slots of that class. Instead of
computing one similarity score per prototype unit, g computes S similarity scores per class which
then pass by the fully connected layer to output the final prediction.

The main differences in the training algorithm with respect to ProtoPNet are the dynamical assignment
of prototypes using a Gumbel-Softmax distribution and a new orthogonal loss to ensure that the same
prototype is not assigned to more than one slot per class. The projection of prototypes and convex
optimization of the last layer steps are also adapted (see Appendix A.2 for further details).

To introduce Concept-Guided ProtoPools, we adapt it to the multi-binary-label case by calculating
the cluster and separation costs as described before. In addition to the orthogonal loss in Equation 11,
a second orthogonal loss is introduced to ensure the same prototype is not assigned to the positive
and negative classes of a given concept:

Orthc =

S∑
i,j

⟨qi, qj⟩
∥qi∥2 · ∥qj∥2

, (3)

where i = 1, . . . , S are the indexes of qi the distributions of concept ck and j = 1, . . . , S are the
indexes of qj the distributions of the opposite concept c̄k, with k = 1, . . . ,K.

The final loss function has the form:

LCGPPool =
1

n

n∑
i=1

BCE
[
(h ◦ gp ◦ f)(xi), yi

]
+ λ1Clst + λ2Sep + λ3Orthp + λ4Orthc. (4)

For the projection of prototypes, Zj stays the same as in Equation 12. Prototypes are assigned to the
different S slots of the 2×K concept classes, and then the model pushes each of them to the nearest
training patch. Finally, for the convex optimization of the last layer, we set to 1 the weights that link
a given positive concept to its S slots and to −1 those that link a negative concept logit and its slots.

4 Experimental setup

Experiments were performed on the Caltech-UCSD Birds200-2011 dataset (Wah et al., 2011), in its
adaptation from the CBM literature (Koh et al., 2020) with 112 concepts and 200 classes, and the
Animals with Attributes 2 (AWA2) dataset (Xian et al., 2019) comprising 85 concepts and 50 classes.

For the Concept-Guided Conditional Diffusion model, we performed experiments for the three
types of embedding. After training, we sampled images with different combinations of concepts

4



being positive and negative to later inspect the generations. As an example, for single-concept
guided generations we chose has_wing_color::black and has_wing_color::yellow. This
was further motivated as a means to explore the effect of the concept imbalance in the training
images (41.4% and 6.4%, respectively). Generations with two concepts were made conditioning
on has_wing_color::black and has_belly_color::white, and finally for three concepts on
has_wing_color::black, has_belly_color::white and has_breast_color::yellow. In
the case of the AwA2 dataset, selected concepts were black and fish (present in 60.9% and 28.7%),
both for generations with one concept and with two concepts.

In Concept-Guided Prototype Networks, the goal is to show that these models can accurately predict
the different binary concepts for a given input image in an interpretable way and to inspect the
generated patches representative of each concept class. We will use the performance of a black-box
pre-trained ResNet18 backbone used in the original CBM work (Koh et al., 2020) as an oracle for
concept prediction. We measure the concept performance with the test set accuracy across varying
architecture configurations, particularly DenseNets, ResNets, and VGGs.

We generated ten prototypes per each of the 2×K concept classes in Concept-Guided ProtoPNet.
As for Concept-Guided ProtoPools, we generated m = 1000 prototypes and assigned S = 10 slots
per concept class. For the prototype datasets, we obtained the 50 closest patches to each prototype,
resulting in 500 prototype images per concept class (in the case of ProtoPools, if a prototype is
assigned more than once to the same concept class, the number of prototypes can be lower).

5 Results

Concept-Guided Conditional Diffusion Figure 2 shows example generations for different con-
cepts, complemented by the different sample images in Figure 1 and a comprehensive overview in
Appendix C.1 (for CUB) and Appendix C.2 (for AWA2). It can be seen that the concepts of interest
are present in all generations and, therefore, the model has been capable of generating visual concept
representations with no remarkable differences between embedding types. In addition, generations
also work for negative concepts, as it can be seen that the resulting images do not contain the concept
when it is set to negative. In addition, we observe that the generations for concept black wing are
better defined and have better quality than those of yellow wing, which is due to a higher proportion
of images containing this concept.

