
Under review as a conference paper at ICLR 2022

ADVANCING NEAREST NEIGHBOR EXPLANATION-BY-
EXAMPLE WITH CRITICAL CLASSIFICATION REGIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

There is increasing evidence suggesting post-hoc explanation-by-example with
nearest neighbors is a promising solution for eXplainable Artificial Intelligence
(XAI). However, despite being researched for decades, such methods have never
seriously explored how to enhance these explanations by highlighting specific
parts in a classification. Here, Critical Classification Regions (CCRs) are pro-
posed to do this, and several methods are compared to determine the best ap-
proach. CCRs supplement explanation-by-example by highlighting an important
part in a test image, with where it was “learned” from in the training data. Experi-
ments across multiple domains show that CCRs represent key features used by the
CNN in both the testing and training data. Moreover, a suitably-controlled user
study (N=163) on ImageNet, shows CCRs improve people’s assessment towards
the correctness of a CNN’s predictions for misclassifications due to ambiguity.

1 INTRODUCTION

The impressive success of artificial neural networks (ANNs) has led to proposals they should be
used in high-stakes applications such as diagnostic radiology for Covid-19 (Pham, 2020). How-
ever, interpretability issues for these models raise significant questions about their feasibility for
such use-cases. Accordingly, many eXplainable AI (XAI) techniques have been proposed to over-
come this, such as saliency maps (Zhou et al., 2016) and contrastive methods (Miller, 2019). Here,
the focus is on one of the most long-standing XAI techniques, the use of post-hoc explanation-by-
example with nearest-neighbors (Sørmo et al., 2005), with a view to extending its functionality.
Recently, explanation-by-example techniques have been increasingly used to interpret deep learning
models (Lipton, 2018; Chen et al., 2019; Jeyakumar et al., 2020; Kenny & Keane, 2021), with in-
terest being bolstered by their psychological plausibility in human decision-making (Klein, 1989),
human category-learning (Edwards et al., 2019), and supportive evidence from several user stud-
ies (Borowski et al., 2020; Kenny et al., 2021; Buçinca et al., 2020). Currently however, these
techniques don’t connect important “parts” used in a prediction, we rectify this here.

This work has two main aims: (1) to extend explanation-by-example’s functionality through the use
of Critical Classification Regions (CCRs), and (2) to properly test this novel technique in a suitably-
controlled user study.1 CCRs represent the primary region of importance in a test image and in the
nearest-neighbor used for explanation (e.g., see Fig. 1). Although many post-hoc XAI techniques for
deep learners show salient regions of a test image (Ribeiro et al., 2016; Bach et al., 2015; Zhou et al.,
2016), to our knowledge, none have seriously considered relating these regions to nearest neighbors
in the training data, to show what features were learned by the model and (more importantly, our
core novelty here) where they arose.

In the XAI literature, explanation-by-example is perhaps the most popular XAI method (Keane &
Kenny, 2019), with large user support (Buçinca et al., 2020). However, few works address the iden-
tification of important regions within example-based explanations. The closest work to ours makes
use of Feature Activation Maps (FAMs) within the twin-system framework to enhance example-
based explanations (Kenny & Keane, 2021). FAMs upsample the most positively contributing con-
volutional feature kernel (in the last convolutional layer) and, as such, can be thought of as a variant
of Class Activation Maps [CAMs by Zhou et al. (2016)], which use a combination of all layers.

1Our method is available to pip install as a Python library at https://after anon review.
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Figure 1: Different Methods: A misclassification of “Leopard” as “Cheetah” on ImageNet is ex-
plained by: (A) Explanation-by-example saying “I think the test image is a Cheetah because it
looks similar to a training image I also think is a Cheetah”. This is then enhanced by (B) FAMs
by Kenny & Keane (2019), and our proposed methods of (C) Latent-based CCRs, and (D) pixel-
based CCRs. The FAMs highlight multiple regions in both images, and it is difficult to know where
a feature begins and ends, in contrast, CCRs highlight a very specific part of both images. Note that
the CCR explanation methods naturally retrieve a different neighbor due to searching a “pool” of
candidates for the closest feature match, whilst FAMs always use the closest NN.

However, FAMs often fail to isolate a comprehensible “part” of each image, and can be hard to
contextualize (see Fig. 1B). Moreover, there is no computational tests of FAMs, or user studies. In
contrast, we show how CCRs play a key role in classification, and how they affect users in a study.

There is also a literature on post-hoc explanations which isolate prototypical examples from training
data (Kim et al., 2014; 2016). These bear a similarity to the present work, but they do not focus on
isolating important parts in the classification which we do here. There is also work in the computer
vision attention literature such as that by Patro & Namboodiri (2018), which also use exemplars to
guide feature highlighting. However, this has similar issues to FAMs, and requires a specific ANN
architecture for a very specific task, whilst CCRs are agnostic for ANN vision models. Next, this
work bears some similarity to Goyal et al. (2019), but their work focuses on counterfactual explana-
tions, showcasing an algorithm which modifies the smallest part possible to modify a classification,
whilst ours is on factual explanations, showing why a classification was made in the first place (the
two have very different algorithmic goals). Finally, note also that none of these methods consider
superpixels as we do here.

From an implementation standpoint, the current latent-based CCR method (see Section 2.2) is partly
inspired by Chen et al. (2019), who used a case-based approach to explain a CNN’s predictions.
However, their approach is a pre-hoc method that compresses the training data down into prototyp-
ical parts for explanations, integrating them directly into the CNN’s calculations in a forward pass.
In contrast, the current method is post-hoc, using the training data for explanation after the predic-
tion is made. Hence, it may be better suited to situations where (i) model accuracy is critical, (ii) it
is simply not feasible to train another more interpretable model, or (iii) more diverse explanations
(from the full training data) are required (Mothilal et al., 2020). Finally, the current method builds
upon the family of activation-mapping techniques for visualizing the important regions of an image
used by a CNN in its predictions (Zhou et al., 2016; Kenny & Keane, 2021).

This paper has four more sections. Section 2 describes how to compute CCRs in explanation-
by-example. As CCRs can be generated from the latent space (i.e., Latent-based CCRs), or the
pixel space (i.e., Pixel-based CCRs), Section 3 determines which option works best for the test
image. Section 4 performs additional checks on CCRs to help validate their role in classification,
and determines the best way to identifying CCRs in nearest-neighbor explanations (henceforth the
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NN-CCR) in the training image. Section 5 reports a user study that tests whether the CCRs found
by this method matter to people, before a final discussion (see Section 6). This paper makes two
main contributions:

• A new XAI idea that computes CCRs to augment post-hoc, nearest-neighbor explanation-
by-example. These CCRs connect critical features used in a classification with where they
were learned from in the training data (to e.g. help detect bias and aid in explanation). A
method for CNNs is proposed (latent-based CCRs), and a “black-box” method (SP-CCRs)
which is ANN agnostic for computer vision tasks.

