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ABSTRACT

State space models (SSMs) have very recently been introduced as an alternative
deep architecture to transformers, exhibiting competitive or superior performance
across various language and vision tasks. However, both SSMs and transformers
share certain limitations in the vision domain, namely spatio-temporal inflexibil-
ity. Traditionally, deep video models are trained on a fixed resolution and number
of frames, often arbitrarily chosen as a trade-off between performance and com-
putational cost. Changing the resolution and/or number of frames a model can
ingest usually requires retraining the model, while avoiding re-training by vari-
ably changing the weights of a trained model leads to significantly reduced test
accuracy. In this paper, we introduce a spatio-temporal flexible training method
that encourages a single set of learned weights to adapt well to any input resolu-
tion or video length. We achieve this by simply randomly changing the spatial and
temporal resolutions of a video during training, and dynamically interpolating the
model’s weights accordingly. This single change in training not only allows for
one model to be applied to both short and long video understanding tasks alike, but
also allows for user-specific tailoring of computational cost. We propose and eval-
uate 5 different spatio-temporal flexible training methods to find the optimal type
for training a video SSM. We then evaluate our best flexibly-trained SSM, which
we call StretchySnake, across a variety of short- and long-form action recognition
evaluation protocols, such as video retrieval, fine-tuning, and linear probing, and
massively outperform the same vanilla video SSM trained in a standard fashion by
up to 28% in some cases. Therefore, our training method can be used as a simple
drop-in training technique for any SSM-based video models to strongly improve
performance and instill spatio-temporal and compute flexibility.

Figure 1: Comparing computational complexity and inference time between vanilla VideoMamba
and StretchySnake. With StretchySnake’s ability to accurately adapt to any spatial and temporal
resolution, it can perform video retrieval at 8 frames and 96 pixels while still significantly outper-
forming the best VideoMamba in both accuracy and inference time and cost.
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1 INTRODUCTION

The core goal of general video understanding is to learn high-quality spatio-temporal features that
are robust to information redundancy in short-length videos and complex long-range dependencies
in long videos alike. However, these two goals are often difficult to achieve unanimously with a
single model due to the current practice of training video models. Video models are traditionally
trained in a static fashion, wherein videos of a fixed length (referred to as temporal resolution) and
frame size (referred to as spatial resolution) are fed as input. While this has sufficed as a design
choice to balance computational complexity against performance, it severely limits the scalability
and generalizability of video models. For example, previous state of the art (SOTA) image models
trained in this static manner have been shown to suffer massive performance drops when tested at
spatial resolutions unseen during training (Tian et al., 2023; Beyer et al., 2023). We show later that
this phenomenon extends to video models as well, where current methods of training still perpetuate
inflexibility in both the learned spatial and temporal features. Thus, in this paper we aim to tackle
this issue by training a video model to learn a single set of weights that flexibly performs well on
many spatial and temporal resolutions while mitigating degradations in test-time accuracy.

Currently, the transformer architecture (Vaswani, 2017; Dosovitskiy, 2020; Liu et al., 2022) has been
dominant in every video domain, such as action recognition (Siddiqui et al., 2024), object segmen-
tation (Kirillov et al., 2023), and large visual-language models (Zhu et al.; Lin et al., 2023). Despite
transformers long-reigning supremacy in the field of computer vision, they are not without their
limitations, mainly their quadratic-time complexity during training and inference. These issues have
served as a significant barrier for transformers to learn extremely long-range dependencies, and thus
limit their feasible application to important visual tasks such as long-form video understanding. To
this extent, SSMs (Orvieto et al., 2023; Smith et al., 2022; Gu et al., 2021b) have very recently been
proposed as an alternative architecture to transformers. Similar to the progression of transformers,
SSMs were first observed to perform on-par, and in some cases outperform, transformer-based archi-
tectures in various natural language tasks (Gu et al., 2021a; 2020b) and were subsequently extended
to images and videos (Chen et al., 2024; Li et al., 2024; Zhu et al., 2024). Most importantly to
note, SSMs are much more adept at efficiently modeling long-range sequences due to their linear
complexity, which is practically attainable during both training and testing (Gu et al., 2021a), and
their ability to compress salient information across long contexts (Gu & Dao, 2023). However, we
argue that adapting SSMs for video understanding in the same static fashion as video transformers
severely underutilizes SSMs’ long-range, context-dynamic capabilities (see Sec. 3.1).