As for the images conditioned on different concepts at once, the concept combinations result in the
desired generations for both positive and negative concepts. For instance, generations for concept
fish positive and black negative result in images of animals that have fish in their diet but are not of
color black. With this, we exploit the expressivity of concepts, particularly in the case where a direct
human interpretation is not trivial. This can be later used as an intermediate step for a downstream
task, for example, to increase interpretability in CBMs by generating visual representations of the
latent concepts in the side channel.

Figure 2: Concept visualizations (positive and negative) generated with Concept-Guided Condi-
tional Diffusion for both datasets and different combinations of concepts. Each row corresponds to
one of the embedding types described (positive, opposite, double).

5



Table 1: Accuracy results for both
Concept-Guided Prototype Networks with
varying base architectures, highlighting
the best-performing models. Results are
compared with the black-box oracle.

Architecture
Acc

(CUB)
Acc

(AWA2)
Oracle 0.961 0.901

C
G

-P
PN

et

DenseNet121 0.874 0.871
DenseNet161 0.874 0.855

ResNet34 0.880 0.852
ResNet152 0.867 0.842

VGG16 0.870 0.885
VGG19 0.873 0.879

C
G

-P
Po

ol
s DenseNet121 0.867 0.881

DenseNet161 0.877 0.883
ResNet34 0.878 0.877
ResNet50 0.860 0.892

Figure 3: Concept prototype visualizations for Concept-
Guided ProtoPNet (left) and ProtoPools (right). First row
shows the activation map over the original image and the
second row shows the corresponding prototype.

Concept-Guided Prototype Networks Table 1 shows the main accuracy results for the different
base architectures, complemented by further results in Tables 4 (for ProtoPNet) and 5 (for ProtoPools)
in Appendix D. Despite a slight drop in concept accuracy with respect to the oracle, concept
prototypes provide improved interpretability through a better understanding of the way models
visualize concepts. In particular, AwA2 behaves on par with the oracle performance, especially in
Concept-Guided ProtoPools, which highlights the method’s success in bigger datasets.

Figure 3 shows generated concept prototypes. The model can identify and extract relevant patches of
the training images corresponding to the concept of interest. Figures 19, 20, 21 and 22 in Appendix D
display additional examples of prototypes alongside their closest patches for positive and negative
concepts, calculated to conform the concept prototype dataset. Similarly, these methods allow to
leverage concept information which can be used to increase downstream interpretability in other ML
models. For instance, CBMs would benefit from having an interpretable concept predictor, which
would help better understand and mitigate issues such as data leakage.

6 Conclusion

In this paper, we introduced concept-enhanced methods as a way to incorporate concept information
into existing architectures, and thus exploit their interpretable capabilities to the fullest extent. We
proposed two different models Concept-Guided Conditional Diffusion and Concept-Guided Prototype
Networks, which are able to generate concept-based samples or prototypes and perform interpretable
concept prediction. We applied these models to real-world datasets and showed successful image
generation capabilities. This allows the visualization of concept information and an interpretable
concept prediction without significant loss of performance with respect to black-box methods.

Limitations and future work This work can be explored and impactful in the continuous concept
domain. Another application lies in the context of CBMs, which are known to suffer from data leakage
(Mahinpei et al., 2021; Margeloiu et al., 2021; Havasi et al., 2022), where the concept predictor
conveys unintended information about the label. This issue could be further understood and mitigated
with concept-enhanced methods, such as substituting usual black-box predictors for an interpretable
one as a Concept-Guided Prototype Network; or calculating concept probabilities by similarity to
concept prototypes or samples generated with Concept-Guided Conditional Diffusion. Lastly, both
Concept-Guided methods could prove useful in obtaining visualizations to better understand the side
channel. As a limitation, our method relies on concept-annotated datasets, which can be overcome in
combination with current works on automated concept discovery (Ghorbani et al., 2019; Oikarinen et
al., 2023). Finally, generating images with diffusion models is computationally expensive and could
be alleviated with recent less demanding variations (Rombach et al., 2021; Guo et al., 2024).

