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Abstract

In entomology and ecology research, biologists often need to collect a large number1

of insects, among which beetles are the most common species. A common practice2

for biologists to organize beetles is to place them on trays and take a picture of each3

tray to digitize them. Given the images of thousands of such trays, it is important4

to have an automated pipeline to process the large-scale image data for further5

research. Therefore, we develop a 3-stage pipeline to detect all the beetles on each6

tray, sort and crop the image of each beetle, and do morphological segmentation7

on the cropped beetles. For detection, we design an iterative process utilizing a8

transformer-based open-vocabulary object detector and a vision-language model9

to comprehensively detect all beetles in the tray. For segmentation, we manually10

labeled 670 beetle images and fine-tuned two variants of a transformer-based11

segmentation model to achieve fine-grained segmentation of beetles with relatively12

high accuracy. The pipeline integrates multiple deep learning methods and is13

specialized for beetle image processing, which can greatly improve the efficiency14

to process large-scale beetle data and accelerate biological research.15

1 Introduction16

In entomology and ecology research, biologists often need to collect a large number of insects to17

study, among which beetles are one of the most common species. Beetles account for around 25% of18

all known species in the world [1]. Therefore, they have significant research value in a variety of fields19

such as taxonomy, evolution, and biodiversity, for their species richness, widespread distribution, and20

representativeness.21

In practice, biologists often mount beetles collected at the same site and time on a tray, using pins22

and in a certain order. A tray can contain from several to over 60 beetle specimens. After collection,23

biologists can have up to thousands of such trays and take a picture of each tray to digitize them. This24

procedure brings in a large amount of beetle data organized by trays, but how to process them for25

further study becomes a new question. On the one hand, given tens of thousands of beetles, it is an26

ideal amount of data to conduct machine learning study. However, machine learning algorithms need27

pictures of each single beetle as input, instead of the whole tray, to learn the patterns of beetles. It is28

time-consuming to take a picture of each beetle manually given such a large amount. On the other29

hand, biologists sometimes need to do manual labeling on each beetle to segment out and measure30

certain body parts of their interests, which is also labor-intensive. To the best of our knowledge, no31

work or pipeline has fulfilled this demand for large-scale beetle image processing.32

Given the importance of beetle study and the challenges biologists face in processing massive beetle33

data, it is significant to develop an automated pipeline to process large-scale beetle images. Therefore,34

we develop a 3-stage pipeline utilizing multiple deep learning methods to help with beetle data35

processing. In the first stage, we develop an iterative process to comprehensively detect all beetles36
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in each tray image. We utilize a transformer-based open-vocabulary detector, Grounding DINO [2],37

for iterative beetle detection and a vision-language model, LLaVA-NeXT [3], for final verification.38

This approach achieves a high tray-level accuracy of 97.81%, where a tray is considered correct only39

if the detected beetle count exactly matches the ground-truth count. In the second stage, we crop40

each detected beetle from the tray image and save it as a single image. If there are digitized metadata41

provided for each beetle in the tray, the pipeline can also sort the detected beetles in a certain order42

and match each beetle to its metadata. In the third stage, we leverage an advanced and universal43

transformer-based model, Mask2Former [4], to segment each beetle into 5 or 9 morphological body44

parts. We fine-tune two variants of Mask2Former on 340 and 330 beetle images manually labeled45

into 5 and 9 classes respectively, and the model achieves a mean Intersection over Union (mIOU) of46

85.11% for 5 class segmentation and 77.38% for 9 class segmentation.47

With the pipeline, the large-scale images of trays of beetles can be efficiently processed into images48

of single beetles matched with metadata, which is desirable for machine learning research and49

single-specimen study in biology. The segmentation results also have multiple downstream usages.50

Firstly, biologists can acquire tens of thousands of segmented beetles within a short amount of time,51

saving significant effort in manual segmentation. With the digitized segmentation of different beetle52

body parts, the length, area, and proportion of certain parts can be automatically measured, providing53

high-throughput data for further biological research. Secondly, with the segmentation results, the54

pipeline can also detect defective specimens by finding missing classes and checking the area of each55

class. It helps identify poor-quality specimens from a large number of beetles, which can be useful if56

only high-quality specimens are needed for downstream study. Thirdly, we can easily extract body57

parts of our interests and do further research only on these parts, for example, exploring which body58

part of the beetle best reflects environmental change in its habitat.59

To summarize, our contributions include developing an automated pipeline for large-scale beetle60

image processing, designing an iterative beetle detection process with high accuracy, and fine-tuning61

two beetle segmentation models with two levels of segmentation granularity. Multiple downstream62

research on beetles can be conducted based on the high throughput data processed by the pipeline.63