In this paper, we propose a novel training method which dynamically changes the spatial and tem-
poral resolutions of a video to equip a video SSM (VideoMamba (Li et al., 2024)) to learn better
spatio-temporal features. However, certain layers and weights in a video model expect a fixed size
input - such as a fixed frame size, number of frames, or embedding patch size - requiring on-the-fly
adaptation to our variably sized input; a process which we call spatio-temporal flexibility (or st-
flexibility). To achieve this, we interpolate the weights of said layers using differentiable transforms
during training, enabling a video model to implicitly learn representations that are effective at vari-
ous spatial and temporal scales. Additionally, st-flexibility can be implemented in a model through a
variety of ways when dynamically changing spatial resolutions and lengths of videos during training
(Sec. 4.2). Therefore, we introduce and evaluate 5 different versions of st-flexibility to ascertain the
most effective type and train VideoMamba with the best method: our model we call StretchySnake.

Our main contributions are as follows:

• Introduce spatio-temporal flexible training, enabling a model to learn a single set of weights
that performs well on all spatio-temporal resolutions without any architectural changes.

• Analysis of 5 different st-flexible methods across 4 action recognition datasets, gaining
valuable insights on whether spatial or temporal resolution is more important for certain
datasets.

• We find and train VideoMamba with the optimal version of st-flexibility, which massively
outperforms vanilla VideoMamba on 4 action recognition datasets across various evaluation
protocols.

• The computational efficiency of StretchySnake can be maximized by choosing the optimal
balance between test accuracy and input resolution/length of video at test-time (Fig. 1).
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2 RELATED WORKS

Training Deep Learning Models Flexibly Previous works have explored enabling an image model
to generally perform well across multiple resolutions through a variety of means, like changing the
model patch sizes/input resolutions (Beyer et al., 2023; Tian et al., 2023; Fan et al., 2024) or aspect
ratios (Dehghani et al., 2024) during training. In a similar vein, other works have instilled multi-
resolution capabilities in an image model by adopting a multi-stream approach (Xia et al., 2024; Yao
et al., 2024; Tian et al., 2023), where training images are resized to different resolutions and simul-
taneously passed through separate branches to produce multi-scale features. However, this requires
architectural changes and cannot be used as a drop-in training method for any model. Other works
have extended similar ideas to videos, such as using multiple streams for different temporal resolu-
tions (Zhang et al., 2023), using high temporal resolutions to efficiently “choose” only the important
frames in a video (Zhang et al., 2022), or some combination of the two (Feichtenhofer et al., 2019).
Tangential works have also shown that finding the optimal balance between input/model size and
test accuracy is an exceptional way to optimize compute power (Alabdulmohsin et al., 2024).

Since our st-flexible method of training enables a model to perform well across a wide range of
spatial and temporal resolutions, the optimal configuration for a fully-trained model can be chosen
to minimize compute power without sacrificing significant performance (Fig. 1). Furthermore, it is
important to note that our work separates itself in several ways: (1) we do not add any additional
branches to the model to ingest variable spatial or temporal resolutions, but adaptively change the
model on-the-fly during training, (2) we change the spatial and temporal resolutions of the input to
learn better features and further show that our method of training enables the model to generally
perform well across all spatio-temporal resolutions, and (3) we are the first to explore st-flexibility
for video SSMs, since the aforementioned works only investigate attention-based models.

3 BACKGROUND

State Space Models Structured state space models (Gu et al., 2021a;b; 2022a) have shown great
promise as efficient and powerful sequencing models. Broadly, their main attraction is their ability to
be parameterized as either a convolution or recurrence, enabling GPU compatibility and near-linear
scaling complexity with regards to sequence length. Traditionally, SSMs map some time-dependent,
continuous input sequence of length L into a latent state representation to predict the evolution of
the latent state. Specifically, some input sequence x(t) ∈ RL is mapped to some output sequence
y(t) ∈ RL through a learned latent state h(t) ∈ RN of dimensionality N . SSMs learn this mapping
through a two-stage sequence-to-sequence ordinary differential equation (ODE) consisting of four
parameters (∆,A,B,C):

h′(t) = Ah(t) + Bx(t) (1)
y(t) = Ch(t) (2)

where A ∈ RN×N is the hidden state transition matrix and B ∈ R1×N and C ∈ RN×1 are the input
and output projection matrices, respectively. With this being a continuous process, a learnable step
size ∆ is introduced to discretize A and B with a variety of possibilities (Nguyen et al., 2022; Gu
et al., 2022b), but we follow the zero-order hold used in (Gu & Dao, 2023):

