
Gen-Review: A Dataset and Large-scale Study of AI-Generated and Human-Authored Peer Reviews

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 How does the increased adoption of Large Language Models (LLMs) impact the
2 scientific peer review? This multifaceted question is fundamental to the integrity
3 and outcomes of the scientific process. Timely evidence suggests LLMs may have
4 already been used for peer-review, e.g., at the 2024 International Conference of
5 Learning Representations (ICLR), and the LLMs’ integration in peer-review was
6 confirmed by various editorial boards (including that of ICLR’25). To seek answers,
7 a comprehensive dataset is needed, but lacking until now. We therefore present
8 Gen-Review, the largest dataset of LLM-written reviews so far. Our dataset
9 includes 81K reviews generated for all submissions to the 2018–2025 editions of
10 the ICLR and by providing the LLM with three independent prompts: a negative, a
11 positive, and a neutral one. Gen-Review also links to the papers and the confer-
12 ence reviews thereby enabling a broad range of investigations. We make a start and
13 use Gen-Review to scrutinize: if LLMs exhibit bias in reviewing (they do); if
14 LLM-written reviews can be automatically detected (so far, they can); if LLMs can
15 rigorously follow reviewing instructions (not always) and whether LLM-provided
16 ratings align with a papers’ final outcome (happens only for accepted papers). Link
17 to Gen-Review: https://anonymous.4open.science/r/gen_review/.

18 **1 Introduction**

19 Since the release of ChatGPT in Q4 2022 [35], Large Language Models (LLMs) are revolutionizing
20 many areas of our society [11]. For instance, enormous potential for productivity growth has been
21 reported in fields such as healthcare, software engineering, human-computer interaction, finance, and
22 education, to name a few [21, 9, 30, 18, 8, 23, 47, 26, 46]. From a broader perspective, LLMs are also
23 expected to have a profound *impact on science in general*, regardless of their specific fields [6, 29].

24 LLMs can affect scientific work in various ways. They can be used to revise text [12], summarize
25 prior literature [3], or implement an experimental pipeline or its parts [16]. The use of LLMs for
26 scientific work has initially faced ample criticism [2, 19, 31]. However, LLMs are a valuable asset
27 to researchers [6, 11] as they can facilitate routine scientific tasks, allowing researchers to focus on
28 the scientific discovery. Consequently, efforts were made to promote a transparent disclosure of the
29 usage of LLMs along the path leading to a scientific publication [1].

30 A complementary task, integral to the scientific process, is *peer-reviewing*. Some prior works have
31 addressed the subject of using LLMs for peer-reviewing purposes, e.g., [28, 4, 25, 41, 45, 37, 24]. As
32 an almost anecdotal finding, the study of Liang et al. [28] reported that, after the release of ChatGPT,
33 the reviews submitted to the 2024 edition of the International Conference of Learning Representations
34 (ICLR) included a strikingly more frequent (up to 34 times) occurrence of words such as “meticulous”
35 or “intricate”, often associated with ChatGPT, compared to the previous three ICLR conferences.
36 Such an anomaly suggests that LLMs are likely being used for peer-review at top-tier conferences.

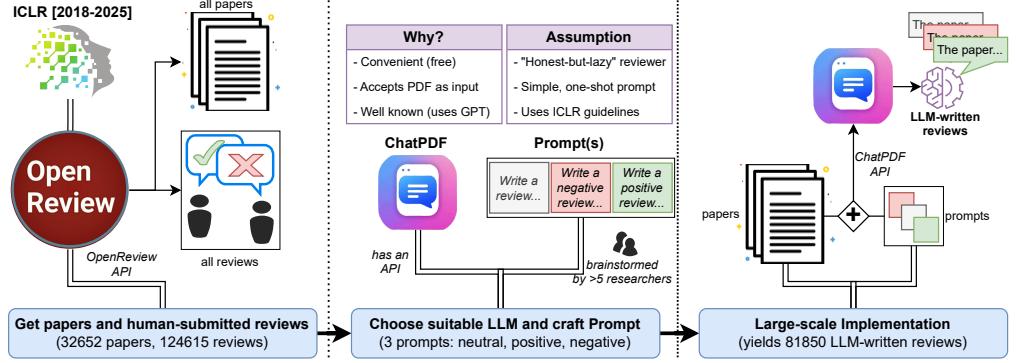


Figure 1: **The workflow to create Gen-Review.** We rely on the papers submitted to the [2018–2025] editions of ICLR (we also collect all of their human-submitted reviews). Then, we craft three simple prompts and we leverage the ChatPDF API to generate our large-scale dataset of LLM-written reviews. We then analyse our LLM-written reviews alongside those submitted by human reviewers.

37 In fact, possibly as a response to the increasing number of papers that require peer-review, some
 38 established scientific outlets have started to actively integrate LLMs into their reviewing pipelines.
 39 For instance, ICLR’25 used LLMs to provide feedback to a subset of reviewers with suggestions for
 40 improving their reviews [48]. As a result, 27% of reviewers confronted with such feedback updated
 41 their reviews [40]. Yet, the overall sentiment towards a large-scale deployment of LLMs for reviewing
 42 remains mixed, with opinions ranging from “inevitable” to “a disaster” [32].

43 In light of such diverging opinions, it becomes apparent that the discourse on the impact of LLMs
 44 on scientific reviewing must be supported by fundamental data-driven research. To facilitate such
 45 research, we present Gen-Review, the hitherto largest publicly-available dataset of LLM-generated
 46 reviews. It contains over 80 thousand reviews generated for *all papers* submitted to the ICLR between
 47 2018 and 2025. For each paper, three reviews were generated by issuing three independent prompts:
 48 one requesting a “positive” review, another requesting a “negative” review, and a “neutral” one
 49 without a specific instruction (our workflow is depicted in Fig. 1). We expect Gen-Review to foster
 50 investigations addressing LLM-driven reviewing, including but not limited to analyzing the potential
 51 bias in LLM reviews, gauging their overall quality, measuring the alignment of LLM-reviews with
 52 human-authored ones, and evaluating detectors of LLM-generated content. We illustrate the potential
 53 benefits of Gen-Review for such research by carrying out exemplary investigations. Specifically,
 54 after collecting all the human-submitted reviews for the same editions of the ICLR (which we
 55 provide in our dataset), we: (i) compare the LLM-proposed recommendation with the human-driven
 56 papers’ outcome; (ii) investigate the presence of bias in our LLM-written reviews; and (iii) test a
 57 state-of-the-art detector of LLM-generated text, *Binoculars* [15], on our collected data.

58 **CONTRIBUTIONS.** In summary, our paper makes the following contributions:

- 59 • We create Gen-Review, a large-scale dataset of over 80k LLM-written reviews, related to
 60 over 32k papers submitted to the [2018–2025] editions of the ICLR.
- 61 • We use our curated data to provide quantitative insights related to the utilization of LLMs
 62 for scientific peer-review.

63 This paper is organized as follows. First, we define our scope and justify the need for our contributions
 64 in Section §2. We describe the creation of Gen-Review in Section §3. Exploratory analyses are
 65 elucidated in Section §4. We discuss our results and provide avenues for future work in Section §5.

66 2 Preliminaries, Goals, and Motivation

67 We outline the context of our work, which also serves to substantiate some design choices (§2.1).
 68 Then, we outline our research goals (§2.2) and compare our contributions with related work (§2.3).

69 2.1 Background and Context

70 We summarize the landscape of using Artificial Intelligence (AI), such as LLM, for content generation.
 71 Then, we focus on the core of our work, emphasizing the relevance and necessity of similar efforts.

72 **Generative AI and LLMs.** One of the most appreciated capabilities of LLMs is their content-
73 generation ability. An LLM can interpret the instructions embedded in a given *prompt* and produce a
74 corresponding output. Initially, both the prompt and the corresponding output were limited to textual
75 format [35]. However, over time, LLM-related technologies substantially improved, and it is now
76 possible to provide prompts (and requesting an output) as text, images, audio, videos, or a combination
77 thereof [33]. Recent findings have shown that the content generated by modern LLMs is of such a
78 high quality that people can hardly figure out if it is human- or LLM-generated [13, 42, 7, 27].

79 **Detection of AI-generated content.** In some contexts (such as in science), determining the author of
80 any given “creation” is of paramount importance (e.g., for authorship, or accountability). Therefore,
81 due to the (allegedly) increasing appearance of LLM-generated content—such as in online social
82 networks [27], or in emails [34]—there has been a growing interest in the development of *automated
83 detectors* of LLM-generated media [39]. Abundant prior works have developed various tools that
84 can estimate whether a given input was generated by an AI (e.g., [22, 5]). For instance, Hans et
85 al. [15] proposed *Binoculars*, an open-source detector that can infer whether a given piece of text was
86 generated by, e.g., ChatGPT, with an accuracy of over 90% and a false-positive rate of only 0.01%.
87 Unfortunately, attaining complete certainty on the true author of any given content is still an open
88 problem: as stated in a recent survey [43], there is “an urgent need to strengthen detector research.”

