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ABSTRACT

Bilevel optimization recently has attracted increased interest in machine learn-
ing due to its many applications such as hyper-parameter optimization and meta
learning. Although many bilevel optimization methods recently have been pro-
posed, these methods do not consider using adaptive learning rates. It is well
known that adaptive learning rates can accelerate many optimization algorithms
including (stochastic) gradient-based algorithms. To fill this gap, in the paper, we
propose a novel fast adaptive bilevel framework for solving bilevel optimization
problems that the outer problem is possibly nonconvex and the inner problem is
strongly convex. Our framework uses unified adaptive matrices including many
types of adaptive learning rates, and can flexibly use the momentum and vari-
ance reduced techniques. In particular, we provide a useful convergence analysis
framework for the bilevel optimization. Specifically, we propose a fast single-
loop adaptive bilevel optimization (BiAdam) algorithm based on the basic mo-
mentum technique, which achieves a sample complexity of Õ(ϵ−4) for finding
an ϵ-stationary point. Meanwhile, we propose an accelerated version of BiAdam
algorithm (VR-BiAdam) by using variance reduced technique, which reaches the
best known sample complexity of Õ(ϵ−3) without relying on large batch-size.
To the best of our knowledge, we first study the adaptive bilevel optimization
methods with adaptive learning rates. Some experimental results on data hyper-
cleaning and hyper-representation learning tasks demonstrate the efficiency of the
proposed algorithms.

1 INTRODUCTION

Bilevel optimization is known as a class of popular hierarchical optimization, which has been applied
to a wide range of machine learning problems such as hyperparameter optimization Shaban et al.
(2019), meta-learning Ji et al. (2021); Liu et al. (2021a) and policy optimization Hong et al. (2020).
In the paper, we consider solving the following stochastic bilevel optimization problem, defined as

min
x∈X

F (x) := Eξ∼D

[
f
(
x, y∗(x); ξ

)]
(Outer) (1)

s.t. y∗(x) ∈ argmin
y∈Y

Eζ∼M

[
g(x, y; ζ)

]
, (Inner) (2)

where F (x) = f(x, y∗(x)) = Eξ

[
f(x, y∗(x); ξ)

]
is a differentiable and possibly nonconvex func-

tion, and g(x, y) = Eζ

[
g(x, y; ζ)

]
is a differentiable and strongly convex function in variable y, and

ξ and ζ are random variables follow unknown distributions D and M, respectively. Here X ⊆ Rd

and Y ⊆ Rp are convex closed sets. Problem (1) involves many machine learning problems with a
hierarchical structure, which include hyper-parameter optimization Franceschi et al. (2018), meta-
learning Franceschi et al. (2018), policy optimization Hong et al. (2020) and neural network archi-
tecture search Liu et al. (2018).

Since bilevel optimization has been widely applied in machine learning, some works recently have
been begun to study the bilevel optimization. For example, Ghadimi & Wang (2018); Ji et al. (2021)
proposed a class of double-loop methods to solve the problem (1). However, to obtain an accurate
estimate, the BSA in Ghadimi & Wang (2018) needs to solve the inner problem to a high accu-
racy, and the stocBiO in Ji et al. (2021) requires large batch-sizes in solving the inner problem.
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Table 1: Sample complexity of the representative bilevel optimization methods for finding an ϵ-
stationary point of the bilevel problem (1), i.e., E∥∇F (x)∥ ≤ ϵ or its equivalent variants. BSize
denotes mini-batch size; ALR denotes adaptive learning rate. C(x, y) denotes the constraint sets in
x and y, where Y denotes the fact that there exists a convex constraint on variable, otherwise is N.
DD denotes dimension dependence in the gradient estimators, and p denotes the dimension of vari-
able y. 1 denotes Lipschitz continuous of ∇xf(x, y; ξ), ∇yf(x, y; ξ), ∇yg(x, y; ζ), ∇2

xyg(x, y; ζ)

and ∇2
yyg(x, y; ζ) for all ξ, ζ; 2 denotes Lipschitz continuous of ∇xf(x, y), ∇yf(x, y), ∇yg(x, y),

∇2
xyg(x, y) and ∇2

yyg(x, y); 3 denotes bounded stochastic partial derivatives ∇yf(x, y; ξ) and
∇2

xyg(x, y; ζ); 4 denotes bounded stochastic partial derivatives ∇xf(x, y; ξ), and ∇2
yyg(x, y; ζ);

5 denotes the bounded true partial derivatives ∇yf(x, y) and ∇2
xyg(x, y); 6 denotes Lipschitz con-

tinuous of function f(x, y; ξ); 7 denotes g(x, y; ζ) is Lg-smooth and µ-strongly convex function
w.r.t. y for all ζ; 8 denotes g(x, y) is Lg-smooth and µ-strongly convex function w.r.t. y.

Algorithm Reference Complexity BSize Loop C(x, y) DD ALR Conditions
BSA Ghadimi & Wang (2018) O(ϵ−6) Õ(1) Double Y, N p2 2, 5, 7

TTSA Hong et al. (2020) Õ(ϵ−5) Õ(1) Single Y, N p2 1, 3, 7
stocBiO Ji et al. (2021) O(ϵ−4) Õ(ϵ−2) Double N, N p2 1, 6, 7
STABLE Chen et al. (2022) Õ(ϵ−4) O(1) Single N, N p3 1, 3, 4, 8

SMB Guo et al. (2021b) Õ(ϵ−4) Õ(1) Single N, Y p2 2, 5, 7
SUSTAIN Khanduri et al. (2021) Õ(ϵ−3) Õ(1) Single N, N p2 1, 3, 7

SVRB Guo & Yang (2021) Õ(ϵ−3) O(1) Single N, N p3 1, 5, 8
MRBO Yang et al. (2021) Õ(ϵ−3) Õ(1) Single N, N p2 1, 6, 7
VRBO Yang et al. (2021) Õ(ϵ−3) Õ(ϵ−2) Double N, N p2 1, 6, 7

BiAdam Ours Õ(ϵ−4) Õ(1) Single Y/N, Y/N p2
√

2, 5, 7
VR-BiAdam Ours Õ(ϵ−3) Õ(1) Single Y/N, Y/N p2

√
1, 5, 7

Hong et al. (2020) proposed a class of single-loop methods to solve the bilevel problems. Subse-
quently, Khanduri et al. (2021); Guo & Yang (2021); Yang et al. (2021); Chen et al. (2022) presented
some accelerated single-loop methods by using the momentum-based variance reduced technique of
STORM Cutkosky & Orabona (2019). More recently, Dagréou et al. (2022) developed a novel
framework for bilevel optimization based on the linear system, and proposed a fast SABA algorithm
for finite-sum bilevel problems based on the varaince reduced technique of SAGA (Defazio et al.,
2014). Although these methods can effectively solve the bilevel problems, they do not consider us-
ing the adaptive learning rates and only consider the bilevel problems under unconstrained setting.
Since using generally different learning rates for the inner and outer problems to ensure the conver-
gence of bilevel optimization problems, we will consider using different adaptive learning rates for
the inner and outer problems with convergence guarantee. Clearly, this can not follow the exiting
adaptive methods for single-level problems. Thus, there exists a natural question:

How to design the effective optimization methods with adaptive learning rates for the
bilevel problems ?

In the paper, we provide an affirmative answer to this question and propose a class of fast single-
loop adaptive bilevel optimization methods based on unified adaptive matrices, which including
many types of adaptive learning rates. Moreover, our framework can flexibly use the momentum
and variance reduced techniques. Our main contributions are summarized as follows:

1) We propose a fast single-loop adaptive bilevel optimization algorithm (BiAdam) based on
the basic momentum technique, which achieves a sample complexity of Õ(ϵ−4) for finding
an ϵ-stationary point.

2) Meanwhile, we propose a single-loop accelerated version of BiAdam algorithm (VR-
BiAdam) by using the momentum-based variance reduced technique, which reaches the
best known sample complexity of Õ(ϵ−3).

3) Moreover, we provide a useful convergence analysis framework for both the constrained
and unconstrained bilevel programming under some mild conditions (Please see Table 1).

4) The experimental results on hyper-parameter learning demonstrate the efficiency of the
proposed algorithms.
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2 PRELIMINARIES

2.1 NOTATIONS

U{1, 2, · · · ,K} denotes a uniform distribution over a discrete set {1, 2, · · · ,K}. ∥ · ∥ denotes
the ℓ2 norm for vectors and spectral norm for matrices. ⟨x, y⟩ denotes the inner product of two
vectors x and y. For vectors x and y, xr (r > 0) denotes the element-wise power operation, x/y
denotes the element-wise division and max(x, y) denotes the element-wise maximum. Id denotes a
d-dimensional identity matrix. A ≻ 0 denotes that the matrix A is positive definite. Given function
f(x, y), f(x, ·) denotes function w.r.t. the second variable with fixing x, and f(·, y) denotes function
w.r.t. the first variable with fixing y. a = O(b) denotes that a ≤ Cb for some constant C > 0. The
notation Õ(·) hides logarithmic terms. Given a convex closed set X , we define a projection operation
to X as PX (z) = argminx∈X

1
2∥x− z∥2.

2.2 SOME MILD ASSUMPTIONS

In this subsection, we give some mild assumptions on the problem (1).
Assumption 1. For any x and ζ, g(x, y; ζ) is Lg-smooth and µ-strongly convex function, i.e.,
LgIp ⪰ ∇2

yyg(x, y; ζ) ⪰ µIp.

Assumption 2. For functions f(x, y) and g(x, y) for all x ∈ X and y ∈ Y , we assume the following
conditions hold: ∇xf(x, y) and ∇yf(x, y) are Lf -Lipschitz continuous, ∇yg(x, y) is Lg-Lipschitz
continuous, ∇2

xyg(x, y) is Lgxy-Lipschitz continuous, ∇2
yyg(x, y) is Lgyy-Lipschitz continuous. For

example, for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y , we have

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ Lf∥x1 − x2∥, ∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ Lf∥y1 − y2∥.

Assumption 3. For functions f(x, y; ξ) and g(x, y; ζ) for all x ∈ X , y ∈ Y , ξ and ζ, we as-
sume the following conditions hold: ∇xf(x, y; ξ) and ∇yf(x, y; ξ) are Lf -Lipschitz continuous,
∇yg(x, y; ζ) is Lg-Lipschitz continuous, ∇2

xyg(x, y; ζ) is Lgxy-Lipschitz continuous, ∇2
yyg(x, y; ζ)

is Lgyy-Lipschitz continuous. For example, for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y , we have

∥∇xf(x1, y; ξ)−∇xf(x2, y; ξ)∥ ≤ Lf∥x1 − x2∥, ∥∇xf(x, y1; ξ)−∇xf(x, y2; ξ)∥ ≤ Lf∥y1 − y2∥.

Assumption 4. The partial derivatives ∇yf(x, y) and ∇2
xyg(x, y) are bounded, i.e.,

∥∇yf(x, y)∥2 ≤ C2
fy and ∥∇2

xyg(x, y)∥2 ≤ C2
gxy.

Assumption 5. Stochastic functions f(x, y; ξ) and g(x, y; ζ) have unbiased stochastic partial
derivatives with bounded variance, e.g.,

E[∇xf(x, y; ξ)] = ∇xf(x, y), E∥∇xf(x, y; ξ)−∇xf(x, y)∥2 ≤ σ2.

The same assumptions hold for ∇yf(x, y; ξ), ∇yg(x, y; ζ), ∇2
xyg(x, y; ζ) and ∇2

yyg(x, y; ζ).

Assumptions 1-5 are commonly used in stochastic bilevel optimization problems Ghadimi & Wang
(2018); Hong et al. (2020); Ji et al. (2021); Chen et al. (2022); Khanduri et al. (2021). Note
that Assumption 3 is clearly stricter than Assumption 2. For example, given Assumption 3, we
have ∥∇xf(x1, y) − ∇xf(x2, y)∥ = ∥E[∇xf(x1, y; ξ) − ∇xf(x2, y; ξ)]∥ ≤ E∥∇xf(x1, y; ξ) −
∇xf(x2, y; ξ)∥ ≤ Lf∥x1 − x2∥∥ for any x, y, ξ. At the same time, based on Assumptions 4-5,
we also have ∥∇yf(x, y; ξ)∥2 = ∥∇yf(x, y; ξ) − ∇yf(x, y) − ∇yf(x, y)∥2 ≤ 2∥∇yf(x, y; ξ) −
∇yf(x, y)∥2+2∥∇yf(x, y)∥2 ≤ 2σ2+2C2

fy and ∥∇2
xyg(x, y; ζ)∥2 ≤ 2σ2+2C2

gxy. Thus we argue
that under Assumption 5, the bounded ∇yf(x, y) and ∇2

xyg(x, y) are not milder than the bounded
∇yf(x, y; ξ) and ∇2

xyg(x, y; ζ) for all ξ and ζ.