6



Acknowledgments and Disclosure of Funding

The project that gave rise to these results received the support of a fellowship from “la Caixa”
Foundation (ID 100010434). The fellowship code is LCF/BQ/EU22/11930089. MV and SL are
supported by the Swiss State Secretariat for Education, Research, and Innovation (SERI) under
contract number MB22.00047.

References
Chen, C., Li, O., Tao, C., Barnett, A. J., Su, J., & Rudin, C. (2019). This looks like that: Deep

learning for interpretable image recognition. In 33rd conference on neural information processing
systems.

Chen, Z., Bei, Y., & Rudin, C. (2020). Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12), 772–782. Retrieved from https://doi.org/10.1038/
s42256-020-00265-z

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. In Advances in
neural information processing systems (Vol. 34, pp. 8780–8794).

Doshi-Velez, F., & Kim, B. (2017, March). Towards A Rigorous Science of Interpretable Machine
Learning (No. arXiv:1702.08608). arXiv. doi: 10.48550/arXiv.1702.08608

Espinosa Zarlenga, M., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., . . . others
(2022). Concept embedding models: Beyond the accuracy-explainability trade-off. In Advances in
neural information processing systems (Vol. 35, pp. 21400–21413).

Ghorbani, A., Wexler, J., Zou, J. Y., & Kim, B. (2019). Towards automatic concept-based explanations.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.),
Advances in neural information processing systems (Vol. 32, p. 9277—9286). Curran Associates,
Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/
77d2afcb31f6493e350fca61764efb9a-Paper.pdf

Guo, L., He, Y., Chen, H., Xia, M., Cun, X., Wang, Y., . . . Wen, B. (2024). Make a cheap scaling: A
self-cascade diffusion model for higher-resolution adaptation. arXiv preprint arxiv:2402.10491.
Retrieved from https://arxiv.org/abs/2402.10491

Havasi, M., Parbhoo, S., & Doshi-Velez, F. (2022). Addressing leakage in concept bottleneck models.
In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (Eds.), Advances in neural information processing
systems. Retrieved from https://openreview.net/forum?id=tglniD_fn9

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv preprint
arxiv:2006.11239.

Ho, J., & Salimans, T. (2021). Classifier-free diffusion guidance. In Neurips 2021 workshop on deep
generative models and downstream applications.

Ismail, A. A., Adebayo, J., Bravo, H. C., Ra, S., & Cho, K. (2024). Concept bottleneck generative
models. In The twelfth international conference on learning representations. Retrieved from
https://openreview.net/forum?id=L9U5MJJleF

Jang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with gumbel-softmax. Retrieved
from https://arxiv.org/abs/1611.01144

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., & sayres, R. (2018). Interpretabil-
ity beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In J. Dy
& A. Krause (Eds.), Proceedings of the 35th international conference on machine learning (Vol. 80,
p. 2668-2677). PMLR. Retrieved from http://proceedings.mlr.press/v80/kim18d.html

7

https://doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1038/s42256-020-00265-z
https://proceedings.neurips.cc/paper_files/paper/2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/77d2afcb31f6493e350fca61764efb9a-Paper.pdf
https://arxiv.org/abs/2402.10491
https://openreview.net/forum?id=tglniD_fn9
https://openreview.net/forum?id=L9U5MJJleF
https://arxiv.org/abs/1611.01144
http://proceedings.mlr.press/v80/kim18d.html


Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. (2020).
Concept bottleneck models. In H. D. III & A. Singh (Eds.), Proceedings of the 37th international
conference on machine learning (Vol. 119, pp. 5338–5348). Virtual: PMLR. Retrieved from
https://proceedings.mlr.press/v119/koh20a.html

Kumar, N., Berg, A. C., Belhumeur, P. N., & Nayar, S. K. (2009). Attribute and simile classifiers for
face verification. In 2009 ieee 12th international conference on computer vision (pp. 365–372).
Kyoto, Japan: IEEE. Retrieved from https://doi.org/10.1109/ICCV.2009.5459250

Laguna, S., Marcinkevičs, R., Vandenhirtz, M., & Vogt, J. E. (2024). Beyond concept bottleneck
models: How to make black boxes intervenable? arXiv preprint arXiv:2401.13544.

Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes
by between-class attribute transfer. In 2009 IEEE conference on computer vision and pattern
recognition. Miami, FL, USA: IEEE. Retrieved from https://doi.org/10.1109/CVPR.2009
.5206594

Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep learning for case-based reasoning through
prototypes: a neural network that explains its predictions. In Proceedings of the thirty-second aaai
conference on artificial intelligence and thirtieth innovative applications of artificial intelligence
conference and eighth aaai symposium on educational advances in artificial intelligence. AAAI
Press.

Lipton, Z. C. (2016, June). The Mythos of Model Interpretability. Communications of the ACM,
61(10), 35–43. doi: 10.48550/arxiv.1606.03490

Ma, C., Zhao, B., Chen, C., & Rudin, C. (2023). This looks like those: Illuminating prototypical con-
cepts using multiple visualizations. In Thirty-seventh conference on neural information processing
systems. Retrieved from https://openreview.net/forum?id=dCAk9VlegR

Maddison, C. J., Mnih, A., & Teh, Y. W. (2017). The concrete distribution: A continuous relaxation
of discrete random variables. Retrieved from https://arxiv.org/abs/1611.00712

Mahinpei, A., Clark, J., Lage, I., Doshi-Velez, F., & Pan, W. (2021). Promises and pitfalls of black-box
concept learning models. Retrieved from https://doi.org/10.48550/arXiv.2106.13314
(arXiv:2106.13314)

Marconato, E., Passerini, A., & Teso, S. (2022). GlanceNets: Interpretable, leak-proof concept-based
models. (arXiv:2205.15612)

Margeloiu, A., Ashman, M., Bhatt, U., Chen, Y., Jamnik, M., & Weller, A. (2021). Do concept
bottleneck models learn as intended? Retrieved from https://doi.org/10.48550/arXiv
.2105.04289 (arXiv:2105.04289)

Nauta, M., van Bree, R., & Seifert, C. (2021). Neural prototype trees for interpretable fine-grained
image recognition. Retrieved from https://arxiv.org/abs/2012.02046

Oikarinen, T., Das, S., Nguyen, L. M., & Weng, T.-W. (2023). Label-free concept bottleneck
models. In The eleventh international conference on learning representations. Retrieved from
https://openreview.net/forum?id=FlCg47MNvBA

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-resolution image
synthesis with latent diffusion models.

Rymarczyk, D., Struski, Ł., Górszczak, M., Lewandowska, K., Tabor, J., & Zieliński, B. (2022). In-
terpretable image classification with differentiable prototypes assignment. In European conference
on computer vision (pp. 351–368).

8

https://proceedings.mlr.press/v119/koh20a.html
https://doi.org/10.1109/ICCV.2009.5459250
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/CVPR.2009.5206594
https://openreview.net/forum?id=dCAk9VlegR
https://arxiv.org/abs/1611.00712
https://doi.org/10.48550/arXiv.2106.13314
https://doi.org/10.48550/arXiv.2105.04289
https://doi.org/10.48550/arXiv.2105.04289
https://arxiv.org/abs/2012.02046
https://openreview.net/forum?id=FlCg47MNvBA


Rymarczyk, D., Struski, Ł., Tabor, J., & Zieliński, B. (2021, August). Protopshare: Prototypical
parts sharing for similarity discovery in interpretable image classification. In Proceedings of the
27th acm sigkdd conference on knowledge discovery and data mining. ACM. Retrieved from
http://dx.doi.org/10.1145/3447548.3467245 doi: 10.1145/3447548.3467245

Sawada, Y., & Nakamura, K. (2022). Concept bottleneck model with additional unsupervised
concepts. IEEE Access, 10, 41758–41765. Retrieved from https://doi.org/10.1109/ACCESS
.2022.3167702

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015, 07–09 Jul). Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd international
conference on machine learning (Vol. 37, pp. 2256–2265). PMLR.

Song, J., Meng, C., & Ermon, S. (2022). Denoising diffusion implicit models. arXiv preprint
arxiv:2010.02502.

Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.
In Advances in neural information processing systems (pp. 11895–11907).