Moreover, the pipeline has the potential to generalize to more biological data processing cases, as64

we have observed a similar detection-and-segmentation pattern in other biological pipelines, such65

as QuPath [5] for cells and PlantCV [6] for plants. This detection-and-segmentation approach is66

applicable to a variety of biological data processing workflows, and our work on beetles also sets an67

example for insects, which are one of the most numerous groups of organisms in the world.68

2 Related Work69

Open-Vocabulary Detection and Vision-Language Models. The reliance of traditional object70

detectors like the R-CNN family [7] and YOLO [8] on large-scale, predefined training datasets is71

a significant limitation to scalability, particularly in scientific fields where annotation is costly and72

requires expert knowledge. To address this, open-vocabulary detection methods [9, 10] have emerged,73

which leverage natural language prompts to detect arbitrary objects without class-specific training.74

Similarly, Vision-Language Models (VLMs) [11, 12] have extended the reasoning capabilities of75

large language models [13–15] to the multimodal domain, enabling joint reasoning over text and76

images. While VLMs are commonly applied to visual question answering, their underlying capacity77

for logical reasoning makes them suitable for automated verification of computer vision outputs.78

Semantic Segmentation. Semantic segmentation has traditionally relied on convolutional neural79

network architectures, such as the foundational U-Net [16]. More recently, the state-of-the-art has80

shifted towards transformer-based models [17–19]. By leveraging self-attention to capture global81

context, these models are particularly effective at distinguishing between morphologically similar82

and adjacent parts, which is a common challenge in medical and biological imaging.83

Machine Learning in Beetle Studies. Leveraging data from continental-scale beetle sampling84

programs like NEON [20], recent studies have utilized machine learning to solve problems such85

as beetle identification and classification. Some works have applied traditional machine learning86

algorithms to identify beetles based on extracted features [21], while others have explored various87

deep learning methods, including employing convolutional neural networks for identification [22]88

and evaluating deep vision models on fine-grained taxonomic classification [23, 24].89
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Figure 1: An overview of the 3-stage pipeline: individual detection, cropping/metadata matching,
and body-part segmentation stages.

3 Beetle Image Processing Pipeline90

The input to our pipeline is a series of images of trays containing multiple beetles. Each tray image91

undergoes a 3-stage processing (shown in Figure 1). This section details the complete workflow by92

walking through a single image. The code and data are available at https://anonymous.4open.93

science/r/BeetleFlow-8BA5.94

3.1 Iterative Beetle Detection95

The first stage is iterative beetle detection. For each input tray image, an iterative process is initiated.96

In one iteration, the tray image and the text prompt “a beetle” are sent as input to Grounding DINO,97

which then outputs the bounding box coordinates for the detected beetles. Next, white masks are98

placed over all detected beetles based on the bounding box coordinates, leaving the undetected ones99

in the tray image. The resulting modified image then proceeds to the next iteration for another round100

of Grounding DINO detection and masking. When no detection is reported by Grounding DINO, the101

iteration stops. The final modified image is then sent to LLaVA-NeXT with the text prompt "Do you102

see beetles in this image?". We also constrain the model to output "YES" or "NO" as the final word103

for automated check. If it answers "YES", a message is reported to the user to do manual detection.104

If it answers "NO", the detection process is successful and outputs a list of all the bounding box105

coordinates for the next stage.106

3.2 Beetle Image Cropping107

The second stage takes the bounding box coordinates as input and outputs individual cropped beetle108

images, with optional functions of sorting and metadata association. Given the bounding box109

coordinates of beetles, the pipeline crops the beetles out of the original tray image according to the110

coordinates and saves them as individual images. A specific order can be applied when saving the111

beetle images. In practice, the beetles in a tray are arranged in regular rows and columns. If digitized112

metadata for the beetles are available, they are typically provided in a left-to-right, top-to-bottom113

order corresponding to the arrangement of the beetles in the tray by the biologists. To match each114

beetle image to its metadata, the default sorting follows this convention. The pipeline saves the115

beetle images in a left-to-right, top-to-bottom order according to the top-left bounding box coordinate116

and associates the metadata with each beetle if applicable. The metadata matched to the beetles are117

outputted to a CSV file per tray.118
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3.3 Fine-grained Beetle Segmentation119

