
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRETCHYSNAKE: FLEXIBLE VIDEOMAMBA FOR
SHORT AND LONG-FORM ACTION RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

State space models (SSMs) have very recently been introduced as an alternative
deep architecture to transformers, exhibiting competitive or superior performance
across various language and vision tasks. However, both SSMs and transformers
share certain limitations in the vision domain, namely spatio-temporal inflexibil-
ity. Traditionally, deep video models are trained on a fixed resolution and number
of frames, often arbitrarily chosen as a trade-off between performance and com-
putational cost. Changing the resolution and/or number of frames a model can
ingest usually requires retraining the model, while avoiding re-training by vari-
ably changing the weights of a trained model leads to significantly reduced test
accuracy. In this paper, we introduce a spatio-temporal flexible training method
that encourages a single set of learned weights to adapt well to any input resolu-
tion or video length. We achieve this by simply randomly changing the spatial and
temporal resolutions of a video during training, and dynamically interpolating the
model’s weights accordingly. This single change in training not only allows for
one model to be applied to both short and long video understanding tasks alike, but
also allows for user-specific tailoring of computational cost. We propose and eval-
uate 5 different spatio-temporal flexible training methods to find the optimal type
for training a video SSM. We then evaluate our best flexibly-trained SSM, which
we call StretchySnake, across a variety of short- and long-form action recognition
evaluation protocols, such as video retrieval, fine-tuning, and linear probing, and
massively outperform the same vanilla video SSM trained in a standard fashion by
up to 28% in some cases. Therefore, our training method can be used as a simple
drop-in training technique for any SSM-based video models to strongly improve
performance and instill spatio-temporal and compute flexibility.

Figure 1: Comparing computational complexity and inference time between vanilla VideoMamba
and StretchySnake. With StretchySnake’s ability to accurately adapt to any spatial and temporal
resolution, it can perform video retrieval at 8 frames and 96 pixels while still significantly outper-
forming the best VideoMamba in both accuracy and inference time and cost.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

The core goal of general video understanding is to learn high-quality spatio-temporal features that
are robust to information redundancy in short-length videos and complex long-range dependencies
in long videos alike. However, these two goals are often difficult to achieve unanimously with a
single model due to the current practice of training video models. Video models are traditionally
trained in a static fashion, wherein videos of a fixed length (referred to as temporal resolution) and
frame size (referred to as spatial resolution) are fed as input. While this has sufficed as a design
choice to balance computational complexity against performance, it severely limits the scalability
and generalizability of video models. For example, previous state of the art (SOTA) image models
trained in this static manner have been shown to suffer massive performance drops when tested at
spatial resolutions unseen during training (Tian et al., 2023; Beyer et al., 2023). We show later that
this phenomenon extends to video models as well, where current methods of training still perpetuate
inflexibility in both the learned spatial and temporal features. Thus, in this paper we aim to tackle
this issue by training a video model to learn a single set of weights that flexibly performs well on
many spatial and temporal resolutions while mitigating degradations in test-time accuracy.

Currently, the transformer architecture (Vaswani, 2017; Dosovitskiy, 2020; Liu et al., 2022) has been
dominant in every video domain, such as action recognition (Siddiqui et al., 2024), object segmen-
tation (Kirillov et al., 2023), and large visual-language models (Zhu et al.; Lin et al., 2023). Despite
transformers long-reigning supremacy in the field of computer vision, they are not without their
limitations, mainly their quadratic-time complexity during training and inference. These issues have
served as a significant barrier for transformers to learn extremely long-range dependencies, and thus
limit their feasible application to important visual tasks such as long-form video understanding. To
this extent, SSMs (Orvieto et al., 2023; Smith et al., 2022; Gu et al., 2021b) have very recently been
proposed as an alternative architecture to transformers. Similar to the progression of transformers,
SSMs were first observed to perform on-par, and in some cases outperform, transformer-based archi-
tectures in various natural language tasks (Gu et al., 2021a; 2020b) and were subsequently extended
to images and videos (Chen et al., 2024; Li et al., 2024; Zhu et al., 2024). Most importantly to
note, SSMs are much more adept at efficiently modeling long-range sequences due to their linear
complexity, which is practically attainable during both training and testing (Gu et al., 2021a), and
their ability to compress salient information across long contexts (Gu & Dao, 2023). However, we
argue that adapting SSMs for video understanding in the same static fashion as video transformers
severely underutilizes SSMs’ long-range, context-dynamic capabilities (see Sec. 3.1).

In this paper, we propose a novel training method which dynamically changes the spatial and tem-
poral resolutions of a video to equip a video SSM (VideoMamba (Li et al., 2024)) to learn better
spatio-temporal features. However, certain layers and weights in a video model expect a fixed size
input - such as a fixed frame size, number of frames, or embedding patch size - requiring on-the-fly
adaptation to our variably sized input; a process which we call spatio-temporal flexibility (or st-
flexibility). To achieve this, we interpolate the weights of said layers using differentiable transforms
during training, enabling a video model to implicitly learn representations that are effective at vari-
ous spatial and temporal scales. Additionally, st-flexibility can be implemented in a model through a
variety of ways when dynamically changing spatial resolutions and lengths of videos during training
(Sec. 4.2). Therefore, we introduce and evaluate 5 different versions of st-flexibility to ascertain the
most effective type and train VideoMamba with the best method: our model we call StretchySnake.