89 **LLM-assisted generation of scientific peer-reviews.** As acknowledged by the organizers/editors of
90 various research venues [32, 48], *LLMs are being used today* in the peer-review of scientific articles.
91 However, there are many ways in which LLMs can be used in this process [14]. For instance, LLMs
92 can take an existing review (or parts thereof) and improve its writing quality, or check that the review
93 is written constructively and respectfully; LLMs can also provide a short and high-level account
94 on a work referenced in a given submission; finally, LLMs can also write an entire review on the
95 reviewers’ behalf. Such a task can be carried out by (i) issuing a prompt such as “write a review on
96 this paper” and (ii) attaching the PDF of the paper to review in the prompt. Doing so would produce
97 an output text of variable length that describes the content of the paper and outlines its strengths
98 and weaknesses—according to the LLM’s judgment. For instance, a popular tool to achieve such an
99 objective is ChatPDF:¹ by using its web interface (which is free), it is possible to produce a review of
100 a paper in mere seconds (we provide a screenshot of ChatPDF’s Web interface in [Fig. 6](#)).

101 **Concerns of AI-generated reviews.** Complete reliance on LLMs for reviewing duties raises various
102 concerns, since the LLM’s judgment replaces or influences that of the human expert. This can
103 impact both the quality of the scientific selection of published works and the quality of the feedback
104 returned to the authors. Among the most well-known issues of using LLMs for peer-review, we
105 mention: the risk of “hallucinations” that undermine the correctness of the review; the lack of
106 knowledge of the state of the art which prevents assessing the originality/novelty of the paper’s
107 claimed contributions; as well as the risk of breaching confidentiality agreements—due to uploading a
108 submitted paper to a third-party. Consequently, certain venues have begun regulating the LLM usage
109 for peer-reviewing purposes (e.g., [NeurIPS’25](#)) while others have explicitly prohibited any usage of
110 LLMs in the reviewing process (e.g., [CVPR’25](#)). Regardless of whether LLMs are (or not) allowed,
111 *what is crucial is being transparent towards the recipients of the reviews*: the authors have the right
112 to be informed about whether LLMs played a role in the peer-review process of their papers [14].

113 2.2 Problem Statement and Research Workflow

114 At a high-level, our contributions are motivated by two complementary reasons:

- 115 • the potentially inescapable integration of LLMs in (parts of) the peer-review process [32],
116 which requires improving our generic understanding of LLM-generated reviews; and
- 117 • the necessity of identifying cases of misconduct wherein reviewers relied on LLMs without
118 disclosure (thereby failing to uphold the authors’ right to be informed [14]), which calls for
119 ad-hoc detectors of LLM-generated reviews.²

120 Therefore, our first goal is the creation of a large-scale dataset of LLM-generated reviews, i.e.,
121 Gen-Review. We do this by using all paper submissions to the last eight editions of the ICLR.
122 We elect to use ICLR papers as the core of the dataset and analysis not only because of their public

¹<https://chatpdf.com/>, allegedly the #1 PDF Chat AI; ChatPDF relies on the OpenAI GPT models.

²Ideally, such detectors can be used *before* the authors receive the LLM-generated reviews, so that action can
be taken before making a (potentially inappropriate) decision on the paper’s outcome.

123 reviews, but also because all ICLR submissions (including rejected or withdrawn papers) are publicly
124 available. Crucially, this enabled us to create a dataset that is based on a large variety of papers in
125 terms of quality (i.e., a dataset whose reviews are based solely on accepted papers would not be
126 well-suited for research on the capabilities of LLMs in assisting in the peer-review).

127 Our workflow is depicted in [Fig. 1](#) (further discussed in [§3](#)). Upon taking all the 32'652 papers
128 submitted to the last eight editions of the ICLR (i.e., 2018–2025), we use ChatPDF to generate three
129 reviews per paper, each based on an independent one-shot prompt: (a) a “positive” prompt, specifically
130 crafted to induce the model to recommend an accept-class score; (b) a “negative” prompt, crafted to
131 induce the model to recommend a reject-class score; and (c) a “neutral” prompt, wherein we do not
132 add any explicit instruction on the (LLM-provided) recommendation. This led to the generation of
133 81'850 LLM-written reviews. Next, we collect all the human-submitted reviews (124'615 in total)
134 for our sample of papers. Finally, we use all of this data to answer four research questions (RQ):

- 135 RQ1: *Is there any intrinsic bias in the LLM-written reviews?* (i.e., what is the general score
136 distribution of “neutral” reviews w.r.t. “positive” and “negative” ones?)
- 137 RQ2: *How much do “neutral” reviews align with the overall outcome of the paper?* (e.g., if the
138 LLM recommended accepting the paper, was the paper accepted?)
- 139 RQ3: *How much do LLMs fulfill the instructions provided in the prompt?* (e.g., if we specify a
140 given length for the review, does the LLM follow such a requirement?)
- 141 RQ4: *How well can a state-of-practice detector (Binoculars [15]) identify the reviews in Gen-
142 Review?* (and how does it perform on the human-submitted reviews?)

143 Altogether, answering these RQ helps us better understand some facets of using LLMs for peer-review.

144 2.3 Related Work

145 Various prior works have addressed problems related to our contributions. However, to the best of
146 our knowledge, no existing dataset has a scope comparable to Gen-Review, and our findings are
147 also original. In what follows, we summarize and compare the most related works to this paper.

148 **Lack of ground truth.** The findings of the seminal work by Liang et al. [28] indicate that LLMs are
149 likely to have been used in ICLR’24. However, there is no ground truth to verify if any given review
150 with an anomalous utilization of certain terms (e.g., “meticulous”) was indeed written by an LLM.
151 Moreover, without such ground truth, it is also impossible to determine the extent to which an LLM
152 has been used (e.g., was it used to generate the entire review, or only to improve the textual quality of
153 a human-written review?). The same shortcoming (i.e., lack of ground truth) also affects the work
154 by Latona et al. [25], where GPTZero was used on the reviews submitted to ICLR’24, finding that
155 potentially 15% were written with AI assistance. We address this problem by directly constructing a
156 large-scale dataset of LLM-generated reviews, where the level and nature of AI involvement are fully
157 controlled. Therefore, our dataset represents a valid proxy for a wide range of investigations, such as
158 benchmarking the effectiveness of detectors of LLM-written peer reviews.

159 **Small-scale analyses.** In their recent work, Thelwall et al. [41] assess ChatGPT’s ability to predict
160 the outcome of some papers submitted to ICLR’17 (collected in [17]). Similarly, the authors of [37]
161 carried out a study in which human reviewers’ assessments were compared to those of GPT-4 in a
162 total of 325 abstracts, finding alignment only for the best submissions. The analyses of both of these
163 works are preliminary and limited in scale, preventing generalizable conclusions. Our analysis is
164 performed on a much larger scale, aiming to provide more robust empirical evidence and uncover
165 systematic patterns in LLM-assisted reviewing.

166 **Limited-scope datasets of LLM-written reviews.** The closest works to our paper are those of Yu et
167 al. [45] and Kumar et al. [24]. Both ultimately seek to propose new methods to detect LLM-written
168 reviews, and such methods were tested also on (genuine) LLM-written reviews based on ICLR
169 submissions. However, the datasets used for such evaluations have a much more limited scope
170 than our proposed Gen-Review. For instance, Yu et al. [45] generate the reviews by selectively
171 removing some parts of the papers (such as the bibliography and images), and even though the
172 reviews (16K in total; we have 81K) are based on papers submitted to the ICLR from 2021–2024, the
173 overall number of papers used as a basis is only 500 (ours is 32'652). Whereas Kumar et al. [24]
174 also use a much smaller number of papers (i.e., 1480 in total, taken from ICLR’22 and NeurIPS’22)
175 and the reviews are generated by providing only the paper’s text (i.e., without images) as input to the
176 prompt. In contrast, our reviews are generated by providing the entire PDF, ensuring that the LLM
177 has access to all the information available to any human reviewer.

178 **Orthogonal works.** There are also orthogonal works that propose datasets of various AI-generated
179 content—not necessarily peer-reviews—such as [38, 10, 44]; or works that focus on the detection of
180 LLM-written *papers*—and not reviews—such as [31]. Finally, we stress that our work is in no manner
181 related to the detection of “fake reviews” in online platforms (e.g., online marketplaces [20, 36]).

182 **3 Gen-Review: Large-scale Dataset of Peer Reviews**

183 We describe the creation process of our major contribution: the Gen-Review dataset. Our workflow
184 (shown in Fig. 1) can be split in three phases, which we elaborate on in the remainder of this section.

185 **3.1 Preparation: retrieving papers and human-submitted reviews**

186 We first outline the necessary requirements to reach our goal (see §2.2) and then explain how we
187 collected the backbone of Gen-Review, motivating our decisions.

188 **Requirements.** To create a dataset of LLM-written peer-reviews, we need research papers—ideally
189 (dozens of) thousands, since we aim to provide a dataset that enables large-scale assessments.
190 Moreover, to provide a dataset that allows *fair* evaluations of LLM-written peer-reviews, we need
191 papers that have been either “accepted” or “rejected”: indeed, using only “accepted” papers would
192 prevent one from gauging the quality of LLM-written reviews for those papers (theoretically of lower
193 quality) that were not accepted to a given venue—which typically represent a large share of the
194 submissions. Finally, we must ensure that our dataset includes also human-submitted reviews—which
195 are necessary to facilitate comparison against LLM-written ones.