The third stage takes individual beetle images as input and outputs the morphological segmentation120

results for each beetle. For this task, we fine-tune two variants of Mask2Former, which is chosen121

for its strong performance on specialized tasks with limited training data. Users can select between122

two levels of granularity: a 5-class model (segmenting head, pronotum, elytra, legs, and antennas)123

for basic morphological analysis, and a more detailed 9-class model (additionally segmenting eyes,124

mouthparts, tail, and pin). Both models inherently separate the beetle from the background. For each125

input beetle image, the model generates a colorized mask image and a beetle image overlaid with the126

masks. The overlaid beetle image is provided for visualization purposes, allowing for user verification.127

The mask image can be utilized for two subsequent functionalities of the pipeline, morphological128

part cropping and defective specimen detection, which are detailed in Appendix B.129

4 Experiments130

4.1 Experimental Setup131

4.1.1 Beetle Detection132

Datasets. We apply the detection pipeline on the dataset collected by the National Ecological133

Observatory Network (NEON) from ecological sites across the U.S., along with associated metadata.134

The dataset contains 1,506 images of trays containing pinned carabid beetle specimens.135

Evaluation metrics. Each tray in the NEON dataset is associated with respective metadata, includ-136

ing the ground-truth number of beetles in the tray. After running the detection process on the trays,137

the number of detected beetles is compared to the ground-truth number. The total detection accuracy138

over the 1,506 tray images is then calculated to quantify the model’s performance.139

Implementation Details. We utilized the Grounding DINO model with pre-trained weights from140

the IDEA-Research/grounding-dino-base checkpoint. A fixed text prompt, "a beetle.", was141

used to guide the model in locating specimens within the tray images. For post-processing, we set the142

box confidence threshold to 0.3 and the text relevance threshold to 0.2. Only bounding boxes with143

scores exceeding both respective thresholds are retained. To enhance the robustness of the detection,144

we also introduced a custom filtering step. Any detection box with an area exceeding 5% of the total145

image area was discarded. This is to remove false detections where the model misidentifies a large146

portion of the tray as a single beetle. We utilized the LLaVA-NeXT model with pre-trained weights147

from the llava-hf/llava-v1.6-mistral-7b-hf checkpoint for the final verification.148

4.1.2 Beetle Segmentation149

Datasets. The unlabeled individual beetle images are derived from our pipeline by processing the150

tray images. For 5-class labeling, we label 5 parts for each beetle image: head, pronotum, elytra, legs,151

and antennas. We manually labeled 160 beetles and utilized an additional 180 labeled beetles from a152

previous work, SST [25], which follows the same 5-class scheme. A total of 340 labeled beetles were153

then partitioned into a training set of 272 and a test set of 68 images. For 9-class labeling, we label 9154

parts for each beetle image: head, eyes, mouthparts, pronotum, elytra, tail, legs, antennas, and pin.155

We manually labeled 330 beetles, dividing them into a training set of 264 and a test set of 66 images.156

Evaluation metrics. We use mean Intersection over Union (mIOU) on the test set as the primary157

metric, averaged across all classes for each image. In addition to the overall mIOU, we also report158

the per-class IoU scores to facilitate a more granular analysis.159

Implementation Details. We fine-tuned two Mask2Former models with a Swin-Large backbone,160

each initialized with weights from the facebook/mask2former-swin-large-ade-semantic161

checkpoint, which was pre-trained on the ADE20K dataset for semantic segmentation tasks. All input162

images were resized to a resolution of 512×512 pixels. The models were trained for 30 epochs with163

a batch size of 10, using the AdamW optimizer and an initial learning rate of 1e-4. All experiments164

were conducted on two NVIDIA A100 GPUs with 40GB memory each.165
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Figure 2: Qualitative segmentation results. Top row: 5-class segmentation (head, pronotum, elytra,
legs, antennas). Bottom row: 9-class segmentation (adding eyes, mouthparts, tail, pin). Columns
show original, ground truth, and prediction.