Our main contributions are as follows:

• Introduce spatio-temporal flexible training, enabling a model to learn a single set of weights
that performs well on all spatio-temporal resolutions without any architectural changes.

• Analysis of 5 different st-flexible methods across 4 action recognition datasets, gaining
valuable insights on whether spatial or temporal resolution is more important for certain
datasets.

• We find and train VideoMamba with the optimal version of st-flexibility, which massively
outperforms vanilla VideoMamba on 4 action recognition datasets across various evaluation
protocols.

• The computational efficiency of StretchySnake can be maximized by choosing the optimal
balance between test accuracy and input resolution/length of video at test-time (Fig. 1).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Training Deep Learning Models Flexibly Previous works have explored enabling an image model
to generally perform well across multiple resolutions through a variety of means, like changing the
model patch sizes/input resolutions (Beyer et al., 2023; Tian et al., 2023; Fan et al., 2024) or aspect
ratios (Dehghani et al., 2024) during training. In a similar vein, other works have instilled multi-
resolution capabilities in an image model by adopting a multi-stream approach (Xia et al., 2024; Yao
et al., 2024; Tian et al., 2023), where training images are resized to different resolutions and simul-
taneously passed through separate branches to produce multi-scale features. However, this requires
architectural changes and cannot be used as a drop-in training method for any model. Other works
have extended similar ideas to videos, such as using multiple streams for different temporal resolu-
tions (Zhang et al., 2023), using high temporal resolutions to efficiently “choose” only the important
frames in a video (Zhang et al., 2022), or some combination of the two (Feichtenhofer et al., 2019).
Tangential works have also shown that finding the optimal balance between input/model size and
test accuracy is an exceptional way to optimize compute power (Alabdulmohsin et al., 2024).

Since our st-flexible method of training enables a model to perform well across a wide range of
spatial and temporal resolutions, the optimal configuration for a fully-trained model can be chosen
to minimize compute power without sacrificing significant performance (Fig. 1). Furthermore, it is
important to note that our work separates itself in several ways: (1) we do not add any additional
branches to the model to ingest variable spatial or temporal resolutions, but adaptively change the
model on-the-fly during training, (2) we change the spatial and temporal resolutions of the input to
learn better features and further show that our method of training enables the model to generally
perform well across all spatio-temporal resolutions, and (3) we are the first to explore st-flexibility
for video SSMs, since the aforementioned works only investigate attention-based models.

3 BACKGROUND

State Space Models Structured state space models (Gu et al., 2021a;b; 2022a) have shown great
promise as efficient and powerful sequencing models. Broadly, their main attraction is their ability to
be parameterized as either a convolution or recurrence, enabling GPU compatibility and near-linear
scaling complexity with regards to sequence length. Traditionally, SSMs map some time-dependent,
continuous input sequence of length L into a latent state representation to predict the evolution of
the latent state. Specifically, some input sequence x(t) ∈ RL is mapped to some output sequence
y(t) ∈ RL through a learned latent state h(t) ∈ RN of dimensionality N . SSMs learn this mapping
through a two-stage sequence-to-sequence ordinary differential equation (ODE) consisting of four
parameters (∆,A,B,C):

h′(t) = Ah(t) + Bx(t) (1)
y(t) = Ch(t) (2)

where A ∈ RN×N is the hidden state transition matrix and B ∈ R1×N and C ∈ RN×1 are the input
and output projection matrices, respectively. With this being a continuous process, a learnable step
size ∆ is introduced to discretize A and B with a variety of possibilities (Nguyen et al., 2022; Gu
et al., 2022b), but we follow the zero-order hold used in (Gu & Dao, 2023):

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B

After discretization, an SSM can be computed either as a linear recurrence (shown on the left) or a
global convolution (as shown on the right):

ht = Āht−1 + B̄xt

yt = C̄ht

K̄ = (C̄B̄, C̄ĀB̄, C̄Ā2B̄, · · · , C̄ĀtB̄)
y = x ∗ K̄

Often times, the convolutional parameterization is chosen during training for parallelization,
whereas the recurrent parameterization is used during inference for constant-time autoregression.
There are other important SSM design choices that are currently being explored and optimized,
such as initialization and structure of Ā (Gu et al., 2022a; Gupta et al., 2022; Smith et al., 2022) and
linear time invariance (Peng et al., 2023; Fu et al., 2022) (or lack thereof (Gu & Dao, 2023)), but are
not fully integral to understanding our work.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 MOTIVATION FOR ST-FLEXIBILITY IN SSMS

