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ABSTRACT

End-to-end autonomous driving methods aim to enable robust vehicle control by
imitating successful driving behavior. Existing approaches are trained either on
real-world data, which closely reflects practical applications, or on simulation
data, which is used to simulate undesirable behaviors such as non-compliant driv-
ing habits, car accidents, and off-road scenarios. However, these methods fail to
integrate the advantages of both data sources effectively. In this paper, we propose
AT-Drive, an end-to-end adversarial transfer framework for autonomous driving.
AT-Drive is the first approach that transfer the simulated imitation driving capabil-
ities to real-world deployment. AT-Drive first pre-trains simulation and real-world
model with simulation and real-world dataset separately. Then, two discrimina-
tors are utilized to adversarially train the real-world model, producing a model that
transfers simulation-based driving capabilities into real-world deployment. This
approach bridges the gap between simulation and real-world autonomous driv-
ing. Furthermore, by incorporating a unique back-propagation strategy, AT-Drive
achieves state-of-the-art performance on the newly partitioned nuScenes dataset.

1 INTRODUCTION

Autonomous driving is a complex system that requires not only a detailed representation of the en-
vironment, detecting both dynamic objects and static elements, but also trajectory prediction, navi-
gation, path planning, and collision avoidance. Multi-stage autonomous driving algorithms struggle
to handle various hard cases across different industrial scenarios. These multi-stage autonomous
driving methods are typically composed of a series of independent modules for detection, tracking,
online mapping, prediction, and planning. To unify these complex models and mitigate error ac-
cumulation and feature misalignment, researchers have developed a more streamlined and efficient
pipeline that integrates all tasks into a single model. These approaches are co-trained on real-world
or simulated data to evaluate their performance.

Some researchers train and evaluate their end-to-end models on real-world datasets for industrial ap-
plications. For example, Pomerleau (1988) uses a three-layer neural network trained on real camera
data to predict the direction of the vehicle. |Prakash et al| (2021) directly predicts planning trajec-
tories without modeling complex interactions. UniAD Hu et al.| (2023) introduces a unified frame-
work that leverages the joint cooperation of separate tasks and complex interactions to improve
performance. Additionally, Sun et al.| (2024); Zhang et al.| (2024) simplify the internal tasks with
a parallel design to better align with real-world autonomous driving scenarios. Note that, models
trained on real-world data often lack exposure to critical hard cases and corner cases, such as ex-
treme weather, non-compliant driving behavior, and traffic accidents. To improve the robustness of
the model in handling such cases, some researchers train and evaluate their models on simulated
datasets. Specifically, Renz et al.| (2022); Jia et al.| (2023b)) adopt transformers as their primary
modules, demonstrating excellent performance in closed-loop evaluations. Furthermore, other ap-
proaches, such as DriveAdapterJia et al.| (2023a), introduce a teacher-student method to effectively
exploit the complex simulation scenarios.

Although simulations are well-suited for modeling real-world autonomous driving rare and chal-
lenging scenarios and can generate a large number of such scenarios, transferring a model trained in
simulation to real-world applications remains challenging.
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Figure 1: Overview of our proposed AT-Drive. AT-Drive is composed by a simulation end-to-
end AD baseline, a real-world end-to-end AD baseline, and two discriminators. Simulation and
real-world baselines are same model that trained on simulation dataset and real-world dataset re-
spectively. Two discriminators are used to adversarial transfer the ability of simulation baseline to
real-world baseline.

In this paper, we introduce a novel end-to-end autonomous driving method, named AT-Drive, which
can effectively transfer the ability to handle simulation-based rare and challenging cases to real-
world applications. The architecture is illustrated in fig. [T, AT-Drive consists of two base models
(a simulation model and a real-world model) and two discriminators (perception discriminator and
motion discriminator). The simulation model learns uncommon scenarios from synthetic data and
transfers this knowledge to the real-world model through adversarial learning with the discrimina-
tors.

To the best of our knowledge, AT-Drive is the first approach to investigate and transfer simulation-
trained capabilities to real-world autonomous driving. Furthermore, we reproduce several existing
methods and compare them with AT-Drive on a newly partitioned dataset. Experimental results
confirm the superior performance of our method, surpassing state-of-the-art approaches.