2.3 BILEVEL OPTIMIZATION

In this subsection, we review the basic first-order method for solving the problem (1). Naturally, we
give the following iteration to update the variables x, y: at the t-th step

yt+1 = PY

(
yt − λ∇yg(xt, yt)

)
, xt+1 = PX

(
xt − γ∇xf(xt, y

∗(xt))
)
,
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where λ > 0 and γ > 0 denote the step sizes. Clearly, if there does not exist a closed form solution
of the inner problem in the problem (1), i.e., yt+1 ̸= y∗(xt), we can not easily obtain the gradient
∇F (xt) = ∇f(xt, y

∗(xt)). Thus, one of key points in solving the problem (1) is to estimate the
gradient ∇F (xt).
Lemma 1. (Lemma 2.1 in Ghadimi & Wang (2018)) Under the above Assumption 2, we have, for
any x ∈ X

∇F (x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

[
∇2

yyg(x, y
∗(x))

]−1∇yf(x, y
∗(x)).

From the above Lemma 1, it is natural to use the following form to estimate ∇F (x), defined as,

∇̄f(x, y) = ∇xf(x, y)−∇2
xyg(x, y)

(
∇2

yyg(x, y)
)−1∇yf(x, y), ∀x ∈ X , y ∈ Y

Note that although the inner problem of the problem (1) is a constrained optimization, we assume
that the optimal condition of the inner problem still is ∇yg(x, y

∗(x)) = 0 and y∗(x) ∈ Y .
Lemma 2. (Lemma 2.2 in Ghadimi & Wang (2018)) Under the above Assumptions (1, 2, 4), for all
x, x1, x2 ∈ X and y ∈ Y , we have

∥∇̄f(x, y)−∇F (x)∥ ≤ Ly∥y∗(x)− y∥, ∥y∗(x1)− y∗(x2)∥ ≤ κ∥x1 − x2∥,
∥∇F (x1)−∇F (x2)∥ ≤ L∥x1 − x2∥,

where Ly = Lf +LfCgxy/µ+Cfy

(
Lgxy/µ+LgyyCgxy/µ

2
)
, κ = Cgxy/µ, and L = Lf +(Lf +

Ly)Cgxy/µ+ Cfy

(
Lgxy/µ+ LgyyCgxy/µ

2
)
.

For the stochastic bilevel optimization, Yang et al. (2021); Hong et al. (2020) provided a stochastic
estimator ∇F (x) as follows:

∇̂f(x, y;S) = ∇xf(x, y; ξ)−∇2
xyg(x, y; ζ)ϑ

Q−1∑
q=−1

Q∏
i=Q−q

(
Ip − ϑ∇2

yyg(x, y; ζ
i)
)
∇yf(x, y; ξ),

(3)

where ϑ > 0 and Q ≥ 1. Here S =
{
ξ, ζ, ζ1, · · · ζQ

}
, where ξ is drawn from distribution D, and

{ζ, ζ1, · · · ζQ} are drawn from distribution M.

3 ADAPTIVE BILEVEL OPTIMIZATION METHODS

In this section, we propose a class of fast single-loop adaptive bilevel optimization methods to solve
the problem equation 1. Specifically, our methods adopt the universal adaptive learning rates as in
Huang et al. (2021). Moreover, our methods can be flexibly incorporate the momentum and variance
reduced techniques.

3.1 BIADAM ALGORITHM

In this subsection, we propose a fast single-loop adaptive bilevel optimization method (BiAdam)
based on the basic momentum technique. Algorithm 1 shows the algorithmic framework of our
BiAdam algorithm.

At the line 4 of Algorithm 1, we generate the adaptive matrices At and Bt for updating variables x
and y, respectively. Specifically, we use the general adaptive matrix At ⪰ ρId (ρ > 0) for variable
x, and the global adaptive matrix Bt = btIp (bt > 0). For example, we can generate the matrix At

as the Adam Kingma & Ba (2014), and generate the matrix Bt as a novel version of AdaGrad-Norm
Ward et al. (2019), defined as

w̃t = αw̃t−1 + (1− α)∇xf(xt, yt; ξt)
2, w̃0 = 0, At = diag

(√
w̃t + ρ

)
, t ≥ 1 (4)

bt = βbt−1 + (1− β)∥∇yg(xt, yt; ζt)∥, b0 > 0, Bt = (bt + ε)Ip, t ≥ 1, (5)

where α, β ∈ (0, 1) and ρ > 0, ε > 0.

At the lines 5-6 of Algorithm 1, we use the generalized projection gradient iteration with Bregman
distance Censor & Zenios (1992); Huang et al. (2021) to update the variables x and y, respectively.
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Algorithm 1 BiAdam Algorithm
1: Input: T,K ∈ N, parameters {γ, λ, ηt, αt, βt} and initial input x1 ∈ X and y1 ∈ Y;
2: initialize: Draw K + 2 independent samples ξ̄1 = {ξ1, ζ01 , ζ11 , · · · , ζK−1

1 } and ζ1, and then
compute v1 = ∇yg(x1, y1; ζ1), and w1 = ∇̄f(x1, y1; ξ̄1) generated from (6);

3: for t = 1, 2, . . . , T do
4: Generate adaptive matrices At ∈ Rd×d, Bt ∈ Rp×p;
5: x̃t+1 = argminx∈X

{
⟨wt, x⟩+ 1

2γ (x− xt)
TAt(x− xt)

}
, and xt+1 = xt + ηt(x̃t+1 − xt);

6: ỹt+1 = argminy∈Y
{
⟨vt, y⟩+ 1

2λ (y − yt)
TBt(y − yt)

}
, and yt+1 = yt + ηt(ỹt+1 − yt);

7: Draw K + 2 independent samples ξ̄t+1 = {ξt+1, ζ
0
t+1, · · · , ζK−1

t+1 } and ζt+1:
8: vt+1 = αt+1∇yg(xt+1, yt+1; ζt+1) + (1− αt+1)vt;
9: wt+1 = βt+1∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)wt;

10: end for
11: Output: Chosen uniformly random from {xt, yt}Tt=1.

When X = Rd and Y = Rp, i.e., unconstrained optimization problem (1), we have xt+1 = xt −
γηtA

−1
t wt and yt+1 = yt − ληtB

−1
t vt.

At the line 7 of Algorithm 1, we draw K + 1 independent samples ξ̄ = {ξ, ζ0, ζ1, · · · , ζK−1} from
distributions D and M, then we define a stochastic gradient estimator as in Khanduri et al. (2021):

∇̄f(x, y, ξ̄) = ∇xf(x, y; ξ)−∇2
xyg(x, y; ζ

0)

[
K

Lg

k∏
i=1

(
Ip −

1

Lg
∇2

yyg(x, y; ζ
i)
)]
∇yf(x, y; ξ),

(6)

where K ≥ 1 and k ∼ U{0, 1, · · · ,K − 1} is a uniform random variable independent on ξ̄. In fact,
the estimator (6) is a specific case of the above estimator (3). In practice, thus, we can use a tuning
parameter ϑ ∈ (0, 1

Lg
] instead of 1

Lg
in the estimator (6) as in Yang et al. (2021). Here we use the

term K
Lg

∏k
i=1

(
Ip− 1

Lg
∇2

yyg(x, y; ζ
i)
)

to approximate the Hessian inverse, i.e.,
(
∇2

yyg(x, y; ζ)
)−1

.
Clearly, the above ∇̄f(x, y, ξ̄) is a biased estimator in estimating ∇̄f(x, y), i.e. Eξ̄

[
∇̄f(x, y; ξ̄)

]
̸=

∇̄f(x, y). In the following, we give Lemma 3, which shows that the bias R(x, y) = ∇̄f(x, y) −
Eξ̄

[
∇̄f(x, y; ξ̄)

]
in the gradient estimator (6) decays exponentially fast with number K.

Lemma 3. (Lemma 2.1 in Khanduri et al. (2021) and Lemma 11 in Hong et al. (2020)) Under the
about Assumptions (1, 4), for any K ≥ 1, the gradient estimator in equation 6 satisfies

∥R(x, y)∥ ≤ CgxyCfy

µ

(
1− µ

Lg

)K
, (7)

where R(x, y) = ∇̄f(x, y)− Eξ̄

[
∇̄f(x, y; ξ̄)

]
.

From Lemma 3, choose K =
Lg

µ log(CgxyCfyT/µ) in Algorithm 1, we have ∥R(x, y)∥ ≤ 1
T for all

t ≥ 1. Thus, this result guarantees convergence of our algorithms only requiring a small mini-batch
samples. For notational simplicity, let Rt = R(xt, yt) for all t ≥ 1.
Lemma 4. (Lemma 3.1 in Khanduri et al. (2021)) Under the above Assumptions (1, 3, 4), stochastic
gradient estimate ∇̄f(x, y; ξ̄) is Lipschitz continuous, such that for x, x1, x2 ∈ X and y, y1, y2 ∈ Y ,

Eξ̄∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2 ≤ L2
K∥x1 − x2∥2,

Eξ̄∥∇̄f(x, y1; ξ̄)− ∇̄f(x, y2; ξ̄)∥2 ≤ L2
K∥y1 − y2∥2,

where L2
K = 2L2

f + 6C2
gxyL

2
f

K
2µLg−µ2 + 6C2

fyL
2
gxy

K
2µLg−µ2 + 6C2

gxyL
2
f

K3L2
gyy

(Lg−µ)2(2µLg−µ2) .

3.2 VR-BIADAM ALGORITHM

In this subsection, we propose an accelerated version of BiAdam method (VR-BiAdam) by using
the momentum-based variance reduced technique. Algorithm 2 demonstrates the algorithmic frame-
work of our VR-BiAdam algorithm.
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Algorithm 2 VR-BiAdam Algorithm
1: Input: T,K ∈ N, parameters {γ, λ, ηt, αt, βt} and initial input x1 ∈ X and y1 ∈ Y;
2: initialize: Draw K + 2 independent samples ξ̄1 = {ξ1, ζ01 , ζ11 , · · · , ζK−1

1 } and ζ1, and then
compute v1 = ∇yg(x1, y1; ζ1), and w1 = ∇̄f(x1, y1; ξ̄1) generated from (6);

3: for t = 1, 2, . . . , T do
4: Generate adaptive matrices At ∈ Rd×d, Bt ∈ Rp×p;
5: x̃t+1 = argminx∈X

{
⟨wt, x⟩+ 1

2γ (x− xt)
TAt(x− xt)

}
, and xt+1 = xt + ηt(x̃t+1 − xt);

6: ỹt+1 = argminy∈Y
{
⟨vt, y⟩+ 1

2λ (y − yt)
TBt(y − yt)

}
, and yt+1 = yt + ηt(ỹt+1 − yt);

7: Draw K + 2 independent samples ξ̄t+1 = {ξt+1, ζ
0
t+1, · · · , ζK−1

t+1 } and ζt+1;
8: vt+1 = ∇yg(xt+1, yt+1; ζt+1) + (1− αt+1)

[
vt −∇yg(xt, yt; ζt+1)

]
;

9: wt+1 = ∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)
[
wt − ∇̄f(xt, yt; ξ̄t+1)

]
;

10: end for
11: Output: Chosen uniformly random from {xt, yt}Tt=1.

At the lines 8-9 of Algorithm 2, we use the momentum-based variance reduced technique to esti-
mate the stochastic partial derivatives vt and wt. For example, the estimator of partial derivative
∇̄f(xt+1, yt+1) is defined as

wt+1 = ∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)
[
wt − ∇̄f(xt, yt; ξ̄t+1)

]
,

= βt+1∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)
[
wt + ∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt, yt; ξ̄t+1)

]
.

Compared with the estimator wt+1 in Algorithm 1, wt+1 in Algorithm 2 adds the term
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt, yt; ξ̄t+1) to control the variances of estimator.

4 THEORETICAL ANALYSIS

In this section, we study the convergence properties of our algorithms (BiAdam and VR-BiAdam)
under some mild conditions. All proofs are provided in the Appendix A.

4.1 ADDITIONAL MILD ASSUMPTIONS

Assumption 6. The estimated stochastic partial derivative ∇̄f(x, y; ξ̄) satisfies

Eξ̄

[
∇̄f(x, y; ξ̄)

]
= ∇̄f(x, y) +R(x, y), Eξ̄∥∇̄f(x, y; ξ̄)− ∇̄f(x, y)−R(x, y)∥2 ≤ σ2.

The stochastic partial derivative ∇yg(x, y; ζ) satisfies

E[∇yg(x, y; ζ)] = ∇yg(x, y), E∥∇yg(x, y; ζ)−∇yg(x, y)∥2 ≤ σ2.

Assumption 7. In our algorithms, the adaptive matrices At and Bt for all t ≥ 1 satisfy At ⪰
ρId (ρ > 0) and Bt = bIp (bu ≥ b ≥ bl > 0), respectively, where ρ, bu and bl are appropriate
positive numbers.

Assumption 6 is commonly used in the stochastic bilevel optimization methods Ji et al. (2021); Yang
et al. (2021); Khanduri et al. (2021). In the paper, we consider the general adaptive learning rates
(including the coordinate-wise and global learning rates) for variable x and the global learning rate
for variable y. Assumption 7 ensures that the adaptive matrices At for all t ≥ 1 are positive definite
as in Huang et al. (2021). Assumption 7 also guarantees the global adaptive matrices Bt for all
t ≥ 1 are positive definite and bounded. In fact, Assumption 7 is mild. For example, in the problem
minx∈Rp E[f(x; ξ)], Ward et al. (2019) apply a global adaptive learning rate to the update form
xt = xt−1 − η∇f(xt−1;ξt−1)

bt
, b2t = b2t−1 + ∥∇f(xt−1; ξt−1)∥2, b0 > 0, η > 0 for all t ≥ 1, which

is equivalent to the form xt = xt−1−ηB−1
t ∇f(xt−1; ξt−1) with Bt = btIp and bt ≥ · · · ≥ b0 > 0.