Note that the matrix A (Eq. 1) in SSMs is of particular importance as it is responsible for the state-
to-state transitions of the latent space - in other words, it compresses the cumulative history of all
previously seen inputs at some timestep into a smaller latent state. It can be difficult to strike a
balance between retaining salient information from older context in the model’s memory, while still
incorporating information from new context - especially so in extremely long contexts. To solve this
issue, (Gu et al., 2020a) found that rather than initializing A randomly, it was crucial to initialize A
following the HiPPO algorithm (Gu et al., 2020a) to enable SSMs to efficiently compress all pre-
viously seen history by simply learning the coefficients of a Legendre polynomial (Voelker et al.,
2019). However, despite the near-linear complexity and compatibility with long-range dependen-
cies, SSMs were still outclassed by attention-based mechanisms in one facet: the ability to focus or
ignore particular inputs. Since attention does not compress data and instead ensures every token is
attended to every other token, this quadratically-growing complexity is why transformers struggle to
perform on extremely long contexts. Thus, (Gu & Dao, 2023) introduced a critical improvement to
SSMs to enable them to perform content-aware reasoning across long contexts: the selective scan.
By simply changing B and C to be functions of the input rather than being input-invariant, they can
selectively keep or forget information as it propagates through the model. We hypothesize that this
selective retention or forgetting of information (also known as “memory”) is a major reason why st-
flexibility massively improves performance in video SSM, as seen in Fig. 3 and further discussed in
Sec. 5 and also the appendix. With regards to video understanding, constantly flexing the spatial and
temporal resolutions of the video during training encourages the model to learn only the salient in-
formation at a variety of scales. Since Ā, B̄, C̄ are input dependent in VideoMamba, we hypothesize
that training VideoMamba with inputs at a variety of spatio-temporal scales significantly improves
the memorization of salient information, as opposed to the standard method of training at a fixed,
singular spatio-temporal scale (discussed in Sec. 5.3).

4 METHODOLOGY

4.1 PRELIMINARIES

Consider some video:
x ∈ RT×H×W×C (3)

where (T,H,W,C) are the number of frames, height, width, and number of channels respectively.
Typically, video models reduce each frame in a video into a sequence of L =

√
H×W
p×p patches:

li ∈ Rp×p×C , where p is a pre-determined patch size such that 0 ≡ p mod (H ∗ W ) and i ∈
{1, . . . L}. This process is referred to as patchification and is one way to control the amount of
compute for video models. After patchification, the spatial embeddings es are computed for each
patch li:

esi = conv(li), e
s
i ∈ R

H
p ×W

p ×D (4)
where D is the chosen embedding size and conv(·) is either a 2-D or 3-D convolution operation. To
account for permutation invariance in transformers and SSMs, a learned spatial positional embed-
ding ps ∈ RS×D is added to each patch embedding, which are then concatenated together, to obtain
the final spatial token representation for a single frame zs:

zs = concat({esi + ξsi , ∀i}) ∈ R1×S×D (5)

This per-frame process must also be applied to the temporal domain in order to be extended to
videos. Subsequently, a learnable temporal positional embedding ptj ∈ R1×S×D is added to every
spatial token zs corresponding to a single frame. Thus, the final temporal token representation
zt ∈ R1×S×D for each frame in a video is obtained:

ztj = zsj + ptj (6)

for j ∈ {1, · · · , T}. Finally, a classification token [CLS] ∈ R1×D meant to aggregate the learned
information from all patch tokens is appended and used for downstream prediction (Devlin, 2018;
Dosovitskiy, 2020). With the exception of some minor design choices (such as different types of
spatio-temporal factorization), virtually every video-based model encodes videos in this manner
before learning spatio-temporal representations (Fig. 2).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Our proposed method of training a video model with spatio-temporal flexibility. We
highlight which tokens of a video model can be ’flexed’ with dashed borders during training to
accommodate for variable spatial and temporal resolutions in a video.

4.2 INSTILLING ST-FLEXIBILITY

The main goal of this work is to instill VideoMamba (and video SSMs in general) with spatio-
temporal flexibility, or in other words, to learn a single set of weights that is robust to different
spatial and temporal resolutions in a video. Ideally, a VideoMamba trained in this fashion would
generally perform well during test-time across all types of videos (low vs. high resolution, short vs.
long length, etc.) with minimal drops in performance.

Currently, the difficulty in training such a model is two-fold: (1) during training, certain layers
and weights in the model must be interpolated accordingly to account for the changes in frame
size and video length; and (2) the optimal method of instilling a model with st-flexibility is largely
unexplored. Specifically, the convolutional embedding patch size (Eq. 4), number of spatial tokens
(Eq. 5), and number of temporal tokens (Eq. 6) are the three key factors that dictate a model’s
capability to process videos of varying spatial and temporal lengths (Eq. 3). During training, these
four equations can be changed (or flexed, as we refer to it from here on out) in many different
combinations to allow for st-flexibility. In this work, we test 5 different versions of st-flexibility that
can be applied to video models during training, which we list below. For all examples, assume the

default model expects T = 16, H = W = 224 as input and p = 16 such that L =
√

224×224
16×16 = 14,

ps ∈ R14×D, and pt ∈ R16×14×D. For st-flexibility, spatial resolutions are sampled from the set
Rs = {96, 128, 224, 384} and temporal resolutions are sampled from the set Rt = {8, 16, 32, 64}.