The contributions of this paper are as follows:

* We present the first end-to-end autonomous driving model that transfers simulation-based
hard case handling ability to real-world scenarios, effectively bridging the domain gap be-
tween simulated and real-world environments and eliminating key barriers in autonomous
driving.

* We introduce two discriminators that learn the discrepancies between the simulation and
real-world domains, enabling the transfer of knowledge from the simulation model to the
real-world model.

* We propose a novel back-propagation strategy that accelerates adversarial training and im-
proves convergence stability.

Extensive experiments on real-world scenarios demonstrate that our method achieves state-
of-the-art performance, significantly outperforming existing approaches under the new
data-splitting strategy for the nuScenes dataset.
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2 RELATED WORKS

2.1 END-TO-END AUTONOMOUS DRIVING MODEL TRAINED ON REAL-WORLD SCENARIO
DATA

Most industry solutions utilize real-world data to train models, making them easier to apply in au-
tonomous vehicles and minimizing the gap between training and inference. Pioneering research
employs a three-layer network trained on real camera data to determine the vehicle’s driving direc-
tion |Pomerleau| (1988). Some approaches, such as |Prakash et al.| (2021), directly predict planning
trajectories without interacting with perception and motion prediction, which does not align with our
expectations in real environments. Subsequently, Casas et al.|Casas et al.[(202 1)) achieves more accu-
rate planning results by leveraging intermediate representations and forecasting the future states of
dynamic agents. Unlike previous works, |Cui et al.|(2021) optimizes the diversity of the downstream
ego-vehicle contingency planner to improve safety. Inspired by |Qian et al.|(2024)), some researchers
incorporate accumulated features or additional semantic occupancy supervision to enhance final
outcomes Sadat et al.| (2020); |[Hu et al.| (2022), while these methods have limitations in real-world
scenarios. Note that, UniAD|Hu et al.|(2023) introduces a unified framework that facilitates coopera-
tion among separate tasks, including perception, prediction, and planning in the field of autonomous
driving. It employs queries to decode and interact across multiple task outputs. Furthermore, Jiang
et al.| (2023);|Ye et al.[(2023); [Chen et al.| (2024a) predict motion planning by integrating perception
results (tracking objects and map elements), and refining the planning outcomes with additional con-
straints, these methods demonstrate superior performance in real-world road tests. Unlike previous
methods, SparseDrive [Sun et al.[ (2024) extracts features using sparse feature sampling instead of
computationally expensive BEV (bird’s eye view), it also utilizes a parallel design for the motion
planner, incorporating a collision-aware rescore module to enhance real-world autonomous driv-
ing. Consequently, |[Zhang et al.|(2024) uses a unified module paired with distinct expert designs,
to enhance the outcomes, offering an efficient and straightforward industry solution. Additionally,
researchers have introduced Vision-Language Model (VLM)-guided methods Shao et al.[(2023) in
the autonomous driving context, framing the autonomous driving task as a vision-language problem
‘Wang et al.[(2024); |Xu et al.[(2024a).

