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Abstract

Spatial reasoning is a crucial component of001
both biological and artificial intelligence. In002
this work, we present a comprehensive study of003
the capability of current state-of-the-art large004
language models (LLMs) on spatial reasoning.005
To support our study, we created and contribute006
novel spatial characterization frameworks and007
datasets, the Spatial Reasoning Characterization008
(SpaRC), and Spatial Reasoning Paths (SpaRP),009
to enable an in-depth understanding of the spa-010
tial relations and compositions as well as the011
usefulness of spatial reasoning chains. We012
found that all state-of-the-art LLMs do not per-013
form well on the datasets—their performances014
are consistently low across different setups.015
The spatial reasoning is an emergent capabil-016
ity as model sizes scale up. Finetuning both017
large language models (e.g., Llama-2-70B) and018
smaller ones (e.g., Llama-2-13B) can signifi-019
cantly improve their F1-scores by 7–32 abso-020
lute points. We also found that the top propri-021
etary LLMs still significantly outperform their022
open-source counterparts in topological spatial023
understanding and reasoning.024

1 Introduction025

Spatial understanding and reasoning are a crucial026

component of both biological and artificial intelli-027

gence, essential for daily interactions and common028

tasks such as dialogues and conversations (Kruijff029

et al., 2007; Udagawa and Aizawa, 2019), navi-030

gation (Anderson et al., 2018; Chen et al., 2019;031

Zhang and Kordjamshidi, 2022), and robotics (Bisk032

et al., 2016; Venkatesh et al., 2021), among oth-033

ers. They require common reasoning steps such034

as identifying objects, determining other objects035

being involved, and aggregating multiple spatial036

relations to reach a conclusion. The advancement037

of the field has significantly benefited from many038

well-known tasks and datasets, including bAbI (We-039

ston et al., 2016), SPARTQA (Mirzaee et al., 2021),040

SPARTUN and RESQ (Mirzaee and Kordjamshidi,041

2022), and StepGame (Shi et al., 2022), among 042

others. 043

Recently, Large Language Models (LLMs) have 044

been shown to be capable of performing ab- 045

stract, commonsense-based, and multi-hop reason- 046

ing (Wei et al., 2022b; Kojima et al., 2022; Wang 047

et al., 2023). If such models are to be used as in- 048

telligent agents to answer questions, perform tasks, 049

and collaborate with humans, whether they can un- 050

derstand the basic spatial relationships and perform 051

corresponding reasoning would become critical to 052

many real-life applications. 053

In this work, we present an extensive study on 054

the state-of-the-art LLMs’ capability in spatial rea- 055

soning. The key components of spatial abilities 056

include: (i) understanding spatial relations and 057

composition, and (ii) developing reasoning chains 058

to reach conclusions. Prior work (Mirzaee et al., 059

2021; Mirzaee and Kordjamshidi, 2022; Shi et al., 060

2022) has focused on the relations and spatial com- 061

position tied to a limited context setup, as will be 062

detailed later in this paper. In our work, we propose 063

a bottom-up approach that builds upon detailed spa- 064

tial properties, providing fine control for construct- 065

ing spatial rules and context setups. We formal- 066

ize and propose Spatial Reasoning Characterization 067

(SpaRC), a systematic framework in defining spa- 068

tial properties of objects, relations, and contexts, as 069

well as how they characterize spatial composition, 070

which is inspired by the widely used benchmarks 071

SPARTUN (Mirzaee and Kordjamshidi, 2022) and 072

StepGame (Shi et al., 2022). 073

Reasoning paths are an integral part of the rea- 074

soning process and critical for analyzing and en- 075

hancing reasoning models. To the best of our 076

knowledge, unlike other reasoning tasks such as 077

mathematical reasoning, there exist no datasets 078

with textual spatial reasoning paths. In this paper 079

we develop deductively verified spatial reasoning 080

paths by using spatial reasoners to generate step- 081

by-step reasoning on SPARTUN and StepGame, 082
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which is then verbalized to form textual chain-of-083

thoughts. We show that finetuning different sizes of084

LLMs (13B and 70B) on the reasoning paths signifi-085

cantly improve their spatial reasoning performance,086

which also highlights the poor performance of the087

generalist pretrained LLMs (without finetuning) on088

spatial reasoning. In summary, our contributions089

are as follows:090

• We present a comprehensive study on the spa-091

tial reasoning capabilities of the state-of-the-092

art LLMs, under extensive setups: comprehen-093

sive spatial characterizations, different parame-094

ter scales, pretrained vs. finetuned models, and095

different decoding strategies. We show that the096

current LLMs do not perform well on the spatial097

reasoning tasks. We observe that spatial reason-098

ing is an emergent capability as model sizes scale099

up. Top proprietary LLMs still significantly out-100

perform their open-source counterparts in topo-101

logical spatial reasoning.102

• To support an in-depth study, we present103

the Spatial Reasoning Characterization (SpaRC)104

framework, a systematic bottom-up approach105

that shifts the focus towards spatial properties,106

providing a fine and flexible control on the spa-107

tial composition rules and context setups. We108

characterize and extend the widely used bench-109

mark datasets SPARTUN and StepGame under110

the SpaRC framework.111

• We develop Spatial Reasoning Paths (SpaRP) by112

generating reasoning steps using symbolic spa-113

tial reasoners and verbalizing them in a deductive114

step-by-step process. We demonstrate that fine-115

tuning large language models on our reasoning116

paths can consistently improve their spatial rea-117

soning abilities.118

2 Related Work119

Text-based Spatial Reasoning. Textual spatial120

reasoning datasets present the task as question-121

answering (SRQA) over a textual spatial context.122

Weston et al. (2016) introduced bAbI containing123

two datasets focused on positional (Task 17) and124

navigational (Task 19) reasoning. Their simplistic125

nature and small size prompted subsequent works126

to create new and challenging datasets. Mirzaee127

et al. (2021) designed reasoning rules, and created128

human-generated and synthetic context-question-129

answer tuples from spatial description of visual130

scenes (SPARTQA) to train and evaluate spatial131

reasoning of neural language models. Mirzaee132

and Kordjamshidi (2022) further extended the spa- 133

tial rules to cover 16 spatial relations over mul- 134

tiple formalism in 3D in their synthetic SPAR- 135

TUN dataset, and commonsense spatial reason- 136

ing in human-generated RESQ dataset. StepGame 137

(Shi et al., 2022) was introduced to assess robust 138

positional multi-hop spatial reasoning in 2D. Our 139

SpaRC framework builds on top of SPARTUN and 140

StepGame as they provide a broad coverage over 141

the number of hops and relations for abstract spatial 142

reasoning. 143

Reasoning Abilities of Large Language Models. 144

Certain reasoning capabilities have been shown to 145

be emergent abilities of LLMs (Wei et al., 2022a), 146

which are further elicited by various chain-of- 147

thought prompting techniques (Wei et al., 2022b; 148

Kojima et al., 2022; Yao et al., 2023; Hao et al., 149

2023). On logic-based tasks, including spatial rea- 150

soning, they however lag significantly when com- 151

pared to neuro-symbolic methods (Mirzaee and 152

Kordjamshidi, 2023; Yang et al., 2023). 153

To understand spatial reasoning abilities, Bang 154

et al. (2023) provided a preliminary probing anal- 155

ysis on ChatGPT using a very small dataset (60 156

examples from each of StepGame and SPARTQA). 157

Yang et al. (2023) evaluated the performance of 158

GPT-3 on StepGame; Mirzaee and Kordjamshidi 159

(2023) reported the performance of GPT-3 on 160

SPARTQA, SPARTUN, and RESQ datasets. How- 161

ever, these work are limited in terms of evalua- 162

tion metric, qualitative analysis, past generation of 163

LLMs, pretrained LLMs, or generation strategies. 164

To the best of our knowledge, our work is the first 165

attempt at a comprehensive evaluation of spatial 166

reasoning of LLMs under these settings. 167

3 The Spatial Reasoning Characterization 168

(SpaRC) Framework 169

The steps to identify and compose spatial relations 170

between entities distinguish spatial reasoning from 171

other reasoning tasks. Prior work e.g. SPARTUN 172

(Mirzaee and Kordjamshidi, 2022) and StepGame 173

(Shi et al., 2022), have focused directly on the spa- 174

tial composition rules coupled with the contexts, 175

which can lead to different conclusions even for 176

the same set of relations. For example, for the 177

same context “A is left of B and B is above C”, 178

applying the spatial composition of StepGame con- 179

cludes that A is to the left and above C, while no 180

directional relation between A and C can be con- 181

cluded at all by applying the spatial rules of SPAR- 182
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TUN. The conclusions are completely different but183