• A novel user study design which is heavily controlled (e.g., with counterbalancing)
to specifically test the difference between explanation-by-example, and explanation-by-
example with feature highlighting (i.e., the CCRs).

2 ALGORITHM: FINDING CCRS IN EXPLANATIONS

Taking an explanation-by-example method, our algorithm begins by finding a pool of k nearest
neighbors (we use k = 50), all of which will be searched to find the NN-CCR.2 Two general
approaches are considered, one which takes advantage of a typical CNN model’s architecture (i.e.,
the Latent-based CCRs next), and one which makes no assumptions other than the model being a
neural network which extracts a learned representation (i.e., Pixel-based CCRs). For the algorithm
pseudo-code see Appendix E (omitted due to space constraints). An important points to note about
CCR methods is that the regions found are contingent on the pool of NNs over which they are
computed (hence, the need for the test of k-NN methods reported in Appendix A).

2.1 COMPUTING LATENT-BASED CCRS (CAM-CCRS, FAM-CCRS, RAND-CCRS)

This CCR Method takes inspiration from Chen et al. (2019), but crucially, in a post-hoc (rather than
their pre-hoc) manner, specifically, it uses the latent representations of an image in a CNN to gauge
similarity. Assume for a given test image I , a final representation C ∈ IR(h,w,d) is extracted after
all convolutional layers, were h and w represent the height and width of the convolutional output,
respectively, and d the number of kernels (in all current experiments h = w = 7). This may be
broken down into regions shaped as h1 ×w1 × d, were h1 < h and w1 < w. These regions may be
upsampled to the size of the original image to visualize them as a “box” (e.g., see Fig. 1), which is
the region in pixel-space that corresponds to this region in C.3 Here, we want to select the region in
C which is critical to the classification, and use it to elaborate the explanation further.

Here we set h1 = w1 = 1 to give more granular detail in the explanation. To select which regions of
C are CCRs, we assume the presence of some activation map giving a saliency value to each region
in C (e.g., FAMs or CAMs). Such a technique gives a 7 × 7 saliency map corresponding to C we
refer to as Mtest ∈ IR(7,7), which gives the importance of each spatial region. Next, by selecting the
most positive salient region, we can isolate the test image CCR ωtest ∈ IR(1,1,d).

Then, with the test-image CCR isolated, the task is to find a similar region from the training data
ωnn, giving an example of where this feature was “learned” from. Using some nearest neighbor
algorithm, a pool of n training-instances are found that are candidate explanations-by-example. In
this pool, let C(n,i,j) represent some potential region ω ∈ IR(1,1,d) in the final convolutional layer,
with the neighbor indexed by n, and its spatial position in Cn indexed by i and j. These n images
have their C representation searched to find the closest match to ωtest using the L2 norm to find
ωnn. Importantly however, this region in the NNs is constrained to its relative importance within the
instance. Specifically, considering each NN’s activation map Mn, only those regions which satisfy
the constraint of being higher than max(Mn)× α−1 are considered to find ωnn by minimizing:

argmin
n,i,j

∥ωtest − C(n,i,j)∥2 s.t. M(n,i,j) > max(Mn)× α−1. (1)

2Note we used twin-systems by Kenny & Keane (2021) as it did well in Appendix A tests, and it works for
self-supervised learning (which may be more general for future research into CCRs).

3Note this could be a bigger box, but we choose a small one to give more granularity. However, more CCRs
can be shown if desired (see e.g., Fig. 11), or SP-CCRs used which can give bigger regions.
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The alpha constraint is to help ensure ωnn is highly critical to the classification. For M , we exper-
iment using CAM, FAM, and Random maps. So three variants of latent-based CCRs are tested –
CAM-CCRs, FAM-CCRs, and Rand-CCRs – although other options exist for retrieving M .

2.2 COMPUTING PIXEL-BASED CCRS (SP-CCRS)

These CCRs use pixel representations, this is better were spatial relations between the latent layers
(i.e., C in the previous section) and the pixel input are not reliable (e.g., because of max-pooling),
or convolutions are not used [e.g., vision transformers (Dosovitskiy et al., 2020)], as it is ANN
agnostic. Specifically, a test image is broken down into superpixel segments, each segment can
be passed into the network one-by-one (with the rest of the image occluded), and the CNN’s logit
value for the class in question is recorded to find the most important region used in a classification
[similar to LIME by Ribeiro et al. (2016)]. Once the test image CCR is isolated, we upsample it
to the CNN input-size whilst maintaining its aspect ratio, and acquire its representation from taking
the penultimate layer activations after a forward pass in the network. This process is repeated in the
pool of NNs, to find the segment (i.e., the NN-CCR) most similar to the test image CCR.

Formally, consider the test image CCR representation ωtest ∈ IR(d), were d is the number of ex-
tracted features in the penultimate layer. We want to isolate a region in the training data ωnn where
this feature was “learned”. Let S(n,i) be the representation ω ∈ IR(d) of a superpixel segment i in
the NN n. Additionally, let M(n,i) represent each region’s saliency. The n images have their S rep-
resentations searched to find the closest match to ωtest using the L2 norm to find ωnn. Importantly,
this region is constrained to its relative importance within the instance. Specifically, only regions
whose saliency is higher than max(Mn)× β−1 are considered to find ωnn by minimizing:

argmin
n,i

∥ωtest − S(n,i)∥2 s.t. M(n,i) > max(Mn)× β−1. (2)

The beta constraint helps ensure ωnn is highly critical to the classification. For pixel-based CCRs,
we consider this single method (i.e., SP-CCRs), but comparative tests against LIME are considered
in Expt. 1, but the computational cost of Expt. 2 doesn’t allow comparisons to LIME. So, including
the three latent-based CCR methods, there are four main methods tested.

3 EXPERIMENT 1: FINDING TEST IMAGE CCRS

Here, the performance of the latent- and pixel-based CCR methods in isolating an important part of
the test image was evaluated. This worked via two methods, by (1) keeping the CCR region in the
pixel image (whilst occluding the rest), and (2) by removing the CCR regions (and keeping the rest),
followed by passing the image through the CNN in either case. So, in the first case, the method that
produces the highest logit in the test-image’s predicted class does best, and in the second the method
which produces the highest drop in the predicted class logit is best (if the prediction changes we
do not change which logit is recorded). In more detail, the test image SP-CCR is located, then the
latent-based CCRs are found by up-sampling their activation maps to the pixel-space, and isolating
an equally sized region to the SP-CCR in the pixel space taken from the parts of highest saliency
(so all CCRs are the same size). Two datasets CUB-200 and ImageNet were used, with the former
having ResNet18 fine-tuned to it, and the latter using a pre-trained ResNet50 (see Appendix C). The
experiment is repeated with different segmentation options for superpixels (i.e., 10-50) to understand
its effect on explanations. Tests used the first 500 test images. Finally, a comparison with LIME is
considered to see if it has a significant difference to the SP-CCR algorithm.