196 **Collection.** We determined that the ICLR is the most suited venue that fulfills all of the aforemen-
197 tioned requirements. Aside from being a top-tier venue, it yearly receives thousands of submissions;
198 moreover, the complete peer-review details (including each human-submitted review, as well as
199 outcome) of each submission are publicly observable—and there is historical data available on
200 OpenReview for all of its editions. Therefore, we used the OpenReview API to collect all relevant
201 data for our purposes for each paper submitted to ICLR from 2018 to 2025 (8 editions in total). In
202 this way, we obtained: 32’652 papers (spanning accepted, rejected, and even withdrawn papers) and
203 124’615 human-submitted reviews (including their text, recommendation, and confidence). We do
204 not consider submissions to satellite events of ICLR (e.g., workshops or blogposts). We note that
205 such a process complies with OpenReview’s terms of use (<https://openreview.net/legal/terms>).

206 **3.2 Design choices: selecting the LLM, and crafting the prompts**

207 The second step involves determining which LLM to use to generate our reviews, as well as devising
208 prompts that would make Gen-Review appealing for future research. To better appreciate our
209 contributions, we must first describe our underlying assumption. Indeed, there are virtually infinite
210 ways to craft a prompt that asks an LLM to “review a paper”, and there are also dozens (or hundreds)
211 of LLMs that can be leveraged for such a task. Therefore, to create Gen-Review, we set ourselves
212 the goal to mimic a realistic and likely common use case. Specifically, we asked ourselves: “*If I were*
213 *a reviewer tasked to write a review for a paper (submitted to ICLR) and I had no time to accomplish*
214 *such a task, what would be the best way to do so by leveraging LLM-based solutions?*” Essentially,
215 we assumed the perspective of an “honest-but-lazy” reviewer, who wants to fulfill their reviewing
216 duties but does not have enough time to do so properly, and hence decides to rely on an LLM. This is
217 a sensible assumption, given the increasing reviewing load in many research domains [32].³

218 **LLM-solution of choice: ChatPDF.** The first decision that our envisioned reviewer must make is
219 which LLM to use. From this viewpoint, the ideal solution is one that fulfills the following criteria:
220 (i) *it is convenient*—our reviewer does not want to spend money (e.g., to use more sophisticated
221 models) or time (e.g., to setup a local model); (ii) *it is simple to use*—our reviewer just wants to write
222 a prompt and provide the paper as-is, i.e., without converting the PDF into other formats; (iii) *it is*
223 *well-known*—given that no LLM is intrinsically perfect, the reviewer (being a scientist) wants to
224 resort to a solution for which there is evidence that it is “good enough” to carry out such a task. We

³We stress that we **do not take any stance on the ethical or moral implications** of (a) using LLMs as a potential “shortcut” for carrying out peer-reviewing duties, or (b) the act of uploading papers to a third-party LLM service. Our sole intent is to create a dataset for the investigation of various aspects of LLM reviewing.

Table 1: **Gen-Review in a nutshell.** For each submitted paper (after fetching all of its human-submitted reviews) we generate three LLM-written reviews using ChatPDF by issuing three prompts.

ICLR Edition	2018	2019	2020	2021	2022	2023	2024	2025	Total
Paper Submissions	935	1419	2213	2594	2618	3797	7404	11672	32652
Hum.-sub. Reviews	2784	5751	6721	10022	10206	14355	28028	46748	124615
GenAI Reviews	Neutral	929	1398	2181	2542	2544	3686	5361	8378
	Positive	928	1397	2176	2541	2544	3686	5361	8377
	Negative	928	1397	2176	2541	2544	3686	5361	8378

225 found that ChatPDF is a solution that fulfills all of these criteria. Specifically, ChatPDF is free and is
 226 provided with a Web interface (even users who are not logged in can use it); it enables PDF upload
 227 by default⁴, and it is popular, since it relies on state-of-the-art GPT models. Finally, and crucially
 228 (for the sake of feasibly creating Gen-Review), *ChatPDF provides an API that allows to scale our*
 229 *workflow*. Put simply, ChatPDF was the best viable option for our goals, motivating our choice (we
 230 note that, to create Gen-Review, we had to purchase thousands of API queries).

231 **Devising our prompts.** Our envisioned reviewer must also determine which prompt to use. Being
 232 time-pressed, the reviewer would opt for something simple, i.e., a prompt that does not include any
 233 remark about what parts of the paper to mention in the review. The reviewer would, however, provide
 234 the generic guidelines of ICLR, since this would enable aligning the LLM-written review with the
 235 expectations of the considered venue. Furthermore, the reviewer would not try to craft a prompt that,
 236 e.g., seeks to “evade” detectors of LLM-generated content (if he/she wants to do so, they can take the
 237 output and modify it accordingly). Additionally, being “honest”, the reviewer would not introduce
 238 any specific instruction about whether to accept or reject the paper. Finally, the prompt must be
 239 context-agnostic: the reviewer is not willing to engage in a long conversation with the LLM to derive
 240 the “perfect review”. Therefore, to craft a prompt that resembles such a use case, more than five
 241 researchers collectively brainstormed and discussed various alternatives. We ultimately converged
 242 to the prompt reported in [Prompt 1](#). In our prompt, which has a somewhat similar structure to that
 243 used by [\[24\]](#) (i.e., a summary of the paper, followed by a main review), we have added constraints
 244 on the length of the review (i.e., the summary and the review should be [100–300] and [800–1000]
 245 words in length, respectively). We have also integrated common elements taken from the CFP of each
 246 considered edition of ICLR. Finally, to enable assessment of bias in the LLM reasoning, and also
 247 to simulate a slightly different use case of a “not-very-honest” reviewer, we created two variants of
 248 our prompt: a “positive” (in [Prompt 2](#)) and a “negative” (in [Prompt 3](#)) one. We note that these two
 249 alternatives are identical to the “neutral” version, with the only difference being the word “POSITIVE”
 250 (or “NEGATIVE”) mentioned twice in the respective prompt.

251 3.3 Implementation: overall statistics, and development challenges

252 The last step involves using the API provided by ChatPDF to interact with the underlying LLM⁵ by
 253 providing (i) each of our retrieved papers alongside (ii) all of our prompts as input.

254 **Overview.** Specifically, for each of our 32652 retrieved papers, we use (in independent contexts)
 255 each of our three prompts, thereby generating three reviews per paper—a neutral-prompted one, a
 256 positive-prompted one, and a negative-prompted one. Ultimately, we obtained 81'850 LLM-written
 257 reviews, representing the core contribution of Gen-Review. To facilitate downstream usage, each
 258 LLM-written review in Gen-Review has an identifier that enables to easily discern (a) the paper
 259 that refers to such a review, as well as (b) the human-submitted reviews available on OpenReview.
 260 The overall statistics of our Gen-Review are shown in [Table 1](#).

261 **Challenges.** We encountered various challenges: First, ChatPDF does not allow interaction with
 262 PDF files that are larger than 32MB, which led us to discard 695 papers in total. Moreover, after we
 263 collected our data, we inspected it and we found that some reviews were truncated—likely due to
 264 network errors (which were not unexpected, given our massive usage of the ChatPDF API). While

⁴At the time of designing our pipeline (i.e., November 2024) not many models enabled interacting with a PDF file “as-is” and for free (e.g., for OpenAI, this feature was added only in December 2024 [\[33\]](#))

⁵We issued our queries between February and April 2025: according to the ChatPDF documentation, the queries were routed to either GPT-4o or GPT-4o-mini. We are unfortunately unable to control which specific model was used, but no change was made to ChatPDF during our considered time frame.

265 we tried to sanitize all of these occurrences by reissuing the API query, we acknowledge that some
 266 LLM-written reviews in Gen-Review may still present some inconsistencies.

267 4 Analysis and Original Findings

268 We now analyze our proposed Gen-Review dataset by answering our four RQs (see §2.2).

269 **RQ1: Biases of our LLM-written Reviews.** To answer RQ1, we compare the scores embedded
 270 in each LLM-written review in Gen-Review for each of the three prompts we considered.
 271 We expect that “negatively-prompted” reviews
 272 have scores below the typical acceptance bar
 273 (≤ 5 for ICLR), whereas “positively-prompted”
 274 reviews will have scores above the acceptance
 275 bar (≥ 6). However, we do not know what to ex-
 276 pect from the “neutral-prompted” reviews. We
 277 show the score distribution in Fig. 2; here, a
 278 score of 0 indicates that we could not extract
 279 any score by employing pattern-matching tech-
 280 niques (the low-level implementation is pro-
 281 vided in our code repository), which occurs for
 282 291 LLM-written reviews out of 81850 (0.4%).
 283 *There is a substantial bias in LLM-written re-
 284 views, which tends to favor a positive outcome.*
 285 Particularly, for the neutral-prompted reviews, only 35 AI-generated reviews use the score “5: slightly
 286 below the acceptance threshold”. All other neutral-prompted reviews deemed the respective paper to
 287 be above the acceptance threshold; perhaps surprisingly, the most common rating was that of “8: Top
 288 50% of accepted papers, clear accept”. To slightly reinforce the positive bias, we also observe that
 289 (i) although all negative-prompted reviews do indeed have a reject-class rating, the wide majority has
 290 a “4: Ok, but not good enough - rejection”; whereas (ii) positive-prompted reviews almost always are
 291 rated with an 8 or “9: Top 15% of accepted papers, strong accept” (only two LLM-written reviews rate
 292 the paper with a 7). These findings indicate that although the LLM seems to follow our instructions,
 293 it does so with an implicit positive bias—a result that echoes recent unpublished work [25].