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B

After discretization, an SSM can be computed either as a linear recurrence (shown on the left) or a
global convolution (as shown on the right):

ht = Āht−1 + B̄xt

yt = C̄ht

K̄ = (C̄B̄, C̄ĀB̄, C̄Ā2B̄, · · · , C̄ĀtB̄)
y = x ∗ K̄

Often times, the convolutional parameterization is chosen during training for parallelization,
whereas the recurrent parameterization is used during inference for constant-time autoregression.
There are other important SSM design choices that are currently being explored and optimized,
such as initialization and structure of Ā (Gu et al., 2022a; Gupta et al., 2022; Smith et al., 2022) and
linear time invariance (Peng et al., 2023; Fu et al., 2022) (or lack thereof (Gu & Dao, 2023)), but are
not fully integral to understanding our work.
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3.1 MOTIVATION FOR ST-FLEXIBILITY IN SSMS

Note that the matrix A (Eq. 1) in SSMs is of particular importance as it is responsible for the state-
to-state transitions of the latent space - in other words, it compresses the cumulative history of all
previously seen inputs at some timestep into a smaller latent state. It can be difficult to strike a
balance between retaining salient information from older context in the model’s memory, while still
incorporating information from new context - especially so in extremely long contexts. To solve this
issue, (Gu et al., 2020a) found that rather than initializing A randomly, it was crucial to initialize A
following the HiPPO algorithm (Gu et al., 2020a) to enable SSMs to efficiently compress all pre-
viously seen history by simply learning the coefficients of a Legendre polynomial (Voelker et al.,
2019). However, despite the near-linear complexity and compatibility with long-range dependen-
cies, SSMs were still outclassed by attention-based mechanisms in one facet: the ability to focus or
ignore particular inputs. Since attention does not compress data and instead ensures every token is
attended to every other token, this quadratically-growing complexity is why transformers struggle to
perform on extremely long contexts. Thus, (Gu & Dao, 2023) introduced a critical improvement to
SSMs to enable them to perform content-aware reasoning across long contexts: the selective scan.
By simply changing B and C to be functions of the input rather than being input-invariant, they can
selectively keep or forget information as it propagates through the model. We hypothesize that this
selective retention or forgetting of information (also known as “memory”) is a major reason why st-
flexibility massively improves performance in video SSM, as seen in Fig. 3 and further discussed in
Sec. 5 and also the appendix. With regards to video understanding, constantly flexing the spatial and
temporal resolutions of the video during training encourages the model to learn only the salient in-
formation at a variety of scales. Since Ā, B̄, C̄ are input dependent in VideoMamba, we hypothesize
that training VideoMamba with inputs at a variety of spatio-temporal scales significantly improves
the memorization of salient information, as opposed to the standard method of training at a fixed,
singular spatio-temporal scale (discussed in Sec. 5.3).

4 METHODOLOGY

4.1 PRELIMINARIES

Consider some video:
x ∈ RT×H×W×C (3)

where (T,H,W,C) are the number of frames, height, width, and number of channels respectively.
Typically, video models reduce each frame in a video into a sequence of L =

√
H×W
p×p patches:

li ∈ Rp×p×C , where p is a pre-determined patch size such that 0 ≡ p mod (H ∗ W ) and i ∈
{1, . . . L}. This process is referred to as patchification and is one way to control the amount of
compute for video models. After patchification, the spatial embeddings es are computed for each
patch li:

esi = conv(li), e
s
i ∈ R

H
p ×W

p ×D (4)
where D is the chosen embedding size and conv(·) is either a 2-D or 3-D convolution operation. To
account for permutation invariance in transformers and SSMs, a learned spatial positional embed-
ding ps ∈ RS×D is added to each patch embedding, which are then concatenated together, to obtain
the final spatial token representation for a single frame zs:

zs = concat({esi + ξsi , ∀i}) ∈ R1×S×D (5)

This per-frame process must also be applied to the temporal domain in order to be extended to
videos. Subsequently, a learnable temporal positional embedding ptj ∈ R1×S×D is added to every
spatial token zs corresponding to a single frame. Thus, the final temporal token representation
zt ∈ R1×S×D for each frame in a video is obtained:

ztj = zsj + ptj (6)

for j ∈ {1, · · · , T}. Finally, a classification token [CLS] ∈ R1×D meant to aggregate the learned
information from all patch tokens is appended and used for downstream prediction (Devlin, 2018;
Dosovitskiy, 2020). With the exception of some minor design choices (such as different types of
spatio-temporal factorization), virtually every video-based model encodes videos in this manner
before learning spatio-temporal representations (Fig. 2).
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Figure 2: Our proposed method of training a video model with spatio-temporal flexibility. We
highlight which tokens of a video model can be ’flexed’ with dashed borders during training to
accommodate for variable spatial and temporal resolutions in a video.