3.1 RESULTS

Fig. 2(A/B) shows the results of occluding (Occ.) the test image CCR, and Fig. 2(C/D) of including
(Inc.) it (and occluding the rest of the image). The top row shows the results of comparing the four
CCR methods discussed in Section 2, whilst the bottom row shows comparisons of the latent-based
CCR methods against LIME. Note these LIME comparisons correspond to roughly 5% of the test
image being isolated as a CCR, which in turn corresponds to roughly 30 superpixels being used
in the top row tests. Overall, the results show that CCRs and LIME are significantly better than
random. Superpixels perform best for inclusion rather than occlusion when the segment number is
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(A) CUB-200 Occ. (C) CUB-200 Inc.(B) ImageNet Occ. (D) ImageNet Inc.

0.0495 0.0495
Figure 2: Expt. 1 CCR Occlusion (Occ.) and Inclusion (Inc.) Results: The first row of lineplots
show a comparison of the four different CCR methods proposed in Section 2. The second row show
a comparison of the three latent-based CCR methods against LIME, to see the difference between
LIME and SP-CCRs. Overall, results show the CCR methods do significantly better than random
occlusion/inclusion, and that LIME performs similarly to SP-CCRs. Standard Error bars are shown.

greater than 30, but CAMs/FAMs are more consistently good in all tests, although in general FAMs
are slightly less discriminatory than CAMs. Perhaps the most notable aspect is how all CCRs (and
LIME) do worst when occluding in ImageNet. We posit this is likely because ImageNet has many
objects in an image which are used for classification, and removing a small region has little effect.
Superpixels in particular do bad here (i.e., worse than random), likely because they still generally
maintain the “shape” of the object during occlusion, whilst the latent-based CCR methods (including
random) always occlude smoother shapes which distort the objects more. We feel this hypothesis is
true because this phenomena was (1) not repeated on CUB-200 (which only has a small part of the
image used for classification in comparison), (2) not repeated in the inclusion experiments, and (3)
consistent across SP-CCRs/LIME, which is notable because LIME is generally thought to deliver
good explanations (Ribeiro et al., 2016; Jeyakumar et al., 2020). So, taking the results as a whole, it
is safe to posit that all CCR methods work well in isolating important parts of the test image.

4 EXPERIMENT 2: EXPLANATION FIDELITY WITH NN-CCRS

Potential CCRs which are “used” in classification are found by occluding parts of the training data
during fine-tuning to see what is necessary to maintain test performance. First, α and β are varied
from one to infinity [the latter of which is treated as considering all positive CCRs in Eq.(1/2)] to
see their optimal value, then a comparative test between the two is done. Eq. (1) and (2) cannot
be directly compared because the alpha and beta constraints are relative measures. However, a
comparison can be accomplished by (1) varying alpha, (2) closely matching the occlusion area by
gradually introducing superpixels (in order of highest saliency value), and (3) readjusting the size of
the latent-based methods area to match the superpixel area.

So, for each hyperparamter value tested, the networks were fine-tuned for 2500 iterations and test-
accuracy sampled every 50, as this was found sufficient for convergence (we tested 20 epochs and
found no notable differences). This procedure gives us an indication of which regions of the training
data images are actually responsible for test predictions (and what α and β are best), whilst the
Appendix A experiment gave us an indication of which training examples are most appropriate for
explanations. The networks were also tested by completely occluding all training images and was
reduced to a random guess, thus verifying that features are being “unlearned”. Note this experiment
requires a constant value for superpixel segmentation, so 30 was chosen as it was the smallest value
which generalized best in Expt. 1. Finally, using the best hyperparameters, we can finally test how
“similar looking” the NN-CCR is to the test-image CCR by passing the upsampled CCRs though the
CNN, and comparing their latent representations in the CNN’s penultimate layer with the L2 norm.
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Figure 3: Expt. 2 Results Retraining: (A) Exploring the hyperparameter choice for alpha, (B) doing
similar tests for beta. (C) A direct comparison between methods by varying alpha. Results show
that all methods are better than the random baseline in nearly every test, and that CAM seems the
best method to isolate important critical regions in an image.

4.1 RESULTS

Fig. 3(A) shows the results of varying alpha, were any value greater than 1 produces statistically
significant differences between methods (using 2 tailed independent t-test; p < 0.05). Fig. 3(B)
shows what happens to superpixels v. random when varying the beta parameter, were an infinite
value (i.e., defined as just using all positive superpixel regions here) produces the most divergent
results for CUB-200 (Acc. Rand=61.55 v. SP-CCR=45.86) and ImageNet (Acc. Rand=68.41 v.
SP-CCR=65.68). Note that even with β = inf only ∼66% of the images are occluded in Ima-
geNet on average for SP-CCRs, which roughly equates to the amount occluded for CAM-CCRs at
α = 5, so there is actually not a huge disparity between them in test accuracy when considering
this. For further investigation, Fig. 3(C) shows a direct comparison between methods. Specifically,
Fig. 3(C) shows that CAM performs the best overall, with FAMs and superpixels being somewhat
interchangeable, but all methods do significantly outperform the random baseline, showing that all
method’s explanations are likely high in fidelity. Next, each method’s distance of the latent repre-
sentation between the test image CCR and the NN-CCR was compared using β = inf and α = 5,
showing that the SP-CCRs are significantly better than all other methods when using more than 20
segments (mean SP-CCR L2=14.72/13.4 at segments 20/50 v. CAM mean L2=15.1 on ImageNet).
Finally, it should be noted these are empirical tests on retrained networks and should be treated with
some caution as they are different to the original CNN being explained, but similar tests have been
done before and widely accepted (Hooker et al., 2019).