4.2 Results166

Beetle Detection. We applied the detection process to 1,506 tray images. Of these, 1,473 trays167

had a perfect match between the number of detected beetles and the ground truth, yielding a total168

accuracy of 97.81%. Of the 33 failure cases, 32 had a higher detected beetle count than the ground169

truth, while only one case had a lower count. A majority of these 32 cases were due to fallen beetle170

heads on the trays, which the model incorrectly detected as separate beetles. The data indicates that171

our detection process is highly effective at detecting all beetles on a tray with minimal omissions.172

Beetle Segmentation. We evaluated the performance of two fine-tuned models on their respective173

test sets. For 5-class segmentation, the mIOU is 85.11%. For 9-class segmentation, the mIOU is174

77.38%. Our per-class IOU results, detailed in Appendix D (Table 1), reveal a notable trend in both175

segmentation tasks. Take 5-class segmentation as an example: the model achieves high IoU scores176

on large morphological parts like "pronotum" (91.85%) and "elytra" (94.69%) , while the scores for177

smaller parts like ’legs’ (79.57%) and ’antennas’ (65.93%) are comparatively lower. This discrepancy178

does not solely indicate poor segmentation quality for smaller parts. In fact, our qualitative results179

(shown in Figure 2) show that these parts are often segmented reasonably well. This phenomenon180

is partly attributable to the sensitivity of the IoU metric to object size. For small objects, minor181

deviations of a few pixels can lead to a significant drop in the IoU score.182

5 Discussion and Future Work183

In this work, we develop an automated 3-stage pipeline to process large-scale beetle images. The two184

deep learning-based processes, iterative Grounding DINO detection and Mask2Former segmentation,185

have proven to be robust and highly accurate. One limitation of our pipeline is that the accuracy186

of the detection is influenced if there are split beetles in the tray, e.g., the head of a beetle is fallen187

off. We have tried methods to automatically recombine the fallen heads with their bodies, but they188

are not robust as the number and location of the fallen heads are highly variable. In addition, each189

tray also contains a scale bar and a color table, which can be utilized for beetle measurements and190

image color calibration. We have developed the functionalities to detect and crop the scale bar and191

the color table of each tray. The scale bar can be used to automatically measure the morphological192

statistics of beetles, such as length and area, which can aid biologists in further analysis. The color193

table can be used for color calibration to ensure the standardization of the beetle images. These194

applications can be implemented in future work. In summary, our pipeline greatly improves the195

efficiency of large-scale beetle image processing, yielding useful outputs for various downstream196

research purposes. This pipeline scheme can be further generalized to other similar organisms beyond197

beetles, with the potential to improve the data processing workflow in the biology field.198
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BeetleFlow: A 3-Stage Deep Learning Pipeline for281

Beetle Image Processing282

Appendix283

A Potential Improvement on Iterative Detection284

We also propose a potential improvement to increase the accuracy of iterative detection, shown in285

Figure 3. In the new scheme, we add an iterative decrease in the box confidence threshold and286

text relevance threshold of Grounding DINO. As only bounding boxes with scores exceeding both287

respective thresholds are retained, the decrease enables more potential specimens to be detected. This288

improvement is for cases when Grounding DINO reports no detection but there are still specimens289

left in the image. The iterative decrease is performed until a predefined minimum threshold is reached.290

For our detection task on tray images of beetles, Grounding DINO already performs well without the291

iterative decrease of thresholds, therefore we do not apply it to our beetle image processing pipeline.292

We leave it as an implementation suggestion for other datasets when the default detection process293

cannot detect all the target objects in the image.294

Figure 3: Improved Iterative Detection Process.

B Implementation Details for Segmentation295

B.1 Pins on Beetle Specimens296

One thing worth mentioning is that "pin" is included as an individual class in the 9-class segmentation.297

Since pinning beetles on trays is a common practice for biologists collecting beetles and thus pins are298

unavoidably included in the beetle images, including "pin" as a class allows the model to explicitly299

learn and identify this common non-biological artifact, preventing its incorrect classification as beetle300

body. By accurately segmenting the pin, it can also be conveniently excluded in further research. In301

the 5-class segmentation, the pin is not included in any class.302

B.2 Subsequent Functionalities after Segmentation303

The mask images generated by the segmentation process can be utilized for two subsequent func-304

tionalities of the pipeline. The first functionality is morphological part cropping. Based on the305

mask image, users can select one or more parts of a beetle to crop and save as a separate image306

for downstream research. The second functionality is defective specimen detection. For each mask307

image, the pipeline performs two checks. Firstly, it detects for any missing classes. The absence of a308

class indicates that the corresponding part of the beetle is missing. Secondly, it compares the area of309

each class to the average area of that class across all mask images on a per-tray basis. A significant310

difference suggests that the corresponding part of the beetle is incomplete. The information for all311

these defective specimens is recorded in a separate file for user inspection and optional removal. This312

functionality can check the integrity of a large number of beetles automatically, which is useful for313

further studies that require high-quality specimens such as deep learning tasks.314
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C Dataset Details for Segmentation315