equally valid. This difference can be reconciled by184

examining the underlying spatial properties of the185

objects and relations, specifically the treatment of186

objects as points vs extended, and completeness187

of the knowledge of relations in the context. We,188

therefore, advocate for an extendable bottom-up189

approach starting from a more granular level and190

introduce the Spatial Reasoning Characterization191

(SpaRC) framework. SpaRC prioritizes spatial prop-192

erties over spatial composition rules. Consequently,193

it offers finer control in creating contexts and facil-194

itates a deeper and systematic examination of the195

spatial reasoning capabilities.196

To keep our work closer and comparable to197

the widely used existing benchmarks, SPAR-198

TUN (Mirzaee and Kordjamshidi, 2022) and199

StepGame (Shi et al., 2022), we identify six prop-200

erties that cover and characterize these datasets by201

two distinct and mutually exclusive sets of three202

properties each. With SpaRC, we further explore203

two properties sets (PS) with properties in common204

to these existing benchmarks.205

F Sub-Type Relations (R) Textual Label (L)

Topological TR (RCC8)

DC outside
EC outside and touching
PO partially overlapping
EQ overlapping
TPP inside and touching
NTPP inside
TPPI contains and touches
NTPPI contains

Directional

DR (Relative)

LEFT left
RIGHT right
ABOVE above
BELOW below
FRONT front
BEHIND behind

DC (Cardinal)
NORTH above
SOUTH below
EAST right
WEST left

DT (Clock)
12 o’clock above
3 o’clock right
6 o’clock below
9 o’clock left

Distance SQ(Qualitative) NEAR near
FAR far

SU (Quantitative) – –

Table 1: Formalisms (F) and their sub-types, relations
(R) in the datasets and their labels (L). Labels are
presented in natural language to work with language
models. Composite relations e.g. lower-left are consid-
ered in a multi-label setting in the present work.

3.1 Principle and Design of SpaRC206

We focus on a set of binary spatial relations R (Ta-207

ble 1) by following the previous work (Mirzaee and208

Kordjamshidi, 2022; Shi et al., 2022). The relations209

cover three formalism (F)—topological T , direc-210

tional D, and distance S, divided into sub-types—211

A

B

A

B

Extended Objects (EO)Point Objects (PO)

Relation Complete
(RC) context

Relation Incomplete
(RI) context

Context: A is to the RIGHT of B

A
AB

B

Relation Complete
(RC) context

Relation Incomplete
(RI) context

Figure 1: Visualization of Relation Complete (RC) and
Relation Incomplete (RI) contexts for the RIGHT relation
for Point Objects (PO) and Extended Objects (EO).

region connection calculus (RCC8) TR, relative 212

directions DR, cardinal directions DC , clock-face 213

directions DT , qualitative distance SQ, and quanti- 214

tative distance SU . 215

For the relations set R and a given set of entities 216

E , we denote a context C = {(h, r, t)i}Ni=1 as a set 217

of (h, r, t) tuples, where h ∈ E is a head entity, 218

t ∈ E is the tail entity, and r ∈ R is the binary 219

relation. Without loss of generality, objects are 220

considered to be in a 2D space with (xs, ys) and 221

(xe, ye) as the start and end positions. We now 222

identify and describe six spatial properties of the 223

objects, contexts, and relations that are crucial in 224

determining their spatial composition rules. Refer 225

to Appendix A for a more detailed discussion. 226

Fixed Orientation or Point of View (FPoV). 227

The directional relations are considered to be axis- 228

aligned from a fixed orientation or point of view, 229

i.e., fixed axes in a 2D or 3D space. A fixed map- 230

ping across the relative, cardinal, and clock-face 231

directions is usually chosen. Consistent with the 232

prior work, we map and canonicalize cardinal DC 233

and clock-face DT relations to four relative direc- 234

tions DR (Table 1), only for their label representa- 235

tions L. We denote the 2D subset of directions as 236
2DD = D \ {FRONT, BEHIND}. 237

Point Objects (PO). A point object satisfies 238

xs = xe ∧ ys = ye. As they are dimension- 239

less, point objects have reduced set of relations 240

with reference to other point objects. Real objects 241

can be treated as point objects in practical contexts 242

when their sizes are negligible. 243

Extended Objects (EO). An object is said to be 244

an extended object if xs ̸= xe ∨ ys ̸= ye. In SpaRC, 245

we extend StepGame by considering extended ob- 246

jects in addition to point objects. We further study 247

additional composition rules for extended objects 248

than presented in SPARTUN, as will be detailed 249

later in Section 3.2. 250
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Relation Point Objects (PO) Extended Objects (EO)
Incomplete (RI):
RIGHT(A,B) xA > xB xAs ≥ xBe
BELOW(A,B) yA < yB yAe ≤ yBs

Complete (RC):

RIGHT(A,B) xA > xB ∧ xAs ≥ xBe ∧
yA = yB yBs ≤ yAe ∧ yBe ≥ yAs

BELOW(A,B) yA < yB ∧ yAe ≤ yBs ∧
xA = xB xAs ≤ xBe ∧ xAe ≥ xBs

RIGHT(A,B) ∧ xA > xB ∧ xAs ≥ xBe ∧
BELOW(A,B) yA < yB yAe ≤ yBs

Table 2: Mathematical descriptions of Relation Incom-
plete (RI) and Relation Complete (RC) contexts for the
relations RIGHT, BELOW, and their combination in terms
of entity positions (x, y) for Point Objects (PO) or entity
boundaries (xs, xe, ys, ye) for Extended Objects (EO).