1. Temporal Flexibility: Randomly sample T during training from Rt. Only flex the tempo-
ral tokens based on the number of input frames.

Example: If T ∼ U(Rt), assume for this example T = 32. Then, x ∈
R32×3×224×224, such that pt ∈ R16×S×D must be “flexed” to pt ∈ R32×S×D

2. Static Patch - Randomly sample T and (H,W ) during training from Rt and Rs, respec-
tively. Along with temporal flexibility, image size and number of spatial tokens are flexed,
while the patch size is always kept static.

Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that
T = 32 and H = W = 128. Then, x ∈ R32×3×128×128 and fix p = 16 such that
L =

√
128×128
16×16 = 8 and ps ∈ R16×D must be “flexed” to ps ∈ R8×D.

3. Static Tokens: Randomly sample T and (H,W ) during training from Rt and Rs, respec-
tively. Along with temporal flexibility, image size and patch size are jointly flexed such
that the resulting number of spatial tokens for every frame is always the same.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that T = 32
and H = W = 128. If x ∈ R32×3×128×128, then p = 16 must be “flexed” to p = 9 such
that L =

⌊√
128×128

9×9

⌋
= 14 and ps ∈ R14×D does not need to be “flexed”.

4. FlexiViT: Introduced in (Beyer et al., 2023) for images, fix H = W = 240 and randomly
“flex” the patch size and number of spatial tokens from the pre-defined set in the original
paper during training. Apply temporal flexing as described in the first example.

Example: If x ∈ R32×3×240×240 and p ∼ U({8, 10, 12, 15, 16, 20, 24, 30, 40, 48}),
assume for this example that p = 12 such that L =

√
240×240
12×12 = 20 and ps ∈ R14×D must

be “flexed” to ps ∈ R12×D.
5. Flex-all: Randomly sample T and (H,W ) during training from Rt and Rs, respectively.

In addition to image size, convolution kernel size and number of spatial tokens are all flexed
during training.

Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that
T = 32 and H = W = 128. Then, x ∈ R32×3×128×128, and choose p such that
0 ≡ p mod 128 and 12 ≤ p ≤ 48. Assume for this example that p = 32 such that

L =
√

128×128
32×32 = 4 and ps ∈ R14×D must be “flexed” to ps ∈ R4×D.

We postulate that training VideoMamba with this type of flexibility not only enables it to generalize
to any size or length of video, but also results in better overall learned representations (Sec. 3.1). To
flex the spatial resolution (H,W ) of a video we use the Resize function in PyTorch, and to flex the
temporal resolution of a video (T ), we simply change the number of frames we uniformly sample in
a training clip (Eq. 3). To flex the patch size of a model, we simply resize the weights w of the patch
embedding layer (conv in Eq. 4) and the spatial positional embedding ps (Eq. 5) to the correct
size using a 2-D bi-cubic interpolation. Lastly, we use a simple 1-D linear interpolation to flex
the learned temporal positional embedding pt to the correct size. Since all interpolation operations
applied to w, ps, and pt are differentiable, their weights are still updated through backpropagation
during st-flexible training.

5 EXPERIMENTS AND ABLATIONS

To validate that st-flexible training leads to better learned representations, we divide this section
into 3 categories: (1) finding the optimal type of st-flexibility, (2) exhibiting the massive per-
formance gains with StretchySnake over vanilla VideoMamba, and (3) comparing StretchySnake
against SOTA action recognition baselines. To this extent, we examine these points using 3 types
of transfer-learning experiments. Firstly, we perform video retrieval experiments on 4 benchmark
action recognition datasets in total: 2 short-video action recognition datasets (UCF101 (Soomro,
2012) and HMDB51 (Kuehne et al., 2011)) and 2 long-video action recognition datasets (COIN
(Tang et al., 2019) and Breakfast (Kuehne et al., 2014)) to evaluate our model with different context
lengths (Table 1). Secondly, we perform fine-tuning and linear probing experiments on the same
action recognition datasets (Table 2). Finally, we compare StretchySnake with previous SOTA uni-
modal video models pre-trained solely on Kinetics-400 and show that StretchySnake outperforms
every other model on average across all datasets in a video retrieval setting (Table 3). Moreover,
StretchySnake can even outperform or competitively perform against multi-modal models which
leverage additional modalities besides RGB or are pre-trained on additional data.