The total number of individual beetle images derived from the detection process is 51,554, covering316

184 species. For 5-class labeling, we manually labeled 160 beetles, comprising 80 beetle species317

with two individuals selected from each species. The 180 labeled beetles utilized from SST comprise318

12 species with 15 individuals from each species. For 9-class labeling, we manually labeled 330319

beetles, of which 160 are from the same images for 5-class labeling. The remaining 170 individuals320

were selected from the 30 most distinctive species among the 184 species based on BioCLIP 2 [26]321

embeddings, with 5-6 individuals from each species. This adds more diversity to the training beetles,322

enabling the model to achieve better performance when segmenting a wider variety of beetles.323

D Per-Class IoU Results for Segmentation324

In addition to the overall mIOUs, we also report the per-class IoUs for each segmentation task, shown325

in Table 1. Our fine-tuned models perform very well in segmenting large morphological parts such326

as the "pronotum" and "elytra", while have a lower performance on more fine-grained parts such as327

"legs" and "antennas". Despite the relatively low scores, qualitative results show good segmentation328

qualities on these fine-grained parts. One thing we observed is that "tail" has the lowest IOU because329

the tail is not visible in many beetle images, so the model cannot learn good segmentation features330

for it. Therefore, if provided with more high-quality labeled data, the Mask2Former is expected to331

yield better performance.332

Table 1: Per-class IoUs for 5-class and 9-class segmentation on respective test sets.

Category 5-class IoU (%) 9-class IoU (%)
Head 83.64 83.09
Pronotum 91.85 90.99
Elytra 94.69 93.97
Legs 79.57 85.39
Antennas 65.93 70.08
Eyes – 68.43
Mouthparts – 60.08
Tail – 53.49
Pin (Artifact) – 72.13
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NeurIPS Paper Checklist333

1. Claims334

Question: Do the main claims made in the abstract and introduction accurately reflect the335

paper’s contributions and scope?336

Answer: [Yes]337

Justification: We have accurately stated our contributions and scope in the Abstract and the338

Introduction sections.339

Guidelines:340

• The answer NA means that the abstract and introduction do not include the claims341

made in the paper.342

• The abstract and/or introduction should clearly state the claims made, including the343

contributions made in the paper and important assumptions and limitations. A No or344

NA answer to this question will not be perceived well by the reviewers.345

• The claims made should match theoretical and experimental results, and reflect how346

much the results can be expected to generalize to other settings.347

• It is fine to include aspirational goals as motivation as long as it is clear that these goals348

are not attained by the paper.349

2. Limitations350

Question: Does the paper discuss the limitations of the work performed by the authors?351

Answer: [Yes]352

Justification: We have discussed the limitations of our work in the Discussion and Future353

Work section.354

Guidelines:355

• The answer NA means that the paper has no limitation while the answer No means that356

the paper has limitations, but those are not discussed in the paper.357

• The authors are encouraged to create a separate "Limitations" section in their paper.358

• The paper should point out any strong assumptions and how robust the results are to359

violations of these assumptions (e.g., independence assumptions, noiseless settings,360

model well-specification, asymptotic approximations only holding locally). The authors361

should reflect on how these assumptions might be violated in practice and what the362

implications would be.363

• The authors should reflect on the scope of the claims made, e.g., if the approach was364

only tested on a few datasets or with a few runs. In general, empirical results often365

depend on implicit assumptions, which should be articulated.366

• The authors should reflect on the factors that influence the performance of the approach.367

For example, a facial recognition algorithm may perform poorly when image resolution368

is low or images are taken in low lighting. Or a speech-to-text system might not be369

used reliably to provide closed captions for online lectures because it fails to handle370

technical jargon.371

• The authors should discuss the computational efficiency of the proposed algorithms372

and how they scale with dataset size.373

• If applicable, the authors should discuss possible limitations of their approach to374

address problems of privacy and fairness.375

• While the authors might fear that complete honesty about limitations might be used by376

reviewers as grounds for rejection, a worse outcome might be that reviewers discover377

limitations that aren’t acknowledged in the paper. The authors should use their best378

judgment and recognize that individual actions in favor of transparency play an impor-379

tant role in developing norms that preserve the integrity of the community. Reviewers380

will be specifically instructed to not penalize honesty concerning limitations.381

3. Theory assumptions and proofs382

Question: For each theoretical result, does the paper provide the full set of assumptions and383

a complete (and correct) proof?384
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Answer: [NA]385