Vandenhirtz, M., Laguna, S., Marcinkevičs, R., & Vogt, J. E. (2024). Stochastic concept bottleneck
models. In Icml 2024 workshop on structured probabilistic inference & generative modeling.
Retrieved from https://openreview.net/forum?id=8jG3Y0xX7b

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The caltech-ucsd birds-200-
2011 dataset.

Xian, Y., Lampert, C. H., Schiele, B., & Akata, Z. (2019, sep). Zero-shot learning—a comprehensive
evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 41(09), 2251-2265. doi: 10.1109/TPAMI.2018.2857768

Yuksekgonul, M., Wang, M., & Zou, J. (2023). Post-hoc concept bottleneck models. In The 11th
international conference on learning representations. Retrieved from https://openreview
.net/forum?id=nA5AZ8CEyow

Zhang, R., Madumal, P., Miller, T., Ehinger, K. A., & Rubinstein, B. I. P. (2021, May). Invertible
concept-based explanations for cnn models with non-negative concept activation vectors. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(13), 11682-11690. Retrieved from
https://ojs.aaai.org/index.php/AAAI/article/view/17389 doi: 10.1609/aaai.v35i13
.17389

9

http://dx.doi.org/10.1145/3447548.3467245
https://doi.org/10.1109/ACCESS.2022.3167702
https://doi.org/10.1109/ACCESS.2022.3167702
https://openreview.net/forum?id=8jG3Y0xX7b
https://openreview.net/forum?id=nA5AZ8CEyow
https://openreview.net/forum?id=nA5AZ8CEyow
https://ojs.aaai.org/index.php/AAAI/article/view/17389


A Methods

In this section, we provide the reader with further details for a better understanding of the concept-
enhanced methods implemented.

A.1 Concept-Guided Conditional Diffusion

Figure 4 summarizes the three types of embedding for Concept-Guided Conditional Diffusion. In the
positive embedding, the situation in which a concept is not present for an image is treated similarly
to when the concept is not relevant to guide the generations. In the opposite embedding, the idea is
inspired by methods from Natural Language Processing, where it is usual to force an embedding
dimension to encode a semantic quality. Finally, for the double embedding, it is ensured that positive
and negative concepts are learned independently.

Positive embedding Opposite embedding

Positive concepts Negative concepts

Double embedding

Figure 4: Schematic representation of the three types of embedding proposed for the Concept-Guided
Conditional Diffusion model.

10



A.2 Concept-Guided Prototype Networks

The steps to train a Prototypical Part Network (ProtoPNet) as originally described in C. Chen et al.
(2019) are the following:

(1) SDG of layers before the last layer In this step, the model should learn the most representative
patches of each class for the later classification of the images (i.e. the prototypes). The optimization
problem is therefore posed on the convolutional layer parameters wconv and the different prototypes
P = {pj}mj=1 of gp. The aim is to minimize the loss:

LPPNet =
1

n

n∑
i=1

CrossEntropy
[
(h ◦ gp ◦ f)(xi), yi

]
+ λ1Clst + λ2Sep, (5)

where

Clst =
1

n

n∑
i=1

min
j:pj∈P yi

min
z∈patches(f(xi))

∥z − pj∥22, (6)

and

Sep = − 1

n

n∑
i=1

min
j:pj /∈P yi

min
z∈patches(f(xi))

∥z − pj∥22. (7)

The first term of the loss, the cross entropy, penalizes incorrect classification of the training images.
The cluster cost (Clst) encourages that there is at least one latent patch in every training image that is
close to at least one prototype of its own class. Finally, the separation cost (Sep) encourages that all
patches from a training image stay far from all the prototypes that are not of their same class.

(2) Projection of prototypes To equate each of the prototypes that are in the latent space to actual
patches of the training images, the model pushes each prototype pj to the nearest latent patch from
the same class with the update

pj ← arg min
z∈Zj

∥z − pj∥2, Zj = {z̃ : z̃ ∈ patches(f(xi)),∀i : yi = l}, (8)

where l = 1, . . . , L are the different L classes or labels.

(3) Convex optimization of the last layer The weights of the last layer between the prototypes
and the class logits are initialized as w

(l,j)
h = 1 if pj ∈ P l and as w

(l,j)
h = −0.5 if pj /∈ P l,

where P l ⊆ P are the prototypes of class l. That is, depending on whether the weight connects the
prototype of a given class with its class logit or not.