Li & Orabona (2019); Cutkosky & Orabona (2019) use a global adaptive learning rate to the update
form xt+1 = xt − ηgt/bt, where gt is stochastic gradient and bt =

(
ω+

∑t
i=1 ∥∇f(xi; ξi)∥2

)α
/k,

k > 0, ω > 0 and α ∈ (0, 1), which is equivalent to xt+1 = xt − ηB−1
t gt with Bt = btIp and

bt ≥ · · · ≥ b0 = ωα

k > 0. At the same time, the problem minx∈Rp f(x) = E[f(x; ξ)] approaches
the stationary points, i.e., ∇f(x) = 0 or even ∇f(x; ξ) = 0 for all ξ. Thus, these global adaptive
learning rates are generally bounded, i.e., bu ≥ bt ≥ bl > 0 for all t ≥ 1.
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4.2 USEFUL CONVERGENCE METRIC

In the subsection, we define a useful convergence metric for our algorithms and some useful lemmas.
Lemma 5. Given gradient estimator wt is generated from Algorithms 1 or 2, for all t ≥ 1, we have

∥wt −∇F (xt)∥2 ≤ L2
0∥y∗(xt)− yt∥2 + 2∥wt − ∇̄f(xt, yt)∥2,

where L2
0 = 8

(
L2
f +

L2
gxyC

2
fy

µ2 +
L2

gyyC
2
gxyC

2
fy

µ4 +
L2

fC
2
gxy

µ2

)
.

For our Algorithms 1 and 2, based on Lemma 5, we provide a convergence metric E[Gt], defined as

Gt =
1

γ
∥x̃t+1 − xt∥+

1

ρ

(√
2∥wt − ∇̄f(xt, yt)∥+ L0∥y∗(xt)− yt∥

)
,

where the first two terms of Gt measure the convergence of the iteration solutions {xt}Tt=1, and the
last term measures the convergence of the iteration solutions {yt}Tt=1.

Let ϕt(x) =
1
2x

TAtx, we define a prox-function (a.k.a., Bregman distance) Censor & Lent (1981);
Censor & Zenios (1992); Ghadimi et al. (2016) associated with ϕt(x) as follows:

Vt(x, xt) = ϕt(x)−
[
ϕt(xt) + ⟨∇ϕt(xt), x− xt⟩

]
=

1

2
(x− xt)

TAt(x− xt). (8)

The line 5 of Algorithm 1 or 2 is equivalent to the following generalized projection problem:

x̃t+1 = min
x∈X

{
⟨wt, x⟩+

1

γ
Vt(x, xt)

}
. (9)

As in Ghadimi et al. (2016), we define a generalized projected gradient GX (xt, wt, γ) = 1
γ (xt −

x̃t+1). At the same time, we define a gradient mapping GX (xt,∇F (xt), γ) =
1
γ (xt − x+

t+1) with

x+
t+1 = argmin

x∈X

{
⟨∇F (xt), x⟩+

1

γ
Vt(x, xt)

}
. (10)

According to the Proposition 1 of Ghadimi et al. (2016), we have ||GX (xt, wt, γ) −
GX (xt,∇F (xt), γ)|| ≤ 1

ρ ||∇F (xt) − wt||. Since ||GX (xt,∇F (xt), γ)|| ≤ ||GX (xt, wt, γ)|| +
||GX (xt, wt, γ)− GX (xt,∇F (xt), γ)||, we have

||GX (xt,∇F (xt), γ)|| ≤ ||GX (xt, wt, γ)||+
1

ρ
||∇F (xt)− wt|| (11)

≤ 1

γ
∥x̃t+1 − xt∥+

1

ρ

(√
2∥wt − ∇̄f(xt, yt)∥+ L0∥y∗(xt)− yt∥

)
= Gt,

where the last inequality holds by the above Lemma 5. Thus, our new convergence measure E[Gt] is
tighter than the standard gradient mapping E||GX (xt,∇F (xt), γ)|| used in Hong et al. (2020). When
Gt → 0, we have ∥GX (xt,∇F (xt), γ)∥ → 0, where xt is a stationary point or local minimum of
the bilevel problem equation 1 Ghadimi et al. (2016); Hong et al. (2020).

4.3 CONVERGENCE ANALYSIS OF BIADAM ALGORITHM

In this subsection, we study the convergence properties of our BiAdam algorithm. The detailed
proofs are provided in the Appendix A.5.
Theorem 1. Under the above Assumptions (1, 2, 4, 6, 7), in the Algorithm 1, given X ⊂ Rd,
ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt, βt+1 = c2ηt, m ≥ max

(
k2, (c1k)

2, (c2k)
2
)
,

k > 0, 125L2
0

6µ2 ≤ c1 ≤ m1/2

k , 9
2 ≤ c2 ≤ m1/2

k , 0 < λ ≤ min
( 15blL

2
0

4L2
1µ

, bl
6Lg

)
, 0 < γ ≤

min
( √

6λµρ√
6L2

1λ
2µ2+125b2uL

2
0κ

2
, m1/2ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ), we have

1

T

T∑
t=1

E||GX (xt,∇F (xt), γ)|| ≤
1

T

T∑
t=1

E[Gt] ≤
2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
+

√
2

T
= Õ(

1

T 1/4
),

(12)

where G = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ + 2σ2

ρ2k+
2mσ2

ρ2k ln(m+T )+ 4(m+T )
9ρ2kT 2 + 8k

ρ2T and ∆0 = ∥y1−y∗(x1)∥2,

L2
1 =

12L2
gµ

2

125L2
0
+

2L2
0

3 .
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Remark 1. Without loss of generality, let k = O(1) and m = O(1), we have G = O(ln(m +

T )) = Õ(1). Thus our BiAdam algorithm has a convergence rate of Õ( 1
T 1/4 ). Let E[Gζ ] =

1
T

∑T
t=1 E[Gt] = Õ( 1

T 1/4 ) ≤ ϵ, we have T = Õ(ϵ−4). Since our BiAdam algorithm only requires
K + 2 =

Lg

µ log(CgxyCfyT/µ) + 2 = Õ(1) samples to estimate stochastic partial derivatives in
each iteration, and needs T iterations. Thus our BiAdam algorithm requires sample complexity of
(K + 2)T = Õ(ϵ−4) for finding an ϵ-stationary point of the problem (1). Note that the conver-
gence properties of our BiAdam algorithm for unconstrained bilevel optimization are provided in
the Appendix A.3.

4.4 CONVERGENCE ANALYSIS OF VR-BIADAM ALGORITHM

In this subsection, we study convergence properties of our VR-BiAdam algorithm. The detailed
proofs are provided in the Appendix A.6.
Theorem 2. Under the above Assumptions (1, 3, 4, 6, 7), in the Algorithm 2, given X ⊂ Rd,
ηt = k

(m+t)1/3
for all t ≥ 0, αt+1 = c1η

2
t , βt+1 = c2η

2
t , m ≥ max

(
2, k3, (c1k)

3, (c2k)
3
)
,

k > 0, c1 ≥ 2
3k3 +

125L2
0

6µ2 , c2 ≥ 2
3k3 + 9

2 , 0 < λ ≤ min
( 15blL

2
0

16L2
2µ

, bl
6Lg

)
, 0 < γ ≤

min
( √

6λµρ

2
√

24L2
2λ

2µ2+125b2uL
2
0κ

2
, m1/3ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ), we have

1

T

T∑
t=1

E||GX (xt,∇F (xt), γ)|| ≤
1

T

T∑
t=1

E[Gt] ≤
2
√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
+

√
2

T
= Õ(

1

T 1/3
),

(13)

where M = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ + 2m1/3σ2

ρ2k2 +
2k2(c21+c22)σ

2 ln(m+T )
ρ2 + 6k(m+T )1/3

ρ2T , ∆0 = ∥y1 −
y∗(x1)∥2 and L2

2 = L2
g + L2

K .

Remark 2. Without loss of generality, let k = O(1) and m = O(1), we have M = O(ln(m +

T )) = Õ(1). Thus our VR-BiAdam algorithm has a convergence rate of Õ( 1
T 1/3 ). Let E[Gζ ] =

1
T

∑T
t=1 E[Gt] = Õ( 1

T 1/3 ) ≤ ϵ, we have T = Õ(ϵ−3). Since our VR-BiAdam algorithm requires
K + 2 =

Lg

µ log(CgxyCfyT/µ) + 2 = Õ(1) samples to estimate stochastic partial derivatives in
each iteration, and needs T iterations. Thus our VR-BiAdam algorithm requires sample complexity
of (K + 2)T = Õ(ϵ−3) for finding an ϵ-stationary point of the problem (1). Note that the conver-
gence properties of our VR-BiAdam algorithm for unconstrained bilevel optimization are provided
in the Appendix A.3.

Figure 1: Validation Loss vs. Running Time. We test three values of ρ: 0.8, 0.6, 0.2 from left to
right. Larger value of ρ represents a more noisy setting.

5 NUMERICAL EXPERIMENTS

In this section, we perform two hyper-parameter optimization tasks to demonstrate the efficiency
of our algorithms: 1) data hyper-cleaning task over the MNIST dataset; 2) hyper-representation
learning task over the Omniglot dataset. In all experiments, we use a server with AMD EPYC 7763
64-Core CPU and 1 NVIDIA RTX A5000.

8
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5.1 DATA HYPER-CLEANING

In the hyper-cleaning task, we clean a noisy dataset through a bilevel formulation. The precise for-
mulation of the problem is included in the Appendix A.1.1. In particular, we use a training set and
a validation set, where each contains 5000 images in our experiments. A portion of the training data
are corrupted by randomly changing their labels, and we denote the portion of corrupted images
as ρ. We compare our algorithms (i.e., BiAdam and VR-BiAdam) with various baselines. See the
Appendix A.1 for a brief introduction of the baselines. For all methods, we perform grid search
over hyper-parameters and choose the best setting. The detailed experimental setup is described in
the Appendix A.1.1. The experimental results are summarized in Figure 1. As shown by the fig-
ure, our BiAdam algorithm outperforms its non-adaptive counterparts such as stocBiO, MRBO and
SUSTAIN, furthermore, our VR-BiAdam gets the best performance, where it outperforms VRBO,
which requires using large batch-sizes every a few iterations.

5.2 HYPER-REPRESENTATION LEARNING

In the hyper-representation learning task, we learn a hyper-representation of the data such that a
linear classifier can be learned quickly with a small number of data samples. The precise formulation
of the problem is included in Appendix A.1.2. We compare our algorithms (i.e., BiAdam and VR-
BiAdam) with various baselines. See Appendix A.1 for a brief introduction of the baselines. For all
methods, we perform grid search over hyper-parameters and choose the best setting. The detailed
experimental setup is described in the Appendix A.1.2. The experimental results are summarized in
Figure 2. As shown by the figure, both our BiAdam and VR-BiAdam algorithms outperform other
baselines.

Figure 2: Test Accuracy vs. Running Time. The plots corresponds to 5-way-1-shot, 5-way-5-shot,
20-way-1-shot and 20-way-5-shots from left to right.

6 CONCLUSIONS

In this paper, we proposed a class of novel adaptive bilevel optimization methods for nonconvex-
strongly-convex bilevel optimization problems. Our methods use unified adaptive matrices including
many types of adaptive learning rates, and can flexibly use the momentum and variance reduced tech-
niques. Moreover, we provided a useful convergence analysis framework for both the constrained
and unconstrained bilevel optimization. Our VR-BiAdam algorithm reaches the best known sample
complexity of Õ(ϵ−3) for finding an ϵ-stationary point.
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A APPENDIX

In this section, we provide the additional experiment results, related works and additional theoretical
results. We also provide the detailed convergence analysis.

A.1 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this subsection, we introduce more details of our experiments. We compare our BiAdam and
VR-BiAdam algorithms with the following bilevel optimization algorithms: reverse Franceschi et al.
(2018), AID-CG Grazzi et al. (2020), AID-FP Grazzi et al. (2020), stocBio Ji et al. (2021)), MRBO Ji
& Liang (2021), VRBO Ji & Liang (2021), FSLA Li et al. (2021), MSTSA/SUSTAIN Khanduri et al.
(2021), SMB Guo et al. (2021b), SVRB Guo & Yang (2021).

A.1.1 DATA HYPER-CLEANING

In this task, we perform data hyper-cleaning over the MNIST dataset LeCun et al. (1998). The
formulation of this problem is as follows:

min
τ

fval
(
τ, w∗(τ)

)
:=

1

|DV |
∑

(xi,yi)∈DV

f
(
xT
i w

∗(τ), yi
)

s.t. w∗(τ) = argmin
w

ftr(τ, w) :=
1

|DT |
∑

(xi,yi)∈DT

σ(τi)f(x
T
i w, yi) + C∥w∥2,

where f(·) denotes the cross entropy loss, DT and DV are training and validation dataset, respec-
tively. Here τ = {τi}i∈DT are hyper-parameters and C ≥ 0 is a tuning parameter, σ(·) denotes the
sigmoid function. In the experiment, we set C = 0.001.