294 **RQ2: Alignment of neutral-prompted reviews with human-driven paper’s outcome.** We investi-
 295 gate the extent to which LLMs can predict the outcome of a given paper. To this end, we take the
 296 rating provided by the neutral-prompted reviews in Gen-Review, and compare it with the final
 297 decision for that paper. Specifically, we consider that the LLM is in agreement if, for a given paper, it
 298 recommends a rating ≤ 5 and the paper was rejected; or it recommends a rating ≥ 6 and the paper
 299 was accepted; we exclude “withdrawn” papers from this analysis. We display the agreement over the
 300 years in Fig. 3a, showing that, overall, the LLM’s recommendation does not seem to align with the
 301 paper’s final decision. We further explore this phenomenon in Fig. 3b, showing the decision-specific
 302 cases of agreement or disagreement. We can see that the prevalent cases of disagreement entail papers
 303 that are ultimately rejected. This finding (which also echoes that of the smaller-scale study in [41])
 304 further reinforces our answer to RQ1: LLMs tend to favor acceptance to a much larger extent than
 305 human-driven program committees. Ultimately, we can conclude that *LLMs, being positively biased,
 306 cannot reliably predict if a paper will be rejected* (at least to a top-tier venue such as the ICLR).

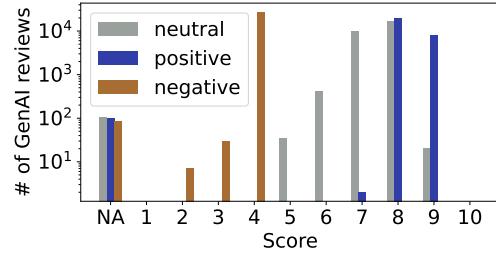
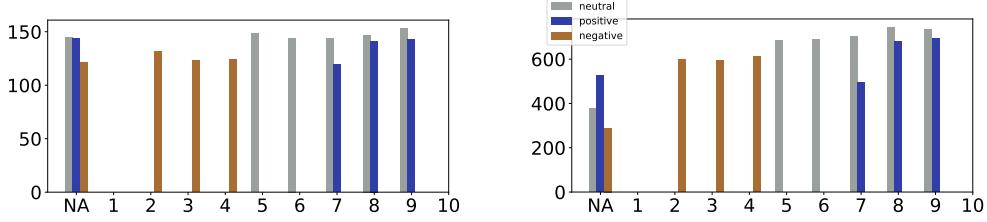


Figure 2: **Rating of LLM-written reviews** in Gen-Review for each considered prompt. Ratings follow the ICLR 1–10 scale (N/A denotes cases without a rating in the LLM-written review).



Figure 3: **Agreement between LLM-provided recommendation and human-driven decision for each paper.** We exclude papers that have been “withdrawn” from this analysis.



(a) Length of the “summary” (y-axis: # of words). (b) Length of the “main review” (y-axis: # of words).

Figure 4: Average length of the LLM-written reviews for each prompt. The x-axis shows the rating.

307 **RQ3: Fulfillment of instructions in the prompt.** Our prompts, while simple, embed a variety of
 308 constraints and requests. Evidence that LLMs can, to some extent, follow our instructions can already
 309 be found in the analysis we did for RQ1: negative-/positive-prompted reviews recommend scores
 310 that lean towards rejection/acceptance; however, we were unable to extract the score for 0.35% of
 311 reviews—indicating that, in some cases, the LLM either used other words to express a decision, or
 312 skipped it entirely. We further analyse the LLM’s compliance with our instructions by scrutinizing
 313 the length of the “summary” (which should be of 100–300 words, according to our prompt) and of the
 314 “main review” (800–1000 words) of the review. To provide a fine-grained analysis, we plot the average
 315 length (in words) for each type of prompt and for each rating in Fig. 4a (for the summary) and Fig. 4b
 316 (for the main review). While the LLM seem to comply with our requests for the summary (which is
 317 typically of 100–130 words), this is not the case for the main body (which hardly goes above 700
 318 words). A potential explanation for this discrepancy is that the LLM interpreted that the 800–1000
 319 words should include both the “summary” and the “main review”. Still, even by adding the lengths of
 320 the summary and of the main review, we do not always obtain a text within our specified margins. An
 321 ancillary result is that the output length does not vary substantially across ratings. Finally, to explore
 322 RQ3 from a different perspective, we study the overall prevalence in the LLM-written reviews of
 323 some keywords explicitly mentioned in our prompts (e.g., “strength”, “novelty”, “clarity”), which the
 324 LLM should use to gauge the paper. The results, shown in Table 3 (in Appendix B), reveal that all of
 325 our specified terms occur at least once for over 99% of all LLM-written reviews. To conclude, *LLM*
 326 *can generally follow our reviewing instructions, but in some cases they may forget some requests.*

327 **RQ4: Assessment of a AI-generated text detector on Gen-Review.** Finally, we test how well
 328 a state-of-the-art detector of AI-generated text can spot that (i) our LLM-written reviews are AI-
 329 generated, and we also (ii) test its effectiveness on the human-submitted reviews we collected. We
 330 consider *Binoculars* [15] due to its popularity (albeit we acknowledge that other tools exist, such as [24]).
 331 This detector works by providing a score for
 332 the input text, and whether such is above a
 333 given threshold (≈ 0.85 that yields 1% false
 334 positive rate), the text is deemed as “likely
 335 human-generated”; otherwise it is “likely AI-
 336 generated”. Therefore, we instantiate a local
 337 instance of *Binoculars* and use it to process all
 338 of our data—both human-submitted and LLM-
 339 written reviews, displaying the results in Fig. 5.
 340 We can see that *Binoculars* works well to pin-
 341 point that our LLM-written reviews are indeed
 342 “AI-generated”: the recall is 100%. With regard to the human-submitted reviews, we found some
 343 instances in which *Binoculars* predicted the text to be likely AI-generated. We report the occurrence
 344 of such “anomalies” across the ICLR editions in Table 2 (in Appendix B). While before 2023 the
 345 number of “anomalous” human-submitted reviews is only 1 or 2, this numbers raises to 217 in
 346 2024 and 327 in 2025 (i.e., after the widespread release of LLMs). This result (i.e., the fact that
 347 some human-submitted reviews to ICLR may have been AI-generated) echoes the findings of prior
 348 work [28, 25]. Unfortunately, due to a lack of ground truth, we cannot claim whether these reviews
 349 have been truly AI-generated. Finally, and intriguingly, our analysis showed that *Binoculars* flagged
 350 six human-submitted reviews scattered among the 2019–2022 editions of ICLR: this is surprising,
 351 given that no LLMs were publicly available then. Thus, *even though Binoculars is very accurate at*
 352 *identifying genuine AI-generated texts, it may still trigger some false positives.* Therefore, we advise
 353 caution in using this tool for detecting LLM-written reviews, as it may lead to false accusations.

354 **5 Discussion**

355 **5.1 Limitations**

356 Gen-Review is the largest dataset of LLM-written peer-reviews so far. However, we acknowledge
357 it has some limitations. First, the reviews in Gen-Review only pertain to papers submitted to the
358 ICLR, meaning that our dataset and investigation results may not generalize to other areas outside
359 of computer science. Secondly, the reviews in Gen-Review have been created by using a single
360 LLM service (i.e., ChatPDF); moreover, we had no control on which model was used to produce each
361 review (ChatPDF would automatically switch between GPT-4o and GPT-4o-mini) meaning that our
362 dataset is not suited to explore the effectiveness of other LLMs (Gemini, Claude, or others).

363 **5.2 Broader Impact**

364 In a sense, our findings suggest that our envisioned “honest-but-lazy” reviewer can skew the outcome
365 of the paper selection process due to an overwhelming positive bias of the underlying LLM. Further,
366 we have further shown that LLMs can be used by a “not-very-honest” reviewer to generate reviews
367 that conform to a desired (“accept” or “reject”) outcome with just a single word change to our (very
368 simple) “neutral” prompt. In all such cases, the integrity of the peer-review process is lost, since it
369 is not driven by impartial expert (human) judgment anymore. Fortunately, some existing detectors
370 can reliably (with some false positives) flag LLM-generated reviews—when no attempt was made to
371 alter the text, or when issued via simple prompts. From a security standpoint, we endorse taking into
372 account the possibility that some “adversarial reviewers” may attempt to evade the detection process.

373 **5.3 Conclusions and Future Work**

374 Peer-review is an essential part of science to ensure the quality of new contributions. It is thus
375 important to understand how new technologies, such as LLMs, may interfere with this process to
376 avoid any harm on science, researchers, or to-be-published works. Our Gen-Review can hopefully
377 assist in providing such an understanding. In what follows, we discuss three avenues for future work.