4.2 INSTILLING ST-FLEXIBILITY

The main goal of this work is to instill VideoMamba (and video SSMs in general) with spatio-
temporal flexibility, or in other words, to learn a single set of weights that is robust to different
spatial and temporal resolutions in a video. Ideally, a VideoMamba trained in this fashion would
generally perform well during test-time across all types of videos (low vs. high resolution, short vs.
long length, etc.) with minimal drops in performance.

Currently, the difficulty in training such a model is two-fold: (1) during training, certain layers
and weights in the model must be interpolated accordingly to account for the changes in frame
size and video length; and (2) the optimal method of instilling a model with st-flexibility is largely
unexplored. Specifically, the convolutional embedding patch size (Eq. 4), number of spatial tokens
(Eq. 5), and number of temporal tokens (Eq. 6) are the three key factors that dictate a model’s
capability to process videos of varying spatial and temporal lengths (Eq. 3). During training, these
four equations can be changed (or flexed, as we refer to it from here on out) in many different
combinations to allow for st-flexibility. In this work, we test 5 different versions of st-flexibility that
can be applied to video models during training, which we list below. For all examples, assume the

default model expects T = 16, H = W = 224 as input and p = 16 such that L =
√

224×224
16×16 = 14,

ps ∈ R14×D, and pt ∈ R16×14×D. For st-flexibility, spatial resolutions are sampled from the set
Rs = {96, 128, 224, 384} and temporal resolutions are sampled from the set Rt = {8, 16, 32, 64}.

1. Temporal Flexibility: Randomly sample T during training from Rt. Only flex the tempo-
ral tokens based on the number of input frames.

Example: If T ∼ U(Rt), assume for this example T = 32. Then, x ∈
R32×3×224×224, such that pt ∈ R16×S×D must be “flexed” to pt ∈ R32×S×D

2. Static Patch - Randomly sample T and (H,W ) during training from Rt and Rs, respec-
tively. Along with temporal flexibility, image size and number of spatial tokens are flexed,
while the patch size is always kept static.

Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that
T = 32 and H = W = 128. Then, x ∈ R32×3×128×128 and fix p = 16 such that
L =

√
128×128
16×16 = 8 and ps ∈ R16×D must be “flexed” to ps ∈ R8×D.

3. Static Tokens: Randomly sample T and (H,W ) during training from Rt and Rs, respec-
tively. Along with temporal flexibility, image size and patch size are jointly flexed such
that the resulting number of spatial tokens for every frame is always the same.

5
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Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that T = 32
and H = W = 128. If x ∈ R32×3×128×128, then p = 16 must be “flexed” to p = 9 such
that L =

⌊√
128×128

9×9

⌋
= 14 and ps ∈ R14×D does not need to be “flexed”.

4. FlexiViT: Introduced in (Beyer et al., 2023) for images, fix H = W = 240 and randomly
“flex” the patch size and number of spatial tokens from the pre-defined set in the original
paper during training. Apply temporal flexing as described in the first example.

Example: If x ∈ R32×3×240×240 and p ∼ U({8, 10, 12, 15, 16, 20, 24, 30, 40, 48}),
assume for this example that p = 12 such that L =

√
240×240
12×12 = 20 and ps ∈ R14×D must

be “flexed” to ps ∈ R12×D.
5. Flex-all: Randomly sample T and (H,W ) during training from Rt and Rs, respectively.

In addition to image size, convolution kernel size and number of spatial tokens are all flexed
during training.

Example: If (H,W ) ∼ U(Rs) and T ∼ U(Rt), assume for this example that
T = 32 and H = W = 128. Then, x ∈ R32×3×128×128, and choose p such that
0 ≡ p mod 128 and 12 ≤ p ≤ 48. Assume for this example that p = 32 such that

L =
√

128×128
32×32 = 4 and ps ∈ R14×D must be “flexed” to ps ∈ R4×D.

We postulate that training VideoMamba with this type of flexibility not only enables it to generalize
to any size or length of video, but also results in better overall learned representations (Sec. 3.1). To
flex the spatial resolution (H,W ) of a video we use the Resize function in PyTorch, and to flex the
temporal resolution of a video (T ), we simply change the number of frames we uniformly sample in
a training clip (Eq. 3). To flex the patch size of a model, we simply resize the weights w of the patch
embedding layer (conv in Eq. 4) and the spatial positional embedding ps (Eq. 5) to the correct
size using a 2-D bi-cubic interpolation. Lastly, we use a simple 1-D linear interpolation to flex
the learned temporal positional embedding pt to the correct size. Since all interpolation operations
applied to w, ps, and pt are differentiable, their weights are still updated through backpropagation
during st-flexible training.