Relation Incomplete (RI). We introduce the251

term relation incomplete (RI) for a context C be-252

tween a head h and a tail t entity if not all the rela-253

tions r ∈ R between these entities are considered254

to be known and expressed in the context. Thus,255

the knowledge for the expressed relations should be256

treated as incomplete or partial for spatial composi-257

tion. For example, “Ron is to the right of Hermione”258

as a RI context means that the direction orthogonal259

to the RIGHT could be ABOVE or BELOW as well. The260

state of positions or boundaries of objects on the261

orthogonal axes cannot be assumed. Table 2 and262

Figure 1 exemplifies and visualizes this for a few263

scenarios.264

Relation Complete (RC). We introduce the term265

relation complete (RC) for a context C between266

h and t if all the relations r ∈ R between these267

entities are considered to be known and expressed268

in the context, and treated as such for spatial com-269

positions. For the previous example “Ron is to270

the right of Hermione” to be considered as RC,271

the context should mean that Ron is only to the272

RIGHT of Hermione, and not to her lower-right or273

upper-right side. The positions or boundaries of274

objects on the orthogonal direction axes should co-275

incide or overlap. Table 2 and Figure 1 exemplifies276

and visualizes this for a few scenarios. In SpaRC,277

we further consider this property in conjunction278

with other properties, such as extended objects, to279

design composition rules that are not present in280

StepGame, as discussed later in Section 3.2.281

Quantitatively Specified (QS). A relation which282

is stated in terms of a unit of measurement is said283

to be quantitatively specified in the given context.284

Quantitatively specified relations that are reverse285

of each other, e.g. {LEFT, RIGHT}, can readily be 286

composed. 287

Quantitatively Unspecified (QU). A relation 288

which can be stated in terms of a unit of measure- 289

ment but is not stated as such in a given context is 290

said to be quantitatively unspecified. Quantitatively 291

unspecified relations that are reverse of each other, 292

e.g. {LEFT, RIGHT}, cannot be composed unless 293

they are quantified. In SpaRC, we design and study 294

the reasoning abilities for this property in conjunc- 295

tion with other properties, such as point objects, 296

that are not present in SPARTUN and StepGame, 297

as discussed later in Section 3.2. 298

We restrict our study to the above 6 proper- 299

ties to keep it closer and comparable to the ex- 300

isting benchmarks, SPARTUN and StepGame. 301

These properties form 3 mutually exclusive pairs— 302

{EO,PO}, {RI,RC}, {QS,QU}, leading to 8 possible 303

sets. SpaRC can be extended with additional proper- 304

ties, however, we note that the number of possible 305

characterizations increases exponentially with the 306

number of properties. 307

3.2 Creation of The SpaRC Dataset 308

We identify the properties set PS for the existing 309

benchmarks, as formalized in the previous sec- 310

tion, based on the generation process of the con- 311

text and the spatial composition rules. More con- 312

cretely, we identify that SPARTUN is character- 313

ized by the properties set PS1 = {EO,RI,QU}, while 314

StepGame is characterized by the properties set PS2 315

= {PO,RC,QS}. These properties sets are mutually 316

exclusive with PS2 supporting stronger composi- 317

tion rules than PS1 for a given context, e.g. “A is 318

left of B and B is above C” as discussed earlier. 319

Refer to Appendix B for more details. 320

In the SpaRC framework, we construct two ad- 321

ditional datasets by relaxing the properties of 322

StepGame from PO to EO, and QS to QU. We 323

chose to extend StepGame as it is simple with 324

fewer relations (only directional which is common 325

across datasets and benchmarks) and challenging 326

(more number of hops). Concretely, we create 327

the datasets SpaRC-PS3 with the properties PS3 328

= {PO,RC,QU}, and SpaRC-PS4 with the properties 329

PS4 = {EO,RC,QU}. Their composition rules, elab- 330

orated upon in Section 4, are formalized by the 331

Algorithm 1 and Algorithm 2 respectively. 332

We confine our study to these four property sets 333

as they encompass the two existing benchmarks 334

and have covered the most interesting spatial rules 335
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Not ∀(X,Y ) ∈ Entities R ∈ {Dir ∨ PP} IF R(X,Y ) =⇒ NOT(Rreverse(X,Y ))
Inverse ∀(X,Y ) ∈ Entities R ∈ {Dir ∨ PP} IF R(Y,X) =⇒ Rreverse(X,Y )
Symmetry ∀(X,Y ) ∈ Entities R ∈ {Dis ∨ (RCC − PP )} IF R(Y,X) =⇒ R(X,Y )
Transitivity ∀(X,Y, Z) ∈ Entities R ∈ {Dir ∨ PP} IF R(X,Z), R(Z, Y ) =⇒ R(X,Y )
Combination ∀(X,Y, Z,H) ∈ Entities R ∈ Dir, ∗PP ∈ PP IF ∗PP (X,Z), R(Z,H), ∗PPi(Z, Y ) =⇒ R(X,Y )

Table 3: Spatial Rules reproduced from SPARTUN (Mirzaee and Kordjamshidi, 2022). Dir: Directional relations
(e.g., LEFT), Dis: Distance relations (e.g., FAR), PP : all Proper parts relations (NTPP, NTPPI, TPPI, TPP),
RCC − PP : All RCC8 relation except proper parts relations. ∗PP : one of TPP or NTPP. ∗PPi: one of NTPPi or
TPPi.

Dataset F Properties Textual Split # Context # Ques.
Reason.

SPARTUN

TR,D,SQ EO,RI,QU

✗
Train 6039 18400
Dev 915 2818
Test 925 2830

SpaRP-PS1 ✓
Train 5806 16348
Dev 877 2392
Test 872 2301

StepGame
2DD, SU PO,RC,QS

✗
Train 50000 50000
Dev 5000 5000
Test 100000 100000

SpaRP-PS2 ✓
Train 49243 49243
Dev 4927 4927
Test 98614 98614

SpaRP-PS3
2DD

PO,RC,QU ✓
Train 44666 44666
Dev 4494 4494
Test 78092 78092

SpaRP-PS4 EO,RC,QU ✓
Train 41436 41436
Dev 4171 4171
Test 69474 69474

Table 4: Comparison between the extended (SpaRP)
dataset and the source datasets. Descriptions of the
properties are provided in Section 3.1. Relations con-
tained in the formalisms are presented in Table 1. All
the questions are of Find Relations (FR) types.

and composition; the additional extension is more336

routine and we leave that as future work.337

4 The Spatial Reasoning Paths (SpaRP)338

Reasoning paths are an integral part of reasoning339

models and critical for analyzing and enhancing340

such models. To the best of our knowledge, unlike341

other reasoning tasks such as mathematical rea-342

soning, there exist no datasets with spatial reason-343

ing paths. In this section, we develop deductively344

verified spatial reasoning paths by verbalizing the345

symbolic steps.346

Existing spatial reasoning datasets can be con-347

sidered as a collection of context-question-answer348

(C, Q, A) tuples. Formally, we denote a context349

C = {(h, r, t)i}Ni=1 defined over a set of entities350

E and binary relations R as a set of (h, r, t) tu-351

ples, where h ∈ E is the head entity, t ∈ E is the352

tail entity and r ∈ R is the binary relation. For a353

given (C,Q,A) tuple, seeking relation between the354

head hq and tail tq entities, we define a symbolic355

reasoning path P = (li)
L
i=1 as a sequence of L356

reasoning links li = (hi, r
∪
i , ti) such that h1 = hq,357

tL = tq, and hi = ti−1 for 1 < i ≤ L. We de-358

Context: A is at B's 3 o'clock. D is to the top of E
vertically. F is above and left of C. D and C are side by
side with D to the left and C to the right. C is north of B.
C is south west of G.

Question: What is the relation of agent A to agent E?
A

G
F

C

BE

D

Context & traversal
visualizationStep 1: From the context, A is right of B.

Step 2: From the context, C is above B.
Step 3: From step 2, we can infer that B is below C.
Step 4: From step 1 and 3, we can infer that A is below
and right of C.
Step 5: From the context, C is right of D.
Step 6: From step 4 and 5, we can infer that A is below
and 2 unit right of D.
Step 7: From the context, D is above E.
Step 8: From step 6 and 7, it can be inferred that A is 2
unit right of E. Spatial Reasoner

Figure 2: Our step-by-step deductive Spatial Reasoning
Paths (SpaRP) generation. A context graph and node
traversal from the head to the tail entity in a question is
identified and verbalized. Blue indicates context rela-
tions rc, red indicates inverse context relations ric, and
green indicates deduced relations rd between entities
while traversing the reasoning path A–B–C–D–E.

fine r∪ = rc ∪ ric ∪ rd, where rc denotes the set 359

of relations present in the context, ric denotes the 360

inverse relations present in the context i.e. relations 361

from t to h, and rd denotes the set of deduced rela- 362

tions. Following the format of deductively verified 363

chain-of-thought (Ling et al., 2023), we verbalize 364

the reasoning path P as a series of step-by-step 365

reasoning sentences, where each step receives their 366

necessary context and premises (Figure 2). The 367

overall process is as given below: 368

1. Entities and their relations in the contexts are ei- 369

ther pre-annotated (SPARTUN) or extracted us- 370

ing regex pattern matching (StepGame) to con- 371

struct the symbolic context C. 372

2. A traversal path P is identified from hq to tq 373

by constructing a network graph over C. The 374

deduced relations rd are initialized to be the 375

inverse of ric, to traverse and merge steps in a 376

single direction from hq to tq (Figure 2). 377

3. We traverse the path P , progressively merging 378

the links (as hi = ti−1) and updating the de- 379

duced relations rd based on the properties set 380

PS and their spatial composition rules: 381

• For SPARTUN we reuse the rules from 382
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Algorithm 1 Relative Direction composition for
set of properties PS2 and PS3 in 2D.
Input: Pairs to compose {pair1, pair2}.

quantitative ∈ {true, false}.
Output: merged pair.
1: /* initialized pair starts with dx = dy = 0 */
2: merged← InitializePair
3: merged.head← pair1.head
4: merged.tail← pair2.tail
5: for pair ∈ {pair1, pair2} do
6: for delta ∈ {dx, dy} do
7: delta← merged.delta+ pair.delta
8: /* Handle direction reversal and quantitatively

unspecified */
9: if (merged.delta× pair.delta < 0) and not

quantitative then
10: /* Set as NaN to invalidate compositions

from now on in this direction */
11: merged.delta← NaN
12: else
13: merged.delta← delta
14: end if
15: end for
16: end for

