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ABSTRACT

As machine learning models are increasingly being employed to make consequen-
tial decisions in real-world settings, it becomes critical to ensure that individuals
who are adversely impacted (e.g., loan denied) by the predictions of these models
are provided with a means for recourse. While several approaches have been
proposed to construct recourses for affected individuals, the recourses output by
these methods either achieve low costs (i.e., ease-of-implementation) or robustness
to small perturbations (i.e., noisy implementations of recourses), but not both
due to the inherent trade-offs between the recourse costs and robustness. Further-
more, prior approaches do not provide end users with any agency over navigating
the aforementioned trade-offs. In this work, we address the above challenges by
proposing the first algorithmic framework which enables users to effectively man-
age the recourse cost vs. robustness trade-offs. More specifically, our framework
Probabilistically ROBust rEcourse (PROBE) lets users choose the probability with
which a recourse could get invalidated (recourse invalidation rate) if small changes
are made to the recourse i.e., the recourse is implemented somewhat noisily. To
this end, we propose a novel objective function which simultaneously minimizes
the gap between the achieved (resulting) and desired recourse invalidation rates,
minimizes recourse costs, and also ensures that the resulting recourse achieves a
positive model prediction. We develop novel theoretical results to characterize
the recourse invalidation rates corresponding to any given instance w.r.t. different
classes of underlying models (e.g., linear models, tree based models etc.), and
leverage these results to efficiently optimize the proposed objective. Experimen-
tal evaluation with multiple real world datasets demonstrates the efficacy of the
proposed framework.

1 INTRODUCTION

Machine learning (ML) models are increasingly being deployed to make a variety of consequential
decisions in domains such as finance, healthcare, and policy. Consequently, there is a growing
emphasis on designing tools and techniques which can provide recourse to individuals who have
been adversely impacted by the predictions of these models (Voigt & Von dem Bussche, 2017).
For example, when an individual is denied a loan by a model employed by a bank, they should
be informed about the reasons for this decision and what can be done to reverse it. To this end,
several approaches in recent literature tackled the problem of providing recourse by generating
counterfactual explanations (Wachter et al., 2018; Ustun et al., 2019; Karimi et al., 2020a). which
highlight what features need to be changed and by how much to flip a model’s prediction. While
the aforementioned approaches output low cost recourses that are easy to implement (i.e., the
corresponding counterfactuals are close to the original instances), the resulting recourses suffer
from a severe lack of robustness as demonstrated by prior works (Pawelczyk et al., 2020b; Rawal
et al., 2021). For example, the aforementioned approaches generate recourses which do not remain
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Figure 1: Pictorial representation of the recourses (counterfactuals) output by various state-of-the-art
recourse methods and our framework. The blue line is the decision boundary, and the shaded areas
correspond to the regions of recourse invalidation. Fig. 1a shows the recourse output by approaches
such as Wachter et al. (2018) where both the recourse cost as well as robustness are low. Fig. 1c
shows the recourse output by approaches such as Dominguez-Olmedo et al. (2022) where both the
recourse cost and robustness are high. Fig. 1b shows the recourse output by our framework PROBE
in response to user input requesting an intermediate level of recourse robustness.

valid (i.e., result in a positive model prediction) if/when small changes are made to them (See
Figure 1a). However, recourses are often noisily implemented in real world settings as noted by prior
research (Björkegren et al., 2020). For instance, an individual who was asked to increase their salary
by $500 may get a promotion which comes with a raise of $505 or even $499.95.

Prior works by Upadhyay et al. (2021) and Dominguez-Olmedo et al. (2022) proposed methods to
address some of the aforementioned challenges and generate robust recourses. While the former
constructed recourses that are robust to small shifts in the underlying model, the latter constructed
recourses that are robust to small input perturbations. These approaches adapted the classic minimax
objective functions commonly employed in adversarial robustness and robust optimization literature
to the setting of algorithmic recourse, and used gradient descent style approaches to optimize
these functions. In an attempt to generate recourses that are robust to either small shifts in the
model or to small input perturbations, the above approaches find recourses that are farther away
from the underlying model’s decision boundaries (Tsipras et al., 2018; Raghunathan et al., 2019),
thereby increasing the recourse costs i.e., the distance between the counterfactuals (recourses) and
the original instances. Higher cost recourses are harder to implement for end users as they are
farther away from the original instance vectors (current user profiles). Putting it all together, the
aforementioned approaches generate robust recourses that are often high in cost and are therefore
harder to implement (See Figure 1c), without providing end users with any say in the matter. In
practice, each individual user may have a different preference for navigating the trade-offs between
recourse costs and robustness – e.g., some users may be willing to tolerate additional cost to avail
more robustness to noisy responses, whereas other users may not.

In this work, we address the aforementioned challenges by proposing a novel algorithmic framework
called Probabilistically ROBust rEcourse (PROBE) which enables end users to effectively manage
the recourse cost vs. robustness trade-offs by letting users choose the probability with which a
recourse could get invalidated (recourse invalidation rate) if small changes are made to the recourse
i.e., the recourse is implemented somewhat noisily (See Figure 1b). To the best of our knowledge,
this work is the first to formulate and address the problem of enabling users to navigate the trade-
offs between recourse costs and robustness. Our framework can ensure that a resulting recourse is
invalidated at most r% of the time when it is noisily implemented, where r is provided as input by
the end user requesting recourse. To operationalize this, we propose a novel objective function which
simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation
rates, minimizes recourse costs, and also ensures that the resulting recourse achieves a positive
model prediction. We develop novel theoretical results to characterize the recourse invalidation rates
corresponding to any given instance w.r.t. different classes of underlying models (e.g., linear models,
tree based models etc.), and leverage these results to efficiently optimize the proposed objective.

We also carried out extensive experimentation with multiple real-world datasets. Our empirical
analysis not only validated our theoretical results, but also demonstrated the efficacy of our proposed
framework. More specifically, we found that our framework PROBE generates recourses that are not
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only three times less costly than the recourses output by the baseline approaches (Upadhyay et al.,
2021; Dominguez-Olmedo et al., 2022), but also more robust (See Table 1). Further, our framework
PROBE reliably identified low cost recourses at various target recourse invalidation rates r in case
of both linear and non-linear classifiers (See Table 1 and Figure 4). On the other hand, the baseline
approaches were not only ill-suited to achieve target recourse invalidation rates but also had trouble
finding recourses in case of non-linear classifiers.

2 RELATED WORK

Algorithmic Approaches to Recourse. As discussed earlier, several approaches have been proposed
in literature to provide recourse to individuals who have been negatively impacted by model predic-
tions (Tolomei et al., 2017; Laugel et al., 2017; Wachter et al., 2018; Ustun et al., 2019; Van Looveren
& Klaise, 2019; Pawelczyk et al., 2020a; Mahajan et al., 2019; Mothilal et al., 2020; Karimi et al.,
2020a; Rawal & Lakkaraju, 2020; Karimi et al., 2020b; Dandl et al., 2020; Antorán et al., 2021;
Spooner et al., 2021). These approaches can be roughly categorized along the following dimensions
(Verma et al., 2020): type of the underlying predictive model (e.g., tree based vs. differentiable classi-
fier), whether they encourage sparsity in counterfactuals (i.e., only a small number of features should
be changed), whether counterfactuals should lie on the data manifold and whether the underlying
causal relationships should be accounted for when generating counterfactuals, All these approaches
generate recourses assuming that the prescribed recourses will be correctly implemented by users.

Robustness of Algorithmic Recourse. Prior works have focused on determining the extent to
which recourses remain robust to the choice of the underlying model (Pawelczyk et al., 2020b;
Black et al., 2021; Pawelczyk et al., 2023), shifts or changes in the underlying models (Rawal et al.,
2021; Upadhyay et al., 2021), or small perturbations to the input instances (Artelt et al., 2021;
Dominguez-Olmedo et al., 2022; Slack et al., 2021). To address these problems, these works have
primarily proposed adversarial inimax objectives to minimize the worst-case loss over a plausible
set of instance perturbations for linear models to generate robust recourses (Upadhyay et al., 2021;
Dominguez-Olmedo et al., 2022), which are known to generate overly costly recourse suggestions.

In contrast to the aforementioned approaches our work focuses on a user-driven framework for
navigating the trade-offs between recourse costs and robustness to noisy responses by suggesting a
novel probabilistic recourse framework. To this end, we present several algorithms that enable us to
handle both linear and non-linear models (e.g., deep neural networks, tree based models) effectively,
resulting in better recourse cost/invalidation rate tradeoffs compared to both Upadhyay et al. (2021)
and Dominguez-Olmedo et al. (2022).