Justification: This paper does not include theoretical results.386

Guidelines:387

• The answer NA means that the paper does not include theoretical results.388

• All the theorems, formulas, and proofs in the paper should be numbered and cross-389

referenced.390

• All assumptions should be clearly stated or referenced in the statement of any theorems.391

• The proofs can either appear in the main paper or the supplemental material, but if392

they appear in the supplemental material, the authors are encouraged to provide a short393

proof sketch to provide intuition.394

• Inversely, any informal proof provided in the core of the paper should be complemented395

by formal proofs provided in appendix or supplemental material.396

• Theorems and Lemmas that the proof relies upon should be properly referenced.397

4. Experimental result reproducibility398

Question: Does the paper fully disclose all the information needed to reproduce the main ex-399

perimental results of the paper to the extent that it affects the main claims and/or conclusions400

of the paper (regardless of whether the code and data are provided or not)?401

Answer: [Yes]402

Justification: We have disclosed our implementation details and experimental settings in the403

Beetle Image Processing Pipeline and the Experiments sections, as well as in the Appendix.404

Guidelines:405

• The answer NA means that the paper does not include experiments.406

• If the paper includes experiments, a No answer to this question will not be perceived407

well by the reviewers: Making the paper reproducible is important, regardless of408

whether the code and data are provided or not.409

• If the contribution is a dataset and/or model, the authors should describe the steps taken410

to make their results reproducible or verifiable.411

• Depending on the contribution, reproducibility can be accomplished in various ways.412

For example, if the contribution is a novel architecture, describing the architecture fully413

might suffice, or if the contribution is a specific model and empirical evaluation, it may414

be necessary to either make it possible for others to replicate the model with the same415

dataset, or provide access to the model. In general. releasing code and data is often416

one good way to accomplish this, but reproducibility can also be provided via detailed417

instructions for how to replicate the results, access to a hosted model (e.g., in the case418

of a large language model), releasing of a model checkpoint, or other means that are419

appropriate to the research performed.420

• While NeurIPS does not require releasing code, the conference does require all submis-421

sions to provide some reasonable avenue for reproducibility, which may depend on the422

nature of the contribution. For example423

(a) If the contribution is primarily a new algorithm, the paper should make it clear how424

to reproduce that algorithm.425

(b) If the contribution is primarily a new model architecture, the paper should describe426

the architecture clearly and fully.427

(c) If the contribution is a new model (e.g., a large language model), then there should428

either be a way to access this model for reproducing the results or a way to reproduce429

the model (e.g., with an open-source dataset or instructions for how to construct430

the dataset).431

(d) We recognize that reproducibility may be tricky in some cases, in which case432

authors are welcome to describe the particular way they provide for reproducibility.433

In the case of closed-source models, it may be that access to the model is limited in434

some way (e.g., to registered users), but it should be possible for other researchers435

to have some path to reproducing or verifying the results.436

5. Open access to data and code437
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Question: Does the paper provide open access to the data and code, with sufficient instruc-438

tions to faithfully reproduce the main experimental results, as described in supplemental439

material?440

Answer: [Yes]441

Justification: We have provided the code and the labeled dataset with instructions in the442

anonymized GitHub repository linked in the Beetle Image Processing Pipeline section.443

Guidelines:444

• The answer NA means that paper does not include experiments requiring code.445

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/446

public/guides/CodeSubmissionPolicy) for more details.447

• While we encourage the release of code and data, we understand that this might not be448

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not449

including code, unless this is central to the contribution (e.g., for a new open-source450

benchmark).451

• The instructions should contain the exact command and environment needed to run to452

reproduce the results. See the NeurIPS code and data submission guidelines (https:453

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.454

• The authors should provide instructions on data access and preparation, including how455

to access the raw data, preprocessed data, intermediate data, and generated data, etc.456

• The authors should provide scripts to reproduce all experimental results for the new457

proposed method and baselines. If only a subset of experiments are reproducible, they458

should state which ones are omitted from the script and why.459

• At submission time, to preserve anonymity, the authors should release anonymized460

versions (if applicable).461

• Providing as much information as possible in supplemental material (appended to the462

paper) is recommended, but including URLs to data and code is permitted.463

6. Experimental setting/details464

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-465

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the466

results?467

Answer: [Yes]468

Justification: We have specified all the training and test details in the Experiments section469

and the Appendix.470

Guidelines:471

• The answer NA means that the paper does not include experiments.472

• The experimental setting should be presented in the core of the paper to a level of detail473

that is necessary to appreciate the results and make sense of them.474

• The full details can be provided either with the code, in appendix, or as supplemental475