For training/validation batch-size, we use batch-size of 32, while for VRBO, we choose larger batch-
size 5000 and sampling interval is set as 3. For AID-FP, AID-CG and reverse, we use the warm-start
trick as our algorithms, i.e. the inner variable starts from the state of last iteration. We fine tune
the number of inner-loop iterations and set it to be 50 for these algorithms. For MRBO, VRBO,
SUSTAIN and our BiAdam/VR-BiAdam, we set K = 3 to evaluate the hyper-gradient. For FSLA,
K = 1 as the hyper-gradient is evaluated recursively. As for learning rates, we set 1000 as the
outer learning rate for all algorithms except our algorithms which use 0.5 as we change the learning
rate adaptively. As for the inner learning rates, we set the stepsize as 0.05 for reverse, AID-CG,
stocBiO/AID-FP, MRBO/SUSTAIN, FSLA; we set the stepsize as 0.2 for VRBO; we set the stepsize
as 1 for SUSTAIN; we set the stepsize as 0.00025 for BiAdam and 0.0005 for VR-BiAdam.

A.1.2 HYPER-REPRESENTATION LEARNING

In this task, we perform the hyper-representation learning task over the Omniglot dataset Lake et al.
(2015). The formulation of this problem is as follows:

min
τ

fval
(
τ, w∗(τ)

)
:= E

[
fval

(
τ, w∗(τ); ξ

)]
:=

1

|DV,ξ|
∑

(xi,yi)∈DV,ξ

f
(
(ω∗

τ )
Tϕ(xi; τ), yi

)
s.t. w∗(τ) = argmin

w
ftr(τ, w) :=

1

|DT ,ξ|
∑

(xi,yi)∈DT ,ξ

f
(
ωTϕ(xi; τ), yi

)
+ C∥w∥2,

where f(·) denotes the cross entropy loss, DT ,ξ and DV,ξ are training and validation dataset for a
randomly sampled meta task. Here τ = {τi}i∈DT are hyper-representations and C ≥ 0 is a tuning
parameter to gaurantee the inner problem to be strongly convex. In experiment, we set C = 0.01.

In every hyper-iteration, we choose 4 meta tasks, while for VRBO, we choose larger batch-size 16
and sampling interval is set as 3. For stocBiO/AID-FP, AID-CG and reverse, we use the warm-
start trick as our algorithms, i.e. the inner variable starts from the state of last iteration. We fine
tune the number of inner-loop iterations and set it to be 16 for these algorithms. For MRBO, VRBO,
SUSTAIN and our algorithms, we set K = 5 to evaluate the hyper-gradient. For FSLA, K = 1 as the
hyper-gradient is evaluated recursively. As for learning rates, we set 1000 as the outer learning rate
for all algorithms except our algorithms which use 0.001 as we change the learning rate adaptively.
As for the inner learning rates, we set the stepsize as 0.4 for all algorithms.
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A.2 RELATED WORKS

In this subsection, we overview the existing bilevel optimization methods and adaptive methods for
single-level optimization, respectively.

A.2.1 BILEVEL OPTIMIZATION METHODS

Bilevel optimization has shown successes in many machine learning problems with hierarchical
structures such as policy optimization Hong et al. (2020), model-agnostic meta-learning Liu et al.
(2021a); Ji et al. (2021); Lu et al. (2022) and adversarial training Zhang et al. (2021). Thus, its
researches have become active in the machine learning community, and some bilevel optimization
methods recently have been proposed. For example, one class of successful methods Colson et al.
(2007); Kunapuli et al. (2008) are to reformulate the bilevel problem as a single-level problem
by replacing the inner problem by its optimality conditions. Another class of successful methods
Ghadimi & Wang (2018); Hong et al. (2020); Ji et al. (2021); Chen et al. (2022); Khanduri et al.
(2021); Guo & Yang (2021); Liu et al. (2021b; 2022); Li et al. (2021) for bilevel optimization
are to iteratively approximate the (stochastic) gradient of the outer problem either in forward or
backward. Specifically, Liu et al. (2022) proposed a general gradient-based descent aggregation
framework for bilevel optimization. Moreover, the non-asymptotic analysis of these gradient-based
bilevel optimization methods has been recently studied. For example, Ghadimi & Wang (2018)
first studied the sample complexity of O(ϵ−6) of the proposed double-loop algorithm for the bilevel
problem (1) (Please see Table 1). Subsequently, Ji et al. (2021) proposed an accelerated double-loop
algorithm that reaches the sample complexity of O(ϵ−4) relying on large batches. At the same time,
Hong et al. (2020) studied a single-loop algorithm that reaches the sample complexity of O(ϵ−5)
without relying on large batches. Moreover, Khanduri et al. (2021); Guo & Yang (2021); Yang et al.
(2021) proposed a class of accelerated single-loop methods for the bilevel problem (1) by using
momentum-based variance reduced technique, which achieve the best known sample complexity of
O(ϵ−3). More recently, Dagréou et al. (2022) proposed a novel framework for bilevel optimization
based on the linear system. Meanwhile, Lu et al. (2022); Li et al. (2022); Tarzanagh et al. (2022)
studied the distributed bilevel optimization.

A.2.2 ADAPTIVE GRADIENT METHODS

Adaptive gradient methods recently have been shown great successes in current machine learning
problems such as training Deep Neural Networks (DNNs). Recently, thus many adaptive gradient
methods Duchi et al. (2011); Kingma & Ba (2014); Loshchilov & Hutter (2018); Zhuang et al. (2020)
have been developed and studied. For example, Adagrad Duchi et al. (2011) is the first adaptive
gradient method that shows good performances under the sparse gradient setting. One variant of
Adagrad, i.e., Adam Kingma & Ba (2014) is a very popular adaptive gradient method and basically
is a default method of choice for training DNNs. Subsequently, some variants of Adam algorithm
Reddi et al. (2019); Chen et al. (2019) have been developed and studied, and especially they have
convergence guarantee under the nonconvex setting. At the same time, some adaptive gradient
methods Loshchilov & Hutter (2018); Chen et al. (2018); Zhuang et al. (2020) have been presented
to improve the generalization performance of Adam algorithm. The norm version of AdaGrad (i.e.,
AdaGrad-Norm) Ward et al. (2019) has been presented to accelerate AdaGrad without sacrificing
generalization. Moreover, some accelerated adaptive gradient methods such as STORM Cutkosky
& Orabona (2019) and SUPER-ADAM Huang et al. (2021) have been proposed by using variance-
reduced technique. Meanwhile, Huang et al. (2021); Guo et al. (2021a) studied the convergence
analysis framework for adaptive gradient methods.

A.3 ADDITIONAL THEORETICAL RESULTS

In this subsection, we further give the convergence properties of our BiAdam algorithm for uncon-
strained bilevel optimization.

Theorem 3. Under the above Assumptions (1, 2, 4, 6, 7), in the Algorithm 1, given X = Rd,
ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt, βt+1 = c2ηt, m ≥ max

(
k2, (c1k)

2, (c2k)
2
)
,

k > 0, 125L2
0

6µ2 ≤ c1 ≤ m1/2

k , 9
2 ≤ c2 ≤ m1/2

k , 0 < λ ≤ min
( 15blL

2
0

4L2
1µ

, bl
6Lg

)
, 0 < γ ≤

13
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min
( √

6λµρ√
6L2

1λ
2µ2+125b2uL

2
0κ

2
, m1/2ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(2√6G′m

T 1/2
+

2
√
6G′

T 1/4
+

2
√
3

T

)
= Õ(

1

T 1/4
), (14)

where G′ = ρ(F (x1)−F∗)
kγ +

5b1L
2
0∆0

kλµ + 2σ2

k + 2mσ2

k ln(m+ T ) + 4(m+T )
9kT 2 + 8k

T .

Remark 3. Under the same conditions in Theorem 1, based on the metric 1
T

∑T
t=1 E∥∇F (xt)∥,

our BiAdam algorithm still has a gradient complexity of Õ(ϵ−4) without relying on the large
mini-batches. Interestingly, the right hand side of the above inequality (14) includes a term√

1
T

∑T
t=1 E∥At∥2

ρ that can be seen as an upper bound of the expected condition number of adap-

tive matrices {At}Tt=1. When At given in the above (4), we have
√

1
T

∑T
t=1 E∥At∥2

ρ ≤ G1+λ
λ

as in the existing adaptive gradient methods assuming the standard bounded stochastic gradient
∥∇f(x; ξ)∥ ≤ G1.

Next, we further give the convergence properties of our VR-BiAdam algorithm for unconstrained
bilevel optimization.

Theorem 4. Under the above Assumptions (1, 3, 4, 6, 7), in the Algorithm 2, given X = Rd,
ηt = k

(m+t)1/3
for all t ≥ 0, αt+1 = c1η

2
t , βt+1 = c2η

2
t , m ≥ max

(
2, k3, (c1k)

3, (c2k)
3
)
,

k > 0, c1 ≥ 2
3k3 +

125L2
0

6µ2 , c2 ≥ 2
3k3 + 9

2 , 0 < λ ≤ min
( 15blL

2
0

16L2
2µ

, bl
6Lg

)
, 0 < γ ≤

min
( √

6λµρ

2
√

24L2
2λ

2µ2+125b2uL
2
0κ

2
, m1/3ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(2√6M ′m

T 1/2
+

2
√
6M ′

T 1/3
+

2
√
3

T

)
= Õ(

1

T 1/3
), (15)

where M ′ = ρ(F (x1)−F∗)
kγ +

5b1L
2
0∆0

kλµ + 2m1/3σ2

k2 + 2k2(c21 + c22)σ
2 ln(m+ T ) + 6k(m+T )1/3

T .

Remark 4. Clearly, the adaptive matrix At generated from the above (4), we have√
1
T

∑T
t=1 E∥At∥2

ρ ≤ G1+λ
λ as in the existing adaptive gradient methods assuming the standard

bounded stochastic gradient ∥∇f(x; ξ)∥ ≤ G1. Under the same conditions in Theorem 2, based on
the metric 1

T

∑T
t=1 E∥∇F (xt)∥, our VR-BiAdam algorithm still has a convergence rate of Õ( 1

T 1/3 )

and a sample complexity of Õ(ϵ−3) without relying on the large mini-batches.

A.4 DETAILED CONVERGENCE ANALYSIS

In this subsection, we provide the detailed convergence analysis of our algorithms. We first review
and provide some useful lemmas.

Given a ρ-strongly convex function ϕ(x), we define a prox-function (Bregman distance) Censor &
Lent (1981); Censor & Zenios (1992) associated with ϕ(x) as follows:

V (z, x) = ϕ(z)−
[
ϕ(x) + ⟨∇ϕ(x), z − x⟩

]
. (16)

Then we define a generalized projection problem as in Ghadimi et al. (2016):

x∗ = argmin
z∈X

{
⟨z, w⟩+ 1

γ
V (z, x) + h(z)

}
, (17)

where X ⊆ Rd, w ∈ Rd and γ > 0. Here h(x) is convex and possibly nonsmooth function. At the
same time, we define a generalized gradient as follows:

GX (x,w, γ) =
1

γ
(x− x∗). (18)

14
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Lemma 6. (Lemma 1 in Ghadimi et al. (2016)) Let x∗ be given in (17). Then, for any x ∈ X ,
w ∈ Rd and γ > 0, we have

⟨w,GX (x,w, γ)⟩ ≥ ρ∥GX (x,w, γ)∥2 + 1

γ

[
h(x∗)− h(x)

]
, (19)

where ρ > 0 depends on ρ-strongly convex function ϕ(x).

When h(x) = 0, in the above lemma 6, we have

⟨w,GX (x,w, γ)⟩ ≥ ρ∥GX (x,w, γ)∥2. (20)

Lemma 7. (Restatement of Lemma 5) When the gradient estimator wt generated from Algorithm 1
or 2, for all t ≥ 1, we have

∥wt −∇F (xt)∥2 ≤ L2
0∥y∗(xt)− yt∥2 + 2∥wt − ∇̄f(xt, yt)∥2, (21)

where L2
0 = 8

(
L2
f +

L2
gxyC

2
fy

µ2 +
L2

gyyC
2
gxyC

2
fy

µ4 +
L2

fC
2
gxy

µ2

)
.

Proof. We first consider the term ∥∇F (xt)− ∇̄f(xt, yt)∥2. Since ∇f(xt, y
∗(xt)) = ∇F (xt), we

have

∥∇f(xt, y
∗(xt))− ∇̄f(xt, yt)∥2

= ∥∇xf(xt, y
∗(xt))−∇2

xyg(xt, y
∗(xt))

(
∇2

yyg(xt, y
∗(xt))

)−1∇yf(xt, y
∗(x))

−∇xf(xt, yt) +∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, yt)∥2

= ∥∇xf(xt, y
∗(xt))−∇xf(xt, yt)−∇2

xyg(xt, y
∗(xt))

(
∇2

yyg(xt, y
∗(xt))

)−1∇yf(xt, y
∗(xt))

+∇2
xyg(xt, yt)

(
∇2

yyg(xt, y
∗(xt))

)−1∇yf(xt, y
∗(xt))−∇2

xyg(xt, yt)
(
∇2

yyg(xt, y
∗(xt))

)−1∇yf(xt, y
∗(xt))

+∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, y

∗(xt))−∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, y

∗(xt))

+∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, yt)∥2

≤ 4∥∇xf(xt, y
∗(xt))−∇xf(xt, yt)∥2 +

4C2
fy

µ2
∥∇2

xyg(xt, y
∗(xt))−∇2

xyg(xt, yt)∥2

+
4C2

gxyC
2
fy

µ4
∥∇2

yyg(xt, y
∗(xt))−∇2

yyg(xt, yt)∥2 +
4C2

gxy

µ2
∥∇yf(xt, y

∗(xt))−∇yf(xt, yt)∥2

≤ 4
(
L2
f +

L2
gxyC

2
fy

µ2
+

L2
gyyC

2
gxyC

2
fy

µ4
+

L2
fC

2
gxy

µ2

)
∥y∗(xt)− yt∥2

= 4L̄2∥y∗(xt)− yt∥2, (22)

where the second last inequality is due to Assumptions 1, 2 and 4; the last equality holds by L̄2 =

L2
f +

L2
gxyC

2
fy

µ2 +
L2

gyyC
2
gxyC

2
fy

µ4 +
L2

fC
2
gxy

µ2 .