The authors propose a training step in which adjust the last layer connection weights w(l,j)
h to ensure

sparsity by making w
(l,j)
h ≈ 0 when pj /∈ P l. According to the authors, this ensures that the model

relies less on a negative reasoning process. Fixing all the parameters in the previous convolutional
and prototype layers, the resulting convex optimization problem is

min
wh

1

n

n∑
i=1

CrossEntropy
[
(h ◦ gp ◦ f)(xi), yi

]
+ λlast

L∑
l=1

∑
j:pj /∈P l

|w(l,j)
h |. (9)

The main differences to build ProtoPools (Rymarczyk et al., 2022) from ProtoPNet (C. Chen et al.,
2019) are in the following steps:

Dynamical and differentiable assignment of prototypes The authors suggest using the Gumbel-
Softmax estimator (Jang et al., 2017; Maddison et al., 2017) Gumbel-Softmax(qs, τ) = (y1s , . . . , y

m
s )

where τ ∈ (0,∞) is the temperature parameter,

yis =
exp

(
(qis + ηi)/τ

)∑m
j=1 exp

(
(qjs + ηj)/τ

) , (10)

and ηj are samples from the standard Gumbel distribution. This estimator generates distributions qs
with exactly one of the probabilities close to 1, which results in a differentiable assignment of the
prototypes to classes.

11



Orthogonal loss The authors add an additional element to the loss function to ensure that the same
prototype is not assigned to more than one slot per class,

Orthp =

S∑
i<j

⟨qi, qj⟩
∥qi∥2 · ∥qj∥2

, (11)

which is calculated for each of the different classes.

Projection of prototypes For the prototype projection, the idea is the same as in Equation 8, with
the difference that in this occasion

Zj = {z̃ : z̃ ∈ patches(f(xi)),∀i : yi ∈ Lj}, (12)

where Lj is the set of classes such that one of its slots corresponds to prototype pj and the assignment
is made by means of the Gumbel-Softmax estimator.

Convex optimization of the last layer In the adaptation to ProtoPools, the authors propose to
initialize the weights between the different slots and their assigned class logit to 1, and the rest to 0.

B Experimental setup

Concept-Guided Conditional Diffusion Models were trained on the training split of the CUB
dataset (4796 images) and on 40% of the images of the AwA2 dataset (sim14292 images). All runs
were trained for 1500 epochs and for T = 2000 steps of diffusion. For the noise scheduler (βt) we
set a linear scheduler with β1 = 0.0001 and βT = 0.2. The learning rate was set at 0.0003. Models
were trained on an NVIDIA GeForce RTX 2080 Ti GPU to generate images of size 64× 64.

Concept-Guided ProtoPNet Models were trained for 50 epochs each, with 5 epochs of warm-up
and pushing and convex optimization of the last layer every 10 epochs. A summary of the different
parameter combinations for the base encoder architecture, the prototype depth and the different
coefficients of the loss is available in Table 2.

Table 2: Hyperparameter combinations for Concept-Guided Prototype Network experiments.

Parameter Values

Base architecture
(prototype depth)

VGG16 (128), VGG19 (128),
DenseNet121 (128), DenseNet161 (128),

ResNet34 (256), ResNet152 (512)
(λ1, λ2) (0.6,−0.06), (0.8,−0.08), (1,−0.1)
λlast 10−3, 10−4, 10−5

Concept-Guided ProtoPool Models were trained for 100 epochs with 10 epochs of warm-up.
Prototype depth was set as 256 and λ3 = λ4 = 1 for both orthogonal losses. The Gumbel-Softmax
distribution was initialized with τ = 1 and decreased for 30 epochs. The different hyperparameter
combinations for base architecture and the rest of the loss coefficients are available in Table 3.

Table 3: Hyperparameter combinations for Concept-Guided ProtoPool experiments.

Parameter Values

Base architecture
DenseNet121, DenseNet161,

ResNet34, ResNet50
(λ1, λ2) (0.6,−0.06), (0.8,−0.08), (1,−0.1)
λlast 10−4, 10−5

12



C Results for Concept-Guided Conditional Diffusion

C.1 Generated images for the CUB dataset

Positive embedding Opposite embedding Double embedding

Figure 5: Generations for concept has_wing_color::black positive.