2.2 END-TO-END AUTONOMOUS DRIVING MODEL TRAINED ON SIMULATED SCENARIO
DATA

However, obtaining real-world data is costly, inefficient, and lacks hard cases and corner cases. To
investigate the performance of end-to-end autonomous driving models in hard cases and large-scale
data, researchers utilize the simulated data from virtualization engines such as CARLA [Dosovitskiy
et al. (2017) and LGSVL [Rong et al.[| (2020) for training and evaluation. |(Codevilla et al.| (2019)
introduces an auxiliary speed prediction task to facilitate lateral and longitudinal direction opera-
tion. (Chen et al.| (2019)) trains a teacher model with privileged information and utilizes this teacher
model to supervise a vision-based sensorimotor agent, significantly enriching the student models
with privileged information. Note that, camera-based methods suffer from inaccurate spatial infor-
mation, thus, some researchers integrate multi-modal sensor data to achieve an outstanding perfor-
mance |Chitta et al.[ (2022); Liu et al.| (2024)). Inspired by Jiang et al.| (2023); |Zhang et al.| (2023)),
VADV2 Chen et al.| (2024a) employs a large planning vocabulary and simulation training data to es-
timate the probability distribution of planning trajectories based on the driving behavior. Similarly,
PlanT Renz et al.| (2022) adopts a transformer as the main module, demonstrating fast inference
speed and scalability on CARLA-collected datasets. Furthermore, some methods enhance feature
representations by refining the transformer module [Chitta et al.| (2021); Zhang et al.| (2024)). Con-
sequently, ThinkTwice Jia et al.| (2023b) predicts a coarse-grained future position and retrieves a
salient feature from the encoder to extend the trajectory capacity of this model. The availability
of simulation environments has led to significant advancements in reinforcement-based end-to-end
autonomous driving methods in recent years. These methods train a teacher model with a rein-
forcement learning strategy to simulate diverse scenarios, such as extreme weather, non-compliant
driving habits, car accidents, etc.. Guided by this teacher model, the student model can effectively
learn from corner cases|Zhang et al.|(2021);(Wu et al.[(2022); Jia et al.| (2023a). DriveGPT4 Xu et al.
(2024b)) leverages LLMs to develop a low-level vehicle control-based end-to-end autonomous driv-
ing solution. Furthermore, LLM-based autonomous driving models enable closed-loop end-to-end
autonomous driving in simulators. These methods integrate localization, perception, and decision-
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making into an LLM model, which outputs driving instructions [Wang et al.| (2023a)); |Shao et al.
(2023)); |Sima et al.[(2025). Additionally, (Cui et al.|(2024) proposes a novel benchmark to systemat-
ically evaluate various scenarios, enhancing performance and exploring the potential of LLMs.

2.3 DOMAIN ADVERSARIAL TRANSFER

Numerous studies demonstrate the effectiveness of transfer learning by examining the transferability
of deep neural networks trained on public datasets Kornblith et al.| (2019). Hendrycks et al.|(2019)
investigates the transfer pre-training mechanism, showing that pre-training improves adversarial
robustness by 10% over the base model. However, a major focus of transfer learning is unsuper-
vised domain adaptation, which adapts a model trained on a labeled dataset to an unlabeled domain.
Among these approaches, |Long et al. (2013) introduces marginal and conditional distributions to
construct new feature representations for unsupervised domains. MetaAlign Wei et al.[(2021) pro-
poses an effective meta-optimization strategy that maximizes the neural network gradients across
two tasks during training. [Yang et al.| (2024) proposes an adaption transfer method to grasp novel
target objects, this method leverages object attributes to facilitate robotic grasping and rapid adapta-
tion to new domains.

Furthermore, a new strategy for style transfer has emerged. Goodfellow et al.| (2014) pioneers the
adversarial generative model, which simultaneously trains a generative model to capture the data
distribution and a discriminative model to estimate the probability of samples. This method learns
deep representations without requiring extensively annotated training data. Another approach di-
rectly controls the data generation process by incorporating additional information, such as class
labels or multimodal data|Mirza & Osindero|(2014). Instead of learning a generic generative model,
Pix2Pix |Isola et al.[(2018)) learns a conditional generative model, which is widely used for image-
to-image translation tasks, this simple framework is sufficient to fit the expected distribution using a
simple loss function. Subsequent works successfully transfer style between domains using various
techniques, such as stacking and additional branches |Li et al.[(2017); Kim et al.[(2017); Luan et al.
(2017). Recently, Kim et al.| (2023) investigates randomized decision rules, and introduces an em-
pirical Bayes-like method in the training process to improve the diversity of outputs. Furthermore,
DTSGAN [Li et al|(2024) introduces a spatio-temporal generative adversarial network that cap-
tures motion and content distribution in video sequences. Ma et al.|(2025) proposes a reconstructive
transfer learning approach built on a generative adversarial network (GAN) to explore the potential
of the novel masked auto-encoder (MAE) image reconstruction model. This approach achieves a
significant improvement compared to other GAN-based methods. Additionally, some researchers
incorporate GANSs into reinforcement learning tasks to enhance robustness. Among them, Xie et al.
(2025) proposes a dual-agent adversarial policy learning model, enabling agents to spontaneously
learn semantics without additional human prior knowledge. Experiments demonstrate that this ad-
versarial framework significantly improves performance.

3 PROBLEM STATEMENT

3.1 LIMITATIONS OF REAL-WORLD DATA

In real-world autonomous driving application scenarios, researchers collect data from vehicles, these
vehicles are driven by skilled people. This leads to three key challenges: (1) Autonomous driving is
hindered by data collection and data labeling in the physical world, both of which require substantial
human and financial resources; (2) Rare scenarios, such as traffic accidents, driving violations, non-
standard roads, pedestrian trespassing, and extreme weather conditions, are challenging to capture.
(3) There is a lack of high-order interactions and efficient decision-making between vehicles in real-
world environments. As imitation learning-based approaches, current autonomous driving methods
cannot guarantee vehicle safety and reliability across all driving scenarios unless these issues are
addressed.