Then we have

∥wt −∇F (xt)∥2 = ∥wt − ∇̄f(xt, yt) + ∇̄f(xt, yt)−∇F (xt)∥2

≤ 2∥wt − ∇̄f(xt, yt)∥2 + 2∥∇̄f(xt, yt)−∇F (xt)∥2

≤ 2∥wt − ∇̄f(xt, yt)∥2 + 8L̄2∥y∗(xt)− yt∥2. (23)

Lemma 8. Under the Assumptions 1, 2, 4, we have

∥∇̄f(xt+1, yt+1)− ∇̄f(xt, yt)∥2 ≤ L2
0

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
, (24)

where L2
0 = 8

(
L2
f +

L2
gxyC

2
fy

µ2 +
L2

gyyC
2
gxyC

2
fy

µ4 +
L2

fC
2
gxy

µ2

)
.
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Proof.

∥∇̄f(xt+1, yt+1)− ∇̄f(xt, yt)∥2

= ∥∇xf(xt+1, yt+1)−∇2
xyg(xt+1, yt+1)

(
∇2

yyg(xt+1, yt+1)
)−1∇yf(xt+1, yt+1)

−∇xf(xt, yt) +∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, yt)∥2

= ∥∇xf(xt+1, yt+1)−∇xf(xt, yt)−∇2
xyg(xt+1, yt+1)

(
∇2

yyg(xt+1, yt+1)
)−1∇yf(xt+1, yt+1)

+∇2
xyg(xt, yt)

(
∇2

yyg(xt+1, yt+1)
)−1∇yf(xt+1, yt+1)−∇2

xyg(xt, yt)
(
∇2

yyg(xt+1, yt+1)
)−1∇yf(xt+1, yt+1)

+∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt+1, yt+1)−∇2

xyg(xt, yt)
(
∇2

yyg(xt, yt)
)−1∇yf(xt+1, yt+1)

+∇2
xyg(xt, yt)

(
∇2

yyg(xt, yt)
)−1∇yf(xt, yt)∥2

≤ 4∥∇xf(xt+1, yt+1)−∇xf(xt, yt)∥2 +
4C2

fy

µ2
∥∇2

xyg(xt+1, yt+1)−∇2
xyg(xt, yt)∥2

+
4C2

gxyC
2
fy

µ4
∥∇2

yyg(xt+1, yt+1)−∇2
yyg(xt, yt)∥2 +

4C2
gxy

µ2
∥∇yf(xt+1, yt+1)−∇yf(xt, yt)∥2

≤ 8L2
f

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
+

8L2
gxyC

2
fy

µ2

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
+

8L2
gyyC

2
gxyC

2
fy

µ4

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
+

8L2
fC

2
gxy

µ2

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
= L2

0

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
, (25)

where the first inequality holds by the Assumptions 1 and 4, and the second inequality holds by the
Assumption 2.

Lemma 9. Suppose that the sequence {xt, yt}Tt=1 be generated from Algorithm 1 or 2. Let 0 <
ηt ≤ 1 and 0 < γ ≤ ρ

2Lηt
, then we have

F (xt+1) ≤ F (xt) +
ηtγ

ρ
∥∇F (xt)− wt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2. (26)

Proof. According to Lemma 2, the function F (x) is L-smooth. Thus we have

F (xt+1) ≤ F (xt) + ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2 (27)

= F (xt) + ⟨∇F (xt), ηt(x̃t+1 − xt)⟩+
L

2
∥ηt(x̃t+1 − xt)∥2

= F (xt) + ηt ⟨wt, x̃t+1 − xt⟩︸ ︷︷ ︸
=T1

+ηt ⟨∇F (xt)− wt, x̃t+1 − xt⟩︸ ︷︷ ︸
=T2

+
Lη2t
2

∥x̃t+1 − xt∥2,

where the second equality is due to xt+1 = xt + ηt(x̃t+1 − xt).

According to Assumption 7, i.e., At ≻ ρId for any t ≥ 1, the function ϕt(x) = 1
2x

TAtx is ρ-
strongly convex, then we define a prox-function (a.k.a. Bregman distance) associated with ϕt(x) as
in Censor & Zenios (1992); Ghadimi et al. (2016),

Vt(x, xt) = ϕt(x)−
[
ϕt(xt) + ⟨∇ϕt(xt), x− xt⟩

]
=

1

2
(x− xt)

TAt(x− xt). (28)

By using the above Lemma 6 to the problem x̃t+1 = argminx∈X
{
⟨wt, x⟩+ 1

2γ (x−xt)
TAt(x−xt)

}
at the line 5 of Algorithm 1 or 2, we have

⟨wt,
1

γ
(xt − x̃t+1)⟩ ≥ ρ∥ 1

γ
(xt − x̃t+1)∥2. (29)
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Then we obtain

T1 = ⟨wt, x̃t+1 − xt⟩ ≤ −ρ

γ
∥x̃t+1 − xt∥2. (30)

Next, consider the bound of the term T2, we have

T2 = ⟨∇F (xt)− wt, x̃t+1 − xt⟩
≤ ∥∇F (xt)− wt∥ · ∥x̃t+1 − xt∥

≤ γ

ρ
∥∇F (xt)− wt∥2 +

ρ

4γ
∥x̃t+1 − xt∥2, (31)

where the first inequality is due to the Cauchy-Schwarz inequality and the last is due to Young’s
inequality. By combining the above inequalities (27), (30) with (31), we obtain

F (xt+1) ≤ F (xt) + ηt⟨∇F (xt)− wt, x̃t+1 − xt⟩+ ηt⟨wt, x̃t+1 − xt⟩+
Lη2t
2

∥x̃t+1 − xt∥2

≤ F (xt) +
ηtγ

ρ
∥∇F (xt)− wt∥2 +

ρηt
4γ

∥x̃t+1 − xt∥2 −
ρηt
γ

∥x̃t+1 − xt∥2 +
Lη2t
2

∥x̃t+1 − xt∥2

= F (xt) +
ηtγ

ρ
∥∇F (xt)− wt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2 −
(ρηt
4γ

− Lη2t
2

)
∥x̃t+1 − xt∥2

≤ F (xt) +
ηtγ

ρ
∥∇F (xt)− wt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2, (32)

where the last inequality is due to 0 < γ ≤ ρ
2Lηt

.

Lemma 10. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1 or 2. Under the above
assumptions, given 0 < ηt ≤ 1, Bt = btIp (bu ≥ bt ≥ bl > 0) for all t ≥ 1, and 0 < λ ≤ bl

6Lg
, we

have

∥yt+1 − y∗(xt+1)∥2 ≤ (1− ηtµλ

4bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2, (33)

where κ = Lg/µ.

Proof. According to Assumption 1, i.e., the function g(x, y) is µ-strongly convex w.r.t y, we have

g(xt, y) ≥ g(xt, yt) + ⟨∇yg(xt, yt), y − yt⟩+
µ

2
∥y − yt∥2

= g(xt, yt) + ⟨vt, y − ỹt+1⟩+ ⟨∇yg(xt, yt)− vt, y − ỹt+1⟩

+ ⟨∇yg(xt, yt), ỹt+1 − yt⟩+
µ

2
∥y − yt∥2. (34)

According to the Assumption 2, i.e., the function g(x, y) is Lg-smooth, we have

g(xt, ỹt+1) ≤ g(xt, yt) + ⟨∇yg(xt, yt), ỹt+1 − yt⟩+
Lg

2
∥ỹt+1 − yt∥2. (35)

Combining the about inequalities (34) with (35), we have

g(xt, y) ≥ g(xt, ỹt+1) + ⟨vt, y − ỹt+1⟩+ ⟨∇yg(xt, yt)− vt, y − ỹt+1⟩

+
µ

2
∥y − yt∥2 −

Lg

2
∥ỹt+1 − yt∥2. (36)

By the optimality condition of the problem ỹt+1 = argminy∈Y
{
⟨vt, y⟩+ 1

2λ (y− yt)
TBt(y− yt)

}
at the line 6 of Algorithm 1 or 2, given Bt = btIp, we have

⟨vt +
bt
λ
(ỹt+1 − yt), y − ỹt+1⟩ ≥ 0, ∀y ∈ Y. (37)
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Then we obtain

⟨vt, y − ỹt+1⟩ ≥
bt
λ
⟨ỹt+1 − yt, ỹt+1 − y⟩

=
bt
λ
∥ỹt+1 − yt∥2 +

bt
λ
⟨ỹt+1 − yt, yt − y⟩. (38)

By pugging the inequalities (38) into (36), we have

g(xt, y) ≥ g(xt, ỹt+1) +
bt
λ
⟨ỹt+1 − yt, yt − y⟩+ bt

λ
∥ỹt+1 − yt∥2

+ ⟨∇yg(xt, yt)− vt, y − ỹt+1⟩+
µ

2
∥y − yt∥2 −

Lg

2
∥ỹt+1 − yt∥2. (39)

Let y = y∗(xt), then we have

g(xt, y
∗(xt)) ≥ g(xt, ỹt+1) +

bt
λ
⟨ỹt+1 − yt, yt − y∗(xt)⟩+ (

bt
λ

− Lg

2
)∥ỹt+1 − yt∥2

+ ⟨∇yg(xt, yt)− vt, y
∗(xt)− ỹt+1⟩+

µ

2
∥y∗(xt)− yt∥2. (40)

Due to the strongly-convexity of g(·, y) and y∗(xt) = argminy∈Y g(xt, y), we have
g(xt, y

∗(xt)) ≤ g(xt, ỹt+1). Thus, we obtain

0 ≥ bt
λ
⟨ỹt+1 − yt, yt − y∗(xt)⟩+ ⟨∇yg(xt, yt)− vt, y

∗(xt)− ỹt+1⟩

+ (
bt
λ

− Lg

2
)∥ỹt+1 − yt∥2 +

µ

2
∥y∗(xt)− yt∥2. (41)

By yt+1 = yt + ηt(ỹt+1 − yt), we have

∥yt+1 − y∗(xt)∥2 = ∥yt + ηt(ỹt+1 − yt)− y∗(xt)∥2

= ∥yt − y∗(xt)∥2 + 2ηt⟨ỹt+1 − yt, yt − y∗(xt)⟩+ η2t ∥ỹt+1 − yt∥2. (42)

Then we obtain

⟨ỹt+1 − yt, yt − y∗(xt)⟩ =
1

2ηt
∥yt+1 − y∗(xt)∥2 −

1

2ηt
∥yt − y∗(xt)∥2 −

ηt
2
∥ỹt+1 − yt∥2. (43)

Consider the upper bound of the term ⟨∇yg(xt, yt)− vt, y
∗(xt)− ỹt+1⟩, we have

⟨∇yg(xt, yt)− vt, y
∗(xt)− ỹt+1⟩

= ⟨∇yg(xt, yt)− vt, y
∗(xt)− yt⟩+ ⟨∇yg(xt, yt)− vt, yt − ỹt+1⟩

≥ − 1

µ
∥∇yg(xt, yt)− vt∥2 −

µ

4
∥y∗(xt)− yt∥2 −

1

µ
∥∇yg(xt, yt)− vt∥2 −

µ

4
∥yt − ỹt+1∥2

= − 2

µ
∥∇yg(xt, yt)− vt∥2 −

µ

4
∥y∗(xt)− yt∥2 −

µ

4
∥yt − ỹt+1∥2. (44)

By plugging the inequalities (43) and (44) into (41), we obtain

bt
2ηtλ

∥yt+1 − y∗(xt)∥2

≤ (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 + (

btηt
2λ

+
µ

4
+

Lg

2
− bt

λ
)∥ỹt+1 − yt∥2 +

2

µ
∥∇yg(xt, yt)− vt∥2

≤ (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 + (

3Lg

4
− bt

2λ
)∥ỹt+1 − yt∥2 +

2

µ
∥∇yg(xt, yt)− vt∥2

= (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 −

(3bt
8λ

+
bt
8λ

− 3Lg

4

)
∥ỹt+1 − yt∥2 +

2

µ
∥∇yg(xt, yt)− vt∥2

≤ (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 −

3bt
8λ

∥ỹt+1 − yt∥2 +
2

µ
∥∇yg(xt, yt)− vt∥2, (45)
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where the second inequality holds by Lg ≥ µ and 0 < ηt ≤ 1, and the last inequality is due to
0 < λ ≤ bl

6Lg
≤ bt

6Lg
. It implies that

∥yt+1 − y∗(xt)∥2 ≤ (1− ηtµλ

2bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
4ηtλ

µbt
∥∇yg(xt, yt)− vt∥2.