5 EXPERIMENTS AND ABLATIONS

To validate that st-flexible training leads to better learned representations, we divide this section
into 3 categories: (1) finding the optimal type of st-flexibility, (2) exhibiting the massive per-
formance gains with StretchySnake over vanilla VideoMamba, and (3) comparing StretchySnake
against SOTA action recognition baselines. To this extent, we examine these points using 3 types
of transfer-learning experiments. Firstly, we perform video retrieval experiments on 4 benchmark
action recognition datasets in total: 2 short-video action recognition datasets (UCF101 (Soomro,
2012) and HMDB51 (Kuehne et al., 2011)) and 2 long-video action recognition datasets (COIN
(Tang et al., 2019) and Breakfast (Kuehne et al., 2014)) to evaluate our model with different context
lengths (Table 1). Secondly, we perform fine-tuning and linear probing experiments on the same
action recognition datasets (Table 2). Finally, we compare StretchySnake with previous SOTA uni-
modal video models pre-trained solely on Kinetics-400 and show that StretchySnake outperforms
every other model on average across all datasets in a video retrieval setting (Table 3). Moreover,
StretchySnake can even outperform or competitively perform against multi-modal models which
leverage additional modalities besides RGB or are pre-trained on additional data.

5.1 IMPLEMENTATION DETAILS

All experiments are performed by first training a VideoMamba on Kinetics-400 (Kay et al., 2017)
exactly the same as a vanilla VideoMamba, but with st-flexibility. Specifically, we train with simple
cross-entropy loss using the AdamW optimizer with 5 linear warm-up epochs. We use the default
learning rate and weight decay values of 1e−3 and 0.05, respectively. We initialize StretchySnake
with the provided self-supervised pre-trained weights on Kinetics-400 (similarly done in (Tian et al.,
2023)), and implement st-flexibility when performing further supervised training on Kinetics-400.
We flexibly train for 12 epochs on Kinetics-400 and compare against a vanilla VideoMamba trained
for 50 epochs, both in a supervised manner. In the fine-tuning experiments we further train the
model pre-trained on Kinetics-400 on some downstream dataset, whereas in the linear probing ex-
periments we freeze the entire pre-trained model and only train a linear classifier from scratch on the
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downstream dataset. All of our experiments use VideoMamba-M, the largest sized VideoMamba as
proposed in the original paper (Li et al., 2024) where D = 576. For temporal flexibility, we arbitrar-
ily chose Rt = {8, 16, 32, 64}. For all types of st-flexibility where applicable, we arbitrarily chose
Rs = {96, 128, 224, 384}. For FlexiViT, we follow their method by fixing H = W = 240 and
randomly sampling from a set of patch sizes {8, 10, 12, 15, 16, 20, 24, 30, 40, 48} during training.
The vanilla baseline model we use for all comparisons was trained at a fixed temporal resolution of
T = 16 and a fixed spatial resolution of H = W = 224. However, since VideoMamba provides
weights for different versions of their model trained on Kinetics-400 at various temporal scales (8,
16, 32, and 64), we also provide even more comparisons in the appendix by separately comparing
StretchySnake at each temporal scale against the corresponding vanilla VideoMamba. For certain
st-flexible methods that train with variable patch sizes, we perform inference with a fixed patch size
of 16 for fair comparisons to vanilla VideoMamba, but we provide extensive ablations with different
patch sizes in the appendix. All experiments in this paper are performed on a single NVIDIA A100
80GB GPU.

5.2 FINDING THE OPTIMAL SPATIO-TEMPORAL FLEXIBILITY

To find the optimal type of st-flexibility for VideoMamba, we start by pre-training a VideoMamba
model on Kinetics-400 with each of our proposed st-flexible methods. With the exception of st-
flexibility, we follow the same exact protocol as baseline VideoMamba for supervised training on
Kinetics-400. We then perform video retrieval across 4 different action recognition datasets, across
different spatial and temporal resolutions, to find the best type of spatio-temporal flexibility. Figure
3 shows that at every temporal resolution and virtually every spatial resolution, static tokens appears
to be the best performing and most robust type of st-flex for VideoMamba. For spatial resolutions
< 192px, static-tokens massively outperforms the next best type of st-flexibility, usually in some
range between 1%− 18%. For spatial resolutions > 192px, static tokens still either outperforms or
is on-par with other st-flexible methods in almost every setting, and only underperforms compared to
other st-flexible methods in very rare cases (only on the Breakfast dataset at low/medium spatial and
temporal resolutions). Importantly to note, not only does every st-flexible method outperform vanilla
VideoMamba, as expected, but they also outperform vanilla VideoMamba at its default configuration
of T = 16 and H = W = 224. Thus, we conclude that the best type of st-flexibility from our
proposed methods is static-tokens, and we refer to this best model as StretchySnake.