3 PRELIMINARIES

Here, we first discuss the generic formulation leveraged by several state-of-the-art recourse methods
including Wachter et al. (2018). We then define the notion of recourse invalidation rate formally.

3.1 ALGORITHMIC RECOURSE: GENERAL FORMULATION

Notation Let h ∶ X → Y denote a classifier which maps features x ∈ X ⊆ Rd to labels Y . Let
Y = {0,1} where 0 and 1 denote an unfavorable outcome (e.g., loan denied) and a favorable outcome
(e.g., loan approved), respectively. We also define h(x)=g(f(x)), where f ∶ X → R is a differentiable
scoring function (e.g., logit scoring function) and g ∶ R→ Y an activation function that maps logit
scores to binary labels. Throughout the remainder of this work we will use g(u) = I[u > ξ], where ξ
is a decision rule in logit space. W.l.o.g. we will set ξ = 0.

Counterfactual (CF) explanation methods provide recourses by identifying which attributes to change
for reversing an unfavorable model prediction. Since counterfactuals that propose changes to features
such as gender are not actionable, we restrict the search space to ensure that only actionable changes
are allowed. Let A denote the set of actionable counterfactuals. For a given predictive model h ,
and a predefined cost function dc ∶ Rd Ð→ R+, the problem of finding a counterfactual explanation
x̌ = x + δ for an instance x ∈ Rd is expressed by the following optimization problem:

x̌ = argmin
x′∈A

ℓ(h(x′),1)) + λ ⋅ dc(x,x′), (1)
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where λ ≥ 0 is a trade-off parameter, and ℓ(⋅, ⋅) is the mean-squared-error (MSE) loss.

The first term on the right-hand-side ensures that the model prediction corresponding to the counter-
factual i.e., h(x′) is close to the favorable outcome label 1. The second term encourages low-cost
recourses; for example, Wachter et al. (2018) propose ℓ1 or ℓ2 distances to ensure that the distance
between the original instance x and the counterfactual x̌ is small.

3.2 DEFINING THE RECOURSE INVALIDATION RATE

In order to enable end users to effectively navigate the trade-offs between recourse costs and ro-
bustness, we let them choose the probability with which a recourse could get invalidated (recourse
invalidation rate) if small changes are made to it i.e., the recourse is implemented somewhat noisily.
To this end, we formally define the notion of Recourse Invalidation Rate (IR) in this section. We first
introduce two key terms, namely, prescribed recourses and implemented recourses. A prescribed
recourse is a recourse that was provided to an end user by some recourse method (e.g., increase salary
by $500). An implemented recourse corresponds to the recourse that the end user finally implemented
(e.g., salary increment of $505) upon being provided with the prescribed recourse. With this basic
terminology in place, we now proceed to formally define the Recourse Invalidation Rate (IR) below.

Definition 1 (Recourse Invalidation Rate). For a given classifier h, the recourse invalidation rate
corresponding to the counterfactual x̌E = x + δE output by a recourse method E is given by:

∆(x̌E) = Eε[h(x̌E)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
CF class

− h(x̌E + ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

class after response

], (2)

where the expectation is taken with respect to a random variable ε with probability distribution pε
which captures the noise in human responses.

Age: 34 Yearly income: $52000

Loan amount: $20000 # Open credit lines: 4

Savings: $5000 # 30-59 days late payments: 2

Debt ratio: 0.8 # Dependents: 2

Loan Denied
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Figure 2: Practical view on navigating the
cost/robustness tradeoff for a credit loan example.

Since the implemented recourses do not typ-
ically match the prescribed recourses x̌E

(Björkegren et al., 2020), we add ε to model
the noise in human responses. As we primarily
compute recourses for individuals x such that
h(x) = 0, the label corresponding to the coun-
terfactual is given by h(x̌E)=1 and therefore
∆ ∈ [0,1]. For example, the following cases
help understand our recourse invalidation rate
metric better: When ∆=0, then the prescribed
recourse and the recourse implemented by the
user agree all the time; when ∆=0.5, the pre-
scribed recourse and the implemented recourse
agree half of the time, and finally, when ∆=1
then the prescribed recourse and the recourse
implemented by the user never agree. To illustrate our ideas, we will use our IR measure with a
Gaussian probability distribution (i.e., ε ∼ N (0, σ2I)) to model the noise in human responses.

4 OUR FRAMEWORK: PROBABILISTICALLY ROBUST RECOURSE

Below we present our objective function, which is followed by a discussion on how to operationalize
it efficiently.

4.1 RECOURSE INVALIDATION RATE AWARE OBJECTIVE

The core idea is to find a recourse x̌ whose prediction at any point y within some set around x̌ belongs
to the positive class with probability 1 − r. Hence, our goal is to devise an algorithm that reliably
guides the recourse search towards regions of low invalidation probability while maintaining low cost
recourse (see Fig. 2 for a practical example). For a fixed model, our objective reads:

L = λ1R(x′;σ2I) + λ2ℓ(f(x′), s)) + λ3dc(x′,x), (3)
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where s is the target score for the input x, R(x′; r, σ2I) = max(0,∆(x′;σ2I) − r) with r being
the target IR, ∆(x′;σ2I) is the recourse invalidation rate from equation 1, λ1 to λ3 are the balance
parameters, and dc quantifies the distance between the input and the prescribed recourse. To arrive at
a output probability of 0.5, the target score for f(x) for a sigmoid function is s = 0, where the score
corresponds to a 0.5 probability for y = 1.

The new component R is a Hinge loss encouraging that the prescribed recourse has a low probability
of invalidation, and the parameter σ2 is the uncertainty magnitude and controls the size of the
neighbourhood in which the recourse has to be robust. The middle term encourages the score at the
prescribed recourse f(x̌) to be close to the target score s, while the last term promotes the distance
between the input x and the recourse x̌ to be small.

In practice, the choice of r depends on the risk-aversion of the end-user. If the end-user is not
confident about achieving a ‘precision landing’, then a rather low invalidation target should be chosen
(i.e., r < 0.5).

4.2 OPTIMIZING THE RECOURSE INVALIDATION RATE AWARE OBJECTIVE

Algorithm 1 PROBE

Input: x s.t. f(x) < 0, f , σ2, λ > 0,
α, r > 0
Init.: x′ = x;
Compute ∆̃(x′) ▷ from Theorem 1
while ∆̃(x′) > r and f(x′) < 0 do

∆̃ = ClosedFormIR(f, σ2,x′)
▷ from Theorem 1

x′ = x′ − α ⋅ ∇x′L(x′;σ2, r, λ)
▷ Opt. equation 3

end while
Return: x̌ = x′

In order for the objective in equation 3 to guide us reliably to-
wards recourses with low target invalidation rate r, we need
to approximate the invalidation rate ∆(x′) at any x′ ∈ Rd.
However, such an approximation becomes non-trivial since
the recourse invalidation rate, which depends on the clas-
sifier h, is generally non-differentiable since the classifier
h(x) = I(f(x) > ξ) as defined in Section 3 involves an indi-
cator function acting on the score f . To circumvent this issue,
we derive a closed-form expression for the IR using a local
approximation of the predictive model f . The procedure
suggested here remains generalizable even for non-linear
models since the local behavior of a given non-linear model
can often be well approximated by fitting a locally linear
model (Ribeiro et al., 2016; Ustun et al., 2019).

Theorem 1 (Closed-Form Recourse Invalidation Rate). A first-order approximation ∆̃ to the recourse
invalidation rate ∆ in equation 2 under Gaussian distributed noise in human responses ε ∼ N (0, σI)
is given by:

∆̃(x̌E ;σ
2I) = 1 −Φ( f(x̌E)√

∇f(x̌E)⊺σ2I∇f(x̌E)
), (4)

where Φ is the CDF of the univariate standard normal distribution N (0,1), f(x̌E) denotes the logit
score at x̌E which is the recourse output by a recourse method E, and h(x̌E) ∈ {0,1}.

All theoretical proofs along with the proof to the above proposition can be found in Appendix D.
In Algorithm 1, we show pseudo-code of our optimization procedure. Using gradient descent we
update the recourse repeatedly until the class label flips from 0 to 1 and the IR ∆̃ is smaller than
the targeted invalidation rate r. In essence, the result in Theorem 1 serves as our regularizer since it
steers recourses towards low-invalidation regions. For example, when f(x̌E) = 0, then ∆̃ = 0.5 since
Φ(0) = 1

2
. This means that the prescribed recourse and the recourse implemented by the user agree

50% of the time. On the other hand, when f(x̌E)→+∞, then ∆̃→0 since Φ→1, which means that the
prescribed recourse and the recourse implemented by the user always agree. Figure 3 demonstrates
how PROBE finds recourses relative to a standard low-cost algorithm (Wachter et al., 2018).