(46)

Next, we decompose the term ∥yt+1 − y∗(xt+1)∥2 as follows:
∥yt+1 − y∗(xt+1)∥2 = ∥yt+1 − y∗(xt) + y∗(xt)− y∗(xt+1)∥2

= ∥yt+1 − y∗(xt)∥2 + 2⟨yt+1 − y∗(xt), y
∗(xt)− y∗(xt+1)⟩+ ∥y∗(xt)− y∗(xt+1)∥2

≤ (1 +
ηtµλ

4bt
)∥yt+1 − y∗(xt)∥2 + (1 +

4bt
ηtµλ

)∥y∗(xt)− y∗(xt+1)∥2

≤ (1 +
ηtµλ

4bt
)∥yt+1 − y∗(xt)∥2 + (1 +

4bt
ηtµλ

)κ2∥xt − xt+1∥2, (47)

where the first inequality holds by Cauchy-Schwarz inequality and Young’s inequality, and the sec-
ond inequality is due to Lemma 3, and the last equality holds by xt+1 = xt + ηt(x̃t+1 − xt).

By combining the above inequalities (46) and (47), we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1 +
ηtµλ

4bt
)(1− ηtµλ

2bt
)∥yt − y∗(xt)∥2 − (1 +

ηtµλ

4bt
)
3ηt
4

∥ỹt+1 − yt∥2

+ (1 +
ηtµλ

4bt
)
4ηtλ

µbt
∥∇yg(xt, yt)− vt∥2 + (1 +

4bt
ηtµλ

)κ2∥xt − xt+1∥2.

Since 0 < ηt ≤ 1, 0 < λ ≤ bl
6Lg

≤ bt
6Lg

and Lg ≥ µ, we have λ ≤ bt
6Lg

≤ bt
6µ and ηt ≤ 1 ≤ bt

6µλ .
Then we have

(1 +
ηtµλ

4bt
)(1− ηtµλ

2bt
) = 1− ηtµλ

2bt
+

ηtµλ

4bt
− η2t µ

2λ2

8b2t
≤ 1− ηtµλ

4bt
,

−(1 +
ηtµλ

4bt
)
3ηt
4

≤ −3ηt
4

,

(1 +
ηtµλ

4bt
)
4ηtλ

µbt
≤ (1 +

1

24
)
4ηtλ

µbt
=

25ηtλ

6µbt
,

(1 +
4bt
ηtµλ

)κ2 ≤ btκ
2

6ηtµλ
+

4btκ
2

ηtµλ
=

25btκ
2

6ηtµλ
,

where the second last inequality is due to ηtµλ
bt

≤ 1
6 and the last inequality holds by bt

6µληt
≥ 1. By

using xt+1 = xt + ηt(x̃t+1 − xt), then we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1− ηtµλ

4bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2. (48)

A.5 CONVERGENCE ANALYSIS OF BIADAM ALGORITHM

In the subsection, we provide the detail convergence analysis of BiAdam algorithm. For notational
simplicity, let Rt = R(xt, yt) for all t ≥ 1.
Lemma 11. Assume that the stochastic partial derivatives vt+1, and wt+1 be generated from Algo-
rithm 1, we have
E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 ≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + β2

t+1σ
2 (49)

+
3L2

0η
2
t

βt+1

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

3

βt+1

(
∥Rt∥2 + ∥Rt+1∥2

)
,
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E∥vt+1 −∇yg(xt+1, yt+1)∥2 ≤ (1− αt+1)E∥vt −∇yg(xt, yt)∥2 + α2
t+1σ

2 (50)

+ 2L2
gη

2
t /αt+1

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
,

where L2
0 = 8

(
L2
f +

L2
gxyC

2
fy

µ2 +
L2

gyyC
2
gxyC

2
fy

µ4 +
L2

fC
2
gxy

µ2

)
and Rt = ∇̄f(xt, yt)−Eξ̄[∇̄f(xt, yt; ξ̄)]

for all t ≥ 1.

Proof. Without loss of generality, we only prove the term E∥wt+1 − ∇̄f(xt+1, yt+1) − Rt+1∥2.
The other term is similar for this term. Since wt+1 = βt+1∇̄f(xt+1, yt+1; ξ̄t+1) + (1 − βt+1)wt,
we have

E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 (51)

= E∥βt+1∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)wt − ∇̄f(xt+1, yt+1)−Rt+1∥2

= E∥(1− βt+1)(wt − ∇̄f(xt, yt)−Rt) + βt+1

(
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1

)
+ (1− βt+1)

(
∇̄f(xt, yt) +Rt − (∇̄f(xt+1, yt+1) +Rt+1)

)
∥2

= β2
t+1E∥∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1∥2

+ E∥(1− βt+1)
(
wt − ∇̄f(xt, yt)−Rt + ∇̄f(xt, yt) +Rt − (∇̄f(xt+1, yt+1) +Rt+1)

)
∥2

≤ β2
t+1E∥∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1∥2 + (1− βt+1)

2(1 + βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2

+ (1− βt+1)
2(1 +

1

βt+1
)E∥∇̄f(xt, yt) +Rt − (∇̄f(xt+1, yt+1) +Rt+1)∥2

≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + β2
t+1σ

2 +
1

βt+1
∥∇̄f(xt, yt) +Rt − (∇̄f(xt+1, yt+1) +Rt+1)∥2

≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + β2
t+1σ

2

+
3

βt+1
∥∇̄f(xt+1, yt+1)− ∇̄f(xt, yt)∥2 +

3

βt+1

(
∥Rt∥2 + ∥Rt+1)∥2

)
≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + β2

t+1σ
2 +

3

βt+1

(
∥Rt∥2 + ∥Rt+1∥2

)
+

3L2
0η

2
t

βt+1

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
, (52)

where the third equality is due to Eξ̄t+1
[∇̄f(xt+1, yt+1; ξ̄t+1)] = ∇̄f(xt+1, yt+1) + Rt+1; the

second last inequality holds by 0 ≤ βt+1 ≤ 1 such that (1−βt+1)
2(1+βt+1) = 1−βt+1−β2

t+1+

β3
t+1 ≤ 1 − βt+1 and (1 − βt+1)

2(1 + 1
βt+1

) ≤ (1 − βt+1)(1 +
1

βt+1
) = −βt+1 +

1
βt+1

≤ 1
βt+1

,
and the last inequality holds by the above Lemma 8 and xt+1 = xt + ηt(x̃t+1 − xt), yt+1 =
yt + ηt(ỹt+1 − yt).

Theorem 5. (Restatement of Theorem 1) Under the above Assumptions (1, 2, 4, 6, 7), in the
Algorithm 1, given X ⊂ Rd, ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt, βt+1 = c2ηt,

m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0, 125L2

0

6µ2 ≤ c1 ≤ m1/2

k , 9
2 ≤ c2 ≤ m1/2

k , 0 < λ ≤

min
( 15blL

2
0

4L2
1µ

, bl
6Lg

)
, 0 < γ ≤ min

( √
6λµρ√

6L2
1λ

2µ2+125b2uL
2
0κ

2
, m1/2ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ),

we have

1

T

T∑
t=1

E||GX (xt,∇F (xt), γ)|| ≤
1

T

T∑
t=1

E[Gt] ≤
2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
+

√
2

T
, (53)

where G = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ + 2σ2

ρ2k + 2mσ2

ρ2k ln(m+T )+ 4(m+T )
9ρ2kT 2 + 8k

ρ2T , ∆0 = ∥y1−y∗(x1)∥2

and L2
1 =

12L2
gµ

2

125L2
0
+

2L2
0

3 .

Proof. Since ηt = k
(m+t)1/2

on t is decreasing and m ≥ k2, we have ηt ≤ η0 = k
m1/2 ≤ 1 and

γ ≤ m1/2ρ
4Lk ≤ ρ

2Lη0
≤ ρ

2Lηt
for any t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ (c1k)

2, we have
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αt+1 = c1ηt ≤ c1k
m1/2 ≤ 1. Similarly, due to m ≥ (c2k)

2, we have βt+1 ≤ 1. At the same time, we

have c1, c2 ≤ m1/2

k . According to Lemma 11, we have

E∥vt+1 −∇yg(xt+1, yt+1)∥2 − E∥vt −∇yg(xt, yt)∥2 (54)

≤ −c1ηtE∥∇yg(xt, yt)− vt∥2 + 2L2
gηt/c1

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ c21η

2
t σ

2

≤ −125L2
0

6µ2
E∥∇yg(xt, yt)− vt∥2 +

12L2
gµ

2ηt

125L2
0

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

mη2t σ
2

k2
,

where the above equality holds by αt+1 = c1ηt, and the last inequality is due to 125L2
0

6µ2 ≤ c1 ≤ m1/2

k .
Similarly, we have

E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 − E∥wt − ∇̄f(xt, yt)−Rt∥2 (55)

≤ −βt+1E∥wt − ∇̄f(xt, yt)−Rt∥2 +
3L2

0η
2
t

βt+1

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

3

βt+1

(
∥Rt∥2 + ∥Rt+1∥2

)
+ β2

t+1σ
2

≤ −9ηt
2

E∥wt − ∇̄f(xt, yt)−Rt∥2 +
2L2

0ηt
3

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2

3ηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+

mη2t σ
2

k2
,

where the last inequality holds by βt+1 = c2ηt and 9
2 ≤ c2 ≤ m1/2

k .

According to Lemmas 7 and 9, we have

F (xt+1)− F (xt) (56)

≤ 2ηtγ

ρ
∥wt − ∇̄f(xt, yt)∥2 +

L2
0ηtγ

ρ
∥y∗(xt)− yt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2

≤ 4ηtγ

ρ
∥wt − ∇̄f(xt, yt)−Rt∥2 +

4ηtγ

ρ
∥Rt∥2 +

L2
0ηtγ

ρ
∥y∗(xt)− yt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2.

According to Lemma 10, we have

∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2 (57)

≤ −ηtµλ

4bt
∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2.

Next, we define a Lyapunov function (i.e., potential function), for any t ≥ 1,

Γt = E
[
F (xt) +

5btL
2
0γ

λµρ
∥yt − y∗(xt)∥2 +

γ

ρ

(
∥vt −∇yg(xt, yt)∥2 + ∥wt − ∇̄f(xt, yt)−Rt∥2

)]
.
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For notational simplicity, let L2
1 =

12L2
gµ

2

125L2
0
+

2L2
0

3 . Then we have

Γt+1 − Γt

= F (xt+1)− F (xt) +
5btL

2
0γ

λµρ

(
∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2

)
+

γ

ρ

(
∥vt+1 −∇yg(xt+1, yt+1)∥2

− ∥vt −∇yg(xt, yt)∥2 + ∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 − ∥wt − ∇̄f(xt, yt)−Rt∥2
)

≤ L2
0ηtγ

ρ
∥y∗(xt)− yt∥2 +

4ηtγ

ρ
∥wt − ∇̄f(xt, yt)−Rt∥2 +

4ηtγ

ρ
∥Rt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2

+
5btL

2
0γ

λµρ

(
− ηtµλ

4bt
∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2
)

+
γ

ρ

(
− 125L2

0

6µ2
E∥∇yg(xt, yt)− vt∥2 +

12L2
gµ

2ηt

125L2
0

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

mη2t σ
2

k2

− 9ηt
2

E∥wt − ∇̄f(xt, yt)−Rt∥2 +
2L2

0ηt
3

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2

3ηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+

mη2t σ
2

k2

)
= −γηt

4ρ

(
L2
0∥yt − y∗(xt)∥2 + 2E∥wt − ∇̄f(xt, yt)−Rt∥2

)
−

( ρ

2γ
− L2

1γ

ρ
− 125b2tL

2
0κ

2γ

6µ2λ2ρ

)
ηt∥x̃t+1 − xt∥2

−
(15btL2

0γ

4λµρ
− L2

1γ

ρ

)
ηt∥ỹt+1 − yt∥2 ++

2mγσ2

k2ρ
η2t +

2γ

3ρηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+

4ηtγ

ρ
∥Rt∥2

≤ −γηt
4ρ

(
L2
0∥yt − y∗(xt)∥2 + 2E∥wt − ∇̄f(xt, yt)−Rt∥2

)
− ρηt

4γ
∥x̃t+1 − xt∥2 +

2mγσ2

k2ρ
η2t

+
2γ

3ρηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+

4ηtγ

ρ
∥Rt∥2, (58)

where the first inequality holds by the above inequalities (54), (55), (56) and (57); the last inequality
is due to 0 < γ ≤

√
6λµρ√

6L2
1λ

2µ2+125b2uL
2
0κ

2
≤

√
6λµρ√

6L2
1λ

2µ2+125b2tL
2
0κ

2
, 0 < λ ≤ 15blL

2
0

4L2
1µ

≤ 15btL
2
0

4L2
1µ

for all

t ≥ 1.

Let Φt = L2
0∥yt − y∗(xt)∥2 + 2∥wt − ∇̄f(xt, yt)−Rt∥2, we have

γηt
4ρ

Φt +
ρηt
4γ

∥x̃t+1 − xt∥2 ≤ Γt − Γt+1 +
2mγσ2

k2ρ
η2t +

2γ

3ρηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+

4γηt
ρ

∥Rt∥2.