Computational Conclusions. Overall, the results of Expts. 1-2 show that all CCR methods (SP-
CCR, CAM-CCR, FAM-CCR) perform better than a random baseline, lending strong empirical
evidence they are isolating important regions in classifications. Superpixel segmentation of approx-
imately 30 segments is recommended because it generalizes best across all tests and datasets, forms
reasonably large areas which are assumed to aid interpretability, and “look” very similar when com-
paring the test image CCR to the NN-CCR. For beta an infinite value is recommended, which is
computed here as considering all positively contributing SP-CCRs (and not undefined as would be
its strict mathematical definition). For alpha, any value greater than one is good, but we recommend
five because it worked well here, will tend to focus more on especially important regions, and has
support in other research (Zhou et al., 2016). Lastly, it is worth noting that latent-based CCRs are
much faster than SP-CCRs (∼2sec v. ∼45 for k=10 neighbors), but SP-CCRs are not restricted to
CNNs, which gives them wider applicability (but we test them on CNNs here for a fair comparison).
The subsequent user study evaluates CAM-CCRs with α = 5.
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5 EXPERIMENT 3: USER STUDY

The previous computational experiments showed that the current explanation-by-example method
with critical regions bears a high fidelity to what the CNN classifier has learned. However, we do not
know whether these critical regions matter to people; whether the provision of example-plus-CCR
explanations impact a user’s perception of the CNN more than example-only explanations. Hence,
a user study (N=163) was run to test example-plus-CCR versus example-only explanations, using
latent-based CAM-CCRs. Previous user studies have shown that example-based explanations (i.e.,
based on 3 nearest neighbours to a test-image) changed people’s perceptions of the correctness of
misclassifications by a CNN on MNIST (Kenny et al., 2021). Specifically, they found that people
rated misclassifications as less incorrect (i.e., correctness was rated higher). Here, we examine
whether the provision of similar explanatory examples with or without CCRs (i.e., a NoBox v Box
manipulation) changes people’s perceptions of misclassifications made by a CNN on ImageNet.

The XAI literature has few user studies attempting to test specific explanation strategies, and most of
these are inadequately designed [e.g., poor test-item selection and low Ns are common deficits (An-
jomshoae et al., 2019; Keane et al., 2021)]. For instance, typically, studies use only a handful of test
items and these materials are not properly counterbalanced over explanation conditions. Here, we
try to rectify these deficits (indeed, we explicitly demonstrate how material-sets can matter).

So, the study presented participants with 32 test-images from the ImageNet dataset (i.e., 24 mis-
classifications, with 8 “fillers” that were correct classifications for attention checks) and were asked
to make classification-correctness and explanation-helpfulness judgements of these items presented
alongside one of the two explanation-types (NoBox or Box; i.e., no CCR or CCR). The 24 mis-
classifications were randomly divided into two material sets (A-set and B-set) to counterbalance the
experiment; so, (a) one group (N=82) received the A-set with example-only explanations (NoBox)
and the B-set with example-plus-CCR explanations (Box) and (b) the other group (N=81) received
the A-set with example-plus-CCR explanations (Box) and the B-set with example-only explanations
(NoBox; see Fig. 4 for examples). The statistical analysis then collapsed across these counterbal-
anced groups controlling for the effects of the material-set. This consideration of material-sets is not
just a “statistical nicety”, as any given user will only see a sample of these images, a good explana-
tion strategy needs to operate successfully over different image-samples. Hence, user studies need
to control for this issue by using different, reasonably-sized and randomly-sampled material-sets.

In summary, the study examined people’s responses to the two post-hoc explanation-types, example-
based explanation-only v example-based explanation-plus-CCR (i.e., NoBox v Box) over 24 image-
misclassifications (i.e., 12 items for each type). The counterbalanced groups allowed us to test both
explanation-types used for the same given image. As we shall see, that design also allowed us to
examine material-set effects within the counterbalanced group (i.e., A-set v B-set)

5.1 METHOD

Participants. Participants (N=163) were recruited on the Prolific crowdsourcing site
(www.prolific.co). All were aged over 18, native English speakers and lived in the USA, UK, or
Ireland. Participants were paid £7.50/hr for their participation, which totalled £319.8. This N was
chosen based on a power analysis for a low effect-size; this size was chosen because we anticipated
the addition of CCR boxes would have a quite nuanced effect over just explanation-by-example due
to it already being heavily preferred by users (Jeyakumar et al., 2020). This study passed ethics
review of the institution (ref. after anonymous review).

Materials. Twenty-four misclassifications were randomly sampled from the CNN using Ima-
geNet. These were actual test-image errors when the classification label differed from the ground
truth. The twin-system method was applied to each prediction to find a nearest-neighbor example-
explanation, and the CCR in the item (shown as a Box; see Fig. 5). The materials were randomly
assigned to two different sets (A-set and B-set) and counterbalanced (as described earlier). Impor-
tantly, the sampling constrained the images to be both varied and those involving classes people
could easily understand (e.g., snail, lemon, etc.).

Procedure & Measures. After being told the system was a program that “learned” to classify
objects in images, people were told they would be shown several examples of its classifications (see
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Appendix E for user study questionnaire). Their task was to rate the correctness (i.e., the question
was “The program’s labelling of the image is correct.”) and helpfulness (i.e., the question was
“The explanation helps me understand the program’s labelling of the object in the picture.”) of the
presented classification on a 5-point Likert-scale from “I disagree strongly” (1) to “I agree strongly”
(5). Each participant was shown 24 misclassifications (12 NoBox and 12 Box explanations) along
with 8 filler items that were all correct classifications appearing every fourth question for attention
checks. The 24 incorrect items were randomly re-ordered for each person. A debriefing on the
rationale and background to the study was provided after testing.

5.2 RESULTS AND DISCUSSION

Correctness & Helpfulness. On average, people perceived the misclassifications as being
equally incorrect/correct for both explanation types; overall, the mean correctness ratings for both
explanation-types were the same, NoBox (M=1.85) and Box (M=1.85) and not significantly dif-
ferent (using a paired t-test, t(162) = -0.018, 1-tailed, p > 0.05). So, people’s perception of the
correctness of misclassifications when given either of the explanation-types appear to be essentially
identical. However, this analysis masks an important difference when ratings are broken out into
the two material-sets. The items in the B-set that received the example-plus-CCR explanation (Box;
M=1.93) were rated as less-incorrect (more correct) than their equivalent items in Set-A (M=1.77);
this difference between B-set-Box and A-set-Box was statistically reliable, t(161) = 2.15, p = 0.03,
2-tailed using a two-sample t-test. No other pairwise comparisons were statistically significant.
This result suggests that image-explanations showing CCRs (as a boxed outline) impact people’s
perception of correctness of the misclassification, but only for certain items. We return to a more
detailed analysis of this effect below. On helpfulness, both explanation-types were rated positively
and equivalent, NoBox (M=3.16) and Box (M=3.11); using a paired t-test, t(161) = -1.60, 1-tailed,
p = 0.06. So, the two explanation options are equally helpful to users. Interestingly, for this mea-
sure, both material-sets produced almost identical ratings for both explanation-types and no other
pair-wise comparisons are statistically different.