Mirzaee and Kordjamshidi (2022), reproduced383

in Table 3.384

• For StepGame and SpaRC-PS3, we represent385

the relative positions as signed integers on386

the x and y axis, and numerically compose387

them (Algorithm 1). Without the quantitative388

knowledge of backtracking along a given axis,389

e.g. x-axis for {LEFT, RIGHT}, no subsequent390

inferences can be made for those directions.391

• For SpaRC-PS4, the relations in context can be392

expressed as logical conjunction ∧ of inequali-393

ties, refer Section 3, Table 2, and Figure 1. For394

composition of relations to merge reasoning395

steps, consistency of inequalities for relations396

r ∈ D is checked and the deduced relations397

set rd is updated (Algorithm 2).398

4. We finally verbalize the reasoning path P link-399

by-link (Figure 2) following the format of de-400

ductively verified chain-of-thought (Ling et al.,401

2023). However, instead of generating and self-402

verifying LLM outputs, we use spatial reasoners403

for ground truth generation.404

We denote the extended dataset as Spatial405

Reasoning Paths (SpaRP). Specifically, we406

exended SPARTUN, StepGame, SpaRC-PS3,407

and SpaRC-PS4, to be SpaRP-PS1, SpaRP-PS2,408

SpaRP-PS3 and SpaRP-PS4, respectively, by409

enriching the former with the reasoning paths.410

A comparison of the derived datasets with the411

original datasets is summarized in Table 4.412

Algorithm 2 Relative Direction composition for
set of properties PS4 in 2D.
Input: Pairs to compose {pair1, pair2}.

current set of constraint inequalities ineq
Output: merged pair and updated inequalities ineq.
1: /* initialize an empty pair */
2: merged← InitializePair
3: merged.head← pair1.head
4: merged.tail← pair2.tail
5: for rel ∈ {LEFT, RIGHT, ABOVE, BELOW} do
6: candidate_ineq ← substitute_entities(
7: rel.ineq, merged.head, merged.tail)
8: consistent← check_consistency(
9: candidate_ineq, ineq)

10: if consistent then
11: insert(candidate_ineq, ineq)
12: insert(rel, merged.relations)
13: end if
14: end for

5 Experimental Setup 413

Dataset. Due to the expense and resource lim- 414

itations for running LLMs, for each of the four 415

subsets of SpaRP, we randomly sample 2000, 500, 416

and 1000 datapoints as our training, validation, and 417

test set, respectively. We call them small SpaRP, or 418

SpaRP-S. We also randomly sample equal number 419

of instances for each number of hops in the reason- 420

ing path. Additionally, we collect five diverse sets 421

of human-generated natural language descriptions 422

of the properties relevant to spatial compositions, 423

and construct a system prompt template with a uni- 424

fied task instruction using these descriptions. 425

Implementation Details. To help replicability, 426

we include implementation details such as dataset 427

sampling, system prompt, and training parameters 428

in Appendix-C. 429

Evaluation Metrics. We use exact-match accu- 430

racy and macro-averaged F1-scores1. 431

6 Results and Analysis 432

We run experiments with three state-of-the-art 433

LLMs — Llama-2-13B, Llama-2-70B (Touvron 434

et al., 2023), and GPT-4, each with both single 435

greedy decoding and self-consistency (Wang et al., 436

2023) with majority voting over 20 generations 437

with sampling (SC=20). Inputs are provided with a 438

“system prompt” containing task instructions and 5- 439

shot CoT with randomly sampled exemplars from 440

the relevant dev-set. We also finetune Llama-2 13B 441

and 70B models, indicated by FT in Table 5, using 442

1We used the scikit-learn v1.3.2 library
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Dataset Model Acc. F1

Sp
aR

P-
S-

PS
1

(S
PA

R
T

U
N

)

Llama-2-13B 0.2 0.49
Llama-2-13B-FT 18.9 22.23

Llama-2-70B 10.1 23.37
Llama-2-70B-FT 28 36.49
Llama-2-70BSC=20 17.1 27.95

GPT-4 46.8 54.30
GPT-4SC=20 54.3 60.32
SOTA (PISTAQ) 94.52 –

Sp
aR

P-
S-

PS
2

(S
te

pG
am

e)

Llama-2-13B 0.1 0.47
Llama-2-13B-FT 13.7 33.23

Llama-2-70B 10.6 26.41
Llama-2-70B-FT 16.6 34.63
Llama-2-70BSC=20 20.30 38.96

GPT-4 23.9 41.09
GPT-4SC=20 28.6 43.01
SOTA (LLM-ASP) 90.88 –

Sp
aR

P-
S-

PS
3

Llama-2-13B 0.2 0.92
Llama-2-13B-FT 27.3 32.01

Llama-2-70B 9.4 25.27
Llama-2-70B-FT 19.5 32.97
Llama-2-70BSC=20 15.2 32.01

GPT-4 23.8 35.17
GPT-4SC=20 32.5 42.06

Sp
aR

P-
S-

PS
4

Llama-2-13B 0.7 1.84
Llama-2-13B-FT 30.6 31.62

Llama-2-70B 9.0 22.13
Llama-2-70B-FT 20 31.74
Llama-2-70BSC=20 18.3 29.73

GPT-4 21.7 33.02
GPT-4SC=20 32.9 40.23

Table 5: Performance evaluations of Llama-2 (13B and
70B) and GPT-4 models on the individual datasets.

QLoRA (Dettmers et al., 2023) on the verbalized443

reasoning paths made available by SpaRP.444

Overall Results. As shown in Table 5, we can445

observe that the performance of all the state-of-446

the-art LLMs on the spatial reasoning datasets are447

low, lagging significantly behind the existing state-448

of-the-art symbolic-based models such as PISTAQ449

(Mirzaee and Kordjamshidi, 2023) and LLM-ASP450

(Yang et al., 2023) on SPARTUN and StepGame,451

respectively, suggesting that if these generalist452

models are to be used for any spatial-reasoning-453

related tasks (e.g., in LLMs-based agents), caution454

should be exerted.455

Among these models, GPT-4 under SC=20456

exhibits the best performance overall, followed457

closely by GPT-4 with greedy decoding. The latter458

outperforms even the largest open-source Llama-2-459

70B model with SC=20.460

We also observed the emergent abilities of LLMs461

on spatial reasoning as model sizes scale up. The462
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Figure 3: F1 scores vs. number of hops for spatial
reasoning.
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Figure 4: F1 scores of individual labels.

F1-score of Llama-2 13B model on SpaRP-S-PS1 463

(SPARTUN) is only 0.49 (no spatial reasoning abil- 464

ity), significantly lower than the 23.37 F1-score of 465

the 70B model. Similarly, for SpaRP-S-PS3, the 466

F1-scores are 0.92 and 25.27 for the 13B and 70B 467

models, respectively. This is also observed on the 468

other datasets. 469

Impact of Spatial Properties and Composition 470

Rules. StepGame and SpaRP-PS3 consider en- 471

tities as point objects (PO), however, SpaRP-PS3 472

does not quantify directions rendering them not 473

composable while backtracking, e.g. RIGHT fol- 474

lowed by LEFT is not composable. SpaRP-PS4 con- 475

siders entities as real objects with extended sizes, 476

thereby introducing added complexity to spatial 477

relation composition (Section 4 and Algorithm 2). 478

The F1-scores (Table 5) of both GPT-4 and Llama- 479

2 underscore these challenges. 480

Furthermore, Figure 3 demonstrates that 481

the F1-scores for both SpaRP-S-PS3 and 482

SpaRP-S-PS4 consistently trail those of 483

SpaRP-S-PS2 (StepGame) across varying 484

numbers of hops. This highlights the utility of 485

our SpaRC framework in identifying additional 486

challenges that are not addressed by the existing 487

benchmarks. 488

Relation-wise Performance. The performance 489

of GPT-4 is significantly better compared to Llama- 490

2 models on SpaRP-S-PS1 (SPARTUN), which 491
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Errors, examples and explanations
Error: Incorrect relation extraction
Context: Box EEE has a tiny white rectangle and covers a
midsize white diamond.
Extracted: Step 7: It is given that the tiny white rectangle is
inside and touching the box EEE.
Explanation: Has only means inside.

Error: Reverse answer
Question: What is the relation of the agent W to the agent X?
Answer Step: Step 8: From step 5 and 7, we can infer that X
is above and left of W. Hence, the answer is above, and left.
Explanation: Directional relations are non-symmetric. Ques-
tion is from W to X, while answer is from X to W.
Error: Copied, not composed
Reasoning Steps: Step 6: From step 4 and 5, we can infer
that A is below and right of S. Step 7: From the context, S is
left of M. Step 8: From step 6 and 7, we can infer that A is
below and right of M.
Explanation: Relation from S to M not used in composition.
Instead, relation from A to S is copied in step 8.