(59)

Taking average over t = 1, 2, · · · , T on both sides of (59), we have

1

T

T∑
t=1

E
[ηt
4
Φt +

ρ2ηt
4γ2

∥x̃t+1 − xt∥2
]
≤

T∑
t=1

ρ(Γt − Γt+1)

Tγ
+

1

T

T∑
t=1

2mσ2

k2
η2t

+
1

T

T∑
t=1

(
2

3ηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+ 4ηt∥Rt∥2

)
.

Given x1 ∈ X and y1 ∈ Y , let ∆0 = ∥y1 − y∗(x1)∥2, we have

Γ1 = E
[
F (xt) +

5b1L
2
0γ

λµρ
∥y1 − y∗(x1)∥2 +

γ

ρ

(
∥v1 −∇yg(x1, y1)∥2 + ∥w1 − ∇̄f(x1, y1)−R1∥2

)]
≤ F (x1) +

5b1L
2
0γ∆0

λµρ
+

2γσ2

ρ
, (60)
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where the last inequality holds by Assumption 2. Since ηt is decreasing on t, i.e., η−1
T ≥ η−1

t for
any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
(Φt

4
+

ρ2

4γ2
∥x̃t+1 − xt∥2

)
≤ ρ

TγηT

T∑
t=1

(
Γt − Γt+1

)
+

1

TηT

T∑
t=1

2mσ2

k2
η2t +

1

T

T∑
t=1

(
2

3ηt

(
∥Rt∥2 + ∥Rt+1∥2

)
+ 4ηt∥Rt∥2

)

≤ ρ

TγηT

(
F (x1) +

5b1L
2
0γ∆0

λµρ
+

2γσ2

ρ
− F ∗

)
+

1

TηT

T∑
t=1

2mσ2

k2
η2t +

2

3T 3

T∑
t=1

1

ηt
+

4

T 2

T∑
t=1

ηt

≤ ρ(F (x1)− F ∗)

TγηT
+

5b1L
2
0∆0

TηTλµ
+

2σ2

TηT
+

2mσ2

TηT k2

∫ T

1

k2

m+ t
dt+

2

3T 3

∫ T

1

(m+ t)1/2

k
dt

+
4

T 2

∫ T

1

k

(m+ t)1/2
dt

≤ ρ(F (x1)− F ∗)

TγηT
+

5b1L
2
0∆0

TηTλµ
+

2σ2

TηT
+

2mσ2

TηT
ln(m+ T ) +

4

9kT 3
(m+ T )3/2 +

8k

T 2
(m+ T )1/2

=

(
ρ(F (x1)− F ∗)

kγ
+

5b1L
2
0∆0

kλµ
+

2σ2

k
+

2mσ2

k
ln(m+ T ) +

4(m+ T )

9kT 2
+

8k

T

)
(m+ T )1/2

T
,

where the second inequality holds by the above inequality (60) and ∥Rt∥ ≤ 1
T for all t ≥ 1 by

choosing K =
Lg

µ log(CgxyCfyT/µ) in Algorithm 1. Let G = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ + 2σ2

ρ2k +
2mσ2

ρ2k ln(m+ T ) + 4(m+T )
9ρ2kT 2 + 8k

ρ2T , we have

1

T

T∑
t=1

E
[ Φt

4ρ2
+

1

4γ2
∥x̃t+1 − xt∥2

]
≤ G

T
(m+ T )1/2. (61)

According to the Jensen’s inequality, we have

1

T

T∑
t=1

E
[ 1

2γ
∥x̃t+1 − xt∥+

1

2ρ

(
L0∥yt − y∗(xt)∥+

√
2∥wt − ∇̄f(xt, yt)−Rt∥

)]
≤

(
3

T

T∑
t=1

( 1

4γ2
∥x̃t+1 − xt∥2 +

L2
0

4ρ2
∥yt − y∗(xt)∥2 +

2

4ρ2
E∥wt − ∇̄f(xt, yt)−Rt∥2

))1/2

=

(
3

T

T∑
t=1

( Φt

4ρ2
+

1

4γ2
∥x̃t+1 − xt∥2

))1/2

≤
√
3G

T 1/2
(m+ T )1/4 ≤

√
3Gm1/4

T 1/2
+

√
3G

T 1/4
, (62)

where the last inequality is due to (a+ b)1/4 ≤ a1/4 + b1/4 for all a, b > 0. Thus we have

1

T

T∑
t=1

E
[ 1
γ
∥x̃t+1 − xt∥+

1

ρ

(
L0∥yt − y∗(xt)∥+

√
2∥wt − ∇̄f(xt, yt)−Rt∥

)]
≤ 2

√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
. (63)
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Since ∥wt − ∇̄f(xt, yt)−Rt∥ ≥ ∥wt − ∇̄f(xt, yt)∥ − ∥Rt∥, by the above inequality (63), we can
obtain

1

T

T∑
t=1

E[Gt] =
1

T

T∑
t=1

E
[ 1
γ
∥x̃t+1 − xt∥+

1

ρ

(
L0∥yt − y∗(xt)∥+

√
2∥wt − ∇̄f(xt, yt)∥

)]
≤ 2

√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
+

√
2

T

T∑
t=1

E∥Rt∥

=
2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
+

√
2

T
, (64)

where the last inequality is due to ∥Rt∥ ≤ 1
T for all t ≥ 1 by choosing K =

Lg

µ log(CgxyCfyT/µ)

in Algorithm 1. According to the above inequality (11), we have

1

T

T∑
t=1

E||GX (xt,∇F (xt), γ)|| ≤
1

T

T∑
t=1

E[Gt] ≤
2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
+

√
2

T
. (65)

Theorem 6. (Restatement of Theorem 3) Under the above Assumptions (1, 2, 4, 6, 7), in the
Algorithm 1, given X = Rd, ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt, βt+1 = c2ηt,

m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0, 125L2

0

6µ2 ≤ c1 ≤ m1/2

k , 9
2 ≤ c2 ≤ m1/2

k , 0 < λ ≤

min
( 15blL

2
0

4L2
1µ

, bl
6Lg

)
, 0 < γ ≤ min

( √
6λµρ√

6L2
1λ

2µ2+125b2uL
2
0κ

2
, m1/2ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ),

we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(2√6G′m

T 1/2
+

2
√
6G′

T 1/4
+

2
√
3

T

)
, (66)

where G′ = ρ(F (x1)−F∗)
kγ +

5buL
2
0∆0

kλµ + 2σ2

k + 2mσ2

k ln(m+ T ) + 4(m+T )
9kT 2 + 8k

T .

Proof. According to Lemma 7, we have

Gt =
1

γ
∥xt − x̃t+1∥+

1

ρ

(
L0∥y∗(xt)− yt∥+

√
2∥∇̄f(xt, yt)− wt∥

)
≥ 1

γ
∥xt − x̃t+1∥+

1

ρ
∥∇F (xt)− wt∥

(i)
= ∥A−1

t wt∥+
1

ρ
∥∇F (xt)− wt∥

=
1

∥At∥
∥At∥∥A−1

t wt∥+
1

ρ
∥∇F (xt)− wt∥

≥ 1

∥At∥
∥wt∥+

1

ρ
∥∇F (xt)− wt∥

(ii)

≥ 1

∥At∥
∥wt∥+

1

∥At∥
∥∇F (xt)− wt∥

≥ 1

∥At∥
∥∇F (xt)∥, (67)

where the equality (i) holds by x̃t+1 = xt − γA−1
t wt that can be easily obtained from the step 5

of Algorithm 1 when X = Rd, and the inequality (ii) holds by ∥At∥ ≥ ρ for all t ≥ 1 due to
Assumption 7. Then we have

∥∇F (xt)∥ ≤ ∥At∥Gt. (68)
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According to Cauchy-Schwarz inequality, we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤ 1

T

T∑
t=1

E
[
Gt∥At∥

]
≤

√√√√ 1

T

T∑
t=1

E[G2
t ]

√√√√ 1

T

T∑
t=1

E∥At∥2. (69)

Then we have

1

T

T∑
t=1

E[G2
t ] ≤

1

T

T∑
t=1

E
[3L2

0∥yt − y∗(xt)∥2

ρ2
+

6∥wt − ∇̄f(xt, yt)∥2

ρ2
+

3

γ2
∥x̃t+1 − xt∥2

]
≤ 1

T

T∑
t=1

E
[3L2

0∥yt − y∗(xt)∥2

ρ2
+

12∥wt − ∇̄f(xt, yt)−Rt∥2

ρ2
+

12∥Rt∥2

ρ2
+

3

γ2
∥x̃t+1 − xt∥2

]
≤ 24G

T
(m+ T )1/2 +

1

T

T∑
t=1

12∥Rt∥2

ρ2

≤ 24G

T
(m+ T )1/2 +

12

ρ2T 2
, (70)

where the third inequality holds by the above inequality (61), and the last inequality holds by ∥Rt∥ ≤
1
T for all t ≥ 1 by choosing K =

Lg

µ log(CgxyCfyT/µ).

By combining the inequalities (69) and (70), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√√√√ 1

T

T∑
t=1

E[G2
t ]

√√√√ 1

T

T∑
t=1

E∥At∥2

≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(2√6G′m

T 1/2
+

2
√
6G′

T 1/4
+

2
√
3

T

)
, (71)

where G′ = ρ2G.

A.6 CONVERGENCE ANALYSIS OF VR-BIADAM ALGORITHM

In the subsection, we detail convergence analysis of VR-BiAdam algorithm.

Lemma 12. Under the above Assumptions (1, 3, 4), assume the stochastic gradient estimators vt
and wt be generated from Algorithm 2, we have

E∥∇yg(xt+1, yt+1)− vt+1∥2 ≤ (1− αt+1)E∥∇yg(xt, yt)− vt∥2 + 2α2
t+1σ

2

+ 4L2
gη

2
t

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
, (72)

E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 ≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + 2β2
t+1σ

2

+ 4L2
Kη2t

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
, (73)

where L2
K = 2L2

f + 6C2
gxyL

2
f

K
2µLg−µ2 + 6C2

fyL
2
gxy

K
2µLg−µ2 + 6C2

gxyL
2
f

K3L2
gyy

(Lg−µ)2(2µLg−µ2) .

Proof. Without loss of generality, we only prove the term E∥wt+1 − ∇̄f(xt+1, yt+1) − Rt+1∥2.
The other term is similar for this term. Since wt+1 = ∇̄f(xt+1, yt+1; ξ̄t+1) + (1 − βt+1)

(
wt −
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∇̄f(xt, yt; ξ̄t+1)
)
, we have

E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 (74)

= E∥∇̄f(xt+1, yt+1; ξ̄t+1) + (1− βt+1)
(
wt − ∇̄f(xt, yt; ξ̄t+1)

)
− ∇̄f(xt+1, yt+1)−Rt+1∥2

= E∥(1− βt+1)(wt − ∇̄f(xt, yt)−Rt) + βt+1

(
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1

)
+ (1− βt+1)

(
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1 − (∇̄f(xt, yt; ξ̄t))− ∇̄f(xt, yt)−Rt)

)
∥2

= (1− βt+1)
2E∥wt − ∇̄f(xt, yt)−Rt∥2 + E∥βt+1

(
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1

)
+ (1− βt+1)

(
∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1 − (∇̄f(xt, yt; ξ̄t)− ∇̄f(xt, yt)−Rt)

)
∥2

≤ (1− βt+1)
2E∥wt − ∇̄f(xt, yt)−Rt∥2 + 2β2

t+1E∥∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1∥2

+ 2(1− βt+1)
2∥∇̄f(xt+1, yt+1; ξ̄t+1)− ∇̄f(xt+1, yt+1)−Rt+1 − (∇̄f(xt, yt; ξ̄t))− ∇̄f(xt, yt)−Rt)∥2

≤ (1− βt+1)
2E∥wt − ∇̄f(xt, yt)−Rt∥2 + 2β2

t+1σ
2 + 2(1− βt+1)

2∥∇̄f(xt+1, yt+1; ξ̄t+1))− ∇̄f(xt, yt; ξ̄t)∥2

≤ (1− βt+1)
2E∥wt − ∇̄f(xt, yt)−Rt∥2 + 2β2

t+1σ
2 + 4(1− βt+1)

2L2
K

(
∥xt+1 − xt∥2 + ∥yt+1 − yt∥2

)
≤ (1− βt+1)E∥wt − ∇̄f(xt, yt)−Rt∥2 + 2β2

t+1σ
2 + 4L2

Kη2t
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
,

where the third equality holds by Eξ̄

[
∇̄f(xt+1, yt+1; ξ̄t+1)

]
= ∇̄f(xt+1, yt+1) + Rt+1 and

Eξ̄

[
∇̄f(xt, yt; ξ̄t))

]
= ∇̄f(xt, yt) + Rt; the third last inequality holds by the inequality E∥ζ −

E[ζ]∥2 ≤ E∥ζ∥2; the second last inequality is due to Lemma 4; the last inequality holds by
0 < βt+1 ≤ 1 and xt+1 = xt + ηt(x̃t+1 − xt), yt+1 = yt + ηt(ỹt+1 − yt).