3.2 LIMITATIONS OF SIMULATION DATA

Recently, simulations have become widely used in autonomous driving research. Autonomous driv-
ing simulators support flexible configurations of sensor suites, kinetic models, interactive static and
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dynamic scenes, environmental conditions (such as weather and lighting), and even detailed colli-
sion data. These simulations effectively address some of the real-world challenges mentioned above.
Simulations facilitate the collection of large-scale labeled data, which can be utilized to validate the
effectiveness of data-driven models. Furthermore, since certain rare and challenging scenarios are
too dangerous to stage in real-world settings, simulators can generate them freely. Additionally,
autonomous driving models can undergo closed-loop evaluations in simulators, making them more
representative of real-world scenarios. Researchers are increasingly focused on developing more
realistic simulation environments. However, a significant gap remains between simulations and
real-world driving. In summary, simulations introduce a new challenge: how to transfer models
trained on virtual datasets to real-world applications.

3.3 METHODS SHIFT

Autonomous driving methods face the domain shift problem, where models perform well in sim-
ulated environments during training but struggle in real-world driving scenarios. To address these
challenges, we propose a novel method that simulates non-standard driving scenarios and integrates
them into our model to enhance reliability. We train our model using a novel adversarial strategy to
transfer simulated scenarios into real-world applications.

4 METHOD

4.1 DISCREPANCY BETWEEN SIMULATION AND REAL-WORLD

We assume that the data space samples from the simulation and real-world domains are represented
as Dg = {(xf,y$)} and Dg = {(27,y)} respectively. Each domain corresponds to a joint distri-
bution over the input space X and output space Y. We define the hypothesis parameter sets H for
the simulation domain, which is used to predict simulation data labels.

H, :={hs: Dg} (D
The intuition behind the above definitions and assumptions is that we use the mapping 7o, to
minimize the distance between simulation and real-world domains. The hypothesis h mentioned
above is employed to predict the result ¢, and we define the transformation function as follows:

hr = Ts27' . hs (2)
Based on this formulation, we define the hypothesis set for the real-world domain as:
H, = {hr : DR‘hr() = hs(T527‘('))7hs € Hs} 3)

where the real-world hypothesis parameter sets H.. is represented in terms of h, and transfer matrix
Ts2r .

In our method, the first process is to quantify the discrepancy between both domains. Given the
space samples of the two domains, the discrepancy D° between two domains Dg and Dp, is defined
as follows:

D)(Ds||Dr) == E_ls(hs(2®),y°) = E l(he(a"),y") )
zs€Dg x"€DRr
This indicates that the hypothesis function &, which is used to fit the distribution of both data, directly
influences the discrepancy. [, and [ are used to compute the losses. As described in these equations,
the upper bound in terms of the simulation domain can be presented by the following.

sup  E [ls(hs(2®),y%)] :=p < o0 5)
hs€H, r5€Dg

Here, [ is the bounded continuous loss, p is the expected parameter. Since we have eq. (2)), we
further explore the formula for discrepancy D°:

Dp(Ds||Dr) = sup (B (hs(2z®) —y°)—
hs€Hg r5€Dg

E (TSQT(hT(xT) - y'r‘)))

x"€DRr

(6)
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where sup denotes supremum, T2, is the Fenchel conjugate of a lower semi-continuous convex
function. Notably, this discrepancy D;Sl is a variational formulation of the f-divergence for the convex
function 4, thus, DJ (Dg||Dg) serves as a lower bound estimate of the f-divergence function.

In our method, the hypothesis is divided into two components: the perception hypothesis and the mo-
tion hypothesis. Consequently, D¢ (Dg||Dg) is decomposed into Dg(DS| |Dr) and D? (Ds||Drg),
corresponding to perception and motion discrepancies, respectively.

