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Abstract

Current methods for pathology image segmentation typically treat 2D slices independently,
ignoring valuable cross-slice information. We present PathSeqSAM, a novel approach that
treats 2D pathology slices as sequential video frames using SAM2’s memory mechanisms.
Our method introduces a distance-aware attention mechanism that accounts for variable
physical distances between slices and employs LoRA for domain adaptation. Evaluated on
the KPI Challenge 2024 dataset for glomeruli segmentation, PathSeqSAM demonstrates im-
proved segmentation quality, particularly in challenging cases that benefit from cross-slice
context. We have publicly released our code at https://github.com/JackyyyWang/PathSeqSAM.

Keywords: Pathology image, SAM2, cross-slice attention, glomeruli segmentation

1. Introduction

Accurate segmentation of histopathological structures is fundamental for quantitative anal-
ysis of kidney pathology images, particularly in chronic kidney disease diagnosis (Deng et al.,
2024, 2023). Traditional approaches often process each 2D pathology slice independently,
overlooking potentially valuable contextual information from adjacent slices of the same
specimen. This limitation becomes especially apparent in challenging cases with staining
inconsistencies or complex pathological changes (Ginley et al., 2019; Altini et al., 2020).

Recent advances in foundation models, particularly SAM2 (Ravi et al., 2024), have
shown promise in handling sequential data, but directly applying these methods to pathol-
ogy remains challenging due to domain shift (Wu et al., 2023; Li et al., 2024; Ma et al.,
2024). We propose PathSeqSAM, which interprets multiple 2D slices from the same subject
as sequential video frames, enabling cross-slice contextual learning through:

• A sequential modeling strategy that treats pathology slices as video frames.

• A distance-aware attention mechanism to accommodate variable physical distances.

• Domain adaptation using Low-Rank Adaptation (LoRA) (Hu et al., 2021) for pathology-
specific features.
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Figure 1: Proposed SAM2 segmentation pipeline for pathology images. Features extracted
via the LoRA-adapted SAM2 encoder are refined by distance-aware cross-slice
attention and a memory bank, enabling coherent segmentation across slices.

2. Methods

Problem Formulation: Given a set of 2D pathology slices {S1, S2, ..., Sn} from the same
subject, we formulate a sequential segmentation task, where each slice functions as a frame in
a video-like sequence. This viewpoint captures cross-slice relationships despite differences
between typical video frames and pathology slices. As shown in Figure 1, our approach
leverages the correspondence between pathology slices, where structures like glomeruli can
be tracked across sequential slices, similar to objects moving through video frames.
Distance-Aware Cross-Slice Attention: SAM2 extends the original SAM (Kirillov
et al., 2023) by incorporating a memory attention mechanism to handle sequential data.
However, pathology slices often have variable physical distances, unlike uniformly spaced
video frames. To address this, we introduce a distance-aware attention mechanism:

αi,j =
exp

(
sim(Fi, Fj) · ϕ(di,j)

)∑
k exp

(
sim(Fi, Fk) · ϕ(di,k)

) , (1)

where Fi and Fj are feature embeddings for slices i and j, sim(·, ·) is a cosine similarity
function, di,j is the estimated physical distance, and ϕ(d) = exp(−λ · d2) is a distance
modulation function. The parameter λ is initialized to 0.1 and learned during training to
adaptively weight the influence of physical distance on attention.
Adaptive Memory for Histopathology Context: We adopt an adaptive slice selection
strategy instead of maintaining a fixed-size memory of recent frames, choosing the most
informative slices based on feature similarity and confidence:

Mt = {Fj | j ∈ top-K
(
sim(Fj , Ft) · Conf(yj)

)
, j < t}. (2)
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Table 1: Patch-level Diseased Glomeruli Segmentation Performance (Dice Score %)
Method Mean±SD

nnUNet 88.79±5.38
Swin-Unet 89.65±6.41
SAM2 92.48±6.13
PathSeqSAM (Ours) 94.71±5.89

Here, Conf(yj) represents the segmentation confidence derived from SAM2’s cross-attention
mechanism. This approach prioritizes slices with higher feature similarity and reliable
segmentation confidence, regardless of strict sequential ordering. Such flexibility is critical
for pathology slides, where the relationship between adjacent slices can be complex.
Domain Adaptation: We utilize Low-Rank Adaptation (LoRA) (Hu et al., 2021) to adapt
SAM2’s image encoder for the pathology domain. LoRA injects trainable low-rank matrices
into attention layers, preserving most pre-trained weights. This method effectively handles
domain adaptation with minimal computational overhead (Cheng et al., 2023).

3. Experimental and Results

We implemented PathSeqSAM on the SAM2 codebase (Ravi et al., 2024), applying LoRA
with rank 8 to the image encoder. The model was trained on the KPI Challenge 2024
dataset (Deng et al., 2024) using a combined loss function:

L = Ldice + 0.5LBCE + 0.2Lconsistency, (3)

where Lconsistency encourages consistent segmentation across similar slices by penalizing
discrepancies in predictions between slices with high feature similarity (Ji et al., 2021).
We set K = 5 to balance contextual information and computational efficiency. Physical
distances were obtained from metadata or estimated via feature similarity.

Table 1 compares PathSeqSAM with state-of-the-art methods on patch-level glomeruli
segmentation from the KPI Challenge 2024. PathSeqSAM achieved a mean Dice score of
94.71±5.89, outperforming nnUNet, Swin-Unet, and SAM2. The 2.23% improvement over
SAM2 demonstrates the effectiveness of sequential modeling and distance-aware attention
in pathology segmentation.

4. Discussion and Conclusion

PathSeqSAM introduces a sequential modeling paradigm for pathology image segmenta-
tion by leveraging SAM2’s memory attention across multiple slices. The distance-aware
attention mechanism and LoRA-based domain adaptation address the unique challenges of
histopathological data, such as variable inter-slice spacing and staining inconsistencies. By
prioritizing the most informative slices, our adaptive memory approach further enhances
segmentation consistency and accuracy.
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