We now leverage the recourse invalidation rate derived in Theorem 1 to show how the recourses output
by Wachter et al. (2018) can be made more robust. Pawelczyk et al. (2022) provide a closed-form
solution for the recourse output by Wachter et al. (2018) w.r.t. the special case of a logistic regression
classifier when dc = ∥x − x′∥2 and the MSE-loss is used. This solution takes the following form:
x̌Wachter(s) = x + s−f(x)

∥∇f(x)∥22∇f(x), where s is the target logit score. More specifically, to arrive at the
desired class with probability of 0.5, the target score for a sigmoid function is s = 0, where the logit
corresponds to a 0.5 probability for y = 1. The next statement quantifies the IR of recourses output
by Wachter et al. (2018).
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Proposition 1 (Exact Recourse IR). For logistic regression, consider the recourse output by Wachter
et al. (2018): x̌Wachter(s) = x + s−f(x)

∥∇f(x)∥22∇f(x). Then the recourse invalidation rate is given by:

∆(x̌Wachter(s);σ2I) = 1 −Φ( s

σ∥∇f(x)∥2
), (5)

where s is the target logit score.

A recourse generated by Wachter et al. (2018) such that f(x̌Wachter) = s = 0 will result in ∆ = 0.5. To
obtain recourse that is more robust to noisy responses from users, i.e., ∆ Ð→ 0, the decision maker
can choose a higher logit target score of s′ > s ≥ 0 since this decreases the recourse invalidation rate,
i.e., ∆(x̌Wachter(s)) >∆(x̌Wachter(s′)). The next statement makes precise how s should be chosen to
achieve a desired robustness level.
Corollary 1. Under the conditions of Proposition 1, choosing sr = σ∥∇f(x)∥2Φ−1(1−r) guarantees
a recourse invalidation rate of r, i.e., ∆(x̌Wachter(sr);σ2I) = r.

On extensions to general noise distributions, and tree-based classifiers. In Appendix A we present
extensions of our framework to obtain (i) reliable recourses for general noise distributions and (ii)
tree-based classifiers. These two cases pose non-trivial difficulties as the recourse invalidation rate is
generally non-differentiable. As for the more general noise distributions, we develop a Monte-Carlo
approach in appendix A.1, which relies on a differentiable approximation of the indicator function
required to obtain a Monte-Carlo estimate of the invalidation rate. For tree-based classifiers, we
develop a closed-form solution for the recourse invalidation rate (see Theorem 2).

4.3 ADDITIONAL THEORETICAL RESULTS
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Figure 3: Navigating between high and low invalida-
tion recourses. The circles around PROBE’s recourses
have radius 2σ, i.e., this is the region where 95% of re-
course inaccuracies fall when σ2 = 0.05. For instance,
on the left we set an invalidation target of r = 0.35,
i.e., 35% of the recourse responses would fail under
spherical inaccuracies ε ∼ N (0,0.05 ⋅ I).

In this section, we leverage the recourse in-
validation rate expression derived in the pre-
vious section to theoretically show i) that an
additional cost has to be incurred to generate
robust recourses in the face of noisy human
responses, and ii) we derive a general up-
per bound on the IR which is applicable to
any valid recourse provided by any method
with the underlying classifier being a differ-
entiable model.

Next, we show that there exists a trade-
off between robustness to noisy human re-
sponses and cost. To this end, we fix the
target invalidation rate r, and ask what costs are needed to achieve a fixed level r:
Proposition 2 (General Cost of Recourse). For a linear classifier, let r ∈ (0,1) and let x̌E = x + δE
be the output produced by some recourse method E such that h(x̌E) = 1. Then the cost required to
achieve a fixed invalidation target r is:

∥δE∥2 =
σ

ω
(Φ−1(1 − r) − c), (6)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, and ω > 0 is the cosine of the angle between ∇f(x) and δE .

From Proposition 2, we see that the target invalidation rate r decreases as the recourse cost increases
for a given uncertainty magnitude σ2. To make this more precise the next statement demonstrates the
cost-robustness tradeoff.
Proposition 3 (Cost-Robustness Tradeoff). Under the same conditions as in Proposition 2, we have
∂∥δE∥2
∂(1−r) =

σ
ω

1
ϕ(Φ−1(1−r)) > 0, i.e., an infinitesimal increase in robustness (i.e.,1 − r) increases the cost

of recourse by σ
ω

1
ϕ(Φ−1(1−r)) .

Now, we derive a general upper bound on the recourse invalidation rate. This bound is applicable to
any method E that provides recourses resulting in a positive outcome.
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Proposition 4 (Upper Bound). Let x̌E be the output produced by some recourse method E such that
h(x̌E) = 1. Then, an upper bound on ∆̃ from equation 4 is given by:

∆̃(x̌E ;σ
2I) ≤ 1 −Φ(c + ω

σ

∥∇f(x)∥2
∥∇f(x̌E)∥2

∥δE∥1√
∥δE∥0

), (7)

where c = f(x)
σ⋅∥∇f(x)∥2 , δE = x̌E − x, and ω > 0 is the cosine of the angle between ∇f(x) and δE .

The right term in the inequality entails that the upper bound depends on the ratio of the ℓ1 and
ℓ0-norms of the recourse action δE provided by recourse method E. The higher the ℓ1/ℓ0 ratio of the
recourse actions, the tighter the bound. The bound is tight when ∥δE∥0 assumes minimum value i.e.,
∥δE∥0 = 1 since at least one feature needs to be changed to flip the model prediction.

5 EXPERIMENTAL EVALUATION

We now present our empirical analysis. First, we validate our theoretical results on the recourse
invalidation rates across various recourse methods. Second, we study the effectiveness of PROBE at
finding robust recourses in the presence of noisy human responses.

Real-World Data and Noisy Responses. Regarding real-world data, we use the same data sets as
provided in the recourse and counterfactual explanation library CARLA (Pawelczyk et al., 2021).
The Adult data set Dua & Graff (2017) originates from the 1994 Census database, consisting of
14 attributes and 48,842 instances. The class label indicates whether an individual has an income
greater than 50,000 USD/year. The Give Me Some Credit (GMC) data set Kaggle-Competition
(2011) is a credit scoring data set, consisting of 150,000 observations and 11 features. The class
label indicates if the corresponding individual will experience financial distress within the next two
years (SeriousDlqin2yrs is 1) or not. The COMPAS data set Angwin et al. (2016) contains data for
more than 10,000 criminal defendants in Florida. It is used by the jurisdiction to score defendant’s
likelihood of re-offending. The class label indicates if the corresponding defendant is high or low
risk for recidivism. All the data sets were normalized so that x ∈ [0,1]d. Across all experiments, we
add noise ε to the prescribed recourse x̌E , where ε ∼ N (0, σ2 ⋅ I) and σ2 = 0.01.

Methods. We compare the recourses generated by PROBE to four different baseline methods which
aim to generate low-cost recourses using fundamentally different principles: AR (-LIME) uses an
integer-programming-based objective Ustun et al. (2019), Wachter uses a gradient-based objective
(Wachter et al., 2018), DICE uses a diversity-based objectve (Mothilal et al., 2020), and GS is
based on a random search algorithm (Laugel et al., 2017). Further, we compare with methods that
use adversarial minmax objectives to generate robust recourse (Dominguez-Olmedo et al., 2022;
Upadhyay et al., 2021). We used the recourse implementations from CARLA (Pawelczyk et al., 2021).
Following Upadhyay et al. (2021), all methods search for counterfactuals over the same set of balance
parameters λ ∈ {0,0.25,0.5,0.75,1} when applicable.

Prediction Models. For all data sets, we trained both ReLU-based NN models with 50 hidden layers
(App. B) and a logistic regerssion (LR). All recourses were generated with respect to these classifiers.

Measures. We consider three measures in our evaluation: 1) We measure the average cost (AC)
required to act upon the prescribed recourses where the average is taken with respect to all instances
in the test set for which a given method provides recourse. Since all our algorithms are optimizing
for the ℓ1-norm we use this as our cost measure. 2) We use recourse accuracy (RA) defined as the
fraction of instances in the test set for which acting upon the prescribed recourse results in the desired
prediction. 3) We compute the average IR across every instance in the test set. To do that, we sample
10,000 points from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the average
IR quantifies recourse robustness where the individual IRs are averaged over all instances from the
test set for which a given method provides recourse.