4.2 ADVERSARIAL OPTIMIZATION

To transfer the simulation domain to the real-world domain, we optimize three components of our
model: the end-to-end multi-task network, the perception discriminator Dg(DS ||Dr) and the mo-

tion discriminator D? (Dg||Dg). These two discriminators estimate the discrepancy between Dg
and Dp aiming to distinguish between the features of two domains. We summarize the total opti-
mization problem as follows:
min. E _ [l(h(z),y)] + D)(Ds||Dr) + D, (Ds||Dr) @)
8 z€Ds,Dg

where, [ is the multi-task combination loss, A is the multi-task optimization function. Furthermore,
we define an upper bound for these two discriminators:

dy= E llogDp(fp(e))]+ E [log(l =~ Dp(fp(@))] ®
&, = E [log(DS(frm(@))]+ E [og(1 — DL (fin()))] ©)
z€Dg r€DR

where f,, and f,,, are the multi-task networks responsible for extracting features from the input data.
From eq. (§) and eq. (9)), we derive:

DS(Ds||Dg) + D3, (Ds||Dr) <= maa d —i—mgzxdfu (10)

The final optimized function is given by:

minmaxr R I (hy(z +dS+d° 11
5 5 IGDs,DR[T( T( )7?])] D m ( )
As shown in eq. (1)), our model first minimizes the multi-task loss functions using finite samples,
the second and third components correspond to discriminator losses, which are optimized using an
adversarial strategy with a min-max formulation.

4.3 MODEL ARCHITECTURE

As depicted in fig. [T} our simulation to real-world transfer learning model consists of three parts: the
simulation model, the real-world model and discriminators.

Simulation Model. The simulation model is a complete end-to-end autonomous driving framework
trained with simulation datasets. Its primary objective is to learn various hard cases, such as an
accident ahead, vehicles driving violation, etc. This model primarily follows the SparseDrive |Sun
et al.| (2024). Firstly, it extracts features from 6 surrounding cameras using ResNet He et al.|(2015),
followed by a transformer decoder to extract perception features, including dynamic and static ob-
ject representations. Using these feature representations, a unified motion decoder, cascaded with
multiple transformer layers, predicts both ego-motion planning trajectories and agent prediction tra-
jectories simultaneously.

Real-world Model. We also incorporate a real-world model, structurally identical to the simulation
model but initially trained on real-world datasets along with a subset of simulation data. This model
is designed to transfer learned simulation scenarios to real-world applications and serves as the final
inference model.

Discriminators. Inspired by GAN-based methods, our discriminators estimate the distributional
discrepancy between the two data domains and adapt the simulation model’s performance to align
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with real-world expectations. These discriminators consist of two modules: the perception dis-
criminator and the motion discriminator, both are implemented using transformers. The perception
discriminator processes instance features from both the simulation and real-world models. Its role
is to minimize the domain gap and adversarially transfer the expected perception representations to
the real-world model. Similarly, the motion discriminator processes motion features from both mod-
els to facilitate adversarial transfer of expected motion trajectory representations to the real-world
model.

4.4 Loss

Different from existing methods, our approach employs distinct loss functions at different training
stages.

Pre-training Loss. Firstly, during the pre-training step, we adopt a multi-task loss similar to [Sun
et al.| (2024) for both the simulation model and real-world model, which serves to pre-train our base
model. The multi-task loss is defined as follows:

lpre = ldet + lmap + lmot + lpred + lplan (12)

where l4¢; and 1,4, denotes the detection loss and online map construction 10sS, [, is the tracking
loss, lpreq and U4y, correspond to the prediction loss and planning loss, respectively.

Adversarial Training Loss. Secondly, in step 1 of adversarial training, we incorporate two dis-
criminator losses: the perception discriminator loss and the motion discriminator loss. These losses
enable the discriminators to learn the differences between the two data distributions, and they are
defined as follows:

lstepl = lpd + lina (13)
Here, l,q and [,,,4 are perception discriminator loss and motion discriminator loss, respectively. In
step 2 of adversarial training, we use both the discriminator loss and the real-world multi-task loss,
as shown below:

lstep2 = ldet + lm,ap + lmot + Zpred + lplan + lpd + lmd (14)

However, as described in the Model Training section, two discriminators only pass the gradient
parameters, and do not update their model parameters.

4.5 MODEL TRAINING

Our training process consists of two stages: pre-training and adversarial training.