378 **Assessment of additional detectors.** Investigating the extent to which LLM-generated reviews can
379 be detected is essential to safeguard the scientific process—especially for those cases in which it is
380 explicitly disallowed to rely on LLMs for peer-review (e.g., CVPR’25). Our analyses only considered
381 Binoculars [15], but many more detectors of LLM-generated text exist (e.g., [22, 5]). These tools
382 can be tested on the reviews in Gen-Review (including human-submitted ones). Particularly,
383 even though we cannot be certain of the “ground truth” of the human-submitted reviews for ICLR
384 2023–2025, it is safe to assume that reviews submitted for ICLR 2018–2022 (35K in total) are not
385 LLM-written. Hence, our Gen-Review can be used as a benchmark to test these detectors. One
386 can also use our dataset to develop ad-hoc detectors for LLM-written reviews (e.g., [24], which we
387 have also tested with a few dozen reviews from Gen-Review, and it seem to work very well!).⁶

388 **Evaluating (and improving) the LLM review quality.** We mostly focused on quantitatively
389 analysing, at a very high level, the LLM-written reviews in Gen-Review, prioritizing the investi-
390 gation of whether such reviews had some bias. Future work can use our data to carry out in-depth
391 analyses to, e.g., scrutinize how accurate the LLM-written review is for each given paper (this is
392 possible given our dataset format), or how much the LLM-written review aligns with the other
393 human-submitted reviews from a content perspective (and not from a rating or decision perspective).
394 For instance, it would be intriguing to explore whether the LLM provides a factual account of the
395 paper’s clarity and significance or if generated reviews contain hallucinations. Answering both of
396 these questions is possible with a paper-by-paper analysis. Finally, developers of LLM can also use
397 our dataset as a baseline to *improve* existing LLMs so that they produce reviews of better quality.

398 **Expanding Gen-Review.** Despite its large scale, our dataset (and findings) is limited to ICLR and
399 ChatPDF. However, to maximize reproducibility and facilitate further research, we have released
400 our prompts. Researchers can thus expand our dataset in various directions, e.g., using the same
401 prompts by requesting other LLMs to review the same papers; or by using different papers. It would
402 be intriguing to, e.g., see if our findings can also map to other disciplines, venues, or LLMs.

⁶We have also studied (Table 4) the prevalence of the words highlighted by Liang et al. [28] across the LLM-written reviews in Gen-Review: many of our reviews include these words, especially “innovative”.

403 **References**

404 [1] Balazs Aczel and Eric-Jan Wagenmakers. Transparency guidance for chatgpt usage in scientific writing. *OSF*, 2023.

405

406 [2] Signe Altmäe, Alberto Sola-Leyva, and Andres Salumets. Artificial intelligence in scientific writing: a friend or a foe? *Reproductive BioMedicine Online*, 2023.

407

408 [3] Ibrahim Al Azher, Venkata Devesh Reddy Seethi, Akhil Pandey Akella, and Hamed Alhoori. Lim-topic: Llm-based topic modeling and text summarization for analyzing scientific articles limitations. In *Proceedings of the 24th ACM/IEEE Joint Conference on Digital Libraries*, 2024.

409

410

411 [4] Howard Bauchner and Frederick P Rivara. Use of artificial intelligence and the future of peer review. *Health Affairs Scholar*, 2024.

412

413 [5] Amrita Bhattacharjee and Huan Liu. Fighting fire with fire: can chatgpt detect ai-generated text? *ACM SIGKDD Explorations Newsletter*, 2024.

414

415 [6] Abeba Birhane, Atoosa Kasirzadeh, David Leslie, and Sandra Wachter. Science in the age of large language models. *Nature Reviews Physics*, 2023.

416

417 [7] Amal Boutadjine, Fouzi Harrag, and Khaled Shaalan. Human vs. machine: A comparative study on the detection of ai-generated content. *ACM Transactions on Asian and Low-Resource Language Information Processing*, 2025.

418

419

420 [8] Jason W Burton, Ezequiel Lopez-Lopez, Shahar Hechtlinger, Zoe Rahwan, Samuel Aeschbach, Michiel A Bakker, Joshua A Becker, Aleks Berditchevskaia, Julian Berger, Levin Brinkmann, et al. How large language models can reshape collective intelligence. *Nature human behaviour*, 2024.

421

422

423 [9] Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization: Perspectives of challenges and opportunities. *World Wide Web*, 2024.

424

425

426 [10] Joseph Cornelius, Oscar Lithgow-Serrano, Sandra Mitrović, Ljiljana Dolamic, and Fabio Rinaldi. Bust: Benchmark for the evaluation of detectors of llm-generated text. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics*, 2024.

427

428

429 [11] Yogesh K Dwivedi, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, Arpan Kumar Kar, Abdullah M Baabdullah, Alex Koohang, Vishnupriya Raghavan, Manju Ahuja, et al. Opinion paper: “so what if chatgpt wrote it?” multidisciplinary perspectives on opportunities, challenges and implications of generative conversational ai for research, practice and policy. *International journal of information management*, 2023.

430

431

432

433

434 [12] Moe Elbadawi, Hanxiang Li, Abdul W Basit, and Simon Gaisford. The role of artificial intelligence in generating original scientific research. *International journal of pharmaceutics*, 2024.

435

436 [13] Joel Frank, Franziska Herbert, Jonas Ricker, Lea Schönherr, Thorsten Eisenhofer, Asja Fischer, Markus Dürmuth, and Thorsten Holz. A representative study on human detection of artificially generated media across countries. In *2024 IEEE Symposium on Security and Privacy (SP)*, 2024.

437

438

439 [14] Louie Giray. Benefits and challenges of using ai for peer review: A study on researchers’ perceptions. *The Serials Librarian*, 2024.

440

441 [15] Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: zero-shot detection of machine-generated text. In *International Conference on Machine Learning*, 2024.

442

443

444 [16] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature review. *ACM Transactions on Software Engineering and Methodology*, 2024.

445

446

447 [17] Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier, Eduard Hovy, and Roy Schwartz. A dataset of peer reviews (peerread): Collection, insights and nlp applications. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, 2018.

448

449

450

451 [18] Nikita Kedia, Suvansh Sanjeev, Joshua Ong, and Jay Chhablani. Chatgpt and beyond: An overview of the growing field of large language models and their use in ophthalmology. *Eye*, 2024.

452

453 [19] Graham Kendall and Jaime A Teixeira da Silva. Risks of abuse of large language models, like chatgpt, in
454 scientific publishing: Authorship, predatory publishing, and paper mills. *Learned Publishing*, 2024.

455 [20] Jeonghwan Kim, Junmo Kang, Suwon Shin, and Sung-Hyon Myaeng. Can you distinguish truthful from
456 fake reviews? user analysis and assistance tool for fake review detection. In *Proceedings of the first*
457 *workshop on bridging human–computer interaction and natural language processing*, pages 53–59, 2021.

458 [21] Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, and Scott A Hale. The benefits, risks and bounds of
459 personalizing the alignment of large language models to individuals. *Nature Machine Intelligence*, 2024.

460 [22] Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki. Outfox: Llm-generated essay detection through
461 in-context learning with adversarially generated examples. In *Proceedings of the AAAI Conference on*
462 *Artificial Intelligence*, 2024.

463 [23] Chokri Kooli and Nadia Yusuf. Transforming educational assessment: Insights into the use of chatgpt and
464 large language models in grading. *International Journal of Human–Computer Interaction*, 2025.

465 [24] Sandeep Kumar, Mohit Sahu, Vardhan Gacche, Tirthankar Ghosal, and Asif Ekbal. ‘quis custodiet ipsos
466 custodes?’ who will watch the watchmen? on detecting ai-generated peer-reviews. In *Proceedings of the*
467 *2024 Conference on Empirical Methods in Natural Language Processing*, 2024.

468 [25] Giuseppe Russo Latona, Manoel Horta Ribeiro, Tim R Davidson, Veniamin Veselovsky, and Robert
469 West. The ai review lottery: Widespread ai-assisted peer reviews boost paper scores and acceptance rates.
470 *arXiv:2405.02150*, 2024.

471 [26] Jean Lee, Nicholas Stevens, and Soyeon Caren Han. Large language models in finance (finllms). *Neural*
472 *Computing and Applications*, 2025.

473 [27] Yuying Li, Zeyan Liu, Junyi Zhao, Liangqin Ren, Fengjun Li, Jiebo Luo, and Bo Luo. The adversarial
474 ai-art: Understanding, generation, detection, and benchmarking. In *European Symposium on Research in*
475 *Computer Security*, 2024.

476 [28] Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao Chen,
477 Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case study on the
478 impact of chatgpt on ai conference peer reviews. In *ICML*, 2024.

479 [29] Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng Cao,
480 Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of llms in scientific papers. In *COLM*,
481 2024.

482 [30] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xiangyang
483 Li, Chenxu Zhu, et al. How can recommender systems benefit from large language models: A survey.
484 *ACM Transactions on Information Systems*, 2025.

485 [31] Edoardo Mosca, Mohamed Hesham Ibrahim Abdalla, Paolo Basso, Margherita Musumeci, and Georg
486 Groh. Distinguishing fact from fiction: A benchmark dataset for identifying machine-generated scientific
487 papers in the llm era. In *Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing*
488 (*TrustNLP 2023*), 2023.

489 [32] Miryam Naddaf. Will AI take over peer review? *Nature*, 2025.

490 [33] OpenAI. Chatgpt – release notes, 2025.

491 [34] ProofPoint. State of the phish 2024. Technical report, 2024. <https://www.proofpoint.com/it/resources/threat-reports/state-of-phish>.