5.1 VALIDATING OUR THEORETICAL BOUNDS

Computing Bounds. We empirically validate the theoretical upper bounds derived in Section 4.3.
To do that, we first estimate the bounds for each instance in the test set according to Proposition 4,
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Adult Compas GMC

Measures AR Wachter GS PROBE AR Wachter GS PROBE AR Wachter GS PROBE

LR
RA (↑) 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AIR (↓) 0.5 ± 0.01 0.46 ± 0.02 0.35 ± 0.11 0.34 ± 0.02 0.48 ± 0.04 0.47 ± 0.02 0.3 ± 0.18 0.28 ± 0.02 0.47 ± 0.06 0.45 ± 0.03 0.48 ± 0.04 0.24 ± 0.01
AC (↓) 0.55 ± 0.4 0.62 ± 0.43 2.12 ± 1.05 1.56 ± 0.92 0.16 ± 0.17 0.22 ± 0.17 0.73 ± 0.45 0.63 ± 0.39 0.29 ± 0.27 0.49 ± 0.51 0.28 ± 0.31 0.60 ± 0.56

NN
RA (↑) 0.38 1.0 1.0 0.99 0.84 1.0 1.0 1.0 0.38 1.0 1.0 1.0
AIR (↓) 0.49 ± 0.03 0.5 ± 0.02 0.48 ± 0.02 0.35 ± 0.01 0.34 ± 0.09 0.46 ± 0.02 0.43 ± 0.07 0.33 ± 0.02 0.34 ± 0.07 0.43 ± 0.03 0.45 ± 0.03 0.25 ± 0.03
AC (↓) 1.05 ± 0.22 0.3 ± 0.19 2.99 ± 1.51 1.43 ± 0.49 1.15 ± 0.52 0.2 ± 0.16 0.81 ± 0.45 0.8 ± 0.34 0.2 ± 0.19 0.26 ± 0.18 0.12 ± 0.09 0.47 ± 0.21

(a) Comparing PROBE to baseline recourse methods.
Adult Compas GMC

Measures ROAR ARAR PROBE ROAR ARAR PROBE ROAR ARAR PROBE

LR
RA(↑) 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0

AIR (↓) 0.0 ± 0.0 0.02 ± 0.01 0.34 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.28 ± 0.02 0.0 ± 0.0 0.35 ± 0.01 0.24 ± 0.01
AC (↓) 3.56 ± 0.8 2.68 ± 0.79 1.56 ± 0.92 2.99 ± 0.31 1.74 ± 0.3 0.63 ± 0.39 1.74 ± 0.45 1.27 ± 0.45 0.60 ± 0.56

NN
RA(↑) 0.94 0.03 0.99 0.97 0.02 1.0 0.06 0.06 1.0

AIR (↓) 0.0 ± 0.0 0.51 ± 0.0 0.35 ± 0.01 0.01 ± 0.06 0.46 ± 0.0 0.33 ± 0.02 0.3 ± 0.21 0.45 ± 0.01 0.25 ± 0.03
AC (↓) 19.8 ± 3.39 0.04 ± 0.0∗ 1.43 ± 0.49 6.41 ± 1.07 0.02 ± 0.0∗ 0.8 ± 0.34 0.67 ± 0.94 0.02 ± 0.0∗ 0.47 ± 0.21

(b) Comparing PROBE to adversarially robust recourse methods.

Table 1: Comparing PROBE to recourse methods from literature using recourse accuracy (RA),
average recourse invalidation rate (AIR) for σ2 = 0.01 and average cost (AC) across different recourse
methods. For PROBE, we generated recourses by setting r = 0.35 and σ2 = 0.01. (a): Recourses
that use our framework PROBE are more robust compared to those produced by existing baselines.
(b): Adversarially robust recourses are more costly than recourses output by PROBE. For ARAR and
ROAR we set ϵ = 0.01. ∗: Results with recourse accuracies less than 10% have not been considered.
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Figure 4: Comparing PROBE to adversarially robust recourse methods using pareto plots that show
the tradeoff between average costs and average invalidation rate (towards bottom left indicates a
better performance). For PROBE, the invalidation target is r ∈ {0.35,0.3,0.25,0.20,0.15}, and we
generated recourses by setting σ2, ϵ ∈ {0.005,0.01,0.015}. The latter are used for ARAR and ROAR.

and compare them with the empirical estimates of the IR. The empirical IR, in turn, we obtain from
Monte-Carlo estimates of the IR in equation 2; we used 10,000 samples to get a stable estimate of IR.

Results. In Figure 5, we validate the bounds obtained in Proposition 4 for the GMC data sets. We
relegated results for the Compas and Adult data set and other values of σ2 to Appendix C. Note
that the trivial upper bound is 1 since ∆ ≤ 1, and we see that our bounds usually lie well below this
value, which suggests that our bounds are meaningful. We observe that these upper bounds are quite
tight, thus providing accurate estimates of the worst case recourse invalidation rates. It is noteworthy
that GS tends to provide looser bounds, since its recourses tend to have lower ℓ1/ℓ0 ratios; for GS,
its random search procedure increases the ℓ0-norms of the recourse relative to the recourses output
by other recourse methods. This contributes to a looser bound saying that the randomly sampled
recourses by GS tend to provide looser worst-case IR estimates relative to all the other methods,
which do use gradient information (e.g., Wachter , AR and PROBE).

5.2 EVALUATING THE PROBE FRAMEWORK

Results. Here, we evaluate the robustness, costs and recourse accuracy of the recourses generated
by our framework PROBE relative to the baselines. We consider a recourse robust if the recourse
remains valid (i.e., results in positive outcome) even after small changes are made to it (i.e., humans
implement it in a noisy manner). Table 1 shows the average IR for different methods across different
real world data sets and classifiers when σ2 = 0.01. Further, in Table 1a we see that PROBE has the
lowest invalidation rate across all real-world data sets and classifiers among the non-robust recourse
methods, while PROBE provides the lowest cost recourses among the robust recourse methods (see
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Figure 5: Verifying the theoretical upper bound from Proposition 4 on the logistic regression model.
The red boxplots show the empirical recourse invalidation rates for AR(-LIME), Wachter, GS,
DICE, ARAR (ϵ = 0.01), ROAR (ϵ = 0.01) and PROBE (r = 0.35, σ2 = 0.01). The blue boxplots show
the distribution of upper bounds evaluated by plugging in the corresponding quantities (i.e., σ2, ω,
etc.) into the bound. The results show no violations of our theoretical bounds. See appendix C for the
full set of results.

Table 1b). We also consider if the robustness achieved by our framework is coming at an additional
cost i.e., by sacrificing recourse accuracy (RA) or by increasing the average recourse cost (AC). We
compute AC of the recourses output by all the algorithms and find that PROBE usually has the highest
or second highest recourse costs, while the RA is at 100% across classifiers and data sets.

Finally, we provide a more detailed comparison between PROBE and the adversarially robust recourse
methods ARAR and ROAR. To do so, we plot pareto frontiers in Figure 4 which demonstrate the inher-
ent tradeoffs between the average cost of recourse and the average recourse invalidation rate computed
over all recousre seeking individuals for different uncertainty magnitudes σ2, ϵ ∈ {0.005,0.01,0.15}.
For ARAR and ROAR we expect to see AIRs close to 0 (by construction). However, this is only the
case for the linear classifiers. Moreover, ROAR provide recourses with up to 3 times higher cost
relative to our method PROBE. Note also that ARAR and ROAR have trouble finding recourses for
non-linear classifiers, resulting in RA scores of around 5% in the worst case, while not being able to
maintain low invalidation scores. This is likely due to the local linear approximation used by these
methods. In summary, PROBE finds recourses for 100% of the test instances in line with the promise
of having an invalidation probability of at most r, while being less costly than ROAR and ARAR.

Relegated results. The relegated experiments in Appendix C (i) demonstrate that baseline recourse
methods are not robust to noisy human responses (Figures 8 - 9), (ii) verify that the targeted invalida-
tion rates match the empirical recourse invalidation rates (Figures 13 - 15) and (iii) demonstrate the
trade-off between recourse costs and robustness verifying Corollary 3 (Figures 16 - 17).