5.1 IMPLEMENTATION DETAILS

All experiments are performed by first training a VideoMamba on Kinetics-400 (Kay et al., 2017)
exactly the same as a vanilla VideoMamba, but with st-flexibility. Specifically, we train with simple
cross-entropy loss using the AdamW optimizer with 5 linear warm-up epochs. We use the default
learning rate and weight decay values of 1e−3 and 0.05, respectively. We initialize StretchySnake
with the provided self-supervised pre-trained weights on Kinetics-400 (similarly done in (Tian et al.,
2023)), and implement st-flexibility when performing further supervised training on Kinetics-400.
We flexibly train for 12 epochs on Kinetics-400 and compare against a vanilla VideoMamba trained
for 50 epochs, both in a supervised manner. In the fine-tuning experiments we further train the
model pre-trained on Kinetics-400 on some downstream dataset, whereas in the linear probing ex-
periments we freeze the entire pre-trained model and only train a linear classifier from scratch on the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

downstream dataset. All of our experiments use VideoMamba-M, the largest sized VideoMamba as
proposed in the original paper (Li et al., 2024) where D = 576. For temporal flexibility, we arbitrar-
ily chose Rt = {8, 16, 32, 64}. For all types of st-flexibility where applicable, we arbitrarily chose
Rs = {96, 128, 224, 384}. For FlexiViT, we follow their method by fixing H = W = 240 and
randomly sampling from a set of patch sizes {8, 10, 12, 15, 16, 20, 24, 30, 40, 48} during training.
The vanilla baseline model we use for all comparisons was trained at a fixed temporal resolution of
T = 16 and a fixed spatial resolution of H = W = 224. However, since VideoMamba provides
weights for different versions of their model trained on Kinetics-400 at various temporal scales (8,
16, 32, and 64), we also provide even more comparisons in the appendix by separately comparing
StretchySnake at each temporal scale against the corresponding vanilla VideoMamba. For certain
st-flexible methods that train with variable patch sizes, we perform inference with a fixed patch size
of 16 for fair comparisons to vanilla VideoMamba, but we provide extensive ablations with different
patch sizes in the appendix. All experiments in this paper are performed on a single NVIDIA A100
80GB GPU.

5.2 FINDING THE OPTIMAL SPATIO-TEMPORAL FLEXIBILITY

To find the optimal type of st-flexibility for VideoMamba, we start by pre-training a VideoMamba
model on Kinetics-400 with each of our proposed st-flexible methods. With the exception of st-
flexibility, we follow the same exact protocol as baseline VideoMamba for supervised training on
Kinetics-400. We then perform video retrieval across 4 different action recognition datasets, across
different spatial and temporal resolutions, to find the best type of spatio-temporal flexibility. Figure
3 shows that at every temporal resolution and virtually every spatial resolution, static tokens appears
to be the best performing and most robust type of st-flex for VideoMamba. For spatial resolutions
< 192px, static-tokens massively outperforms the next best type of st-flexibility, usually in some
range between 1%− 18%. For spatial resolutions > 192px, static tokens still either outperforms or
is on-par with other st-flexible methods in almost every setting, and only underperforms compared to
other st-flexible methods in very rare cases (only on the Breakfast dataset at low/medium spatial and
temporal resolutions). Importantly to note, not only does every st-flexible method outperform vanilla
VideoMamba, as expected, but they also outperform vanilla VideoMamba at its default configuration
of T = 16 and H = W = 224. Thus, we conclude that the best type of st-flexibility from our
proposed methods is static-tokens, and we refer to this best model as StretchySnake.

5.3 STRETCHYSNAKE BEATS VANILLA VIDEOMAMBA

5.3.1 QUANTITATIVE RESULTS

With static tokens established as the optimal type of st-flexible method, we perform the same video
retrieval experiments as Sec. 5.2 with vanilla VideoMamba for comparison with StretchySnake.
Table 1 exhibits how StretchySnake beats vanilla VideoMamba at every spatial and temporal reso-
lution, both seen and unseen during training, including vanilla VideoMamba’s original configuration
(T = 16, H = W = 224). Consistent double-digit improvements are observed in nearly every set-
ting, across every dataset, over vanilla VideoMamba. The largest improvements on the long-video
datasets (COIN and Breakfast) occur at the higher temporal resolutions, due to their specific need for
long-context understanding. With the highest average improvement across all datasets being on the
64-frame setting of Breakfast at 24.8%, st-flexibility seems to strongly improve the long-range un-
derstanding of VideoMamba. Conversely, the largest improvements with respect to the short-video
datasets (UCF101 and HMDB51) are seen at the lower 8-frame and 16-frame temporal resolution
scales. Important to note is the relative stability of StretchySnake across all spatial and temporal
resolutions alike, as compared to the drastic drops in performance of vanilla VideoMamba across
different spatial resolutions. Interestingly, vanilla VideoMamba seems to be relatively stable when
only changing the number of frames during evaluation and keeping H = W = 224. However,
StretchySnake appears to leverage the additional information when increasing temporal resolution
much more effectively than VideoMamba, as seen in StretchySnake’s consistent improvements with
increasing temporal resolution on the long-video COIN and Breakfast datasets; a behavior not simi-
larly observed with vanilla VideoMamba. Thus, StretchySnake (and by extension, any model trained
with st-flexibility) is much better equipped to adapt to the optimal temporal and spatial resolution
for specific datasets as opposed to standardly trained models.