Error: Composed without connection
Reasoning Steps: Step 5: From step 3 and 4, we can infer
that Y is right of L. Step 14: From step 12 and 13, we can
infer that C is below and right of K. Step 15: From step 5 and
14, we can infer that C is below and right of L.
Explanation: No common entity between merged steps 5 and
14 which are 9 steps apart.

Table 6: Errors, their examples (only relevant steps) and
explanations in the model generated reasoning paths.

has a larger candidate set comprising of 16 rela-492

tions, including 8 topological relations. In contrast,493

SpaRP-S-PS2 (StepGame) has a smaller candidate494

set consisting of only directional relations. This495

highlights a notable deficiency in Llama-2 regard-496

ing the understanding and composition of topologi-497

cal relations. More importantly, even the finetuned498

Llama-2 model falls short of GPT-4’s performance.499

The top proprietary LLMs still significantly outper-500

form their open-source counterparts in topological501

spatial reasoning.502

Additionally, Figure 3 demonstrates that even503

when controlling for the same number of hops,504

the F1-scores of Llama-2 on SpaRP-S-PS1505

(SPARTUN) rank lowest across all hops. An ex-506

amination of F1-scores on a per-relation basis (Fig-507

ure 4) further confirms this difficulty of topological508

relations for Llama-2 models compared to GPT-4.509

Finetuning with Reasoning Paths. We observe510

that finetuning the 13B and 70B models with the511

reasoning paths made available in SpaRP consis-512

tently improves the spatial reasoning capabilities.513

Finetuning consistently boosts the F1-score by 21–514

32 and 7–13 points for 13B and 70B models respec-515

tively, across the datasets. In specific instances, the516

accuracy of a finetuned 13B model surpasses that517

of 5-10 times larger models such as Llama-2-70B518

with SC=20, and GPT-4. We hope the proposed 519

reasoning-path generation can be further used for 520

improving LLMs’ explainability and robustness on 521

spatial reasoning. 522

Error Analysis of Reasoning Paths. We sam- 523

pled and manually analyzed a total of 80 model 524

generated reasoning paths across all datasets for 525

both the GPT-4 and Llama-2 70B models. The 526

deductive step-by-step reasoning path made avail- 527

able by SpaRP proves to be useful in identifying 528

errors in the generated outputs (Table 6). Com- 529

monly observed errors include incorrect parsing or 530

retrieval of relations from the contexts, especially 531

for topological relations. Additionally, we observe 532

instances of reverse answering, where relations be- 533

tween tail to head entities are returned instead of 534

head to tail entities in a question. More complex 535

reasoning failures involve copying relations from 536

one of the reasoning steps instead of composing 537

them. Similarly, composing relations between rea- 538

soning steps without a common entity is observed 539

frequently over distant steps. Additional errors 540

with examples are provided in Appendix D. These 541

errors are more prevalent in Llama-2 models, re- 542

sulting in poorer performance compared to GPT-4. 543

7 Conclusion 544

Spatial reasoning is one of the basic components 545

of intelligence. We perform a study on the spa- 546

tial reasoning abilities of the latest LLMs under 547

comprehensive setups. To support the study, we 548

introduce (SpaRC), a systematic framework to char- 549

acterize spatial reasoning scenarios by identifying 550

and defining six spatial properties of objects, spa- 551

tial relations, and contexts, and their impact on the 552

spatial composition rules. Based on that, we create 553

the (SpaRP) reasoning paths for the datasets. We 554

found that the state-of-the-art LLMs do not per- 555

form well on the datasets — their performances are 556

consistently low across different setups. The spa- 557

tial reasoning is an emergent capability as model 558

sizes scale up. Finetuning both large language 559

models (e.g., Llama-2-70B) and smaller ones (e.g., 560

Llama-2-13B) can significantly improve their per- 561

formance by 7–32 points on F1-scores. We also 562

found top proprietary LLMs still significantly out- 563

perform their open-source counterparts in topolog- 564

ical spatial understanding and reasoning. We pro- 565

vide detailed analyses and insights in our experi- 566

ments. 567
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Limitations568

We aimed to characterize various properties of the569

objects, relations, contexts and the associated spa-570

tial composition rules. We, however, note that571

the spatial scenarios, relations and interactions be-572

tween objects can still be incomplete. Further, the573

existing datasets and our extensions of them still574

pertain to a limited combination of the character-575

izations in isolation in a context. Even with our576

proposed characterizations, a combination of these577

within a single context is common in the real world,578

including multi-modality with visual perception,579

which we haven’t considered in our current study.580

The base datasets, although textual, are synthetic in581

nature. Combined with the use of symbolic reason-582

ers for our reasoning path generation, our dataset583

inherit all the associated limitations such as relative584

lack of linguistic diversity, types of objects, rela-585

tions etc. Finally we note that due to the cost and586

resource constraints of using LLMs, we worked587

with a smaller set of about 1000 test instances per588

dataset, which is a common data size to work with589

LLMs.590
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A Additional details and comparison of 760

spatial properties in SpaRC 761

A symbolic context C = {(h, r, t)i}Ni=1 is usually 762

verbalized as several natural language sentences. 763

However, we note that the verbalization can be a 764

conjunction of multiple tuples in a single context 765

sentence e.g. “Objects A and B are inside the box 766

C”, or “Entity X is below and left of entity Y”. Such 767

verbalization is common in existing benchmarks, 768

including SPARTUN and StepGame. 769

Fixed Orientation or Point of View (FPoV). 770

The relations are considered to axis-aligned from 771

a globally fixed orientation or point of view, i.e., 772

fixed axes in a 2D or 3D space. We note that the 773

cardinal (DC) and clock-face (DT ) directions have 774

only 4 relations in 2D. With the set of relative direc- 775

tions (DR) being larger (6 relations in 3D), DC and 776

DT are mapped and canonicalized to four of the rel- 777

ative directions only for their label representations 778

L (Table 1). Their understanding in the contexts 779

and questions is still required. Additionally, the 780

understanding of the map to a canonicalized label 781

is also required to return correct answers. 782

Point Objects (PO) vs Extended Objects (EO). 783

Point objects are entities that are either dimension- 784

less i.e. their boundaries on all axes coincide, or 785

can be treated as such in a given context. Since 786

they are dimensionless, in relation to other point 787

objects, the possible topological TR relation (Table 788
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1) collapses just to {DC, EQ} i.e. outside or “dis-789