6 CONCLUSION

In this work, we proposed a novel algorithmic framework called Probabilistically ROBust rEcourse
(PROBE) which enables end users to effectively manage the recourse cost vs. robustness trade-offs by
letting users choose the probability with which a recourse could get invalidated (recourse invalidation
rate) if small changes are made to the recourse i.e., the recourse is implemented somewhat noisily. To
the best of our knowledge, this work is the first to formulate and address the problem of enabling
users to navigate the trade-offs between recourse costs and robustness. Our framework can ensure
that a resulting recourse is invalidated at most r% of the time when it is noisily implemented, where
r is provided as input by the end user requesting recourse. To operationalize this, we proposed a
novel objective function which simultaneously minimizes the gap between the achieved (resulting)
and desired recourse invalidation rates, minimizes recourse costs, and also ensures that the resulting
recourse achieves a positive model prediction. We developed novel theoretical results to characterize
the recourse invalidation rates corresponding to any given instance w.r.t. different classes of under-
lying models (e.g., linear models, tree based models etc.), and leveraged these results to efficiently
optimize the proposed objective. Experimental evaluation with multiple real world datasets not only
demonstrated the efficacy of the proposed framework, but also validated our theoretical findings. Our
work also paves the way for several interesting future research directions in the field of algorithmic
recourse. For instance, it would be interesting to build on this work to develop approaches which can
generate recourses that are simultaneously robust to noisy human responses, noise in the inputs, as
well as shifts in the underlying models.
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A EXTENSIONS TO OTHER NOISE DISTRIBUTIONS AND TREE BASED
CLASSIFIERS

A.1 EXTENSIONS TO GENERAL NOISE DISTRIBUTIONS

A.1.1 A MONTE-CARLO APPROACH FOR GENERAL NOISE DISTRIBUTIONS

Algorithm 2 PROBE-MC

Input: x s.t. f(x) < 0, f , σ2, λ > 0,
t, α, r > 0
Init.: x′ = x;
Compute ∆̂MC(x′) ▷ from
equation 11
while ∆̂MC(x′) > r and f(x′) < 0 do

Compute ∆̂MC(x′) ▷ from
equation 11

x′ = x′ − α ⋅ ∇x′L(x′;σ2, r, λ)
▷ Opt. equation 3

end while
Return: x̌ = x′

In section 4 we have introduced our PROBE
framework, which enables us to guide the search
for counterfactual explanations towards regions
with a targeted low invalidation rate. Recall that
the optimization procedure in Section 4 relied
on a first-order approximation to the recourse in-
validation rate under Gaussian distributed noisy
human responses. In this section, we develop
an algorithm that is agnostic to the specifics of
the parameterized noise distribution. To this
end, we suggest a Monte Carlo estimator of the
recourse IR from Def. 1, i.e.,

∆̃MC =
1

K

K

∑
k=1
(1 − h(x′ + εk)). (8)

We highlight that the estimator ∆̃MC allows for a flexible specification of various noise distributions,
and thus does not depend on specific distributional assumptions of ε. The following result suggests
that we can estimate the true IR ∆(x′) to desired precision using the Monte-Carlo estimator ∆̃MC(x′).
Proposition 5. The mean-squared-error (MSE) between the true IR ∆(x′) and the empirical Monte-
Carlo estimate ∆̃MC(x′) is upper bounded such that:

Eε[(∆(x′) − ∆̃MC(x′))2] ≤
1

4K
. (9)

Since it is up to us to choose K, we can make the MSE arbitrarily small and reliably estimate the true
invalidation rate ∆(x′).

A.1.2 A DIFFERENTIABLE APPROXIMATION TO ∆̃MC
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Figure 6: Differentiable approximations of the indi-
cator function I(x > 0) using the sigmoid function
S(y) = 1

1+exp(−y) evaluated at different tempera-
tures t ∈ {1,2,10,25,100} when ξ = 0.

A problem with the estimator ∆̃MC is that it
is not amenable to automatic differentiation re-
quired for our gradient based algorithm to op-
erate. This is due to the discontinuity at the
threshold ξ introduced by the indicator function
which, in turn, is applied to the logit score when
computing the recourse invalidation rate (i.e.,
h(x) = I(f(x) > ξ) and see Definition 1). To
mitigate this issue, we suggest to use a sigmoid
function with appropriate temperature t to ap-
proximate the indicator at the threshold ξ:

S((x − ξ) ⋅ t) = 1

1 + exp ( − (x − ξ) ⋅ t)
. (10)

Therefore, as t → ∞ the sigmoid S converges
to the indicator function I(x > ξ). We illustrate this behaviour in Figure 6 for different temperature
levels t ∈ {1,2,10,25,100} when the threshold is ξ = 0. Using the differentiable approximation to the
indicator function, we are now ready to state a differentiable estimator for the recourse invalidation
rate, which we can use to guide our gradient descent procedure to low recourse invalidation regions:

∆̂MC(x′; 0, t) =
1

K

K

∑
k=1
(1 − S(t ⋅ f(x′ + εk))). (11)
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A.2 EXTENSIONS TO TREE BASED CLASSIFIERS

The recourse literature commonly considers consequential decision problems which heavily rely
on the usage of tabular data. For this data modality, ensembles of decision trees such as Random
Forest (RF) (Breiman, 2001) or Gradient Boosted Boosted Decision Trees (GBDT) (Friedman, 2001)
are considered among the state-of-the-art models (Borisov et al., 2021). As a consequence, some
recourse methods were developed to find recourses for tree ensembles (Tolomei et al., 2017; Lucic
et al., 2022) where the non-differentiability prevents a direct application of the recourse objective in
equation 1. To extend our method to tree-based classifiers, we also derive an IR expression for tree
ensembles, and develop a method which computes low IR recourses for these models.
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(a) Distilling a RF classifier (left) into a single tree
(right). In the left panel, the RF classifier averages
30 decision trees, indicating that the final axis-aligned
regions (not shown) are complicated functions of all 30
decision trees.
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(b) Computing recourse for the RF model (right) based
on the hypercubes (left). The circle has radius 2σ, i.e.,
it shows the region where 95% of recourse inaccuracies
fall when σ2
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CE has IR ≈ 0.05.

Figure 7: Computing certified recourses on the 2d Moon data set (Pedregosa et al., 2011) for a RF
classifier. Figure a): Distilling a RF classifier (left panel) into a single decision tree (right panel)
using knowledge distillation (Domingos, 1997). Figure b): Using the distilled tree, we form the
hypercubes (left panel) required to compute IR according to Theorem 2. We then optimize equation 3
to find certified recourses for the RF model (right panel).

Tree Ensemble Classifiers An object of interest is the predicted output of a decision tree:

T (x) = ∑
R∈RT

cT (R) ⋅ I(x ∈ R), (12)

where cT (R) ∈ {0,1} is the constant prediction assigned in region R ∈RT for tree T . Moreover, a
decision forest is formed by a set of MT decision trees, and forms the probabilistic output:

fForest(x) =
1

MT

MT

∑
m=1
Tm(x). (13)

The predicted class of an input x is formed via a vote by the trees where each tree assigns a probability
estimate to the input. That is, the predicted class is the one with highest mean probability estimate
across the trees. After the trees are combined, the multiple models form a single model again
(Domingos, 1997). Thus, the corresponding predicted class of equation 13 is given by:

F(x) = ∑
R∈RF

cF(R) ⋅ I(x ∈ R), (14)

where cF(R) ∈ {0,1} is the constant prediction assigned in region R ∈RF for the ensemble of trees
F . Furthermore, note that for each ensemble, there is an active subset of ensemble-specific features
SF ⊆ {1, . . . , d} on which axis-aligned splits took place. Finally, we note that this formulation is
quite general as it subsumes a large class of popular tree-based models such as Random Forests (RF)
and Gradient Boosted Decision Trees (GBDT).

A.3 THE RECOURSE IR FOR TREE ENSEMBLE CLASSIFIERS

Theorem 2 (IR for Tree-Ensemble Classifiers). Consider the decision forest classifier in equation 14.
The recourse invalidation rate under Gaussian distributed response inconsistencies ε ∼ N (0,σ2I) is

14



Published as a conference paper at ICLR 2023

given by:

∆(x̌E ;Σ) = 1 − ∑
R∈RF

cF(R) ∏
j∈SF

dj,R(x̌E,j), (15)

where

dj,R(x̌E,j) = [Φ(
t̄j,R − x̌E,j

σj
) −Φ(

tj,R − x̌E,j

σj
)], (16)

and where Φ is the Gaussian CDF, t̄j,R and tj,R are the upper and lower points corresponding to
feature j ∈ SF that define the hypercube formed by region R.

Proof Sketch. The proof uses the insight that a decision forest based on trees with axis-aligned splits
partions the input space into hypercubes where the prediction is either 0 or 1. It then remains to
evaluate Gaussian integrals subject to the constrains set by the hypercubes. The full proof is given in
Appendix D.3.

Our proof of Theorem 2 assumed that the split points t̄j,R and tj,R, corresponding to the tree-ensemble,
are readily available. However, the hypercubes formed by the tree-ensemble, for which the prediction
is constant, is a function of all individual trees, and of how they are combined. Thus, the clear-cut
division into hypecrubes present in each of the trees got lost in the process of model averaging.