Theorem 7. (Restatement of Theorem 2) Under the above Assumptions (1, 3, 4, 6, 7), in the Al-
gorithm 2, given X ⊂ Rd, ηt = k

(m+t)1/3
for all t ≥ 0, αt+1 = c1η

2
t , βt+1 = c2η

2
t , m ≥

max
(
2, k3, (c1k)

3, (c2k)
3
)
, k > 0, c1 ≥ 2

3k3 +
125L2

0

6µ2 , c2 ≥ 2
3k3 + 9

2 , 0 < λ ≤ min
( 15blL

2
0

16L2
2µ

, bl
6Lg

)
,

0 < γ ≤ min
( √

6λµρ

2
√

24L2
2λ

2µ2+125b2uL
2
0κ

2
, m1/3ρ

4Lk

)
and K =

Lg

µ log(CgxyCfyT/µ), we have

1

T

T∑
t=1

E||GX (xt,∇F (xt), γ)|| ≤
1

T

T∑
t=1

E[Gt] ≤
2
√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
+

√
2

T
, (75)

where M = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ + 2m1/3σ2

ρ2k2 +
2k2(c21+c22)σ

2 ln(m+T )
ρ2 + 6k(m+T )1/3

ρ2T , ∆0 = ∥y1 −
y∗(x1)∥2 and L2

2 = L2
g + L2

K .

Proof. Since ηt = k
(m+t)1/3

on t is decreasing and m ≥ k3, we have ηt ≤ η0 = k
m1/3 ≤ 1 and

γ ≤ m1/3ρ
4Lk ≤ ρ

2Lη0
≤ ρ

2Lηt
for any t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ (c1k)

3, we have
αt+1 = c1η

2
t ≤ c1ηt ≤ c1k

m1/3 ≤ 1. Similarly, due to m ≥ (c2k)
3, we have βt+1 ≤ 1. According to

Lemma 12, we have
1

ηt
E∥∇yg(xt+1, yt+1)− vt+1∥2 −

1

ηt−1
E∥∇yg(xt, yt)− vt∥2 (76)

≤
(1− αt+1

ηt
− 1

ηt−1

)
E∥∇yg(xt, yt)− vt∥2 + 4L2

gηt
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2α2
t+1σ

2

ηt

=
( 1

ηt
− 1

ηt−1
− c1ηt

)
E∥∇yg(xt, yt)− vt∥2 + 4L2

gηt
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c21η

3
t σ

2,

where the second equality is due to αt+1 = c1η
2
t . Similarly, we have

1

ηt
E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 −

1

ηt−1
E∥wt − ∇̄f(xt, yt)−Rt∥2 (77)

≤
(1− βt+1

ηt
− 1

ηt−1

)
E∥wt − ∇̄f(xt, yt)−Rt∥2 + 4L2

Kηt
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2β2
t+1σ

2

ηt

=
( 1

ηt
− 1

ηt−1
− c2ηt

)
E∥wt − ∇̄f(xt, yt)−Rt∥2 + 4L2

Kηt
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c22η

3
t σ

2.
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By ηt =
k

(m+t)1/3
, we have

1

ηt
− 1

ηt−1
=

1

k

(
(m+ t)

1
3 − (m+ t− 1)

1
3

)
≤ 1

3k(m+ t− 1)2/3
≤ 1

3k
(
m/2 + t

)2/3
≤ 22/3

3k(m+ t)2/3
=

22/3

3k3
k2

(m+ t)2/3
=

22/3

3k3
η2t ≤ 2

3k3
ηt, (78)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x + y)1/3 ≤
x1/3 + y

3x2/3 ; the second inequality is due to m ≥ 2, and the last inequality is due to 0 < ηt ≤ 1.

Let c1 ≥ 2
3k3 +

125L2
0

6µ2 , we have

1

ηt
E∥∇yg(xt+1, yt+1)− vt+1∥2 −

1

ηt−1
E∥∇yg(xt, yt)− vt∥2 (79)

≤ −125L2
0ηt

6µ2
E∥∇yg(xt, yt)− vt∥2 + 4L2

gηt
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c21η

3
t σ

2.

Let c2 ≥ 2
3k3 + 9

2 , we have

1

ηt
E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 −

1

ηt−1
E∥wt − ∇̄f(xt, yt)−Rt∥2 (80)

≤ −9ηt
2

E∥wt − ∇̄f(xt, yt)−Rt∥2 + 4L2
Kηt

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c22η

3
t σ

2.

According to Lemmas 7 and 9, we have

F (xt+1)− F (xt) (81)

≤ 2ηtγ

ρ
∥wt − ∇̄f(xt, yt)∥2 +

L2
0ηtγ

ρ
∥y∗(xt)− yt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2

≤ 4ηtγ

ρ
∥wt − ∇̄f(xt, yt)−Rt∥2 +

4ηtγ

ρ
∥Rt∥2 +

L2
0ηtγ

ρ
∥y∗(xt)− yt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2.

According to Lemma 10, we have

∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2 (82)

≤ −ηtµλ

4bt
∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2.

Next, we define a Lyapunov function, for any t ≥ 1

Θt = E
[
F (xt) +

5btL
2
0γ

λµρ
∥yt − y∗(xt)∥2 +

γ

ρηt−1

(
∥vt −∇yg(xt, yt)∥2 + ∥wt − ∇̄f(xt, yt)−Rt∥2

)]
.
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For notational simplicity, let L2
2 = L2

g + L2
K . Then we have

Θt+1 −Θt

= F (xt+1)− F (xt) +
5btL

2
0γ

λµρ

(
∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2

)
+

γ

ρ

(
1

ηt
E∥vt+1 −∇yg(xt+1, yt+1)∥2

− 1

ηt−1
E∥vt −∇yg(xt, yt)∥2 +

1

ηt
E∥wt+1 − ∇̄f(xt+1, yt+1)−Rt+1∥2 −

1

ηt−1
E∥wt − ∇̄f(xt, yt)−Rt∥2

)
≤ L2

0ηtγ

ρ
∥y∗(xt)− yt∥2 +

4ηtγ

ρ
∥wt − ∇̄f(xt, yt)−Rt∥2 +

4ηtγ

ρ
∥Rt∥2 −

ρηt
2γ

∥x̃t+1 − xt∥2

+
5btL

2
0γ

λµρ

(
− ηtµλ

4bt
∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
25ηtλ

6µbt
∥∇yg(xt, yt)− vt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2
)

+
γ

ρ

(
− 125L2

0ηt
6µ2

E∥∇yg(xt, yt)− vt∥2 + 4L2
gηt

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c21η

3
t σ

2

− 9ηt
2

E∥wt − ∇̄f(xt, yt)−Rt∥2 + 4L2
Kηt

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+ 2c22η

3
t σ

2

)
= −γηt

4ρ

(
L2
0∥yt − y∗(xt)∥2 + 2E∥wt − ∇̄f(xt, yt)−Rt∥2

)
−

( ρ

2γ
− 4L2

2γ

ρ
− 125b2tL

2
0κ

2γ

6µ2λ2ρ

)
ηt∥x̃t+1 − xt∥2

−
(15btL2

0γ

4λµρ
− 4L2

2γ

ρ

)
ηt∥ỹt+1 − yt∥2 +

4ηtγ

ρ
∥Rt∥2 +

2(c21 + c22)γσ
2

ρ
η3t

≤ −γηt
4ρ

(
L2
0∥yt − y∗(xt)∥2 + 2E∥wt − ∇̄f(xt, yt)−Rt∥2

)
− ρηt

4γ
∥x̃t+1 − xt∥2

+
4ηtγ

ρ
∥Rt∥2 +

2(c21 + c22)γσ
2

ρ
η3t , (83)

where the first inequality holds by the above inequalities (79), (80), (81) and (82); the last inequality
is due to 0 < γ ≤

√
6λµρ

2
√

24L2
2λ

2µ2+125b2uL
2
0κ

2
≤

√
6λµρ

2
√

24L2
2λ

2µ2+125b2tL
2
0κ

2
, 0 < λ ≤ 15blL

2
0

16L2
2µ

≤ 15btL
2
0

16L2
2µ

for

all t ≥ 1.

Let Φt = L2
0∥yt − y∗(xt)∥2 + 2∥wt − ∇̄f(xt, yt)−Rt∥2, then we have

γηt
4ρ

E
[
Φt +

ρηt
4γ

∥x̃t+1 − xt∥2
]
≤ Θt −Θt+1 +

4ηtγ

ρ
∥Rt∥2 +

2(c21 + c22)γσ
2

ρ
η3t . (84)

Taking average over t = 1, 2, · · · , T on both sides of (84), we have

1

T

T∑
t=1

E
[ηt
4
Φt +

ρ2ηt
4γ2

∥x̃t+1 − xt∥2
]
≤

T∑
t=1

ρ(Θt −Θt+1)

Tγ
+

4

T

T∑
t=1

ηt∥Rt∥2 +
2(c21 + c22)σ

2

T

T∑
t=1

η3t .

Given x1 ∈ X and y1 ∈ Y , let ∆0 = ∥y1 − y∗(x1)∥2, we have

Θ1 = E
[
F (x1) +

5b1L
2
0γ

λµρ
∥y1 − y∗(x1)∥2 +

γ

ρη0

(
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)]
≤ F (x1) +
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2
0γ∆0

λµρ
+

2γσ2

ρη0
, (85)
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where the last inequality holds by Assumption 2. Since ηt is decreasing, i.e., η−1
T ≥ η−1

t for any
0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
[Φt

4
+

ρ2

4γ2
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]
(86)

≤ ρ
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2
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4

T
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2
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)
+
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+
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+
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1
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m+ t
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4

T 2
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1

k

(m+ t)1/3
dt
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2
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=
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T

)
(m+ T )1/3

T
,

where the second inequality holds by the above inequality (85). Let M = F (x1)−F∗

ρkγ +
5b1L

2
0∆0

ρ2kλµ +

2m1/3σ2

ρ2k2 +
2k2(c21+c22)σ

2 ln(m+T )
ρ2 + 6k(m+T )1/3

ρ2T , we have
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T
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E
[ Φt

4ρ2
+

1

4γ2
∥x̃t+1 − xt∥2

]
≤ M

T
(m+ T )1/3. (87)

According to Jensen’s inequality, we have

1

T
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E
[ 1

2γ
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1

2ρ

(
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4γ2
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L2
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2
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=
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3
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( Φt

4ρ2
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1
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≤
√
3M

T 1/2
(m+ T )1/6 ≤

√
3Mm1/6

T 1/2
+

√
3M

T 1/3
, (88)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6 for all a, b > 0. Thus we have

1

T

T∑
t=1

E
[ 1
γ
∥x̃t+1 − xt∥+

1

ρ

(
L0∥yt − y∗(xt)∥+

√
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)]
≤ 2

√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
. (89)

Since ∥wt − ∇̄f(xt, yt)−Rt∥ ≥ ∥wt − ∇̄f(xt, yt)∥ − ∥Rt∥, by the above inequality (89), we can
obtain

1

T

T∑
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E
[ 1
γ
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1

ρ
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, (90)
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where the last inequality is due to ∥Rt∥ ≤ 1
T for all t ≥ 1 by choosing K =

Lg

µ log(CgxyCfyT/µ)

in Algorithm 2.

According to the above inequality (11), we have
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√
3Mm1/6
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2
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T 1/3
+

√
2

T
. (91)

Theorem 8. (Restatement of Theorem 4) Under the above Assumptions (1, 3, 4, 6, 7), in the Al-
gorithm 2, given X = Rd, ηt = k

(m+t)1/3
for all t ≥ 0, αt+1 = c1η

2
t , βt+1 = c2η

2
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2
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)
and K =

Lg

µ log(CgxyCfyT/µ), we have
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where M ′ = ρ(F (x1)−F∗)
kγ +

5b1L
2
0∆0

kλµ + 2m1/3σ2

k2 + 2k2(c21 + c22)σ
2 ln(m+ T ) + 6k(m+T )1/3

T .

Proof. According to Lemma 7, we have

Gt =
1

γ
∥xt − x̃t+1∥+

1

ρ

(
L0∥y∗(xt)− yt∥+

√
2∥∇̄f(xt, yt)− wt∥

)
≥ 1

γ
∥xt − x̃t+1∥+

1

ρ
∥∇F (xt)− wt∥

(i)
= ∥A−1

t wt∥+
1

ρ
∥∇F (xt)− wt∥

=
1

∥At∥
∥At∥∥A−1

t wt∥+
1

ρ
∥∇F (xt)− wt∥

≥ 1

∥At∥
∥wt∥+

1

ρ
∥∇F (xt)− wt∥

(ii)

≥ 1

∥At∥
∥wt∥+

1

∥At∥
∥∇F (xt)− wt∥

≥ 1
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∥∇F (xt)∥, (93)

where the equality (i) holds by x̃t+1 = xt − γA−1
t wt that can be easily obtained from the step 5

of Algorithm 2 when X = Rd, and the inequality (ii) holds by ∥At∥ ≥ ρ for all t ≥ 1 due to
Assumption 7. Then we have

∥∇F (xt)∥ ≤ ∥At∥Gt. (94)

According to Cauchy-Schwarz inequality, we have
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Then we have
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12∥Rt∥2

ρ2

≤ 24M

T
(m+ T )1/3 +

12

ρ2T 2
, (96)

where the third inequality holds by the above inequality (87), and the last inequality holds by ∥Rt∥ ≤
1
T for all t ≥ 1 by choosing K =

Lg

µ log(CgxyCfyT/µ).

By combining the above inequalities (95) and (96), we have
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, (97)

where M ′ = ρ2M .
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