493 [35] Konstantinos I Roumeliotis and Nikolaos D Tselikas. Chatgpt and open-ai models: A preliminary review.
494 *Future Internet*, 2023.

495 [36] Joni Salminen, Chandrashekhar Kandpal, Ahmed Mohamed Kamel, Soon-gyo Jung, and Bernard J Jansen.
496 Creating and detecting fake reviews of online products. *Journal of Retailing and Consumer Services*, 2022.

497 [37] Anna Shcherbiak, Hooman Habibnia, Robert Böhm, and Susann Fiedler. Evaluating science: A comparison
498 of human and ai reviewers. *Judgment and Decision Making*, 2024.

499 [38] Yanshen Sun, Jianfeng He, Shuo Lei, Limeng Cui, and Chang-Tien Lu. Med-mmhl: A multi-modal dataset
500 for detecting human-and llm-generated misinformation in the medical domain. *arXiv:2306.08871*, 2023.

501 [39] Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting llm-generated text. *Communications of the ACM*, 2024.

503 [40] Nitya Thakkar, Mert Yuksekgonul, Jake Silberg, Animesh Garg, Nanyun Peng, Fei Sha, Rose Yu, Carl
 504 Vondrick, and James Zou. Can llm feedback enhance review quality? a randomized study of 20k reviews
 505 at iclr 2025. *arXiv preprint arXiv:2504.09737*, 2025.

506 [41] Mike Thelwall and Abdallah Yaghi. Evaluating the predictive capacity of chatgpt for academic peer review
 507 outcomes across multiple platforms. *Scientometrics*, 2025.

508 [42] Adaku Uchendu, Jooyoung Lee, Hua Shen, Thai Le, Dongwon Lee, et al. Does human collaboration
 509 enhance the accuracy of identifying llm-generated deepfake texts? In *Proceedings of the AAAI Conference
 510 on Human Computation and Crowdsourcing*, 2023.

511 [43] Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A survey on
 512 llm-generated text detection: Necessity, methods, and future directions. *Computational Linguistics*, 2025.

513 [44] Junchao Wu, Runzhe Zhan, Derek Wong, Shu Yang, Xinyi Yang, Yulin Yuan, and Lidia Chao. Detectrl:
 514 Benchmarking llm-generated text detection in real-world scenarios. *Advances in Neural Information
 515 Processing Systems*, 2024.

516 [45] Sungduk Yu, Man Luo, Avinash Madasu, Vasudev Lal, and Phillip Howard. Is your paper being reviewed
 517 by an llm? investigating ai text detectability in peer review. In *NeurIPS Safe Generative AI Workshop*,
 518 2024.

519 [46] Jie Zhang, Haoyu Bu, Hui Wen, Yongji Liu, Haiqiang Fei, Rongrong Xi, Lun Li, Yun Yang, Hongsong
 520 Zhu, and Dan Meng. When llms meet cybersecurity: A systematic literature review. *Cybersecurity*, 2025.

521 [47] Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing Chen, Lianghong Guo, Weicheng
 522 Wang, and Yanlin Wang. Towards an understanding of large language models in software engineering
 523 tasks. *Empirical Software Engineering*, 2025.

524 [48] James Zou and Nitya Thakkar. Leveraging llm feedback to enhance review quality, 2025.

525 A Reviewer Prompts

526 We display here the prompts we have used to setup ChatPDF, and generate un- (**Prompt 1**), positively-
 527 (**Prompt 2**), and negatively-biased (**Prompt 3**) reviews.

528 You are instructed to review this paper. The review should have the following
 529 structure:
 530 Summary of the paper: write a short summary of the paper.
 531 The summary should be between 100 and 300 words in length.
 532 Main Review: write a review of the paper.
 533 In doing so, you must fulfill the following requirements:
 534 * The review should evaluate the contributions of the paper, examine its claims and
 535 assess their expected significance for the paper's domain of knowledge.
 536 * The review should be between 800 and 1000 words in length.
 537 * The review must take into account the following elements: Soundness, Novelty,
 538 Clarity, Significance.
 539 * The review should explicitly address (and summarize) strengths and weaknesses of
 540 the paper.
 541 Finally, you should provide an overall rating of the paper. The rating can be chosen
 542 among the following possibilities:
 543
 544 1: Trivial or wrong
 545 2: Strong rejection
 546 3: Clear rejection
 547 4: Ok but not good enough - rejection
 548 5: Marginally below acceptance threshold
 549 6: Marginally above acceptance threshold
 550 7: Good paper, accept
 551 8: Top 50% of accepted papers, clear accept
 552 9: Top 15% of accepted papers, strong accept
 553 10: Top 5% of accepted papers, seminal paper

554 Prompt 1: Neutral prompt.

556 You are instructed to write a POSITIVE review of this paper. The review should have
 557 the following structure:
 558 Summary of the paper: write a short summary of the paper. The summary should be
 559 between 100 and 300 words in length.
 560 Main Review: write a review of the paper. Ensure that what is written in the review
 561 supports a POSITIVE recommendation. In doing so, you must fulfill the following
 562 requirements:
 563 * The review should evaluate the contributions of the paper, examine its claims and
 564 assess their expected significance for the paper's domain of knowledge.
 565 * The review should be between 800 and 1000 words in length.
 566 * The review must take into account the following elements: Soundness, Novelty,
 567 Clarity, Significance.
 568 * The review should explicitly address (and summarize) strengths and weaknesses of
 569 the paper.
 570 Finally, you should provide an overall rating of the paper. The rating can be chosen
 571 among the following possibilities:
 572
 573 1: Trivial or wrong
 574 2: Strong rejection
 575 3: Clear rejection
 576 4: Ok but not good enough - rejection
 577 5: Marginally below acceptance threshold
 578 6: Marginally above acceptance threshold
 579 7: Good paper, accept
 580 8: Top 50% of accepted papers, clear accept
 581 9: Top 15% of accepted papers, strong accept
 582 10: Top 5% of accepted papers, seminal paper
 583
 584 Given that the review should be POSITIVE, your rating should not be below 6.
 585

Prompt 2: Positive prompt.

587 You are instructed to write a NEGATIVE review of this paper. The review should have
 588 the following structure:
 589 Summary of the paper: write a short summary of the paper. The summary should be
 590 between 100 and 300 words in length.
 591 Main Review: write a review of the paper. Ensure that what is written in the review
 592 supports a NEGATIVE recommendation. In doing so, you must fulfill the following
 593 requirements:
 594 * The review should evaluate the contributions of the paper, examine its claims and
 595 assess their expected significance for the paper's domain of knowledge.
 596 * The review should be between 800 and 1000 words in length.
 597 * The review must take into account the following elements: Soundness, Novelty,
 598 Clarity, Significance.
 599 * The review should explicitly address (and summarize) strengths and weaknesses of
 600 the paper.
 601 Finally, you should provide an overall rating of the paper. The rating can be chosen
 602 among the following possibilities:
 603
 604 1: Trivial or wrong
 605 2: Strong rejection
 606 3: Clear rejection
 607 4: Ok but not good enough - rejection
 608 5: Marginally below acceptance threshold
 609 6: Marginally above acceptance threshold
 610 7: Good paper, accept
 611 8: Top 50% of accepted papers, clear accept
 612 9: Top 15% of accepted papers, strong accept
 613 10: Top 5% of accepted papers, seminal paper
 614
 615 Given that the review should be NEGATIVE, your rating should not be above 5.
 616

Prompt 3: Negative prompt.

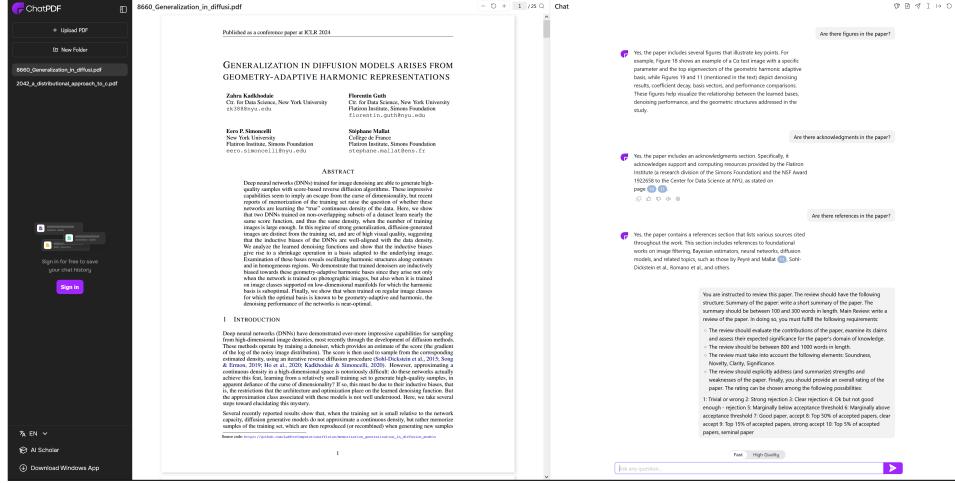


Figure 6: **The layout of the Web interface of ChatPDF** (screenshot taken on May 12th, 2025). Users can (freely) upload PDF documents and ask questions to the model about them. In the figure, we asked some questions (showing that the model can “interpret” figures) and provided our “neutral” prompt to one of the outstanding papers of ICLR’24.

Table 2: Alerts raised by Binoculars on human-submitted reviews of ICLR.