Right* & Wrong Misclassifications. We were puzzled by the difference in correctness ratings for
the example-plus-CCR (Box) conditions found in the B-set relative to the A-set. What is it about
the B-set that produces this effect? In a follow-up analysis, we discovered that, in both material-sets
there were ambiguous materials that people consistently rated as more correct (i.e., mean >2) even
though the ground-truth identified these items as incorrect (3/12 in the A-set and 4/12 in the B-
set). So, we partitioned the items into two new categories, namely “Right*”-items (that people rated
as more “correct”, even though they were incorrect classifications) and Wrong-items (that people
confidently rated as incorrect, when they were incorrect) and then re-analyzed the data for each
material-set (n.b., we add an asterisk to “Right*” on purpose to signal they are not really “Right”).
We also verified this partitioning by clustering the material means (using k-means) and found that
the data consistently forms these two groups across 500 iterations. Figures 4(A) and 4(B) show that
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(A) A-Set Correctness Ratings (B) B-Set Correctness Ratings

Figure 4: Expt. 3 results: Correctness ratings for two material-sets (A and B) broken out by
“Right*” and Wrong classifications for the two explanation-types, NoBox (example-only) and Box
(example-plus-CCR). In the B-Set, the Right*-Box ratings (M=3.04) are reliably different to the
Right*-NoBox ratings (NoBox, M=2.83), reflecting people’s performance on ambiguous items in
that material-set.
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(a) (b)

Label: Pot Pie
Classification: Lemon

Label: Lemon
Classification: Lemon

Label: Barbell
Classification: Prison

Label: Prison
Classification: Prison

Test Image Explanation-by-Example Test Image Explanation-by-Example

Figure 5: Expt. 3 Material Examples: (a) A “Pot Pie” is misclassified as “Lemon”. The explanation
shows the CCR in the image identified by the CNN. The explanation represents the training data and
feature “used” in the CNN’s classification. Glossed, the explanation says “I think this is a lemon,
because it has a similar part to an image I saw before which I learned should be a lemon”. (b)
Another misclassification of a “Barbell” as a “Prison” in which the CNN picks up on the bars in
the background reflecting the jail bars in a previous training image. Although anecdotal, an analysis
of these two items shows that both have significantly higher helpfulness ratings when the CCR is
given; t-tests show (a) NoBox 2.37 v Box 3.09, p < 0.001 and (b) NoBox 4.19 v Box 4.48, p < 0.05.

the “Right*” misclassifications are rated significantly higher than the Wrong ones, irrespective of the
material-set (A or B) or the presented explanations (NoBox or Box; all p < 0.05 using t-tests). No
other differences between conditions are statistically different, except for one involving the B-set;
namely, the correctness rating for the Right*-misclassifications with example-plus-CCR explanation
(Box, M=3.04) is reliably higher than that for the example-only explanation (NoBox, M=2.83),
t(162) = 1.8, p = 0.036, using 1-tailed, two-sample t-test. Note that while this difference appears
small on a Likert scale, overall it constitutes a 5.25% difference in responses, which is a larger effect
than that found in other studies (Goyal et al., 2019). What does this mean? This finding suggests
that some ambiguous material items (that people think may be correct, though they are incorrect)
are affected by being given an explanation showing CCRs. Fig. 5(a) shows one such example, a
picture of a “Pot Pie” (which is decorated with lemons), which the CNN labelled as a “Lemon”;
here, the Box explanation shows the NN (an image of a lemon) and a boxed region showing the
“pulp of the lemon” as the feature that influenced the classification. Clearly, when people see this
CCR explanation, it provides more information about the classification, leading them to rate it as
more correct (which does not occur for the NoBox version). Though this account makes sense,
because this analysis is ad-hoc, it should be treated with some care. Nonetheless, it does show that
there are specific image-items that are influenced by the provision of CCR information (presumably,
when there is confusion over whether the AI really got the prediction right or wrong). Notably, and
more generally, these findings give us a sense of the psychological complexities of XAI; namely,
that there can be interactions between specific image-items, the predictions about those items made
by the model, and the explanation-type used to justify those predictions.

6 GENERAL DISCUSSION AND CONCLUSIONS

Post-hoc explanation-by-example is one of the most popular and successful explanation strategies in
both user testing (Buçinca et al., 2020; Jeyakumar et al., 2020), and computational experiments (Kim
et al., 2014; Kenny & Keane, 2021). This paper has reported comparative tests of several ways to
augment this popular explanation method by showing the most important parts of the image used,
what we call Critical Classification Regions (CCRs). Initially, computational tests demonstrated
the optimal way to isolate these regions in the test image and training data. Subsequently, a care-
fully designed user study showed that explanations with and without CCRs are both equally helpful
for understanding, but that for certain ambiguous images the provision of CCRs influence people’s
perception of correctness. For future work, the investigation of CCR’s utility into contrastive expla-
nations will be considered, as well as how to link multiple/bigger CCRs in the test image to a single
training example.
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ETHICS STATEMENT

It is clear that XAI has made considerable progress in “opening the black box” to begin to reflect
the internal workings of these successful, but complex, deep learning models. Here, we have seen
that an explanation-by-example strategy shows some promise in supporting this effort (Jeyakumar
et al., 2020; Kenny et al., 2021; Chen et al., 2019). However, we should also not loose sight of
the potentially negative societal impacts that may arise from these XAI solutions. Perhaps the main
concern being that, any data which is presented for explanation may need to be anonymized to
ensure privacy and ethical concerns (Jeyakumar et al., 2020), particularly in sensitive domains such
as medicine and law.

There are also wider issues to be considered around ensuring that these automated explanations in-
form without misleading end-users about the systems. Since CCRs gives users the impression that
“incorrect” classification’s seem more correct, a concern could be put forth that they may actively
mislead end-users. However, since ImageNet has “real world” images which inevitably contain sev-
eral classes (e.g., the pot pie in Fig. 4 could be a “lemon” or “pot pie”), many different possible
classifications are arguably correct. So, the CCR is not necessarily “misleading” users, but rather
pointing more precisely to where the CNN is looking, and (thanks to the nearest neighbour CCR
explanation), “why” it is looking there (our main contribution). When users see the CNN is looking
at the “lemon” when it classifies the “pot pie” as a “lemon”, although some may see this as incorrect,
it is nevertheless acting in a way which is objectively “correct”, so people’s feelings of “correctness”
increased compared to the “nobox” version (or put another way, they see it as “less incorrect”). In
terms of use-cases for CCRs, they appear to be most useful at convincing people a CNN’s classi-
fication is correct, when there are several possible classifications a CNN could make. This would
likely be useful in domains with many possible outcomes for which humans are not totally expert –
a multi-class classification problem – (e.g., radiology diagnosis, see Fig. 11).

REPRODUCIBILITY STATEMENT

Much effort has been invested to ensure this work is reproducible. For instance, we are providing a
code library which can be installed to use the CCR method easily. This includes the twin-ensemble
method from Section 2. Moreover, to reproduce the experiments, we have provided all the code used
in the supplementary materials, and all the data pre-processing used in the Appendix sections. The
user study is given in full detail also, which shows exactly what we showed users, should anyone
wish to recreate the results of this paper.
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A AN EVALUATION OF EXPLANATION-BY-EXAMPLE METHODS

The core novelty of this paper is CCRs, but to generate these the first crucial step is to locate a pool
of “good” nearest neighbors (NNs) to avoid searching the entire training data. Rather than proposing
a novel method, we found four candidate explanation-by-example methods that could deliver such
pools (Jeyakumar et al., 2020; Papernot & McDaniel, 2018; Hanawa et al., 2021; Kenny & Keane,
2019). As an aside contribution, we competitively tested these four methods to see which we would
use in the main paper’s experiments, this aside experiment is detailed here.