connected”, and overlapping respectively. When790

combined with other formalisms such as directional791

relations (D), even DC becomes redundant as the792

presence of any directional relation implies that793

the objects are not at the same position. Although794

point objects are purely mathematical constructs,795

real objects can often be treated as point objects796

in practical contexts. For example when the sizes797

of the objects can be ignored in relation to the dis-798

tances between them. e.g. discussing spatial (direc-799

tional) relations between buildings across several800

towns.801

Extended Objects, on the other hand, are entities802

that are not dimensionless, i.e. their boundaries803

on at least one axis extends or has a spread. All804

real objects are extended objects. Dimensions of805

objects cannot be ignored when the distances be-806

tween them are comparable to their sizes for spatial807

rule compositions and thus they must be treated as808

extended objects e.g. “a number of curious silver809

instruments” standing on Dumbledore’s “spindle-810

legged tables”.811

Relation Incomplete (RI) vs Relation Complete812

(RC). For a set of relations R, the contexts are813

usually relation incomplete in several real-world814

scenarios or when |R| is relatively large. On the815

other hand, the contexts can be relation complete816

in the real-world scenarios if |R| is relatively small,817

and one needs to emphasize and be specific.818

Quantitatively Specified (QS) vs Quantitatively819

Unspecified (QU). For our current set of formal-820

ism (Table 1), some topological relations r ∈ T \821

{EC, EQ, TPP, TPPI} and all the directional822

relations r ∈ D can be quantitatively specified.823

However, the topological relations are usually con-824

sidered qualitatively, although there are metric825

based calculus for RCC8 and other topological re-826

lations as well. For example, context statements827

“Hogwarts is 200 miles to the left of the Azkaban828

Fortress” and “The Quidditch Stadium is inside and829

1 KM away from the Hogwarts School’s northern830

boundary” have LEFT and NTPP (inside) as quanti-831

tatively specified relations respectively. Quantita-832

tively specified relations that are reverse of each833

other, such as LEFT and RIGHT, can readily be com-834

posed. For example, we can infer that Harry is835

2 unit right of Ron, from the context statements836

– Harry is 3 unit left of Hermione, and Hermione837

is 5 unit right of Ron. Relations are quantitatively838

specified when their measurements are required in839

a context directly, or to infer other spatial relations 840

indirectly. 841

On the other hand, for the previous examples, the 842

context statements “Hogwarts is to the left of the 843

Azkaban Fortress” and “The Quidditch Stadium 844

is inside the Hogwarts School” are quantitatively 845

unspecified for the relations LEFT and NTPP (inside) 846

respectively. Quantitatively unspecified relations 847

that are reverse of each other, such as LEFT and 848

RIGHT, cannot be composed unless the relations 849

are quantified. For example, directional relation 850

between Harry and Ron cannot be determined from 851

the context statements – Harry is left of Hermione, 852

and Hermione is right of Ron. 853

Mutual Exclusitivity of Spatial Relations. 854

While the reverse relations in any formalism can- 855

not occur simultaneously, under RCC8 calculus, 856

multiple topological relations TR cannot occur si- 857

multaneously for the same ordered pair of entities 858

even if they are not reverse of each others. Thus, 859

for a given relation r ∈ TR and an ordered pair of 860

entities (X,Y ): 861

r(X,Y ) =⇒ NOT(r′(X,Y )) ∀r′ ∈ TR \ r 862

For example, TPP (inside and touching) and NTPP 863

(inside) are exclusive in RCC8. Stating a single 864

topological relation in TR makes the context Rela- 865

tion Complete (RC) in (and only in) TR. 866

However, negative implications are only for re- 867

verse relations in directional formalism D. Orthog- 868

onal relations such as LEFT and ABOVE can be simul- 869

taneously true for a set of ordered pair of entities. 870

As directional relations are not symmetric, we will 871

always mean an ordered pair or sequence of enti- 872

ties while discussing them, unless stated otherwise. 873

Hence, Relation Incomplete (RI) contexts can be 874

quite common in terms of directional relations. 875

B Characterization of SPARTUN and 876

StepGame 877

Although the existing datasets, inlcuding SPAR- 878

TUN and StepGame, do not explicitly consider the 879

spatial properties, their contexts and spatial com- 880

position rules conform to a set of these properties 881

referenced in Section 3.1. StepGame considers en- 882

tities in a completely abstract sense placed on a 883

grid (Figure 5). They support only directional re- 884

lations (including composites such as lower-left) 885

and an overlap. Hence, objects can either be com- 886

pletely overlapping or completely separate. Their 887

placement on the grid is also in terms of implicit 888

unit of measurements. An overlap and unrestricted 889
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Figure 5: An example reproduced from the StepGame
(Shi et al., 2022).

numerical composition of directions during their890

generation process coupled with the complete ab-891

stract representation of the entities essentially make892

them to be point objects (PO) and quantitatively893

specified (QS). Additionally their clear and com-894

plete expressions such as “BB is to the right of895

AA”, “BB is at the 3 o’clock position relative to896

AA”, and “AA and BB are horizontal and AA is to897

the right of BB” all considered equivalent means898

that when the relation is expressed as RIGHT, it899

means exactly and only RIGHT and this relation is900

completely known and they correspond to the re-901

lation complete (RC) context. This is why they902

support strong compositions for example presented903

at the beginning of Section 3 – “A is left of B and904

B is above C” =⇒ “A is to the left and above C”.905

Hence, the properties set of StepGame is {PO, RC,906

QS}.907

SPARTUN on the other hand considers objects908

that have shapes and sizes as they built their dataset909

on top of NLVR images and scene graphs with dif-910

ferent sizes of objects and blocks, and support of911

topological relations such as containment, inside912

etc. Hence, their entities are extended objects (EO).913

Their spatial rules (Table 3) also do not consider914

quantitative relations either explicitly or implicitly.915

Finally their spatial rules also do not make any916

assumption about the alignment of directional rela-917

tions to be exactly parallel to an axis system. That918

is why a statement such as “A is to the left of B”919

doesn’t rule out the possibility of A additionally920

being above or below B i.e. the relations are not921

necessarily only as stated and other directional re-922

lations would still needs to be checked rather than923

assumed to be not present. This is in contrast with924

StepGame. Thus, the properties set of SPARTUN925

is {EO, RI, QU}. This is why applying their spa-926

tial rules (Table 3) lead to no conclusion for the927

previous example “A is left of B and B is above C”928

presented at the beginning of Section 3. SPARTUN 929

composition rules are thus weaker in comparison 930

to StepGame’s composition based on these differ- 931

ences in their properties sets. 932

C Implementation Details 933

C.1 Datasets and Prompts 934

We created the SpaRP-S dataset with train, valida- 935

tion, and test splits of sizes 2000, 500, and 1000 936

respectively for each sub-dataset of SpaRP. To en- 937

sure a fair distribution of the difficulty level, we 938

randomly sample equal number of instances for 939

each number of hops (of entities) in the reason- 940

ing path. The final distribution is still skewed due 941

to less number of instances for higher number of 942

hops in SPARTUN. Additionally, we collect five 943

diverse sets of human-generated natural language 944

descriptions of the properties (Table 7) relevant to 945

spatial compositions (Section 3.1). We construct 946

a system prompt template with a unified task in- 947

struction and populate it with randomly sampled 948

natural language descriptions for each instances of 949

each sub-dataset. The system prompt template and 950

the human-generated descriptions are presented in 951

Table 7 through Table 13. 952

C.2 Model configurations and training setup 953

To assess the spatial understanding and reasoning 954

abilities of LLMs over varying model sizes, we 955

run experiments with three model variants (all chat 956

versions) – Llama-2-13B, Llama-2-70B, and GPT- 957

4. The default GPT-4 i.e. GPT-4-0613 used in the 958

experiments was accessed between Dec 1 2023 to 959

Jan 31 2024. 960

We finetune a single model 13B and 70B mod- 961

els on all the four datasets i.e. SpaRP-S-1 962

(SPARTUN), SpaRP-S-PS2 (StepGame), 963

SpaRP-S-PS3, and SpaRP-S-PS4. For fine- 964

tuning, we used QLoRA (Dettmers et al., 2023) 965

with 8-bit quantization, LoRA α = 16, and LoRA 966

config r = 64. We trained for 3 epochs with a 967

learning rate lr = 1e−4, paged AdamW optimizer, 968

cosine lr scheduler, and an effective batch size of 969

32 using gradient accumulation. 970

D Reasoning errors and their examples 971

We randomly sampled and manually analyzed 80 972

model generated reasoning paths to identify the 973

errors and understand the discrepancy in the GPT-4 974

and Llama-2 70B models. A collection of several 975

errors, their examples in terms of reasoning steps, 976
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Terminology Descriptions

System
Instruction
Template

You are an expert assistant with the knowledge of spatial relations and the rules to compose them under the assumptions that the
contexts provided are of ‘{point_of_view_type}’, the objects or entities are to be treated as ‘{entity_type}’, the directions are
‘{quantitative_type}’, and ‘{relation_type}’. The description of these terminologies are as given below:

{point_of_view_type}: {point_of_view_type_desc}{point_of_view_type_default}

{entity_type}: {entity_type_desc}{entity_type_default}

{quantitative_type}: {quantitative_type_desc}{quantitative_type_default}

{relation_type}: {relation_type_desc}{relation_type_default}

You need to identify the sub-set of entities from the context that are relevant as well as combine their spatial relations with valid
compositions under the above mentioned assumptions to find the spatial relations between the entities in the asked questions.
The list of all possible spatial relations are: {spatial_relation_choices}. Always provide the final answer, only and only, in terms
of these spatial relations. Include all the spatial relations that hold true as the answer, in case of multiple correct choices.

Fixed Orien-
tation Point
of View

The spatial relations are expressed from a single, consistent and unchanging perspective. This means that the observations are
made from a global viewpoint that remains same and constant for all the entities in a given context. Hence, relations such as
relative directions e.g. left or right always refer to the same directions and there is a one-to-one mapping between relative,
cardinal and clock-face directions i.e. left is same as west or 9 o’clock position, right is same as east or 3 o’clock position, above
is same as north or 12 o’clock position, and below is same as south or 6 o’clock position.

Implicit
Quantifica-
tion

Unless otherwise stated, consider the direction relations specified in the context to be of 1 unit distance. For example, the
sentence, entity X is to the lower-left of entity Y means that the entity X is 1 unit to the left and 1 unit below the entity Y.