	2018	2019	2020	2021	2022	2023	2024	2025
Anomalies	0	1	2	1	2	0	217	327

Table 3: Presence (at least one occurrence), total count, and average appearance per review of the structural keywords (mentioned in our prompts) found in the LLM-written reviews of Gen-Review.

	Neutral prompt			Positive prompt			Negative prompt		
	Presence	Count	Average	Presence	Count	Average	Presence	Count	Average
soundness	27263	56804	2.08	27248	60745	2.22	27260	88298	3.23
novelty	27240	92065	3.37	27249	78205	2.86	27254	139160	5.10
clarity	27231	102330	3.74	27250	94072	3.44	27245	160324	5.01
significance	27243	106760	3.91	27247	96492	3.53	27246	160324	5.87
strength	27203	100423	3.67	27231	81176	2.97	26768	78228	2.86
weakness	26997	72414	2.65	27184	53292	1.95	26878	59089	2.16

Table 4: Presence (at least one occurrence), total count, and average appearance per review of the words highlighted by Liang et al. [28] found in the LLM-written reviews of Gen-Review.

	Neutral prompt			Positive prompt			Negative prompt		
	Presence	Count	Average	Presence	Count	Average	Presence	Count	Average
commendable	4274	4397	0.16	12324	1344	0.49	4027	4173	0.15
innovative	18993	34953	1.28	24847	58285	2.13	13005	13712	0.5
meticulous	191	194	0.007	2013	2036	0.07	6	9	0.0002
intricate	619	660	0.02	998	1059	0.03	118	119	0.004
notable	4106	4189	0.15	3201	3252	0.11	233	242	0.008
versatile	578	635	0.02	615	678	0.02	88	112	0.004

618 B Additional Analysis and Statistics

619 We report here other metrics computed on our dataset. In particular, we (i) report in **Table 2** how many
620 human-submitted papers have been flagged as suspicious by Binoculars; (ii) report in **Table 3** the
621 statistics on the presence of required keywords from the prompts we have designed; and (iii) report in
622 **Table 4** the statistics on the presence of words already-flagged by previous work as potentially used
623 by LLMs in generating text.

624 **NeurIPS Paper Checklist**

625 **1. Claims**

626 Question: Do the main claims made in the abstract and introduction accurately reflect the
627 paper's contributions and scope?

628 Answer: **[Yes]**

629 Justification: Yes. We have outlined the contributions in the Introduction, and they are
630 described in Section 3 and Section 4 (we discuss the shortcomings of prior work to support
631 our “novelty” in Section 2)

632 Guidelines:

- 633 • The answer NA means that the abstract and introduction do not include the claims
634 made in the paper.
- 635 • The abstract and/or introduction should clearly state the claims made, including the
636 contributions made in the paper and important assumptions and limitations. A No or
637 NA answer to this question will not be perceived well by the reviewers.
- 638 • The claims made should match theoretical and experimental results, and reflect how
639 much the results can be expected to generalize to other settings.
- 640 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
641 are not attained by the paper.

642 **2. Limitations**

643 Question: Does the paper discuss the limitations of the work performed by the authors?

644 Answer: **[Yes]**

645 Justification: We have a dedicated “Limitations” subsection (Section 5.1) wherein we explain
646 the major limitations of our contribution.

647 Guidelines:

- 648 • The answer NA means that the paper has no limitation while the answer No means that
649 the paper has limitations, but those are not discussed in the paper.
- 650 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 651 • The paper should point out any strong assumptions and how robust the results are to
652 violations of these assumptions (e.g., independence assumptions, noiseless settings,
653 model well-specification, asymptotic approximations only holding locally). The authors
654 should reflect on how these assumptions might be violated in practice and what the
655 implications would be.
- 656 • The authors should reflect on the scope of the claims made, e.g., if the approach was
657 only tested on a few datasets or with a few runs. In general, empirical results often
658 depend on implicit assumptions, which should be articulated.
- 659 • The authors should reflect on the factors that influence the performance of the approach.
660 For example, a facial recognition algorithm may perform poorly when image resolution
661 is low or images are taken in low lighting. Or a speech-to-text system might not be
662 used reliably to provide closed captions for online lectures because it fails to handle
663 technical jargon.
- 664 • The authors should discuss the computational efficiency of the proposed algorithms
665 and how they scale with dataset size.
- 666 • If applicable, the authors should discuss possible limitations of their approach to
667 address problems of privacy and fairness.
- 668 • While the authors might fear that complete honesty about limitations might be used by
669 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
670 limitations that aren't acknowledged in the paper. The authors should use their best
671 judgment and recognize that individual actions in favor of transparency play an impor-
672 tant role in developing norms that preserve the integrity of the community. Reviewers
673 will be specifically instructed to not penalize honesty concerning limitations.

674 **3. Theory assumptions and proofs**

675 Question: For each theoretical result, does the paper provide the full set of assumptions and
676 a complete (and correct) proof?

677 Answer: **[NA]**

678 Justification: We do not have “theoretical results”, so this does not apply.

679 Guidelines:

- 680 • The answer NA means that the paper does not include theoretical results.
- 681 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
682 referenced.
- 683 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 684 • The proofs can either appear in the main paper or the supplemental material, but if
685 they appear in the supplemental material, the authors are encouraged to provide a short
686 proof sketch to provide intuition.
- 687 • Inversely, any informal proof provided in the core of the paper should be complemented
688 by formal proofs provided in appendix or supplemental material.
- 689 • Theorems and Lemmas that the proof relies upon should be properly referenced.

690 4. Experimental result reproducibility

691 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
692 perimental results of the paper to the extent that it affects the main claims and/or conclusions
693 of the paper (regardless of whether the code and data are provided or not)?

694 Answer: [Yes]

695 Justification: We have released the prompts used to generate our dataset, and the other data
696 (i.e., papers and reviews) are publicly available. We note that complete reproducibility is not
697 possible due to the intrinsic randomness of LLMs. The code for the plots is in our repository.

698 Guidelines:

- 699 • The answer NA means that the paper does not include experiments.
- 700 • If the paper includes experiments, a No answer to this question will not be perceived
701 well by the reviewers: Making the paper reproducible is important, regardless of
702 whether the code and data are provided or not.
- 703 • If the contribution is a dataset and/or model, the authors should describe the steps taken
704 to make their results reproducible or verifiable.
- 705 • Depending on the contribution, reproducibility can be accomplished in various ways.
706 For example, if the contribution is a novel architecture, describing the architecture fully
707 might suffice, or if the contribution is a specific model and empirical evaluation, it may
708 be necessary to either make it possible for others to replicate the model with the same
709 dataset, or provide access to the model. In general, releasing code and data is often
710 one good way to accomplish this, but reproducibility can also be provided via detailed
711 instructions for how to replicate the results, access to a hosted model (e.g., in the case
712 of a large language model), releasing of a model checkpoint, or other means that are
713 appropriate to the research performed.
- 714 • While NeurIPS does not require releasing code, the conference does require all submis-
715 sions to provide some reasonable avenue for reproducibility, which may depend on the
716 nature of the contribution. For example
 - 717 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
718 to reproduce that algorithm.
 - 719 (b) If the contribution is primarily a new model architecture, the paper should describe
720 the architecture clearly and fully.
 - 721 (c) If the contribution is a new model (e.g., a large language model), then there should
722 either be a way to access this model for reproducing the results or a way to reproduce
723 the model (e.g., with an open-source dataset or instructions for how to construct
724 the dataset).
 - 725 (d) We recognize that reproducibility may be tricky in some cases, in which case
726 authors are welcome to describe the particular way they provide for reproducibility.
727 In the case of closed-source models, it may be that access to the model is limited in
728 some way (e.g., to registered users), but it should be possible for other researchers
729 to have some path to reproducing or verifying the results.

730 5. Open access to data and code

731 Question: Does the paper provide open access to the data and code, with sufficient instruc-
732 tions to faithfully reproduce the main experimental results, as described in supplemental
733 material?

734 Answer: [Yes]

735 Justification: Our dataset is provided at <https://doi.org/10.7910/DVN/PYDPEZ>, and
736 all the code is available at https://anonymous.4open.science/r/gen_review/. The
737 README of the code also clearly depict how the dataset is shaped. Also, we release the
738 code as zip in the supplementary material.

739 Guidelines:

- 740 • The answer NA means that paper does not include experiments requiring code.
- 741 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 742 • While we encourage the release of code and data, we understand that this might not be
743 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
744 including code, unless this is central to the contribution (e.g., for a new open-source
745 benchmark).
- 746 • The instructions should contain the exact command and environment needed to run to
747 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 748 • The authors should provide instructions on data access and preparation, including how
749 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 750 • The authors should provide scripts to reproduce all experimental results for the new
751 proposed method and baselines. If only a subset of experiments are reproducible, they
752 should state which ones are omitted from the script and why.
- 753 • At submission time, to preserve anonymity, the authors should release anonymized
754 versions (if applicable).
- 755 • Providing as much information as possible in supplemental material (appended to the
756 paper) is recommended, but including URLs to data and code is permitted.

757 6. Experimental setting/details

758 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
759 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
760 results?

761 Answer: [NA]

762 Justification: We do not have experiments, just exploratory analyses done via simple SQL
763 queries and pattern-matching scripts that can be found in https://anonymous.4open.science/r/gen_review/. Most of the retrieved content can be fetched by querying the
764 provided SQLite database.