4.5.1 PRE-TRAINING

In this training process, we train our simulation model with simulation datasets. Since the simu-
lation datasets contain a large number of hard cases, such as accidents ahead, vehicle driving vio-
lations, non-standard roads, and pedestrian trespassing, it is designed to handle complex scenarios
effectively. Next, we train our real-world model using both simulation and real-world datasets, to
establish a foundation model for rapid convergence during adversarial training.

4.5.2 ADVERSARIAL TRAINING WITH MULTI-STEP BACK-PROPAGATION

The adversarial training process is a crucial component of our model, as detailed in fig. 1. We
load the pre-trained model for our simulation and real-world model firstly. The adversarial training
process involves multiple steps with our unique back-propagation strategies.

Step 1

Forward Propagation: In this forward propagation, the simulation and real-world models are frozen,
and only the discriminators are trained. We feed simulation data and real-world data into simulation
model and real-world model separately, then the features extracted from both models are subse-
quently fed into the discriminators.

Back Propagation: When our discriminators outputs the final logits, we used discriminator losses to
perform the backward propagation. Since only the discriminators are trainable at this stage, we pack-
propagate and update exclusively the discriminator parameters, while the simulation and real-world
models remain unchanged.
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Step 2

Forward Propagation: In this process, only the real-world model and discriminators are involved.
Both real-world and simulation data are fed into the real-world model, and the resulting features are
passed through the discriminators to obtain logits.

Back Propagation: The backward propagation in this step is our unique contribution. The backward
propagation process is different from others. Firstly, we only back-propagate the discriminator losses
pass through the two discriminators separately without updating parameters of two discriminators.
Secondly, the back-propagated gradients from discriminators and the multi-task supervised losses
are used to back-propagate and update the real-world model. This strategy mitigates convergence
instability and accelerates adversarial training.

Table 1: Open-loop planning performance on the new split nuScenes dataset. AT-Drive achieves
a significant performance improvement over other methods across evaluation metrics. The best
results achieved by our approach are highlighted in bold. *: Reproduced with simulation dataset
pre-trained, real-world data finetuned. These experiments are reproduced on the new split nuScenes
and simulation dataset, with all evaluations performed using NVIDIA Tesla A800 GPUs.

L2 (m) | Collision Rate (%) |
Methods Is 2s 3s Avg. Is 2s 3s Avg.
UniAD Hu et al.|(2023)) 057 086 140 094 | 0.67 0.75 1.03 0.82
VAD [Jiang et al.[(2023) 055 078 123 085 | 026 033 054 0.38
VADv2|Chen et al.|(2024b) 055 075 121 084 | 024 034 050 0.36
SparseDrive [Sun et al.[(2024) | 0.56 0.75 1.19 0.83 | 0.18 0.31 047 0.32

SparseDrive-finetune* 0.59 071 1.17 0.82 | 0.18 0.30 0.50 0.33
Ours-finetune* 045 0.72 1.07 0.5 | 0.13 021 046 0.27
Ours 033 0.64 090 0.62 | 0.06 0.11 0.19 0.126

5 EXPERIMENTS

5.1 DATASETS

Real-world Datasets. We use the nuScenes |Caesar et al.| (2020) as our real-world datasets, it con-
sists of 1000 scenes, annotated at 2 Hz. These datasets were collected with multi-modal sensors and
labeled per key frame.

However, the official training/validation split has an overlap of over 84% of scenes between the
training and validation sets, which means that the hard cases are equally divided in the training and
validation datasets. In our paper, we aim to train our model to enhance robustness in unfamiliar
scenarios (hard cases); therefore, we adopt a new training-validation split for the nuScenes dataset.
We designate relatively simple scenes, such as straight roads, visible lane markings, and multi-
lane highways, as the training dataset, while challenging scenarios, such as turns, intersections,
unmarked roads, and narrow passages, constitute the validation dataset. This split strategy enables us
to evaluate whether our method can effectively transfer hard cases from the simulation environment
to real-world scenarios.

Simulation Datasets. This dataset is derived from the CARLA Leaderboard v2 simulator [Doso-
vitskiy et al.|(2017) and is referred to as the CARLA dataset. Since we use the same model as the
real-world model, we configured the sensors similarly to those in nuScenes (one GNSS, one LiDAR,
six surrounding cameras, and HD maps) and segmented the dataset into multiple clips, following the
structure of nuScenes. Specifically, following Jia et al.| (2024), we simulate a large number of hard
cases, including accidents ahead, vehicle traffic violations, non-standard roads, and pedestrian tres-
passing. These hard cases are intended to be transferred to the real-world model.