Table 7: Human-generated natural language descriptions for common terminologies, defaults and system instruction.
Terms inside {} are placeholders that are further replaced with their language descriptions. For current work,
point_of_view_type is always Fixed Orientation Point of View and the only default available is for quantitative_type
= Quantitatively Specified (QS) with quantitative_type_default = Implicit Quantification. All other placeholders are
replaced by randomly sampled descriptions from one of their 5 diverse human-generated descriptions presented in
Table 8 through Table 13. The spatial_relation_choices are the relevant labels L from Table 1.

Diverse human-generated Descriptions for Point Objects (PO)

Description 1: Two objects can be treated as Point Objects in a given context for specifying their spatial relations if they are
extremely small such that their sizes are immaterial, or if they are of similar or even varying shapes and sizes but are placed
sufficiently far enough that their shapes and sizes can be ignored to state and compose spatial relations between them. This leads
to a limitation on the spatial relations that can be specified between objects e.g. containment, but simpler relation compositions
since shapes and sizes of the objects need not be considered. For example, a tea-cup and an apple on a table, or a school building
and a warehouse that are miles away can be considered as point objects.
Description 2: While composing spatial relations between objects, they can be considered as Point Objects if they can be
treated as dimensionless i.e. if (1) their sizes are so small that they can be neglected or (2) the size and shape of the objects are
negligible compared to the great distance between the objects. Although this situation may prevent to express certain relations
like containment, it provides simpler spatial relation statements and compositions over multiple objects, since the size and shape
are not considered. For example, two balls on the basketball pitch or two buildings that are separated with 2 KM distance.
Description 3: Point Objects are small objects in a given context, whose sizes and shapes can be ignored. Thus, only their
locations and orientations are considered when specifying spatial relations, leading to less number of relations and their simpler
combinations over objects. A typical example of point objects can be buildings on a map or beads on a table.
Description 4: In this scenario, objects can be treated as Point Objects if they are extremely small or far apart to the extent
that their shapes and sizes can be ignored. In such cases, certain spatial relationships, like containment, become inapplicable.
Additionally, since the shapes and sizes of the objects are not important, relationship compositions can be simpler. For example,
two cars that are miles apart can be considered as point objects.
Description 5: Entities can be treated as Point Objects when the distance between them relative to their sizes is either large or
can be ignored. Therefore when providing spatial relations between them, a limited set of relations with simpler composition
rules is possible. For example, when someone says, a cafe and a house that are far apart can be treated as point objects.

Table 8: Five diverse human-generated natural language descriptions of Point Objects (PO).
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Diverse human-generated Descriptions for Extended Objects (EO)

Description 1: Two objects are to be treated as Extended Objects in a given context for specifying their spatial relations if their
shapes and sizes in comparison to the distances between them can not be ignored to state and compose spatial relations between
them. This leads to more number of possible spatial relations that can be specified between objects e.g. containment, but reduces
the number while increasing the complexity of possible relation compositions, as the shapes and sizes of the objects can neither
be assumed nor be discarded. For example, a tea-cup and a tube-light, or a table and a cupboard in a room are to be considered
as extended objects.
Description 2: If the distance between objects is comparable to the shapes and sizes of the objects while specifying the spatial
relations, the objects are considered as Extended Objects i.e. they can’t be treated as dimensionless and they have significant
length, breadth or height in comparison to the distances between the objects in the context. Although this gives an opportunity to
use more specific spatial relations like touching or containment, the complexity of compositions increases. A basket and an apple
in it or two entities, X and Y, in a room can be given as examples.
Description 3: Extended Objects refer to objects, whose shapes and sizes can affect the spatial relations that can be specified
and the way they can be combined between objects. This leads to more number of relations and the combination of relations
have to be minimal in the absence of the information about the shape and size of the objects. Examples of extended objects
include buildings on a street or boxes in a room.
Description 4: In this scenario, two objects are considered to be Extended Objects if their shapes and sizes, in comparison to
the distances between them, cannot be ignored. In such cases, a larger set of spatial relations between objects can be specified,
although the relation composition becomes more limited when the shapes and sizes of the objects are unknown compared to
when this information is known. For example, a tea-cup and a lamp or a sofa and a TV in a room can be considered as extended
objects.
Description 5: Entities can be treated as Extended Objects if they have shapes and sizes which are not to be ignored in the
context. Because of this, although a larger set of relations is possible between objects but the composition rules can become
complex. For example, a cafe and a mall building can be treated as extended objects and the cafe can be a part of i.e. inside the
mall building itself.

Table 9: Five diverse human-generated natural language descriptions of Extended Objects (EO).

Diverse human-generated Descriptions for Relation Incomplete (RI) contexts

Description 1: Not all set of possible spatial relations that hold true between two objects are stated while specifying the relations
between those objects. Thus, there could be multiple possible spatial configurations that conform to the stated relations between
the objects. For example, the statement, object A is to the left of object B, when considered as relation incomplete could mean
that A may or may not be strictly only to the left of B, i.e. it can be either only to the left, or is to the left and above, or is to the
left and below B.
Description 2: Although some spatial relations between two objects exist, they might be overlooked while expressing the
relations between those objects. Therefore, other valid configurations, which are compatible with the expression but not explicitly
specified, may also exist. For instance, the relation incomplete expression, the entity X is to the left of the entity Y does not have
to mean that X is to the left of Y and they are strictly aligned at the same time. The entity X can be both to the left and bottom
(or above etc.) of the entity Y.
Description 3: An incomplete spatial relationship corresponds to the insufficient information or context to decide the exact
spatial relationship between objects, leading to ambiguation. In other words, there can be multiple valid spatial arrangements or
layouts that hold true to each incomplete relation. For example, given the incomplete statement that box ‘one’ is in front of box
‘two’, it holds true for multiple arrangements such as box ‘one’ is to the right and front of box ‘two’, or box ‘one’ is to the left
and front of box ‘two’.
Description 4: Relations are incomplete in the context statements if not all the spatial relationships that exist between two
objects are stated. In such cases, multiple spatial outline or positioning of the objects are possible, without a single definitive
truth. For example, consider the relationship - the fruit F is behind the object O in a 2D plane. Although O is in front of F,
their relative position on the horizontal axis is incomplete, and hence, could be left, right or at the same place when considered
horizontally.
Description 5: The provided set of spatial relations between two objects may not be enough to communicate the complete
spatial position between them. Therefore, for the provided spatial information between two objects more than one arrangement
is possible. For example, a metal ball is hanging below a metal beam in the workshop - can mean various spatial positions such
as the metal ball is below the beam, or additionally, it can be to the right or left and away from the beam in consideration.

Table 10: Five diverse human-generated natural language descriptions of Relation Incomplete (RI).
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Diverse human-generated Descriptions for Relation Complete (RC) contexts

Description 1: All set of possible spatial relations that hold true between two objects are stated while specifying the relations
between those objects. Hence, there is only one spatial configuration that conforms to the stated relations between the objects.
For example, the statement, object A is to the left of object B, when considered as complete could only and only mean that A is
to the left of B.
Description 2: All existing spatial relations between two objects are included while expressing the relations. Therefore, there
is one-to-one mapping between spatial configuations and expressed spatial relations between objects. For instance, a relation
complete statement, the entity X is to the right of the entity Y means that X is to the right of Y and they are aligned.
Description 3: Completely specified spatial relations refer to the complete sets of spatial relations that can be held as well as
stated between objects. Thus, there can be only one valid spatial arrangement or layout that holds true for a relation complete
statement. An example is that box ‘one’ is in front of box ‘two’ and they are in the same line that denotes front in a given fixed
orientation for all.
Description 4: Relations are complete in a setting, if all the spatial relationships between two objects are stated. In such cases,
there is a single ground truth spatial outline or positioning of the objects. For example, consider the relationship - the fruit F is
behind the object O in a 2D plane. This means that O is strictly and only in front of F and are aligned on the axis i.e. can be
considered to be neither left nor right but at the same position on the horizontal axis.
Description 5: The provided set of relations between two objects are enough to know the actual spatial position between them.
Therefore, no additional information is needed to understand the actual position between two objects. For example, a metal ball
is hanging below a metal beam in the workshop means that the ball is below the beam and not to its left or right.

Table 11: Five diverse human-generated natural language descriptions of Relation Complete (RC).

