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I. INTRODUCTION

A critical pillar for achieving mobile autonomy is robust
spatial perception—the ability to accurately understand the
ambient environment and precisely localize ego-agents under
diverse and complex scenarios [1, 22]. Traditional spatial
perception approaches heavily rely on optical sensors, i.e.,
depth/RGB camera and LiDAR [17, 19], which lack robustness
against adverse weather (e.g., fog, rain, snow) and bad lighting
conditions (e.g., darkness, sun glare) [3, 23]. This vulnerability
poses significant risks to the safety of autonomous agents,
limiting their widespread, long-term deployment in the wild.

Inspired by biological sensing mechanisms which leverage
non-visual cues for hunting and navigation [20, 12], my
research explores 4D single-chip mmWave radar [16, 8] (i.e.,
3D position + Doppler velocity, hence ’4D’), as a comple-
mentary sensor modality for spatial perception systems. As an
emerging sensor technology, 4D radar is reputable for its ro-
bustness against adverse weathers, cost-effectiveness, velocity
measurement, and privacy-preserving features, positioning it
as a promising sensor-driven solution towards robust spatial
perception. Yet, it remains largely unknown how to harness
4D radar for effective spatial perception, and research in this
field is scarce and particularly challenging due to two key
reasons. First, 4D radar sensors have only recently become
commercially available, lacking mature research infrastructure
like large-scale annotated datasets and toolkit compared to
cameras and LiDARs. Second, 4D radar data is inherently
sparse, noisy [14] and exists in various representations (point
cloud, tensor, ADC samples) [10, 13], necessitating novel
approaches to fully exploit its unique sensing characteristics.

Aiming to bridge the gap and unlock the full potential of 4D
radar for spatial perception, my research objectives include:

• Investigating the use of 4D radar across a variety of
spatial perception tasks while recognizing challenges
induced by radar data characteristics and infrastructure.

• Developing novel 4D radar-based methods tailored for in-
dividual spatial perception tasks, addressing both sensor-
specific challenges and task-oriented problems.

• Evaluating these methods and demonstrate that 4D radar
can serve as a robust alternative to optical sensors in
challenging environments for spatial perception.

My long-term research vision is to build an ecosystem for 4D
radar-based spatial perception, addressing challenges in a full-
stack manner and paving the way for future advancements in
this field. More broadly, I aim to encourage further research,
investment, and wider adoption of 4D radar technologies.

II. CONTRIBUTED RESEARCH TO DATE

My research to date included a series of bespoke methods
for 4D radar-based scene flow estimation [4, 5], moving object
detection and tracking [15], and 3D occupancy prediction [7],
addressing spatial perception across multiple levels.

A. 4D Radar-based Scene Flow Estimation

A crucial spatial perception task is understanding the motion
of ambient dynamic objects and the ego-agent. One repre-
sentation of such motion is scene flow - a set of point-wise
displacement vectors that describe the 3D motion between
consecutive frames relative to the ego-agent [11]. Accurate
scene flow estimation enables a holistic understanding of
dynamic environments and serves as a cornerstone for essential
spatial perception subtasks. Therefore, I first investigate the
problem of 4D radar-based scene flow estimation in [4, 5].

1) Self-supervised learning: Estimating scene flow from
4D radar presents unique challenges due to the inherent
sparsity and noise in radar point clouds, as well as the lack
of point-wise scene flow annotations, which are costly to
acquire in real-world settings. To tackle these challenges, we
present the first study on scene flow estimation using 4D radar
data [4]. A self-supervised learning method called RaFlow is
introduced to estimate scene flow on 4D radar point clouds.
A novel architecture and three loss functions are specifically
designed to address the challenges induced by the character-
istics of radar sensors. Without the need of annotated labels,
we can collectively regularize the model to learn to estimate
scene flow by exploiting the underlying supervision signals
embedded in the radar measurements. RaFlow achieves state-
of-the-art performance on 4D radar scene flow estimation, and
can enable downstream motion segmentation task.

2) Cross-modal supervised learning: Despite the progress,
the performance of RaFlow is still somewhat limited due to
the lack of real supervision signals, making it less reliable
for safety-critical mobile autonomy scenarios. Motivated by
the fact that autonomous vehicles are equipped with multiple
heterogeneous sensors, e.g., LiDARs, cameras and GPS/INS,
we envision that this co-located sensing redundancy can be
leveraged to provide cross-modal supervision cues to 4D radar
scene flow learning. Based on this insight, we propose a novel
cross-modal supervised approach, CMFlow for 4D radar scene
flow learning [5]. CMFlow overcomes the trade-off between
annotation efforts and model performance by using comple-
mentary supervision signals retrieved from co-located hetero-
geneous sensors. To bootstrap the cross-supervised learning,
CMFlow applies a multi-task model architecture and subtly
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combine different types of supervision cues, formulating a
multi-task learning problem. CMFlow outperforms all baseline
methods, and can even surpass fully-supervised method [18]
when sufficient unannotated samples are used in our training.
CMFlow can also support two downstream tasks, i.e., motion
segmentation and ego-motion estimation.