material.476

7. Experiment statistical significance477

Question: Does the paper report error bars suitably and correctly defined or other appropriate478

information about the statistical significance of the experiments?479

Answer: [No]480

Justification: For our experiments on detection over 1,506 trays and segmentation over the481

test sets, the tray-level accuracy and the mIOU are always the same.482

Guidelines:483

• The answer NA means that the paper does not include experiments.484

• The authors should answer "Yes" if the results are accompanied by error bars, confi-485

dence intervals, or statistical significance tests, at least for the experiments that support486

the main claims of the paper.487
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• The factors of variability that the error bars are capturing should be clearly stated (for488

example, train/test split, initialization, random drawing of some parameter, or overall489

run with given experimental conditions).490

• The method for calculating the error bars should be explained (closed form formula,491

call to a library function, bootstrap, etc.)492

• The assumptions made should be given (e.g., Normally distributed errors).493

• It should be clear whether the error bar is the standard deviation or the standard error494

of the mean.495

• It is OK to report 1-sigma error bars, but one should state it. The authors should496

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis497

of Normality of errors is not verified.498

• For asymmetric distributions, the authors should be careful not to show in tables or499

figures symmetric error bars that would yield results that are out of range (e.g. negative500

error rates).501

• If error bars are reported in tables or plots, The authors should explain in the text how502

they were calculated and reference the corresponding figures or tables in the text.503

8. Experiments compute resources504

Question: For each experiment, does the paper provide sufficient information on the com-505

puter resources (type of compute workers, memory, time of execution) needed to reproduce506

the experiments?507

Answer: [Yes]508

Justification: We have provided information on the computer resources in the Experiments509

section.510

Guidelines:511

• The answer NA means that the paper does not include experiments.512

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,513

or cloud provider, including relevant memory and storage.514

• The paper should provide the amount of compute required for each of the individual515

experimental runs as well as estimate the total compute.516

• The paper should disclose whether the full research project required more compute517

than the experiments reported in the paper (e.g., preliminary or failed experiments that518

didn’t make it into the paper).519

9. Code of ethics520

Question: Does the research conducted in the paper conform, in every respect, with the521

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?522

Answer: [Yes]523

Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.524

Guidelines:525

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.526

• If the authors answer No, they should explain the special circumstances that require a527

deviation from the Code of Ethics.528

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-529

eration due to laws or regulations in their jurisdiction).530

10. Broader impacts531

Question: Does the paper discuss both potential positive societal impacts and negative532

societal impacts of the work performed?533

Answer: [Yes]534

Justification: We have discussed potential positive societal impacts in the Introduction and535

the Discussion and Future Work sections, and this work does not have negative societal536

impacts.537

Guidelines:538
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• The answer NA means that there is no societal impact of the work performed.539

• If the authors answer NA or No, they should explain why their work has no societal540

impact or why the paper does not address societal impact.541

• Examples of negative societal impacts include potential malicious or unintended uses542

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations543

(e.g., deployment of technologies that could make decisions that unfairly impact specific544

groups), privacy considerations, and security considerations.545

• The conference expects that many papers will be foundational research and not tied546

to particular applications, let alone deployments. However, if there is a direct path to547

any negative applications, the authors should point it out. For example, it is legitimate548

to point out that an improvement in the quality of generative models could be used to549

generate deepfakes for disinformation. On the other hand, it is not needed to point out550

that a generic algorithm for optimizing neural networks could enable people to train551

models that generate Deepfakes faster.552

• The authors should consider possible harms that could arise when the technology is553

being used as intended and functioning correctly, harms that could arise when the554

technology is being used as intended but gives incorrect results, and harms following555

from (intentional or unintentional) misuse of the technology.556

• If there are negative societal impacts, the authors could also discuss possible mitigation557

strategies (e.g., gated release of models, providing defenses in addition to attacks,558