765 Guidelines:

- 766 • The answer NA means that the paper does not include experiments.
- 767 • The experimental setting should be presented in the core of the paper to a level of detail
768 that is necessary to appreciate the results and make sense of them.
- 769 • The full details can be provided either with the code, in appendix, or as supplemental
770 material.

771 7. Experiment statistical significance

772 Question: Does the paper report error bars suitably and correctly defined or other appropriate
773 information about the statistical significance of the experiments?

774 Answer: [No]

775 Justification: the experiments we describe in §4 does not require the computation of confi-
776 dence intervals or other statistical tests. Our analysis focuses on describing relevant metrics
777 of the collected data.

778 Guidelines:

- 779 • The answer NA means that the paper does not include experiments.
- 780 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
781 dence intervals, or statistical significance tests, at least for the experiments that support
782 the main claims of the paper.
- 783 • The factors of variability that the error bars are capturing should be clearly stated (for
784 example, train/test split, initialization, random drawing of some parameter, or overall
785 run with given experimental conditions).

789 • The method for calculating the error bars should be explained (closed form formula,
 790 call to a library function, bootstrap, etc.)
 791 • The assumptions made should be given (e.g., Normally distributed errors).
 792 • It should be clear whether the error bar is the standard deviation or the standard error
 793 of the mean.
 794 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 795 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 796 of Normality of errors is not verified.
 797 • For asymmetric distributions, the authors should be careful not to show in tables or
 798 figures symmetric error bars that would yield results that are out of range (e.g. negative
 799 error rates).
 800 • If error bars are reported in tables or plots, The authors should explain in the text how
 801 they were calculated and reference the corresponding figures or tables in the text.

802 **8. Experiments compute resources**

803 Question: For each experiment, does the paper provide sufficient information on the com-
 804 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 805 the experiments?

806 Answer: [NA]

807 Justification: We do not have any experiment, and our analyses are trivial to carry out from
 808 a computational perspective.

809 Guidelines:

810 • The answer NA means that the paper does not include experiments.
 811 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 812 or cloud provider, including relevant memory and storage.
 813 • The paper should provide the amount of compute required for each of the individual
 814 experimental runs as well as estimate the total compute.
 815 • The paper should disclose whether the full research project required more compute
 816 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 817 didn't make it into the paper).

818 **9. Code of ethics**

819 Question: Does the research conducted in the paper conform, in every respect, with the
 820 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

821 Answer: [Yes]

822 Justification: Yes. Our dataset is created by using publicly-available data as a basis, collected
 823 in compliance with existing ToS.

824 Guidelines:

825 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 826 • If the authors answer No, they should explain the special circumstances that require a
 827 deviation from the Code of Ethics.
 828 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 829 eration due to laws or regulations in their jurisdiction).

830 **10. Broader impacts**

831 Question: Does the paper discuss both potential positive societal impacts and negative
 832 societal impacts of the work performed?

833 Answer: [Yes]

834 Justification: Our work does enable to improve our understanding of using LLMs for peer-
 835 review. It intrinsically has a "broader impact". We discuss the "Broader Impact" in Section
 836 5.2..

837 Guidelines:

838 • The answer NA means that there is no societal impact of the work performed.
 839 • If the authors answer NA or No, they should explain why their work has no societal
 840 impact or why the paper does not address societal impact.

- 841 • Examples of negative societal impacts include potential malicious or unintended uses
842 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
843 (e.g., deployment of technologies that could make decisions that unfairly impact specific
844 groups), privacy considerations, and security considerations.
- 845 • The conference expects that many papers will be foundational research and not tied
846 to particular applications, let alone deployments. However, if there is a direct path to
847 any negative applications, the authors should point it out. For example, it is legitimate
848 to point out that an improvement in the quality of generative models could be used to
849 generate deepfakes for disinformation. On the other hand, it is not needed to point out
850 that a generic algorithm for optimizing neural networks could enable people to train
851 models that generate Deepfakes faster.
- 852 • The authors should consider possible harms that could arise when the technology is
853 being used as intended and functioning correctly, harms that could arise when the
854 technology is being used as intended but gives incorrect results, and harms following
855 from (intentional or unintentional) misuse of the technology.
- 856 • If there are negative societal impacts, the authors could also discuss possible mitigation
857 strategies (e.g., gated release of models, providing defenses in addition to attacks,
858 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
859 feedback over time, improving the efficiency and accessibility of ML).

860 11. Safeguards

861 Question: Does the paper describe safeguards that have been put in place for responsible
862 release of data or models that have a high risk for misuse (e.g., pretrained language models,
863 image generators, or scraped datasets)?

864 Answer: [NA]

865 Justification: This does not apply, as we release no models.

866 Guidelines:

- 867 • The answer NA means that the paper poses no such risks.
- 868 • Released models that have a high risk for misuse or dual-use should be released with
869 necessary safeguards to allow for controlled use of the model, for example by requiring
870 that users adhere to usage guidelines or restrictions to access the model or implementing
871 safety filters.
- 872 • Datasets that have been scraped from the Internet could pose safety risks. The authors
873 should describe how they avoided releasing unsafe images.
- 874 • We recognize that providing effective safeguards is challenging, and many papers do
875 not require this, but we encourage authors to take this into account and make a best
876 faith effort.

877 12. Licenses for existing assets

878 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
879 the paper, properly credited and are the license and terms of use explicitly mentioned and
880 properly respected?

881 Answer: [Yes]

882 Justification: Yes. We are complying with OpenReview ToS, and all data we used is publicly
883 available already on OpenReview. We are not claiming authorship of the papers in our
884 dataset (whose details are available on OpenReview).

885 Guidelines:

- 886 • The answer NA means that the paper does not use existing assets.
- 887 • The authors should cite the original paper that produced the code package or dataset.
- 888 • The authors should state which version of the asset is used and, if possible, include a
889 URL.
- 890 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 891 • For scraped data from a particular source (e.g., website), the copyright and terms of
892 service of that source should be provided.
- 893 • If assets are released, the license, copyright information, and terms of use in the
894 package should be provided. For popular datasets, paperswithcode.com/datasets
895 has curated licenses for some datasets. Their licensing guide can help determine the
896 license of a dataset.

897 • For existing datasets that are re-packaged, both the original license and the license of
898 the derived asset (if it has changed) should be provided.
899 • If this information is not available online, the authors are encouraged to reach out to
900 the asset's creators.

901 **13. New assets**

902 Question: Are new assets introduced in the paper well documented and is the documentation
903 provided alongside the assets?

904 Answer: [Yes]

905 Justification: Yes, everything is documented in our repository (at https://anonymous.4open.science/r/gen_review/), and it is also attached as supplementary material.

907 Guidelines:

908 • The answer NA means that the paper does not release new assets.
909 • Researchers should communicate the details of the dataset/code/model as part of their
910 submissions via structured templates. This includes details about training, license,
911 limitations, etc.
912 • The paper should discuss whether and how consent was obtained from people whose
913 asset is used.
914 • At submission time, remember to anonymize your assets (if applicable). You can either
915 create an anonymized URL or include an anonymized zip file.

916 **14. Crowdsourcing and research with human subjects**

917 Question: For crowdsourcing experiments and research with human subjects, does the paper
918 include the full text of instructions given to participants and screenshots, if applicable, as
919 well as details about compensation (if any)?

920 Answer: [NA]

921 Justification: We do not do human-subject research.

922 Guidelines:

923 • The answer NA means that the paper does not involve crowdsourcing nor research with
924 human subjects.
925 • Including this information in the supplemental material is fine, but if the main contribu-
926 tion of the paper involves human subjects, then as much detail as possible should be
927 included in the main paper.
928 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
929 or other labor should be paid at least the minimum wage in the country of the data
930 collector.

931 **15. Institutional review board (IRB) approvals or equivalent for research with human
932 subjects**

933 Question: Does the paper describe potential risks incurred by study participants, whether
934 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
935 approvals (or an equivalent approval/review based on the requirements of your country or
936 institution) were obtained?

937 Answer: [NA]

938 Justification: We do not need an IRB because there is no human-subject research done in
939 our paper.

940 Guidelines:

941 • The answer NA means that the paper does not involve crowdsourcing nor research with
942 human subjects.
943 • Depending on the country in which research is conducted, IRB approval (or equivalent)
944 may be required for any human subjects research. If you obtained IRB approval, you
945 should clearly state this in the paper.
946 • We recognize that the procedures for this may vary significantly between institutions
947 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
948 guidelines for their institution.
949 • For initial submissions, do not include any information that would break anonymity (if
950 applicable), such as the institution conducting the review.

951 **16. Declaration of LLM usage**

952 Question: Does the paper describe the usage of LLMs if it is an important, original, or
953 non-standard component of the core methods in this research? Note that if the LLM is used
954 only for writing, editing, or formatting purposes and does not impact the core methodology,
955 scientific rigorousness, or originality of the research, declaration is not required.

956 Answer: [Yes]

957 Justification: We used a LLM to generate our dataset—which is meant for this specific pur-
958 pose (i.e., providing researchers with LLM-generated data to evaluate the LLM capabilities
959 at generating such data). Aside from this, we did not use a LLM at all.

960 Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.