The CCR algorithms proposed in this paper rely on obtaining a “good” pool of nearest neighbors.
That is, the pool obtained via some nearest neighbor algorithm should be linked to the CNN/test
image in question we are explaining, easily applied to any dataset/domain (regardless of the dataset
size or complexity), and practical in the “real world”. This experiment compares four explanation-
by-example techniques: namely, ExMatchina by Jeyakumar et al. (2020), DkNN by Papernot &
McDaniel (2018), Grad-Cos-x [inspired by Hanawa et al. (2021)], and twin-systems by Kenny &
Keane (2019). Following Hanawa et al. (2021), we use the sanity checks proposed by Adebayo et al.
(2018) to determine which method is most sensitive to random changes in the network’s parameters.
If a given method is not sensitive to this, it is reasonable to assume that the model’s parameters are
not being used to generate the explanation, and hence the explanation (i.e., the NN pool) is not linked
to the CNN. Recent similar tests found Grad-Cos to be a good technique (Hanawa et al., 2021), but
it does not scale to larger datasets, and their tests did not consider the three other methods tested
here. Our modified Grad-Cos, called Grad-Cos-x, uses the loss gradients for similarity comparison
at the final feature extraction layer in a given instance, rather than the entire CNN’s parameters
as described by Hanawa et al. (2021). Other techniques [e.g., Influence functions by Koh & Liang
(2017)] were omitted due to them being computationally infeasible on larger datasets like ImageNet.
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A.1 SETUP, DATASETS, AND EVALUATION METRICS

Here, a pre-trained CNN f is considered alongside four different randomized variants frand (see
Fig. 2). These variants randomized (1) the CNN’s first layer, (2) half the convolutional layers, (3)
the output linear layer, and (4) the entire CNN. The evaluation uses the first 500 instances from the
test set of CIFAR-10 Krizhevsky et al. (2014) and FashionMNIST Xiao et al. (2017). An overlap set
metric called the Szymkiewicz–Simpson coefficient is used to evaluate the NN pool. Specifically, a
score of 0 means all the NNs are different, and 1 means the are all the same (i.e., the worst score). For
each test image, a set of NNs ranging from 1-1000 is iteratively considered. Due to the complexity
of ExMatchina (as the original paper suggested assessing similarity in the final convolutional layer
rather than the penultimate linear layer, which increases the size of vectors for comparison×49), the
evaluation is limited to relatively simple datasets. Furthermore, as the randomization of weights is
susceptible to erroneous results, experiments are repeated five times with aggregated results shown
in Fig. 2 along with standard error bars.

In addition, we also consider the “Agreement” metric proposed by Kenny & Keane (2021) to evaluate
the methods. The method adjusts the training data labels to be what the CNN predicted them to be
post-training, and then fits a k-NN classifier to the training data. The k-NN is then used to predict
the test data and the amount these predictions overlap with the black-box CNN’s predictions, is the
final score. So, if all predictions are identical, an agreement score of 1.0 is recorded (which is the
best score), if both systems disagree on every test prediction, a score of 0.0 is recorded (the worst
score). Note this k-NN classifier uses L2 distance for twin systems, but cosine similarity for the
other three methods (as was proposed by the original authors). The intuition behind this evaluation
metric is that the k-NN being used to explain the black box CNN should exactly match the CNN’s
predictions on test data, otherwise the NNs are not a faithful abstraction of the CNN function we are
explaining.

Lastly, we were also inspired to use Spearman’s Rank correlation to evaluate the NN pool found as
suggested by Hanawa et al. (2021). The distance of the query to all NNs is recorded, and this is
evaluated against the new randomized NNs. A score close to 0 means the NN pool is very different
after weight randomization (as we want), divergent scores mean the opposite.

A.2 RESULTS

Fig. 6 reports the results of the supplementary experiment. Overall, the results show that twin-
systems are the best method across all tests. Fig. 6(A) shows the agreement metric with a perfect
score of 1.0 for twin-systems, with DkNN, ExMatchina, and Grad-Cos-x doing worse in that or-
der. Next, Fig. 6(B) shows the Szymkiewicz–Simpson coefficient, with twin-systems again the best
method, with most of its NNs changing distance after the weight randomization, compared to the
other three methods. Lastly, Fig. 6(C) shows results of the Spearman’s Rank test, with twin-systems
and Grad-Cos-x being the best methods, with less divergence in the former than the latter (indicating
again that twin-systems are the best method).

Why does this happen? As DkNN and ExMatchina do not use weights in the output linear layer,
their weight randomization in the frand variant which randomized the weights in the last linear
layer produced no difference. So aggregating the results of all tests showed DkNN and ExMatchina
to perform much worse overall. Given the better performance of twin-systems and its claimed
psychological validity Kenny et al. (2021), Expt. 1-3 focused on this method. Lastly, it is also worth
noting that Grad-Cox-x requires testing labels to derived NNs, a constraint twin-systems do not
have. Hence, although Grad-Cos-x also performed well in these tests, we did not consider it, as we
wanted a method which didn’t require testing labels to be known pre-hoc, partly so it could also be
used for self-supervised learning in future research.

A.3 ARCHITECTURES

The architecture used in the Appendix A experiments is show in table 1. For CIFAR-10, the model’s
first Conv layer expected 3 dimensions (for color) rather than 1 on FashionMNIST.
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Figure 6: Experimental Results: (A) The agreement metric shows twins get a perfect score of 1.0,
with DkNN performing second best. (B/C) The different layers of CNNs trained on CIFAR-10 and
FashionMNIST are randomized to determine the sensitivity of the method to model parameters.
(B) The Szymkiewicz–Simpson coefficient overlap set score shows how many NNs retrieved by
the randomized CNN overlap with those from the non-randomized CNN, and the fully aggregated
results from all tests are shown for both datasets in a bar plot. (C) Spearman’s Rank shows a box
plot with twins being the best method, with concentrated scores close to zero. Results show that
overall twin-systems and Grad-Cos-x are the most sensitive across all layers (note the varying scales
on the y-axis). Standard Error bars are shown in (B).

A.4 TRAINING HYPERPARAMTERS

Both models for CIFAR-10 and FashionMNIST were trained the same way.

Adam optimizer was used with a learning rate of 0.01. Learning rate was decreased to 90% of it’s
previous value every epoch. The networks were trained for 20 epochs.

FashionMNIST used data augmentation by padding with 4, random resized cropping 28, random
horizontal flips (p=0.5), color jitter (0.1 for brightness, contrast, saturation, and hue) in Pytorch.
The network accuracy on the test data was 90.39%.