In Table 2, we further compare vanilla VideoMamba and StretchySnake in the additional transfer
learning settings of fine-tuning and linear probing. The linear probing results are another testament

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) HMDB (b) UCF-101

(c) Breakfast (d) COIN

Figure 3: Each graph best viewed with zoom. Video retrieval results on all four datasets at various
spatial and temporal resolutions at test time. In every dataset, at virtually every configuration, static-
tokens is the best performing method of spatio-temporal flexibility. The suffix (−8, −16, etc.) and
marker for each label in the legend denotes temporal resolution. For better visibility, only the best-
performing setting for each method is bolded.

to StretchySnake’s superior learned representations, as freezing the model and simply only training
a linear classifier still leads to significant improvements across every dataset, with only a marginal
improvement on HMDB51. Fine-tuning is a less direct comparison of learned representations than
linear probing, since in this setting both models are entirely unfrozen and trained using the standard,
fixed method of training video models. Despite this, after training both models with T = 16, H =
W = 224 for 30 epochs, StretchySnake’s weights serve as a better quality initialization point in this
setting as indicated by the uniform improvements across every dataset over vanilla VideoMamba.

5.3.2 QUALITATIVE RESULTS

We also qualitatively explore StretchySnake at both the feature and classification levels to visualize
the improved representations of StretchySnake. In Fig. 4, we visualize the [CLS] token of both
vanilla VideoMamba and StretchySnake on UCF101 at the lowest spatial scale and fix T = 16.
StretchySnake still produces stable features at even the lowest spatial resolution on unseen data,
leading to the consistently higher and stable video retrieval top-1 accuracy of StretchySnake seen in
Table 1. In addition to better clustered [CLS] tokens, we also visualize the superior patch features
from the penultimate layer of StretchySnake (Fig. 5). The patch features are the tokens from the last
layer that are often discarded since the singular [CLS] token, which is meant to be an aggregation
of all patch tokens, is used commonly used for predictions (Bertasius et al., 2021; Dosovitskiy,
2020). However, the final patch features contain more granular information to investigate the spatial
activations of a video model at each frame (Oquab et al., 2023). Many additional visualizations can
be found in the appendix.

5.4 FLEXIBLE VIDEOMAMBA BEATS SOTA MODELS

In addition to StretchySnake’s improved video understanding capabilities over vanilla VideoMamba,
we further compare against current SOTA methods in short- and long-video action recognition pre-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparing vanilla VideoMamba performance with StretchySnake. Cells highlighted in
gray are seen during training, with “VideoMambafx” denoting the number of frames used during

evaluation. Best vanilla VideoMamba results are in red, with StretchySnake best results in green.
StretchySnake outperforms baseline VideoMamba in virtually every setting, even at unseen resolu-
tions and length of videos. Vanilla VideoMamba encounters out-of-memory (OOM) errors at large
temporal and spatial resolutions due to its static patch size, while StretchySnake’s adaptability pre-
vents this issue.

Dataset Model Testing Spatial Resolutions Avg. ∆%96 112 128 192 224 288 384 448

Breakfast

VideoMambaf8 22.0 23.1 24.9 31.9 43.2 40.7 34.5 30.5 -
StretchySnakef8 49.4 50.0 49.7 49.1 53.7 52.8 51.4 47.7 +19.1
VideoMambaf16 22.0 22.9 22.0 37.5 41.8 42.1 33.3 33.1 -
StretchySnakef16 49.4 49.2 48.3 50.3 53.4 52.5 48.6 50.3 +18.4
VideoMambaf32 20.6 23.7 26.0 40.1 44.4 46.6 35.9 31.4 -
StretchySnakef32 55.9 56.0 54.5 55.6 56.0 56.0 59.0 52.8 +22.1
VideoMambaf64 23.4 24.0 25.7 37.0 42.7 42.7 OOM OOM -
StretchySnakef64 54.2 57.9 57.9 56.0 60.2 57.9 54.8 56.0 +24.8

COIN

VideoMambaf8 43.1 49.5 52.7 58.6 62.1 61.2 58.7 56.5 -
StretchySnakef8 70.2 70.4 71.7 71.5 72.8 73.1 71.6 71.5 +16.3
VideoMambaf16 50.5 55.0 57.6 62.1 64.8 64.7 61.2 58.6 -
StretchySnakef16 74.6 74.9 74.6 75.7 75.9 75.7 75.5 74.6 +13.6
VideoMambaf32 53.0 58.6 60.0 63.5 65.4 64.7 62.4 59.8 -
StretchySnakef32 76.9 76.5 78.9 79.5 79.0 79.4 79.2 77.8 +17.5
VideoMambaf64 53.6 58.3 61.5 65.6 65.8 65.6 OOM OOM -
StretchySnakef64 78.8 78.8 79.2 80.0 79.5 80.0 79.5 78.9 +17.7

UCF-101

VideoMambaf8 64.7 75.4 82.2 88.7 90.2 91.0 88.2 85.7 -
StretchySnakef8 92.4 92.4 92.7 92.7 93.4 93.1 93.0 92.8 +16.8
VideoMambaf16 66.8 77.0 82.4 89.9 91.7 91.4 89.9 87.6 -
StretchySnakef16 92.0 93.0 93.4 94.3 93.4 94.0 94.0 93.8 +8.9
VideoMambaf32 68.1 77.1 82.7 89.6 91.8 91.7 90.0 86.8 -
StretchySnakef32 92.7 93.0 93.3 93.4 93.9 94.0 94.0 94.0 +8.8
VideoMambaf64 65.8 76.4 81.3 89.5 91.5 91.2 OOM OOM -
StretchySnakef64 93.0 93.2 93.1 93.6 94.3 94.5 93.8 94.3 +11.0