5.3 STRETCHYSNAKE BEATS VANILLA VIDEOMAMBA

5.3.1 QUANTITATIVE RESULTS

With static tokens established as the optimal type of st-flexible method, we perform the same video
retrieval experiments as Sec. 5.2 with vanilla VideoMamba for comparison with StretchySnake.
Table 1 exhibits how StretchySnake beats vanilla VideoMamba at every spatial and temporal reso-
lution, both seen and unseen during training, including vanilla VideoMamba’s original configuration
(T = 16, H = W = 224). Consistent double-digit improvements are observed in nearly every set-
ting, across every dataset, over vanilla VideoMamba. The largest improvements on the long-video
datasets (COIN and Breakfast) occur at the higher temporal resolutions, due to their specific need for
long-context understanding. With the highest average improvement across all datasets being on the
64-frame setting of Breakfast at 24.8%, st-flexibility seems to strongly improve the long-range un-
derstanding of VideoMamba. Conversely, the largest improvements with respect to the short-video
datasets (UCF101 and HMDB51) are seen at the lower 8-frame and 16-frame temporal resolution
scales. Important to note is the relative stability of StretchySnake across all spatial and temporal
resolutions alike, as compared to the drastic drops in performance of vanilla VideoMamba across
different spatial resolutions. Interestingly, vanilla VideoMamba seems to be relatively stable when
only changing the number of frames during evaluation and keeping H = W = 224. However,
StretchySnake appears to leverage the additional information when increasing temporal resolution
much more effectively than VideoMamba, as seen in StretchySnake’s consistent improvements with
increasing temporal resolution on the long-video COIN and Breakfast datasets; a behavior not simi-
larly observed with vanilla VideoMamba. Thus, StretchySnake (and by extension, any model trained
with st-flexibility) is much better equipped to adapt to the optimal temporal and spatial resolution
for specific datasets as opposed to standardly trained models.

In Table 2, we further compare vanilla VideoMamba and StretchySnake in the additional transfer
learning settings of fine-tuning and linear probing. The linear probing results are another testament
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(a) HMDB (b) UCF-101

(c) Breakfast (d) COIN

Figure 3: Each graph best viewed with zoom. Video retrieval results on all four datasets at various
spatial and temporal resolutions at test time. In every dataset, at virtually every configuration, static-
tokens is the best performing method of spatio-temporal flexibility. The suffix (−8, −16, etc.) and
marker for each label in the legend denotes temporal resolution. For better visibility, only the best-
performing setting for each method is bolded.

to StretchySnake’s superior learned representations, as freezing the model and simply only training
a linear classifier still leads to significant improvements across every dataset, with only a marginal
improvement on HMDB51. Fine-tuning is a less direct comparison of learned representations than
linear probing, since in this setting both models are entirely unfrozen and trained using the standard,
fixed method of training video models. Despite this, after training both models with T = 16, H =
W = 224 for 30 epochs, StretchySnake’s weights serve as a better quality initialization point in this
setting as indicated by the uniform improvements across every dataset over vanilla VideoMamba.

5.3.2 QUALITATIVE RESULTS

We also qualitatively explore StretchySnake at both the feature and classification levels to visualize
the improved representations of StretchySnake. In Fig. 4, we visualize the [CLS] token of both
vanilla VideoMamba and StretchySnake on UCF101 at the lowest spatial scale and fix T = 16.
StretchySnake still produces stable features at even the lowest spatial resolution on unseen data,
leading to the consistently higher and stable video retrieval top-1 accuracy of StretchySnake seen in
Table 1. In addition to better clustered [CLS] tokens, we also visualize the superior patch features
from the penultimate layer of StretchySnake (Fig. 5). The patch features are the tokens from the last
layer that are often discarded since the singular [CLS] token, which is meant to be an aggregation
of all patch tokens, is used commonly used for predictions (Bertasius et al., 2021; Dosovitskiy,
2020). However, the final patch features contain more granular information to investigate the spatial
activations of a video model at each frame (Oquab et al., 2023). Many additional visualizations can
be found in the appendix.