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from559

feedback over time, improving the efficiency and accessibility of ML).560

11. Safeguards561

Question: Does the paper describe safeguards that have been put in place for responsible562

release of data or models that have a high risk for misuse (e.g., pretrained language models,563

image generators, or scraped datasets)?564

Answer: [NA]565

Justification: This paper poses no such risks.566

Guidelines:567

• The answer NA means that the paper poses no such risks.568

• Released models that have a high risk for misuse or dual-use should be released with569

necessary safeguards to allow for controlled use of the model, for example by requiring570

that users adhere to usage guidelines or restrictions to access the model or implementing571

safety filters.572

• Datasets that have been scraped from the Internet could pose safety risks. The authors573

should describe how they avoided releasing unsafe images.574

• We recognize that providing effective safeguards is challenging, and many papers do575

not require this, but we encourage authors to take this into account and make a best576

faith effort.577

12. Licenses for existing assets578

Question: Are the creators or original owners of assets (e.g., code, data, models), used in579

the paper, properly credited and are the license and terms of use explicitly mentioned and580

properly respected?581

Answer: [Yes]582

Justification: We have cited all the models and datasets used in this paper.583

Guidelines:584

• The answer NA means that the paper does not use existing assets.585

• The authors should cite the original paper that produced the code package or dataset.586

• The authors should state which version of the asset is used and, if possible, include a587

URL.588

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.589

• For scraped data from a particular source (e.g., website), the copyright and terms of590

service of that source should be provided.591
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• If assets are released, the license, copyright information, and terms of use in the592

package should be provided. For popular datasets, paperswithcode.com/datasets593

has curated licenses for some datasets. Their licensing guide can help determine the594

license of a dataset.595

• For existing datasets that are re-packaged, both the original license and the license of596

the derived asset (if it has changed) should be provided.597

• If this information is not available online, the authors are encouraged to reach out to598

the asset’s creators.599

13. New assets600

Question: Are new assets introduced in the paper well documented and is the documentation601

provided alongside the assets?602

Answer: [Yes]603

Justification: We have provided our labeled dataset along with the documentation in the604

anonymized GitHub repository linked in the Beetle Image Processing Pipeline section.605

Guidelines:606

• The answer NA means that the paper does not release new assets.607

• Researchers should communicate the details of the dataset/code/model as part of their608

submissions via structured templates. This includes details about training, license,609

limitations, etc.610

• The paper should discuss whether and how consent was obtained from people whose611

asset is used.612

• At submission time, remember to anonymize your assets (if applicable). You can either613

create an anonymized URL or include an anonymized zip file.614

14. Crowdsourcing and research with human subjects615

Question: For crowdsourcing experiments and research with human subjects, does the paper616

include the full text of instructions given to participants and screenshots, if applicable, as617

well as details about compensation (if any)?618

Answer: [NA]619

Justification: This paper does not involve crowdsourcing nor research with human subjects.620

Guidelines:621

• The answer NA means that the paper does not involve crowdsourcing nor research with622

human subjects.623

• Including this information in the supplemental material is fine, but if the main contribu-624

tion of the paper involves human subjects, then as much detail as possible should be625

included in the main paper.626

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,627

or other labor should be paid at least the minimum wage in the country of the data628

collector.629

15. Institutional review board (IRB) approvals or equivalent for research with human630

subjects631

Question: Does the paper describe potential risks incurred by study participants, whether632

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)633

approvals (or an equivalent approval/review based on the requirements of your country or634

institution) were obtained?635

Answer: [NA]636

Justification: This paper does not involve crowdsourcing nor research with human subjects.637

Guidelines:638

• The answer NA means that the paper does not involve crowdsourcing nor research with639

human subjects.640

• Depending on the country in which research is conducted, IRB approval (or equivalent)641

may be required for any human subjects research. If you obtained IRB approval, you642

should clearly state this in the paper.643
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• We recognize that the procedures for this may vary significantly between institutions644

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the645

guidelines for their institution.646

• For initial submissions, do not include any information that would break anonymity (if647

applicable), such as the institution conducting the review.648

16. Declaration of LLM usage649

Question: Does the paper describe the usage of LLMs if it is an important, original, or650

non-standard component of the core methods in this research? Note that if the LLM is used651

only for writing, editing, or formatting purposes and does not impact the core methodology,652

scientific rigorousness, or originality of the research, declaration is not required.653

Answer: [NA]654

Justification: The core method development in this research does not involve LLMs.655

Guidelines:656

• The answer NA means that the core method development in this research does not657

involve LLMs as any important, original, or non-standard components.658

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)659

for what should or should not be described.660

16

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Beetle Image Processing Pipeline
	Iterative Beetle Detection
	Beetle Image Cropping
	Fine-grained Beetle Segmentation

	Experiments
	Experimental Setup
	Beetle Detection
	Beetle Segmentation

	Results

	Discussion and Future Work
	Potential Improvement on Iterative Detection
	Implementation Details for Segmentation
	Pins on Beetle Specimens
	Subsequent Functionalities after Segmentation

	Dataset Details for Segmentation
	Per-Class IoU Results for Segmentation