HMDB-51

VideoMambaf8 36.5 44.4 49.1 57.8 58.7 58.7 55.3 52.0 -
StretchySnakef8 61.6 62.7 63.2 64.2 63.2 62.9 62.1 62.2 +15.3
VideoMambaf16 35 42.8 49.8 56.5 58.2 57.8 53.7 51.6 -
StretchySnakef16 60.6 63.3 63.6 64.4 63.0 64.4 64.0 62.1 +12.5
VideoMambaf32 36.6 45.6 50.0 59.1 60.2 59.5 55.3 50.5 -
StretchySnakef32 63.8 64.7 65.3 65.7 65.1 64.9 64.9 63.2 +12.6
VideoMambaf64 36.7 44 48.9 56.7 59.2 59.0 OOM OOM -
StretchySnakef64 64.7 64.8 65.5 65.5 65.6 66.1 65.5 64.9 +11.0

(a) Vanilla VideoMamba (b) StretchySnake

Figure 4: Visualizing video retrieval using a t-SNE plot of the [CLS] token taken from the last
layer during evaluation on the UCF-101 dataset with H = W = 96 pixels and T = 16 frames.
StretchySnake accurately clusters action classes at low resolutions where the vanilla model fails,
clearly exhibiting its robustness to changes in spatial resolutions even on unseen data. Additional
visualizations at different spatial scales are provided in the appendix.

trained on Kinetics-400. Across four action recognition datasets, StretchySnake performs the best on
average, and in some cases outperforms multi-modal models or models trained on extra data. Thus,
training VideoMamba with st-flexibility greatly increases the quality of its learned representations,
and moreover, better leverages VideoMamba’s dynamic context length modeling capabilities.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Comparing vanilla VideoMamba with StretchySnake across four action recognition
datasets. We report results on full-finetuning (the entire model is trained on the respective dataset)
and linear probing (the model is frozen and only a linear classifier is trained).

Model Full Finetuning Linear Probing
UCF101 HMDB51 COIN Breakfast UCF101 HMDB51 COIN Breakfast

VideoMamba 95.7 75.0 84.0 82.6 89.1 63.6 75.5 58.6
Ours 96.5 (+0.8) 76.9 (+1.9) 88.1 (+4.1) 86.8 (+4.2) 94.1 (+5.0) 64.0 (+0.4) 80.7 (+5.2) 62.8 (+4.2)

Figure 5: Visualizing frame activations between VideoMamba and StretchySnake on random UCF
videos. For fair comparisons we set T = 16 and H = W = 224, and for brevity we randomly show
4 frames from the video. Not only does StretchySnake localize and activate on the correct region in
the frame better than vanilla VideoMamba (left, middle), but it also does so in fewer frames (right).

Table 3: Comparing video retrieval results with previous SOTA methods. StretchySnake massively
outperforms vanilla VideoMamba and also performs the best across both short- and long-form action
recognition datasets compared to previous SOTA methods trained on Kinetics-400. Best unimodal
results are in green, with second best in red. Gray results denotes the model was trained on additional
modalities besides RGB (‡) or extra data (†).

Model # of Params Video Retrieval
UCF101 (EP1) HMDB51 COIN Breakfast Average

Uniformer (Li et al., 2023b)(ICLR ’22) 49.8M 87.4 53.4 44.1 22.9 52.0
MViT (Fan et al., 2021)(ICCV ’21) 36.0M 87.2 57.7 48.0 28.0 55.2

Hiera-B (Ryali et al., 2023)(ICML ’23) 51.1M 94.3 64.0 61.3 42.1 65.4
VideoMamba (Li et al., 2024)(ECCV ’24) 73.8M 91.8 60.2 65.8 46.3 66.0

TimeSFormer (Bertasius et al., 2021)(ICML ’21) 121.5M 91.6 58.7 76.3 39.5 66.5
VideoSwin (Liu et al., 2022)(CVPR ’22) 88.0M 93.9 58.9 65.8 52.3 67.7
Hiera-L (Ryali et al., 2023)(ICML ’23) 213.1M 96.4 66.0 64.5 50.2 69.4
CAST (Lee et al., 2024)(NeurIPS ’23) 45.3M 95.0 65.0 75.1 49.7 71.2
EVL (Lin et al., 2022)(ECCV ’22)‡ 33.2M 94.4 61.9 81.0 42.3 69.9

Omnivore (Girdhar et al., 2022)(CVPR ’22)† 90.1M 95.1 62.3 71.2 53.9 70.6
UniformerV2 (Li et al., 2023a)(ICCV ’23)‡ 114.5M 95.2 65.6 78.7 48.5 72.0

AIM (Yang et al., 2023)(ICLR’23)‡ 96.4M 94.5 66.0 82.8 54.2 74.4
Ours 73.8M 94.5 66.1 80.0 60.2 75.2