5.4 FLEXIBLE VIDEOMAMBA BEATS SOTA MODELS

In addition to StretchySnake’s improved video understanding capabilities over vanilla VideoMamba,
we further compare against current SOTA methods in short- and long-video action recognition pre-
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Table 1: Comparing vanilla VideoMamba performance with StretchySnake. Cells highlighted in
gray are seen during training, with “VideoMambafx” denoting the number of frames used during

evaluation. Best vanilla VideoMamba results are in red, with StretchySnake best results in green.
StretchySnake outperforms baseline VideoMamba in virtually every setting, even at unseen resolu-
tions and length of videos. Vanilla VideoMamba encounters out-of-memory (OOM) errors at large
temporal and spatial resolutions due to its static patch size, while StretchySnake’s adaptability pre-
vents this issue.

Dataset Model Testing Spatial Resolutions Avg. ∆%96 112 128 192 224 288 384 448

Breakfast

VideoMambaf8 22.0 23.1 24.9 31.9 43.2 40.7 34.5 30.5 -
StretchySnakef8 49.4 50.0 49.7 49.1 53.7 52.8 51.4 47.7 +19.1
VideoMambaf16 22.0 22.9 22.0 37.5 41.8 42.1 33.3 33.1 -
StretchySnakef16 49.4 49.2 48.3 50.3 53.4 52.5 48.6 50.3 +18.4
VideoMambaf32 20.6 23.7 26.0 40.1 44.4 46.6 35.9 31.4 -
StretchySnakef32 55.9 56.0 54.5 55.6 56.0 56.0 59.0 52.8 +22.1
VideoMambaf64 23.4 24.0 25.7 37.0 42.7 42.7 OOM OOM -
StretchySnakef64 54.2 57.9 57.9 56.0 60.2 57.9 54.8 56.0 +24.8

COIN

VideoMambaf8 43.1 49.5 52.7 58.6 62.1 61.2 58.7 56.5 -
StretchySnakef8 70.2 70.4 71.7 71.5 72.8 73.1 71.6 71.5 +16.3
VideoMambaf16 50.5 55.0 57.6 62.1 64.8 64.7 61.2 58.6 -
StretchySnakef16 74.6 74.9 74.6 75.7 75.9 75.7 75.5 74.6 +13.6
VideoMambaf32 53.0 58.6 60.0 63.5 65.4 64.7 62.4 59.8 -
StretchySnakef32 76.9 76.5 78.9 79.5 79.0 79.4 79.2 77.8 +17.5
VideoMambaf64 53.6 58.3 61.5 65.6 65.8 65.6 OOM OOM -
StretchySnakef64 78.8 78.8 79.2 80.0 79.5 80.0 79.5 78.9 +17.7

UCF-101

VideoMambaf8 64.7 75.4 82.2 88.7 90.2 91.0 88.2 85.7 -
StretchySnakef8 92.4 92.4 92.7 92.7 93.4 93.1 93.0 92.8 +16.8
VideoMambaf16 66.8 77.0 82.4 89.9 91.7 91.4 89.9 87.6 -
StretchySnakef16 92.0 93.0 93.4 94.3 93.4 94.0 94.0 93.8 +8.9
VideoMambaf32 68.1 77.1 82.7 89.6 91.8 91.7 90.0 86.8 -
StretchySnakef32 92.7 93.0 93.3 93.4 93.9 94.0 94.0 94.0 +8.8
VideoMambaf64 65.8 76.4 81.3 89.5 91.5 91.2 OOM OOM -
StretchySnakef64 93.0 93.2 93.1 93.6 94.3 94.5 93.8 94.3 +11.0

HMDB-51

VideoMambaf8 36.5 44.4 49.1 57.8 58.7 58.7 55.3 52.0 -
StretchySnakef8 61.6 62.7 63.2 64.2 63.2 62.9 62.1 62.2 +15.3
VideoMambaf16 35 42.8 49.8 56.5 58.2 57.8 53.7 51.6 -
StretchySnakef16 60.6 63.3 63.6 64.4 63.0 64.4 64.0 62.1 +12.5
VideoMambaf32 36.6 45.6 50.0 59.1 60.2 59.5 55.3 50.5 -
StretchySnakef32 63.8 64.7 65.3 65.7 65.1 64.9 64.9 63.2 +12.6
VideoMambaf64 36.7 44 48.9 56.7 59.2 59.0 OOM OOM -
StretchySnakef64 64.7 64.8 65.5 65.5 65.6 66.1 65.5 64.9 +11.0

(a) Vanilla VideoMamba (b) StretchySnake

Figure 4: Visualizing video retrieval using a t-SNE plot of the [CLS] token taken from the last
layer during evaluation on the UCF-101 dataset with H = W = 96 pixels and T = 16 frames.
StretchySnake accurately clusters action classes at low resolutions where the vanilla model fails,
clearly exhibiting its robustness to changes in spatial resolutions even on unseen data. Additional
visualizations at different spatial scales are provided in the appendix.