Model Distillation to Evaluate IR We suggest a solution to this problem by using a technique
called model distillation (Domingos, 1997; Bucilua et al., 2006; Hinton et al., 2015; Phuong &
Lampert, 2019). In a nutshell: We wish to change the form of the model (to a simpler decision
tree) while keeping the same knowledge (from our tree ensemble) (Hinton et al., 2015). Thus, the
goal of this technique is to distil the knowledge of a larger model (possibly an ensemble) into a
single, small (and interpretable) model. In our case, the ensemble is formed by decision trees, and
the target model is a decision tree as well. Second, the method is simple to operationalize: let h be
your complex model, and g denotes the simple model. Then we use our data {xi, yi}ni=1 to train and
validate the model h. The target model, however, is trained on samples from {xi, h(xi)}ni=1 to mimic
the behaviour of the complex model. We refer to panels 1 to 3 in Figure 7 to gain some intuition on
how this technique works on a non-linear 2-dimensional data set.

B EXPERIMENTAL DETAILS

In this section, we describe the hyperparameter choices and how the classification models were fitted.
We have used CARLA’s built-in functionality to fit classifiers using PyTorch (Paszke et al., 2019) and
treat all variables as continuous. We set λ1 = 2, λ2 = 1 and search over λ3 in the usual way (Wachter
et al., 2018). All models use a 80 − 20 train-test split for model training and evaluation. We evaluate
model quality based on the model accuracy. All models are trained with the same architectures across
the data sets:

Neural Network Logistic Regression

Units [Input dim., 50, 2] [Input dim. , 2]
Type Fully connected Fully connected
Intermediate activations ReLU N/A
Last layer activations Softmax Softmax

Table 2: Classification model details
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Adult COMPAS Give Me Credit

Batch-size NN 512 32 64

Logistic
Regression 512 32 64

Epochs NN 50 40 30

Logistic
Regression 50 40 30

Learning rate NN 0.002 0.002 0.001

Logistic
Regression 0.002 0.002 0.001

Table 3: Training details

Adult COMPAS Give Me Credit

Logistic Regression 0.83 0.84 0.92
Neural Network 0.85 0.85 0.93

Table 4: Performance of models used for generating recourses

C ADDITIONAL EXPERIMENTS

C.1 ALGORITHMIC RECOURSE IN THE FACE OF NOISY HUMAN RESPONSES

In this Section we show a set of additional experiments. Since this work is the first to highlight and
address the problem of recourse invalidation in the face of noisy human responses, we demonstrate in
Figures 8 and 9 that recourses generated by state-of-the-art approaches are, on average, invalidated up
to 50% of the time when small changes are made to them. It is worth highlighting that the maximum
invalidation scores can become as high as 61%, which motivates the need for a recourse method that
rightly controls the invalidation rate.
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Figure 8: Boxplots of recourse invalidation probabilities across sucessfully generated recourses x̌ for
logistic regression on three data sets. Recourses were generated by four different explanation methods
(i.e., AR, Wachter, and GS, DICE), which use different techniques (i.e., integer programming,
gradient search, random search, diverse recourse) to find minimum cost recourses. We perturbed the
recourses by adding small normally distributed response inaccuracies ε ∼ N (0, σ2 ⋅ I) to x̌.
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Figure 9: Boxplots of recourse invalidation probabilities across sucessfully generated recourses x̌ for
NN classifiers on three data sets. The recourses were generated by four different explanation methods
(i.e., AR, Wachter, and GS, DICE), which use different techniques (i.e., integer programming,
gradient search, random search, diverse recourse) to find minimum cost recourses. We perturbed the
recourses by adding small normally distributed response inaccuracies ε ∼ N (0, σ2 ⋅ I) to x̌.

C.2 MISSING FIGURES FROM THE MAIN TEXT

Below, we show the Figure that was missing from the main text due to space constraints. To keep the
plots below more readable, we have omitted DICE from them as both the bounds implied by DICE,
the results on cost and the remaining measures are similar to the one by Wachter.
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Figure 10: Missing figures from the main text (Compas).
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Figure 11: Missing figures from the main text (Adult).
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(c) Logistic Regression (Left), ANN (Right), σ2
= 0.025

Figure 12: Verifying the theoretical upper bound from Lemma 4 for the logistic regression and
artificial neural network classifiers on all data sets when σ2 = 0.025. The green boxplots show the
empirical recourse IRs for AR(-LIME), Wachter, GS, and PROBE. The blue boxplots show the
distribution of upper bounds, which we evaluated by plugging in the corresponding quantities (i.e.,
σ2, ω, etc.) into the upper bound from Lemma 4. The results show no violations of our bounds.
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Adult Compas GMC

AR Wachter GS PROBE AR Wachter GS PROBE AR Wachter GS PROBE

LR
RA (↑) 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AIR (↓) 0.5 ± 0.01 0.48 ± 0.01 0.4 ± 0.08 0.28 ± 0.02 0.49 ± 0.03 0.48 ± 0.02 0.36 ± 0.14 0.31 ± 0.01 0.48 ± 0.04 0.47 ± 0.02 0.49 ± 0.02 0.3 ± 0.01
AC (↓) 0.55 ± 0.4 0.62 ± 0.43 2.06 ± 1.03 2.21 ± 3.17 0.16 ± 0.17 0.22 ± 0.17 0.73 ± 0.45 0.68 ± 0.28 0.29 ± 0.27 0.49 ± 0.51 0.28 ± 0.32 1.22 ± 2.29

NN
RA(↑) 0.38 1.0 1.0 1.0 0.84 1.0 1.0 1.0 0.4 1.0 1.0 1.0

AIR (↓) 0.51 ± 0.02 0.51 ± 0.01 0.5 ± 0.02 0.33 ± 0.01 0.39 ± 0.06 0.46 ± 0.02 0.41 ± 0.07 0.25 ± 0.02 0.37 ± 0.05 0.42 ± 0.03 0.44 ± 0.02 0.34 ± 0.02
AC (↓) 1.05 ± 0.22 0.3 ± 0.19 3.11 ± 1.62 1.98 ± 2.35 1.15 ± 0.52 0.2 ± 0.16 1.0 ± 0.17 0.84 ± 0.34 0.2 ± 0.16 0.26 ± 0.18 0.11 ± 0.09 0.41 ± 0.23

Table 5: Recourse accuracy (RA), average recourse invalidation rate (AIR) for σ2 = 0.025 and
average cost (AC) across different recourse methods. Recourses that use our framework PROBE are
more robust compared to those produced by existing baselines. For PROBE, we generated recourses
by setting r = 0.35. Thus, the AIR should be at most 0.35, in line with our results.

C.3 VERIFYING THE VALIDITY OF THE EMPIRICAL INVALIDATION RATE

In Figures 13, 14, and 15 we show that the IRs of the recourses by our framework can be controlled
setting r to desired values.
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Figure 13: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal to
the invalidation target r on the Adult data set for different σ2 ∈ {0.01,0.025} across both classifiers.
We compute the mean IR across every instance in the test set. To do that, we sample 10,000 points
from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean IR quantifies
recourse robustness where the individual IRs are averaged over all instances from the test set. The
shaded regions indicate the corresponding standard deviations.

C.4 DEMONSTRATING THE COST-ROBUSTNESS TRADEOFF

In Figures 16 and 17 we demonstrate that there exists a tradeoff between recourse costs and the
robustness of recourse to noisy response.

C.5 DETAILED COMPARISON WITH ROAR AND ARAR

In this section we compare our method with two approaches that aim at generating robust algorithmic
recourse in different settings. We further report results by DICE, which does not generate robust
recourse. Thus, we PROBE the cost performance (i.e., AC) by DICE to serve as a lower bound,
while its robustness performance would serve as an upper bound (i.e., AIR). Regarding the methods
that suggest robust recourse we refer to Upadhyay et al. (2021) who proposed a minimax objective
to generate recourses that are robust to model updates (ROAR), while Dominguez-Olmedo et al.
(2022) use a slight variation of this objective to find recourses that are robust to uncertainty in the
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Figure 14: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal
to the invalidation target r on the Compas data set for different σ2 ∈ {0.01,0.025} across both
classifiers. We compute the mean IR across every instance in the test set. To do that, we sample
10,000 points from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean
IR quantifies recourse robustness where the individual IRs are averaged over all instances from the
test set. The shaded regions indicate the corresponding standard deviations.
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Figure 15: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal to
the invalidation target r on the GMC data set for different σ2 ∈ {0.01,0.025} across both classifiers.
We compute the mean IR across every instance in the test set. To do that, we sample 10,000 points
from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean IR quantifies
recourse robustness where the individual IRs are averaged over all instances from the test set. The
shaded regions indicate the corresponding standard deviations.

inputs (ARAR). Moreover, on a high-level, these objectives differ from our approach since the epsilon
neighborhoods that PROBE constructs are probabilistic.
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Figure 16: Trading off recourse costs against robustness by choosing the invalidation target r in
our PROBE framework. We generated recourses by setting r ∈ {0.20,0.25,0.30,0.35.0.40} and
σ2 = 0.01 for the logistic regression classifier.
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Figure 17: Trading off recourse costs against robustness by choosing the invalidation target r in
our PROBE framework. We generated recourses by setting r ∈ {0.20,0.25,0.30,0.35.0.40} and
σ2 = 0.01 for the NN classifier.