CIFAR-10 was the same except that random resized cropping was done at 32 pixels. It’s accuracy
on the testing data was 74.3%.

B TWIN-SYSTEMS DETAILS

As it is the explanation-by-example method used in this paper, we present a brief summary of twin-
systems here if it interests the reader. Twin-systems work by considering the final latent represen-
tation in an ANN (usually the penultimate layer), and fitting a k-NN to the training data’s represen-
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Table 1: The CNN architecture used to train models in Appendix A.
Expt 1. CNN

Layer Layer Parameters

Conv2d 8 filters, (5x5), (1x1), padding=2
BatchNorm2d
ReLU

Conv2d 16 filters, (5x5), (2x2), padding=2
BatchNorm2d
ReLU

Conv2d 32 filters, (5x5), (1x1), padding=2
BatchNorm2d
ReLU

Conv2d 64 filters, (3x3), (2x2), padding=2
BatchNorm2d
ReLU

Conv2d 128 filters, (3x3), (1x1), padding=1
BatchNorm2d
ReLU

GAP

Linear 128, 10
SoftMax

tation at this layer, similar to Papernot & McDaniel (2018). However, twins are different because
they weight these activations with feature-weighting methods. Specifically, a method known as
Contributions Oriented Local Explanations (COLE) is typically used for the feature weighting.

What makes COLE interesting is that it ignores features which did not contribute to a classification
when searching for nearest neighbors, and emphasises those that did, which allows k-NN to find
better explanatory training instances. This approach helps ensure that the nearest-neighbor found
is predicted in the same class as the test instance, and that they both use similar features in their
classifications (Kenny & Keane, 2021).

The weighting vector c⃗ of some input to the network is given by:

c⃗ =

〈
x1 ·

∂ŷ

∂x1
, x2 ·

∂ŷ

∂x2
...xn ·

∂ŷ

∂xn

〉
(3)

were {xi}ni=1 represents the extracted features in an ANN (note in this paper it is the penultimate
layer before the SoftMax output classification layer), and ŷ the predicted output neuron class. The
contribution scores for all the training data were generated and then fit to an k-NN for the twin-
system. For all testing data, the process is repeated and its vector c⃗ used to search for nearest
neighbors with the k-NN twin.

C EXPERIMENT 2: TRAINING HYPERPARAMTERS

For the training ablation studies ResNet50 and ResNet34 was used. ImageNet experiments used the
pre-trained ResNet50 model available on Pytorch. CUB-200 fine tuned ResNet34 with the following
hyperparamters.

CUB-200. Epochs 500. 1 GPU used. Number of workers was 2. Batch size 12. Data transfor-
mations during training were done with Pytorch transforms: RandomResizedCrop(224), Random-
Rotation(45), RandomHorizontalFlip(0.5), ColorJitter(brightness=0.126, saturation=0.5). A multi-
plicitive learning rate decay of 0.999 was used. The epoch with best test accuracy was used for the
model, which was epoch 41.
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ImageNet. This was a pre-trained model from PyTorch.

Standard training and testing splits were used for ImageNet, and CUB-200. However, as is standard
practice, the validation data was used for ImageNet, since the test data labels are unavailable.

Fine-Tuning. When finetuning the CNNs, the exact same hyperparamters were used (and the same
ones from the original ResNet paper for ImageNet), except that the learning rate was decreased by
10−1 from each methods initial learning rate when training the initial CNN model.

D COMPUTATIONAL COSTS

D.1 HARDWARE

Appendix A experiment had both the FashionMNIST and CIFAR-10 models trained on a single
Nvidia K80 GPU, 2vCPU @ 2.2GHz, and 13GB RAM. The experiments were subsequently run on
MacBook Pro, processor 2.9 GHz Intel Core i5, memory 16 GB 2133 MHz LPDDR3.

Experiments 1-2 were run on a Dell R740XD with an Nvidia V100 (32GB) GPU: 256GB RAM.
Storage of the dataset was on scratch storage 220TiB.

Computational time for experiments. The Appendix A experiment took ≈8hrs to run each
dataset. Expt. 1 took approximately 48hrs and 6hrs to run for ImageNet and CUB-200, respec-
tively, presuming the use of a single Nvidia V100 (32GB) GPU. Expt. 3 took 2 weeks to run the beta
experiment on ImageNet, one day for the alpha, and 7 days for the comparative tests. CUB-200 by
comparison took less than 2 days for all tests.

E ALGORITHM PSEUDO-CODE

Algorithm 1 Latent-Based-CCR Algorithms
Require: f(.); CNN
Require: x; Test Image
Require: NN(.); Nearest Neighbor Algorithm (Twin-Systems Recommended)
Require: k; Size of Nearest Neighbor Pool (50 recommended)
Require: g(.); CNN model up to the final convolutional layer
Require: α; Alpha hyperparameter (5 recommended)
Require: m(.); Activation map algorithm (e.g., CAM)

Cx ∈ IR(h,w,d) ← g(x) ▷ Get Convolutional Output
Mx ∈ IR(h,w) ← m(Gx) ▷ Get Activation Map
{Ni}ki=1 ← NN(x) ▷ Get Pool of k Nearest Neighbors

Select the segment Ci,j ∈ IR(1,1,d) with the maximum saliency Mi,j as the test image CCR ωtest.

for ni ∈ {Ni}ki=1 do
Cx ∈ IR(h,w,d) ← g(x)
for i in range h do

for j in range w do
ωc ← Ci,j ∈ IR(1,1,d)

Record L2 distance l = ∥ωc − ωtest∥22
end for

end for
end for

Select the neighbor n with segment i, j which minimised Eq. (1).
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Algorithm 2 Superpixel-CCR Algorithm
Require: f(.); ANN
Require: x; Test Image
Require: NN(.); Nearest Neighbor Algorithm (Twin-Systems Recommended)
Require: k; Size of Nearest Neighbor Pool (50 recommended)
Require: SA(.); Superpixel Algorithm (SLIC Recommended)
Require: β; Beta hyperparameter (infinity recommended)

Sx ← SA(x) ▷ Get Superpixel Segments
{Ni}ki=1 ← NN(x) ▷ Get Pool of k Nearest Neighbors

for si ∈ Sx do
Set all parts of x! = si to 0
Pass image though f(.)
Record output logit yi of the neuron corresponding to the prediction of f(x)
Modify si by upsampling it to the f input size whilst maintaining the aspect ratio
Pass the upsampled si though f
Record the latent representation of the upsampled si as li

end for

Select the segment si with the maximum li as the test image CCR ωtest.

for ni ∈ {Ni}ki=1 do
Sn ← SA(x)
for si ∈ Sn do

Set all parts of ni! = si to 0
Pass image though f(.)
Record output logit mi of the neuron corresponding to the prediction of f(x)
Modify si by upsampling it to the f input size whilst maintaining the aspect ratio
Pass the upsampled si though f
Record the latent representation of the upsampled si as li

end for
end for

Select the neighbor n with segment i which minimises Eq. (2).
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F EXAMPLE EXPLANATIONS

Here more example explanations are showcased with correct classifications, and incorrect classifi-
cations. In addition, a misclassification with three CCRs and multiple NNs (rather than just one) to
illustrate this explanation option is shown.