trained on Kinetics-400. Across four action recognition datasets, StretchySnake performs the best on
average, and in some cases outperforms multi-modal models or models trained on extra data. Thus,
training VideoMamba with st-flexibility greatly increases the quality of its learned representations,
and moreover, better leverages VideoMamba’s dynamic context length modeling capabilities.
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Table 2: Comparing vanilla VideoMamba with StretchySnake across four action recognition
datasets. We report results on full-finetuning (the entire model is trained on the respective dataset)
and linear probing (the model is frozen and only a linear classifier is trained).

Model Full Finetuning Linear Probing
UCF101 HMDB51 COIN Breakfast UCF101 HMDB51 COIN Breakfast

VideoMamba 95.7 75.0 84.0 82.6 89.1 63.6 75.5 58.6
Ours 96.5 (+0.8) 76.9 (+1.9) 88.1 (+4.1) 86.8 (+4.2) 94.1 (+5.0) 64.0 (+0.4) 80.7 (+5.2) 62.8 (+4.2)

Figure 5: Visualizing frame activations between VideoMamba and StretchySnake on random UCF
videos. For fair comparisons we set T = 16 and H = W = 224, and for brevity we randomly show
4 frames from the video. Not only does StretchySnake localize and activate on the correct region in
the frame better than vanilla VideoMamba (left, middle), but it also does so in fewer frames (right).

Table 3: Comparing video retrieval results with previous SOTA methods. StretchySnake massively
outperforms vanilla VideoMamba and also performs the best across both short- and long-form action
recognition datasets compared to previous SOTA methods trained on Kinetics-400. Best unimodal
results are in green, with second best in red. Gray results denotes the model was trained on additional
modalities besides RGB (‡) or extra data (†).

Model # of Params Video Retrieval
UCF101 (EP1) HMDB51 COIN Breakfast Average

Uniformer (Li et al., 2023b)(ICLR ’22) 49.8M 87.4 53.4 44.1 22.9 52.0
MViT (Fan et al., 2021)(ICCV ’21) 36.0M 87.2 57.7 48.0 28.0 55.2

Hiera-B (Ryali et al., 2023)(ICML ’23) 51.1M 94.3 64.0 61.3 42.1 65.4
VideoMamba (Li et al., 2024)(ECCV ’24) 73.8M 91.8 60.2 65.8 46.3 66.0

TimeSFormer (Bertasius et al., 2021)(ICML ’21) 121.5M 91.6 58.7 76.3 39.5 66.5
VideoSwin (Liu et al., 2022)(CVPR ’22) 88.0M 93.9 58.9 65.8 52.3 67.7
Hiera-L (Ryali et al., 2023)(ICML ’23) 213.1M 96.4 66.0 64.5 50.2 69.4
CAST (Lee et al., 2024)(NeurIPS ’23) 45.3M 95.0 65.0 75.1 49.7 71.2
EVL (Lin et al., 2022)(ECCV ’22)‡ 33.2M 94.4 61.9 81.0 42.3 69.9

Omnivore (Girdhar et al., 2022)(CVPR ’22)† 90.1M 95.1 62.3 71.2 53.9 70.6
UniformerV2 (Li et al., 2023a)(ICCV ’23)‡ 114.5M 95.2 65.6 78.7 48.5 72.0

AIM (Yang et al., 2023)(ICLR’23)‡ 96.4M 94.5 66.0 82.8 54.2 74.4
Ours 73.8M 94.5 66.1 80.0 60.2 75.2

6 CONCLUSION

In this paper, we propose a novel method of training video models to instill spatio-temporal flexi-
bility. During training, we dynamically change the frame size and length of a video to better enable
a deep video model to perform well across a vast range of spatial and temporal resolutions. With
the variety of combinations with which st-flexibility can be implemented in a model during training,
we propose and analyze five different spatio-temporal methods to find the optimal type. Moreover,
we apply our best method of training to the video-SSM model VideoMamba, calling this model
StrechySnake, and show that st-flexibility massively improves downstream performance across mul-
tiple short- and long-form action recognition datasets. With performance gains as high as 28% over
vanilla VideoMamba, we effectively demonstrate that StrechySnake contains better quality represen-
tations at all spatial and temporal scales; an especially valuable quality given SSM’s propensity for
learning better long-range dependencies. Additionally, our training method allows for the choice to
use any spatial or temporal resolution at inference time without major degradation in performance,
accommodating any computational budget.
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