Positive embedding Opposite embedding Double embedding

Figure 6: Generations for concept has_wing_color::black negative.

13



Positive embedding Opposite embedding Double embedding

Figure 7: Generations for concept has_wing_color::yellow positive.

Positive embedding Opposite embedding Double embedding

Figure 8: Generations for concept has_wing_color::yellow negative.

14



Positive embedding Opposite embedding Double embedding

Figure 9: Generations for has_wing_color::black and has_belly_color::white negative.

Positive embedding Opposite embedding Double embedding

Figure 10: Generations for concept has_wing_color::black positive and
has_belly_color::white negative.

15



Positive embedding Opposite embedding Double embedding

Figure 11: Generations for concept has_belly_color::white positive and
has_wing_color::black negative.

Positive embedding Opposite embedding Double embedding

Figure 12: Generations for has_wing_color::black and has_belly_color::white positive.

16



Positive
embedding

Opposite
embedding

Double
embedding

Figure 13: Generations for concepts has_wing_color::black, has_belly_color::white and
has_breast_color::yellow.

Positive
embedding

Opposite
embedding

Double
embedding

White belly / Black wings positive
Yellow breast negative

Yellow breast / Black wings positive
White belly negative

Yellow breast / White belly positive
Black wings negative

Figure 14: Generations for different combinations of two concepts positive and one negative.

17



Positive
embedding

Opposite
embedding

Double
embedding

All negative Black wings positive
Yellow breast / White belly negative

White belly positive
Yellow breast / Black wings negative

Positive
embedding

Opposite
embedding

Double
embedding

Yellow breast positive
White belly / Black wings negative

Figure 15: Generations for none of the concepts or just one concept positive.

18



C.2 Generated images for the AwA2 dataset

Positive
embedding

Opposite
embedding

Double
embedding

Positive
embedding

Opposite
embedding

Double
embedding

Positive concept

Negative concept

Figure 16: Generations for concept black positive and negative.

Positive
embedding

Opposite
embedding

Double
embedding

Positive
embedding

Opposite
embedding

Double
embedding

Positive concept

Negative concept

Figure 17: Generations for concept fish positive and negative.

19



Positive
embedding

Opposite
embedding

Double
embedding

Both negative Black positive / Fish negative

Black negative / Fish positive Both positive

Positive
embedding

Opposite
embedding

Double
embedding

Figure 18: Generations for different combinations of concepts black and fish.

20



D Results for Concept-Guided Prototype Networks

Table 4: Hyperparameter tuning accuracy in Concept-Guided ProtoPNet.

Base architecture
(prototype depth) λlast λ1, λ2

Accuracy
(CUB)

Accuracy
(AwA2)

Oracle 0.961 0.901

DenseNet121
(128)

10−3 (0.6, -0.06) 0.864 0.849
(0.8, -0.08) 0.866 0.836

(1, -0.1) 0.860 0.829

10−4
(0.6, -0.06) 0.868 0.855
(0.8, -0.08) 0.866 0.855

(1, -0.1) 0.865 0.854

10−5
(0.6, -0.06) 0.874 0.871
(0.8, -0.08) 0.874 0.867

(1, -0.1) 0.872 0.838

DenseNet161
(128)

10−3
(0.6, -0.06) 0.859 0.833
(0.8, -0.08) 0.859 0.830

(1, -0.1) 0.845 0.813

10−4
(0.6, -0.06) 0.865 0.835
(0.8, -0.08) 0.865 0.836

(1, -0.1) 0.855 0.820

10−5
(0.6, -0.06) 0.874 0.855
(0.8, -0.08) 0.873 0.847

(1, -0.1) 0.867 0.847

ResNet 34
(256)

10−3
(0.6, -0.06) 0.869 0.837
(0.8, -0.08) 0.864 0.826

(1, -0.1) 0.854 0.819

10−4
(0.6, -0.06) 0.875 0.840
(0.8, -0.08) 0.870 0.825

(1, -0.1) 0.869 0.832

10−5
(0.6, -0.06) 0.878 0.852
(0.8, -0.08) 0.880 0.844

(1, -0.1) 0.878 0.825

ResNet152
(512)