Cost versus invalidation rate performances. The table shown below summarizes the performance
comparison across the aforementioned methods, and Figures 18 and 19 provide Pareto plots, which
demonstrate the tradeoff between the average costs measured in terms of ℓ1 norm and the average
invalidation rate.

Discussion. The AIR for PROBE should be at most 0.35, in line with our results. For ARAR and
ROAR, we should expect AIRs close to 0, which is only the case for the linear classifiers. Additionally,
ARAR and ROAR provide recourses with up to 10 times higher cost relative to our method PROBE.
Note also that ARAR and ROAR have trouble finding recourses for non-linear classifiers, resulting in
RA scores of around 5% in the worst case, while not being able to maintain low invalidation scores.
This is likely due to the local linear approximation that needs to be used by these methods. For ARAR,
only up to 5 percent of all recourse are found (i.e., it only finds recourse with low cost to the decision
boundary), and for those identified recourses the average invalidation rate is close to a random coin
flip. In summary, PROBE finds recourses for 100% of the test instances in line with the promise of
having an invalidation probability of at most 0.35, while being substantially less costly than ROAR.

Adult Compas GMC

Measures ROAR ARAR PROBE ROAR ARAR PROBE ROAR ARAR PROBE

LR
RA(↑) 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0

AIR (↓) 0.0 ± 0.0 0.02 ± 0.01 0.34 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.33 ± 0.02 0.0 ± 0.0 0.35 ± 0.01 0.24 ± 0.01
AC (↓) 3.56 ± 0.8 2.68 ± 0.79 1.56 ± 0.92 2.99 ± 0.31 1.74 ± 0.3 0.63 ± 0.39 1.74 ± 0.45 1.27 ± 0.45 0.60 ± 0.56

NN
RA(↑) 0.94 0.03 0.99 0.97 0.02 1.0 0.06 0.06 1.0

AIR (↓) 0.0 ± 0.0 0.51 ± 0.0 0.35 ± 0.01 0.01 ± 0.06 0.46 ± 0.0 0.33 ± 0.02 0.3 ± 0.21 0.45 ± 0.01 0.25 ± 0.03
AC (↓) 19.8 ± 3.39 0.04 ± 0.0 1.43 ± 0.49 6.41 ± 1.07 0.02 ± 0.0 0.8 ± 0.34 0.67 ± 0.94 0.02 ± 0.0 0.47 ± 0.21

Table 6: Recourse accuracy (RA), average recourse invalidation rate (AIR) for σ2 = 0.01 and average
cost (AC) across different recourse methods. Recourses that use our framework PROBE provide
a strong recourse-robustness tradeoff. For PROBE, we generated recourses by setting r = 0.35,
σ2 = 0.01. For ROAR and ARAR, we generated recourses by setting ε = 0.01.
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Figure 18: Pareto plots showing the tradeoff between average costs and average invalidation rate
when the underlying model is linear. For PROBE, the invalidation target r (dotted line) is set to
0.3, and we generated recourses by setting σ2 ∈ {0.005,0.01,0.015}, and for ARAR and ROAR
we set ϵ ∈ {0.005,0.01,0.015}. Following the suggestion by Upadhyay et al. (2021), all re-
course methods search for the optimal counterfactuals over the same set of balance parameters
λ ∈ {0,0.25,0.5,0.75,1}.
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Figure 19: Pareto plots showing the tradeoff between average costs and average invalidation rate
when the underlying model is a neural network. For PROBE, the invalidation target r (dooted line)
is set to 0.35, and we generated recourses by setting σ2 ∈ {0.005,0.01,0.015}, and for ARAR and
ROAR we set ϵ ∈ {0.005,0.01,0.015}. Following the suggestion by Upadhyay et al. (2021), all
recourse methods search for the optimal counterfactuals over the same set of balance parameters
λ ∈ {0,0.25,0.5,0.75,1}.
D PROOFS

D.1 PROOF OF PROPOSITION 5

Proposition 5. The mean-squared-error (MSE) between the true IR ∆(x′) and the empirical Monte-
Carlo estimate ∆̃MC(x′) is upper bounded such that:

Eε[(∆(x′) − ∆̃MC(x′))2] ≤
1

4K
. (17)

Proof. First, recall that the empirical Monte-Carlo estimator is given by:

∆̃MC =
1

K

K

∑
k=1
(1 − h(x′ + εk)). (18)

Next, note Eε[1 − h(x′ + ε)] = ∆(x′). Further, the mean-squared error between the nominal
invalidation rate ∆(x′) and the Monte-Carlo estimate ∆̃MC is given by:

Eε[(∆(x′) − ∆̃MC)2] = Vε(∆̃MC) +Eε[∆̃MC −∆(x′)]2, (19)

which gives the bias-variance decomposition. We first compute the squared bias term:

Eε[∆̃MC −∆(x′)]2 = [
1

K
⋅K ⋅Eε[1 − h(x + ε)] −∆(x′)]

2

(20)

= 0, (21)

where we have used that the εs are identically distributed. We now turn to the variance term for which
we find the following expression:

Vε(∆̃MC) =
1

K2
⋅K ⋅Vε[1 − h(x + ε)] =

1

K
⋅Vε[h(x + ε)]. (22)
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It remains to identify an upper bound for Vε(h(x + ε)). Since h(x + ε) is binary, a simple upper
bound is given by:

Vε(h(x + ε)) ≤
1

4
. (23)

Combining the expression for the squared bias and the upper bound on the variance yields the desired
result.

D.2 PROOFS OF THEOREM 1, PROPOSITIONS 1 - 4 AND COROLLARY 1

Theorem 1. A first-order approximation ∆̃ to the recourse invalidation rate ∆ in equation 2 under a
Gaussian distribution ε ∼ N (0,Σ) capturing the noise in human responses is given by:

∆̃(x̌E ;Σ) = 1 −Φ(
f(x̌E)√

∇f(x̌E)⊺Σ∇f(x̌E)
), (24)

where Φ is the CDF of the univariate standard normal distribution N (0,1), f(x̌E) denotes the logit
score at x̌E which is the recourse output by a recourse method E, and h(x̌E) ∈ {0,1}.

Proof. Let the random variable ε follow a multivariate normal distribution, i.e., ε ∼ N (µ,Σ). The
following result is a well-known fact: v⊺ϵ ∼ N (v⊺µ,vΣvT ) where v ∈ Rd. Let x denote the input
sample for which we wish to find a counterfactual x̌E = x + δE . Recall from Definition 1 that we
have to evaluate:

∆ = Eε[h(x̌E)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
CE class

− h(x̌E + ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

class after response

]

= 1 −Eε[h(x̌E + ε)],

(25)

where we have used that the first term is a constant and evaluates to 1 by the definition of a
counterfactual explanation. It remains to evaluate the expectation: Eε[h(x̌E + ε)]. Next, we note
that equation 25 can equivalently be expressed in terms of the logit outcomes:

∆ = Eε[I[f(x̌E) > 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CE class

− I[f(x̌E + ε) > 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class after perturbation

] = (1 −Eε[I[f(x̌E + ε) > 0]]). (26)

Again, we are interested in the second term, which evaluates to:

Eε[I[f(x̌E + ε) > 0]] = 0 ⋅ P(f(x̌E + ε) < 0) + 1 ⋅ P(f(x̌E + ε) > 0). (27)

Next, consider the first-order Taylor approximation: f(x̌E + ε) ≈ f(x̌E) +∇f(x̌E)⊺ε. Hence, we
know ∇f(x̌E)⊺ε approximately follows N (0,∇f(x̌E)Σ∇f(x̌E)⊺). Now, the second term can be
computed as follows:

P(f(x̌E + ε) > 0) ≈ P(f(x̌E) > −∇f(x̌E)⊺ε) = P( − f(x̌E) < ∇f(x̌E)⊺ε) (28)

= 1 − P( − f(x̌E) > ∇f(x̌E)⊺ε) (29)

= 1 − P( ∇f(x̌E)⊺ε√
∇f(x̌E)⊺Σ∇f(x̌E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mean 0 Gaussian RV

< − f(x̌E)√
∇f(x̌E)⊺Σ∇f(x̌E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Constant

)

= 1 −Φ( − f(x̌E)√
∇f(x̌E)⊺Σ∇f(x̌E)

)

= Φ( f(x̌E)√
∇f(x̌E)⊺Σ∇f(x̌E)

), (30)
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where the last line follows due to symmetry of the standard normal distribution (i.e., Φ(−u) =
1 −Φ(u)). Putting the pieces together, we have:

Eε[I[f(x̌E + ε) > 0]] = 0 ⋅ P(f(x̌E + ε) < 0) + 1 ⋅ P(f(x̌E + ε) ≥ 0) (31)

= Φ( f(x̌E)√
∇f(x̌E)⊺Σ∇f(x̌E)

). (32)

Thus, we have:

∆ ≈ ∆̃ = 1 −Φ( f(x̌E)√
∇f(x̌E)⊺Σ∇f(x̌E)

), (33)

which completes our proof. Note that this is equivalent to P(f(x̌E + ε) < 0), and thus we are

“counting” how often perturbations to x̌E sampled from ε ∼ N (0,Σ) result in flips back to the
undesired class.