Diverse human-generated Descriptions for Quantitatively Specified (QS) relations

Description 1: Spatial relations, such as directions, specified between two objects are said to be Quantitatively Specified if those
relations can have a unit of measurement and are also stated, implicitly or explicitly, in the specified context. The composition of
such relations is always possible when all the object parameters and the relations between any two objects in a statement are
completely known. For example, with constraints such as objects A, B and C are apples lying in a line and the relation specified
are of 1 unit measurement when not mentioned explicitly, the quantitatively specified statements - B is 3 units to the left of A,
and C is to the right of B - can lead to the only conclusion that A is 2 units to the right of C, or its inverse equivalent i.e. C is 2
units to the left of A.
Description 2: Unit of measurements in spatial relations (e.g., directions) between two objects needs to be explicitly or implicitly
specified for these relations to be called as Quantitatively Specified. The composition of such relations can be determined when
all other object parameters and relations of two objects are given. For example, let entities X and Z be perfect round shaped balls.
Let entity Y be a round basket with 10 unit radius and let centers of all objects are horizontally aligned. If X is 1 unit to the left
of the center of Y and Z is 2 units to the left of X, then Z is inside the basket and 3 units to the left of the center of the basket Y.
Description 3: Spatial relations are Quantitatively Specified when these relations are defined with a specific unit of measurement
such as meters or miles. The relation compositions over objects become deterministic if all the other object parameters and the
relationships between them are provided. For example, box ‘one’ is 3 units above box ‘two’ and they are in the same line can be
easily used to determine relations with respect to a third box, say box ‘three’, if its position is also quantitatively specified with
one of them.
Description 4: Under this setting, spatial relations between two objects are said to be Quantitatively Specified if the relations
have a unit of measurement and stated directly or indirectly in the context. In such cases, when all the object parameters and
relations between any two objects in the statement are known, a deterministic relation composition is possible. For example,
although there are limitations like having three apples (A1, A2, A3) arranged in a row, the statements - A2 is 2 units left of A1,
and A3 is 1 unit right of A2 - provides enough information to determine the exact positions of A1 and A3 relative to each other.
Description 5: If the quantitative value along with the measurement unit for a spatial relation is provided then those relations are
said to be Quantitatively Specified. The measurements may be a default value that is understood in the context or is explicitly
provided. The composition of these relations will result in a distinctly resolved relation. For example, in the sentence, the cafe is
2 blocks north of my house and the hospital is 1 block south of the cafe, it can be easily determined that the hospital is 1 block
north of my house.

Table 12: Five diverse human-generated natural language descriptions of Quantitatively Specified (QS) relations.
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Diverse human-generated Descriptions for Quantitatively Unspecified (QU) relations

Description 1: Spatial relations, such as directions, specified between two objects are said to be quantitatively unspecified if
those relations can have a unit of measurement but are not stated in the specified context. The composition of such relations may
not be possible even when all the object parameters and the relations between any two objects in a statement are completely
known. For example, even with constraints such as objects A, B and C are apples lying in a line, the quantitatively unspecified
statements - B is to the left of A, and C is to the right of B - can not lead to any conclusion regarding left, right, or overlapping
relationship between A and C.
Description 2: In order for spatial relations between two objects to be considered as quantitatively unspecified, unit of
measurement in these relations should not be specified. The exact composition or realization of such relations may not be
determined even if the other object features and relations are completely known. For example, let entity X be in the basket Y of a
known and stated size, and let entity Z be to the right of the entity X. It is not possible to infer whether entity Z is in the basket Y
or not if its distance from X is quantitatively unspecified.
Description 3: Spatial relations are Quantitatively Unspecified when these relations are not defined in terms of specific units of
measurement such as meters or miles. The relation compositions over objects can still not be determined even if all the other
object parameters and the relationships between them are provided. For example, if box ‘one’ is above box ‘two’, it’s not clear
how far exactly box ‘one’ lies with respect to box ‘two’ and this will affect the conclusions to be drawn about relations with
respect to other objects, say box ‘three’.
Description 4: In this setting, spatial relations between two objects are Quantitatively Unspecified if the relations have a unit of
measurement that is not specified in the context. In such cases, even when all the object parameters and relations between any
two objects in the statement are known, a deterministic composition of relations may be impossible. In this scenario, although
there are limitations like having three apples (A1, A2, A3) arranged in a row, the statements that lack specific quantities - A2 is
on the left of A1, and A3 is on the right of A2 - do not provide enough information to determine the left, right, or overlapping
positions of A1 and A3 relative to each other.
Description 5: If the quantitative value along with the measurement unit for a spatial relation is not provided then those relations
are said to be quantitatively unspecified. The composition of these relations may not be enough to result in a distinctly resolved
relation. For example, in the sentence, the cafe is to the north of my house and the hospital is to the south of the cafe, it can’t be
determined if the hospital is to the south or north of my house.

Table 13: Five diverse human-generated natural language descriptions of Quantitatively Unspecified (QU) relations.

the datasets to which the generated paths belong977

and the explanation of the errors are provided in978

Table 14.979
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Errors examples and explanations

Error: Reverse Step Merge Dataset: SpaRP-S-PS2(StepGame)
Reasoning Steps: Step 7: From step 4 and 6, we can infer that I is 2 unit above and 2 unit right of W. Step 9: From step 8, we
can infer that Q is right of W. Step 10: From step 7 and 9, we can infer that I is 2 unit above and 3 unit right of Q.
Explanation: Requires composition from I to W to Q. Step 9 is a reverse step in this reasoning chain causing composition error.

Error: Copied, not composed Dataset: SpaRP-S-PS2 (StepGame)
Reasoning Steps: Step 6: From step 4 and 5, we can infer that A is below and right of S. Step 7: From the context, S is left of
M. Step 8: From step 6 and 7, we can infer that A is below and right of M.
Explanation: The relation from S to M is not used in composition, instead, the relation from A to S is copied for the merge step
A to S to M.
Error: Incorrect Composition Dataset: SpaRP-S-PS2 (StepGame)
Reasoning Steps: Step 11: From step 8 and 10, we can infer that Z is above and 2 unit right of L. Step 13: From step 12, we can
infer that L is above and left of J. Step 14: From step 11 and 13, we can infer that Z is 3 unit above and right of J.
Explanation: Quantitatively incorrect.

Error: Merged without connection Dataset: SpaRP-S-PS3
Reasoning Steps: Step 5: From step 3 and 4, we can infer that Y is right of L. Step 14: From step 12 and 13, we can infer that C
is below and right of K. Step 15: From step 5 and 14, we can infer that C is below and right of L.
Explanation: No common entity between merged steps 5 and 14 which are 9 steps apart.

Error: Non-composable Composition Dataset: SpaRP-S-PS4
Reasoning Steps: Step 16: From step 13 and 15, we can infer that M is below X. Step 18: From step 17, we can say that X is
above A. Step 19: From step 16 and 18, we can infer that M is above A.
Explanation: The reverse relations {below, above} are not composable under quantitatively unspecified (QU) criteria.

Error: Reverse answer Dataset: SpaRP-S-PS3
Question: What is the relation of the agent W to the agent X?
Answer Step: Step 8: From step 5 and 7, we can infer that X is above and left of W. Hence, the answer is above, and left.
Explanation: Directional relations are non-symmetric. Question is from W to X, while answer is from X to W.

Error: Incorrect clock extraction Dataset:SpaRP-S-PS3
Context: P is above X at 10 o’clock.
Extracted: Step 6: From the context, X is below P.
Explanation: Correct extraction should be below and right.

Error: Incomplete relation extraction Dataset: SpaRP-S-PS4
Context: I is on the left side of and below V.
Extracted: Step 2: From the context, I is left of V.
Explanation: Incomplete or partial extraction, below wasn’t picked.

Error: Incorrect relation extraction Dataset: SpaRP-S-PS1 (SPARTUN)
Context: Box EEE has a tiny white rectangle and covers a midsize white diamond.
Extracted: Step 7: It is given that the tiny white rectangle is inside and touching the box EEE.
Explanation: Has only means inside.

Error: Incorrect reversal Dataset: SpaRP-S-PS1 (SPARTUN)
Reasoning Steps: Step 1: It is given that the block AAA contains the medium yellow square. Step 2: From step 1, we can
infer that the medium yellow square is inside and touching the block AAA.
Explanation: Reverse of contains should only be inside.

Table 14: Observed errors and their examples in the model generated reasoning paths. Only the relevant steps are
shown.
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