6 CONCLUSION

In this paper, we propose a novel method of training video models to instill spatio-temporal flexi-
bility. During training, we dynamically change the frame size and length of a video to better enable
a deep video model to perform well across a vast range of spatial and temporal resolutions. With
the variety of combinations with which st-flexibility can be implemented in a model during training,
we propose and analyze five different spatio-temporal methods to find the optimal type. Moreover,
we apply our best method of training to the video-SSM model VideoMamba, calling this model
StrechySnake, and show that st-flexibility massively improves downstream performance across mul-
tiple short- and long-form action recognition datasets. With performance gains as high as 28% over
vanilla VideoMamba, we effectively demonstrate that StrechySnake contains better quality represen-
tations at all spatial and temporal scales; an especially valuable quality given SSM’s propensity for
learning better long-range dependencies. Additionally, our training method allows for the choice to
use any spatial or temporal resolution at inference time without major degradation in performance,
accommodating any computational budget.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in
shape: Scaling laws for compute-optimal model design. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, volume 2, pp. 4, 2021.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496–14506, 2023.

Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong
Lu, and Limin Wang. Video mamba suite: State space model as a versatile alternative for video
understanding. arXiv preprint arXiv:2403.09626, 2024.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch
n’pack: Navit, a vision transformer for any aspect ratio and resolution. Advances in Neural
Information Processing Systems, 36, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 6824–6835, 2021.

Qihang Fan, Quanzeng You, Xiaotian Han, Yongfei Liu, Yunzhe Tao, Huaibo Huang, Ran He, and
Hongxia Yang. Vitar: Vision transformer with any resolution. arXiv preprint arXiv:2403.18361,
2024.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
6202–6211, 2019.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens Van Der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A single model for many visual modalities. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16102–16112, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020a.

Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. In International conference on machine learning,
pp. 3800–3809. PMLR, 2020b.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train
your hippo: State space models with generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and
semantics of goal-directed human activities. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 780–787, 2014.

Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
large video database for human motion recognition. In 2011 International conference on computer
vision, pp. 2556–2563. IEEE, 2011.

Dongho Lee, Jongseo Lee, and Jinwoo Choi. Cast: cross-attention in space and time for video action
recognition. Advances in Neural Information Processing Systems, 36, 2024.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. Uniformerv2:
Unlocking the potential of image vits for video understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1632–1643, 2023a.

Kunchang Li, Yali Wang, Gao Peng, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao. Uniformer:
Unified transformer for efficient spatial-temporal representation learning. In International Con-
ference on Learning Representations, 2023b.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding, 2024.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard De Melo, Xiaogang Wang, Jifeng Dai,
Yu Qiao, and Hongsheng Li. Frozen clip models are efficient video learners. In European Con-
ference on Computer Vision, pp. 388–404. Springer, 2022.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3202–3211, 2022.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
Advances in neural information processing systems, 35:2846–2861, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchi-
cal vision transformer without the bells-and-whistles. In International Conference on Machine
Learning, pp. 29441–29454. PMLR, 2023.

Nyle Siddiqui, Praveen Tirupattur, and Mubarak Shah. Dvanet: Disentangling view and action
features for multi-view action recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 4873–4881, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

K Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie
Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1207–1216, 2019.

Rui Tian, Zuxuan Wu, Qi Dai, Han Hu, Yu Qiao, and Yu-Gang Jiang. Resformer: Scaling vits with
multi-resolution training. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22721–22731, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Chunlong Xia, Xinliang Wang, Feng Lv, Xin Hao, and Yifeng Shi. Vit-comer: Vision transformer
with convolutional multi-scale feature interaction for dense predictions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5493–5502, 2024.

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. AIM: Adapting
image models for efficient video action recognition. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=CIoSZ_
HKHS7.

Ting Yao, Yehao Li, Yingwei Pan, and Tao Mei. Hiri-vit: Scaling vision transformer with high
resolution inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Yitian Zhang, Yue Bai, Huan Wang, Yi Xu, and Yun Fu. Look more but care less in video recogni-
tion. Advances in Neural Information Processing Systems, 35:30813–30825, 2022.

Yitian Zhang, Yue Bai, Chang Liu, Huan Wang, Sheng Li, and Yun Fu. Frame flexible network.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10504–10513, 2023.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, WANG HongFa, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, et al. Languagebind: Extending video-language pretraining to n-
modality by language-based semantic alignment. In The Twelfth International Conference on
Learning Representations.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

13

https://openreview.net/forum?id=CIoSZ_HKHS7
https://openreview.net/forum?id=CIoSZ_HKHS7

	Introduction
	Related Works
	Background
	Motivation for ST-Flexibility in SSMs

	Methodology
	Preliminaries
	Instilling ST-Flexibility

	Experiments and Ablations
	Implementation Details
	Finding the Optimal Spatio-Temporal Flexibility
	StretchySnake Beats Vanilla VideoMamba
	Quantitative Results
	Qualitative Results

	Flexible VideoMamba Beats SOTA Models

	Conclusion