10−3
(0.6, -0.06) 0.842 0.812
(0.8, -0.08) 0.845 0.818

(1, -0.1) 0.834 0.812

10−4
(0.6, -0.06) 0.857 0.809
(0.8, -0.08) 0.859 0.830

(1, -0.1) 0.863 0.809

10−5
(0.6, -0.06) 0.867 0.825
(0.8, -0.08) 0.857 0.842

(1, -0.1) 0.848 0.825

VGG16
(128)

10−3
(0.6, -0.06) 0.857 0.858
(0.8, -0.08) 0.851 0.849

(1, -0.1) 0.852 0.850

10−4
(0.6, -0.06) 0.865 0.873
(0.8, -0.08) 0.855 0.869

(1, -0.1) 0.860 0.863

10−5
(0.6, -0.06) 0.870 0.885
(0.8, -0.08) 0.870 0.875

(1, -0.1) 0.869 0.867

21



VGG19
(128)

10−3
(0.6, -0.06) 0.854 0.852
(0.8, -0.08) 0.852 0.851

(1, -0.1) 0.847 0.850

10−4
(0.6, -0.06) 0.865 0.879
(0.8, -0.08) 0.860 0.865

(1, -0.1) 0.852 0.848

10−5
(0.6, -0.06) 0.871 0.867
(0.8, -0.08) 0.873 0.870

(1, -0.1) 0.868 0.867

Table 5: Hyperparameter tuning accuracy in Concept-Guided ProtoPool.

Base architecture
(prototype depth)

λlast λ1, λ2
Accuracy

(CUB)
Accuracy
(AwA2)

Oracle 0.961 0.901

DenseNet121

10−4

(0.6, -0.06) 0.817 0.879
(0.8, -0.08) 0.816 0.876

(1, -0.1) 0.814 0.875

10−5

(0.6, -0.06) 0.867 0.881
(0.8, -0.08) 0.860 0.877

(1, -0.1) 0.854 0.875

DenseNet161

10−4

(0.6, -0.06) 0.815 0.882
(0.8, -0.08) 0.816 0.880

(1, -0.1) 0.815 0.883

10−5

(0.6, -0.06) 0.870 0.878
(0.8, -0.08) 0.877 0.878

(1, -0.1) 0.873 0.880

ResNet34

10−4

(0.6, -0.06) 0.812 0.877
(0.8, -0.08) 0.813 0.874

(1, -0.1) 0.814 0.873

10−5

(0.6, -0.06) 0.878 0.877
(0.8, -0.08) 0.878 0.870

(1, -0.1) 0.874 0.871

ResNet50

10−4

(0.6, -0.06) 0.814 0.887
(0.8, -0.08) 0.814 0.892

(1, -0.1) 0.814 0.886

10−5

(0.6, -0.06) 0.860 0.891
(0.8, -0.08) 0.860 0.888

(1, -0.1) 0.853 0.890

22



Figure 19: Positive and negative prototypes with self-activation map and samples from the concept
dataset (yellow square over the original image) for Concept-Guided ProtoPNet in the CUB dataset.

Figure 20: Positive and negative prototypes with self-activation map and samples from the concept
dataset (yellow square over the original image) for Concept-Guided ProtoPools in the CUB dataset.

23



Figure 21: Positive and negative prototypes with self-activation map and samples from the concept
dataset (yellow square over the original image) for Concept-Guided ProtoPNet in the AwA2 dataset.

Figure 22: Positive and negative prototypes with self-activation map and samples from the concept
dataset (yellow square over the original image) for Concept-Guided ProtoPools in the AwA2 dataset.

24


	Introduction
	Related Work
	Methods
	Concept-Guided Conditional Diffusion
	Concept-Guided Prototype Networks

	Experimental setup
	Results
	Conclusion
	Methods
	Concept-Guided Conditional Diffusion
	Concept-Guided Prototype Networks

	Experimental setup
	Results for Concept-Guided Conditional Diffusion
	Generated images for the CUB dataset
	Generated images for the AwA2 dataset

	Results for Concept-Guided Prototype Networks