Fig. 7 shows six correct classifications on ImageNet by ResNet50, alongside an explanation for
them. Firstly, the explanation comprises of a nearest neighbor from a pool of n candidate cases
retrieved (50 in our experiments), which alone is already considered a “good” explanation by non-
experts (Jeyakumar et al., 2020; Kenny et al., 2021). However, the explanations go further by pin-
pointing a CCR in the test image which was “learned” from the NN. This type of explanation not
only informs the user of what important feature was used in the explanation, but also from where it
arose in the first place so it may be further contextualized.

Fig. 8 shows two incorrect classifications in ImageNet from our user study. The first image is a
“Kimono” misclassified as a “Violin”, were the CNN confused the pipe in the test image with a
violin bow. Fig. 8b shows a “Hammer” misclassified as a “Shovel”. Here the CNN saw similarity in
the test image’s wooden handle to a previous training image of a “Shovel”, and hence classified the
image as a shovel.

Fig. 9 shows another two incorrect classification in ImageNet from our user study. Fig. 9a shows an
“Acoustic Guitar” which is misclassified as an “Electric Guitar”. The CNN conflates the fretboard
as being indicative to an electric guitar, but it is also important to an acoustic guitar, and hence the
misclassificaiton arises. Fig. 9b shows a misclassification of a “Flute” as a “Horizontal Bar”. The
visual similarity of the horizontal bar in the NN image is confused with the wooden flute in the test
image.

Fig. 10 shows another way of visualizing CCRs with multiple NNs shown. Specifically, the three
most salient CCRs are shown alongside the three closest representations of them in the pool of NNs
retrieved. Interestingly, in Fig. 10, the third CCR seems to be confused between a Leopard’s tail and
leg, possibly contributing to the misclassification.

Fig. 11 shows another example of using three latent-based CCRs for the correct diagnosis of Covid-
19 in a patient’s x-ray.

Fig. 12 shows another example of using SP-CCRs to explain misclassifications on ImageNet. (A) A
“Knot” and (B) “Rifle” are misclassified by ResNet50 apparently due to bias in the CNN by asso-
ciating, what could be called, “wooden background”, and “snowy background” with the respective
classes.

G USER STUDY SCREENSHOTS

For complete transparency on the user study design, we include screenshots (anonymous during
review) for the reviewer’s convenience. In this section exactly what all users of our study saw is
shown, page by page, in the exact order. The bulk of the questions are omitted for space and clarity,
but all original images used in the study may be acquired from our supplementary folder for this
paper.

Or, if you prefer, you may sample your own materials to recreate the study.
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Explanation-by-ExampleTest Image Explanation-by-ExampleTest Image

Label: Castle
Classification: Castle

Label: Castle
Classification: Castle

Label: Traffic Light
Classification: Traffic Light

Label: Traffic Light
Classification: Traffic Light

Label: iPod
Classification: iPod

Label: iPod
Classification: iPod

Label: Cello
Classification: Cello

Label: Cello
Classification: Cello

Label: Park Bench
Classification: Park Bench

Label: Park Bench
Classification: Park Bench

Label: Jack O Lantern
Classification: Jack O Lantern

Label: Jack O Lantern
Classification: Jack O Lantern

Figure 7: Correct examples: Starting from the top left (and going in reading order), we see correct
classifications and a NN explanation showing the CCR used in the classification. Namely, the images
show correct classifications of a “Castle”, “Traffic Light”, “iPod”, “Cello”, “Park Bench”, and “Jack
O Lantern”

(b)(a)

Label: Kimono
Classification: Violin

Label: Violin
Classification: Violin

Explanation-by-ExampleTest Image Explanation-by-ExampleTest Image

Label: Hammer
Classification: Shovel

Label: Shovel
Classification: Shovel

Figure 8: Incorrect examples: (a) A “Kimono” is misclassified as a “Violin”, the CCR shows the
CNN confused the pipe in the test image as the violinist’s bow. (b) A “Hammer” is misclassified
as a “Shovel”, the CCR shows the CNN learned to focus on the wooden handle of shovels when
classifying them, which it partly learned from the training image shown.
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(b)(a)

Label: Acoustic Guitar
Classification: Electric Guitar

Label: Electric Guitar
Classification: Electric Guitar

Label: Flute
Classification: Horizontal Bar

Label: Horizontal Bar
Classification: Horizontal Bar

Explanation-by-ExampleTest Image Explanation-by-ExampleTest Image

Figure 9: More Incorrect examples: (a) An “Acoustic Guitar” is misclassified as an “Electric Guitar”,
the CCR shows the CNN has learned to associate the guitar’s fretboard with electric guitars, and
neglected the rest of the image when classifying the test image. (b) A “Flute” is misclassified as
a “Horizontal Bar”, the CCR shows the CNN seems to have focused on the qualitative similarity
between the horizontal bamboo bar in the training image, and the bamboo flute in the test image.

CCR 1

CCR 2

CCR 3

Test Image Explanations-by-Example

Figure 10: Multiple CCRs: An incorrect classification of a “Leopard” as a “Cheetah”. Three of the
most salient CCRs are shown for the test image, alongside their three closest representations in the
pool of NNs.
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CCR 1

CCR 2

CCR 3

Figure 11: Multiple CCRs: A correct classification of “Covid-19”. Three of the most salient CCRs
are shown for the test image, alongside their three closest representations in the pool of NNs.

Explanation-By-Example(A) Test Image Explanation-By-Example(B) Test Image

Figure 12: Incorrect ImageNet Classifications: SP-CCRs are used to explain two misclassification
(A) A “Knot” is misclassified as a “Padlock”, were the CNN has learned to associate a “wooden
background” feature with the predicted class, causing a bias. (B) A “Rifle” is misclassified as a
“Shovel”, where a bias in the CNN has learned to associate a “snowy background” feature with the
class “Shovel”.
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Continue for 32 Questions…. See main paper for study layout. 
 
All original materials may be sampled from ImageNet in the supplement. 
 
Recall there are two versions of the study, one were material Set-A has a CCR explanation, 
and Set-B does not, and then the other study which does the opposite. All incorrect 
classifications are randomized. 
 
Correctly classified (e.g., the snail above) materials were spaced out every 4 questions and 
were not randomized (i.e., question 4, 8, 12… 32) 
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Debrief Page 
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