Proposition 2. For a linear classifier, let r ∈ (0,1) and let x̌E = x + δE be the output produced by
some recourse method E such that h(x̌E) = 1. Then the cost required to achieve a fixed invalidation
target r is given by:

∥δE∥2 =
σ

ω
(Φ−1(1 − r) − c), (34)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, and ω > 0 is the cosine of the angle between the vectors ∇f(x)

and δE .

Proof. Under a logistic classifier, the result immediately follows by setting the expression from
Theorem 1 equal to r, using the identity ∇f(x)⊺δE = ω ⋅ ∥∇f(x)∥2 ⋅ ∥δE∥2 where ω is the cosine of
the angle between the vectors ∇f(x) and δE , and rearranging for ∥δE∥2.

Proposition 3. Under the same conditions as in Proposition 2, we have ∂∥δE∥2
∂(1−r) =

σ
ω

1
ϕ(Φ−1(1−r)) > 0,

i.e., an infinitesimal increase in robustness (i.e.,1 − r) increases the cost of recourse by σ
ω

1
ϕ(Φ−1(1−r)) .

Proof. We will compute the derivative of ∥δE∥2 = σ
ω
(Φ−1(1 − r) − c) with respect to 1 − r and show

that it is positive for all r ∈ (0,1):

∂∥δE∥2
∂(1 − r) =

σ

ω

1

ϕ(Φ−1(1 − r)) > 0, (35)

where ϕ is the probability density function (PDF) of the standard Gaussian distribution. Since the
PDF must be positive, we have that ϕ(Φ−1(1 − r)) > 0, and we know that σ,ω > 0. Thus, the results
follows.

Proposition 4. Let x̌E be the output produced by some recourse method E such that h(x̌E) = 1.
Then, an upper bound on ∆̃ from equation 4 is given by:

∆̃(x̌E ;σ
2I) ≤ 1 −Φ(c + ω

σ

∥∇f(x)∥2
∥∇f(x̌E)∥2

∥δE∥1√
∥δE∥0

), (36)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, δE = x̌E − x, and ω > 0 is the cosine of the angle between the

vectors ∇f(x) and δE .

Proof. We start by noting the following basic inequality:

∥z∥1 ≤
√
∥z∥0 ⋅ ∥z∥2.
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Going forward, we will refer to these inequalities as basic inequalities. Moreover, note that Φ is a
monotonic function. Thus, we have Φ(a) ≤ Φ(a′) for a ≤ a′. Note that f(x̌E) ≈ f(x) +∇f(x)⊺δE .
Thus we obtain the following approximation:

∆̃ = 1 −Φ( f(x) +∇f(x)⊺δE√
∇f(x̌E)Σ⊺∇f(x̌E)

). (37)

Next, we will find upper bounds for the term on the right: Before we will do that, we will express the
above expression more conveniently to highlight the impact of the counterfactual action δE more
explicitly. To do that, note that ∇f(x)⊺δE = ω ⋅ ∥∇f(x)∥2 ⋅ ∥δE∥2 where ω is the cosine of the angle
between the vectors ∇f(x) and δE . Using Σ = σ2I, we obtain:

Φ(f(x) +∇f(x)
⊺δE

σ∥∇f(x̌E)∥2
) = Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2

⋅ ω
σ
⋅ ∥δE∥2), (38)

where we defined a constant c = f(x)
σ∥∇f(x̌E)∥2 using quantities that we will keep fixed in our analysis,

namely x,∇f(x) and σ. Also note that x is the factual input, and thus its logit score satisfies:
f(x) < 0. Since δE is a valid perturbation, we must have that ω > 0 for the perturbation to change
the class prediction.

Note that the following lower bound holds by the basic inequality stated above:

Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2
⋅ ω
σ
⋅ ∥δE∥2) ≥ Φ(c +

∥∇f(x)∥2
∥∇f(x̌E)∥2

⋅ ω
σ
⋅ ∥δE∥1√
∥δE∥0

). (39)

As a consequence we obtain the following upper bound on the IR:

∆̃ ≤ 1 −Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2
⋅ ω
σ
⋅ ∥δE∥1√
∥δE∥0

), (40)

as claimed.

Proposition 1. For the logistic regression classifier, consider the recourse output by Wachter et al.
(2018): x̌Wachter(s) = x + s−f(x)

∥∇f(x)∥22∇f(x). Then the recourse invalidation rate has the following
closed-form:

∆(x̌Wachter(s);σ2I) = 1 −Φ( s

σ∥∇f(x)∥2
), (41)

where s is the target logit score.

Proof. Since we are in the linear case, we have: ∇f(x̌E) = ∇f(x). Also, note that f(x̌E) =
f(x) +∇f(x)⊺δE . Using Σ = σ2I, we obtain the following exact expression:

∆ = 1 −Φ(f(x) +∇f(x)
⊺δE

σ∥∇f(x)∥2
). (42)

From Pawelczyk et al. (2022), we have:

δWachter =
s − f(x)
∥∇f(x)∥22

∇f(x). (43)

Plugging equation 43 into equation 42 we obtain:

∆ = 1 −Φ( f(x)
σ∥∇f(x)∥2

+ ∇f(x)
⊺δE

σ∥∇f(x)∥2
) (44)

= 1 −Φ( f(x)
σ∥∇f(x)∥2

+ 1

σ∥∇f(x)∥2
⋅ ∇f(x)⊺∇f(x) s − f(x)

∥∇f(x)∥22
)

= 1 −Φ( f(x)
σ∥∇f(x)∥2

+ s − f(x)
σ∥∇f(x)∥2

)

= 1 −Φ( s

σ∥∇f(x)∥2
), (45)

which concludes the proof.
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Corollary 1. Under the conditions of Proposition 1, choosing sr = σ∥∇f(x)∥2Φ−1(1−r) guarantees
a recourse invalidation rate of r, i.e., ∆(x̌Wachter(sr);σ2I) = r.

Proof. The result directly follows from plugging in sr = σ∥∇f(x)∥2Φ−1(1 − r) into the optimal
recourse from δWachter from equation 43 and subsequently evaluating the recourse invalidation rate
from equation 5.

D.3 PROOF OF THEOREM 2

Proof. From Definition 1 we know:

∆Forest = Eε[F(x̌E)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
CE class

− F(x̌E + ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

class after response

] (46)

= 1 −Eε[F(x̌E + ε)]. (47)

It remains to evaluate: Eε[F(x̌E + ε)]. Using equation 14, we have:

Eε[F(x̌E + ε)] = Eε[ ∑
R∈RF

cF(R) ⋅ I(x̌E + ε ∈ R)] (48)

= ∑
R∈RF

cF(R) ⋅Eε[I(x̌E + ε ∈ R)] (Linearity of Expectation)

= ∑
R∈RF

cF(R) ⋅ ∫
R
p(y)dy (p(y) = N (x̌E ,σ

2I))

= ∑
R∈RF

cF(R) ⋅ ∏
j∈SF
∫
Rj

1√
2πσ2

j

exp( − 1

2

(yj − x̌E,j)2
σ2
j

)dyj

(Since ε is an independent Gaussian)

= ∑
R∈RF

cF(R) ⋅ ∏
j∈SF
[Φ( t̄j,R − x̌E,j

σj
) −Φ(

tj,R − x̌E,j

σj
)].

(Since ε is Gaussian)

Using our Definition of robustness, we have

∆Forest = 1 − ∑
R∈RF

cF(R) ∏
j∈SF
[Φ( t̄j,R − x̌E,j

σj
) −Φ(

tj,R − x̌E,j

σj
)], (49)

which completes the proof.
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