Beyond mobile autonomy, we extend radar scene flow to
serve as an intermediate feature of point clouds for enhancing
downstream human motion sensing tasks (e.g., human action
recognition and parsing) [6], demonstrating its generalization
across diverse radar applications.

B. Moving Object Detection and Tracking with 4D Radar

Beyond scene flow estimation, another crucial aspect of
spatial perception is robustly tracking moving objects in 3D
space. This capability is pivotal for subsequent autonomy
tasks, such as trajectory prediction, obstacle avoidance, and
path planning [9]. However, integrating 4D radars into moving
object tracking presents significant challenges. For instance,
when applying a LiDAR-based method directly to 4D radar
data [14], performance on object-level perception degrades
by about 40%, This is because that the tracking-by-detection
paradigm struggles when adapted to 4D radar data due to the
inherent radar noise and point sparsity, undermining accurate
type classification and bounding box regression.

Recognizing the challenges posed by radar noise and point
sparsity in 4D radar data, we introduce RaTrack, a pioneer-
ing and tailored solution for moving object tracking using 4D
radar point clouds [15]. RaTrack provides a novel perspec-
tive on the tracking of moving objects, emphasizing the utility
of motion segmentation and clustering over the conventional
dependence on specific object types and bounding boxes. This
method also leverages insights from scene flow estimation in
my previous works [4, 5], inferring point-level scene flow as
an explicit complement to augment the latent features of radar
point clouds. This solution is architected as an end-to-end
trainable network, with its training modeled as a multi-task
learning endeavor. Through experiments, RaTrack show-
cases superior tracking precision of moving objects, largely
surpassing the performance of the state of the arts that depend
on the tracking-by-detection paradigms.

C. 3D Occupancy Prediction with 4D Imaging Radar

In recent years, 3D occupancy-based perception has gained
increasing traction due to its comprehensive and open-set
depiction of scene geometry [21]. Such a unified scene rep-
resentation enables a richer and more generalizable spatial
understanding than traditional object-centric representations as
we explored in Sec. II-B, making it particularly effective for
handling corner cases. Unlike object-based perception, which
focuses on the foreground entities (e.g., car, pedestrians), 3D
occupancy prediction require reasoning all occupied spaces,
encompassing both foreground and background elements such
as roads and barriers. However, radar signals reflected by
low-reflectivity materials, such as the surfaces of highways,
are often lost during radar point cloud generation. Therefore,

conventional ‘LiDAR-inspired’ framework, which rely on 4D
radar point clouds as input for perception, struggle to achieve
reliable 3D occupancy prediction.

To avoid the loss of negligible signal returns, we advocate
the usage of 4D radar tensors (4DRTs) for 3D occupancy pre-
diction instead of 4D radar point clouds. This raw data format
preserves the entirety of radar measurements, addressing the
shortcomings associated with the sparseness of radar point
clouds caused by the signal post-processing. Building upon
this insight, we develop a novel pipeline, called RadarOcc
in [7], for 4DRT-based 3D occupancy prediction. RadarOcc
innovatively addresses the challenges associated with the vo-
luminous and noisy 4D radar data by employing Doppler bins
descriptors, sidelobe-aware spatial sparsification, and range-
wise self-attention mechanisms. To minimize the interpolation
errors associated with direct coordinate transformations, we
also devise a spherical-based feature encoding followed by
spherical-to-Cartesian feature aggregation. The results demon-
strate RadarOcc’s state-of-the-art performance in radar-based
3D occupancy prediction and promising results even when
compared with LiDAR or camera-based methods.

III. FUTURE RESEARCH DIRECTIONS

My current research validates the ability of 4D radar as a
independent modality for robust spatial perception in mobile
autonomy. To further explore its potential, I plan to focus on
the following key directions in my future work:
Surrounding 4D radar perception. Current 4D radar solu-
tions typically rely on a single front-facing sensor [14, 13],
resulting in a limited field of view and constrained perception
performance, which restrict its capability to function as a
standalone sensor rather than merely a supplement to LiDARs.
While some scanning radars (e.g., Navtech [2]) offer 360°
coverage, they differ from the single-chip 4D radars consid-
ered here in sensing mechanisms, cost, and applications. In
response, my future work will integrate multiple 4D radars on
a vehicle for surrounding perception, allowing us to develop a
more competitive alternative to LiDAR-based methods. Fusing
data from multiple sensors not only boosts point cloud density
but also allows cross-sensor validation for filtering noise.
Despite the additional hardware, this multi-radar configuration
remains more cost-effective than LiDAR, while significantly
enhancing radar-based perception performance.
4D radar data generation. Training 4D radar perception
models is challenged by inconsistent sensor viewpoints across
vehicles and the scarcity of large-scale radar datasets. The
former leads to mismatched training distributions, while the
latter limits coverage of real-world conditions—both of which
hinder model generalization. To address these issues, a promis-
ing direction is to develop generative models that synthesize
novel 4D radar measurements conditioned on existing radar
or LiDAR/camera data. First, generating radar data from new
viewpoints can help standardize training inputs and enable
real-time viewpoint adaptation at inference. Second, synthe-
sizing 4D radar from RGB or LiDAR data can enrich training
datasets, enhancing model robustness in data-scarce scenarios.
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