5.2 IMPLEMENTATION DETAILS

We use |Sun et al.|(2024) as our baseline. The training process is complex and challenging in terms
of convergence; therefore, we utilize eight A800 GPUs with a large total batch size to prevent the
model from getting trapped in local optima or experiencing complete divergence. Additionally, we
employ different optimizers for the baseline model and discriminators to enhance performance.
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5.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

Since our goal is to explore transfer learning from simulation to real-world scenarios and address
the scarcity of rare and challenging scenarios in real-world datasets, we employ a new split strategy
for the nuScenes dataset. This new split strategy assigns challenging scenarios (hard cases) to the
evaluation dataset to assess the ability of our method to transfer hard cases effectively.

To ensure a fair comparison with other state-of-the-art (SOTA) methods, we retrained these mod-
els using our new split strategy on the nuScenes dataset. As shown in table |[I} we compare the
performance of our approach with existing methods. All methods are evaluated on the newly split
nuScenes dataset. Our approach demonstrates superior performance on the newly split dataset.
Specifically, AT-Drive surpasses competing methods by more than 25.3% and 60.6% in terms of
average L2 distance error and average collision rate, respectively. These results strongly validate the
effectiveness of our novel model design.

Table 2: Ablation studies were conducted on the key design elements of AT-Drive using the new
split real-world dataset and simulation dataset. The results prove the effectiveness of our design.

Index Module Components L2(m) | Collision Rate(%) |

Simulation baseline:

1 Simulation dataset trained, real-world dataset tested 11.32 27.81
Real-world baseline:

2 Real-world dataset trained, real-world dataset tested 0.80 031

Simulation dataset pre-trained

3 real-world dataset finetuned 0.75 0.27

4 Based on two baselines + Motion discriminator 0.73 0.21

5 Based on two baselines + Perception discriminator ~ 0.67 0.22

6 Ours (Based on two baseline + Two discriminators)  0.62 0.126

5.4 ABLATION STUDY
5.4.1 KEY COMPONENTS DESIGN

We validate our components by performing an ablation study to prove the effectiveness of our model
design. As shown in table 2] we start by validating our baseline models: the simulation baseline
(only the simulation model) and the real-world baseline (only the real-world model). Specifically, in
Index-1, we train our simulation baseline model on the simulation dataset and evaluate it on the real-
world validation dataset. Notably, the baseline (Index-1) demonstrates extremely poor performance.
In the second row (Index-2), we train our real-world model on the real-world dataset. However,
since hard cases were assigned to the validation dataset and easy cases to the training dataset, the
model’s performance is suboptimal, achieving only 0.80 in L2 distance and 0.31 in collision rate.
We also pre-trained our baseline with a simulation dataset, and finetuned with the real-world dataset,
achieving 0.73 in L2 distance and 0.27 in collision rate. As shown in Index-4, using only the motion
discriminator yields an L2 distance of 0.73 and a collision rate of 0.21. Incorporating the perception
discriminator further enhances feature representation, reducing the L2 distance by 0.11 and the
collision rate by 0.1.

6 CONCLUSION

In this study, we proposed an end-to-end autonomous driving method that transfers simulated im-
itation driving capabilities to real-world deployment. The approach comprises two base models
and two discriminators. The simulation model learns uncommon scenarios from synthetic data and
transfers this knowledge to the real-world model through adversarial learning with discriminators.
Importantly, we designed an efficient adversarial training process, which is critical for the model’s
successful optimization. Our method effectively addresses hard cases in real-world scenarios. We
evaluated our method on the newly split nuScenes dataset, and the experimental results demonstrate
that AT-Drive significantly outperforms existing methods in complex driving scenarios.

7 REPRODUCIBILITY STATEMENT

our method is reproducible, we provide comprehensive instructions and code, reproducing large-
scale experiments. All datasets used are publicly available, and we provide preprocessing scripts
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where necessary. Hyperparameters, training details, and evaluation protocols are described in the
paper and included in the code repository. Our experiments can be reproduced on a 8 GPU within
the reported computational budget.

REFERENCES

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving,
2020. URL https://arxiv.org/abs/1903.11027.

Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive, predict and plan,
2021. URL https://arxiv.org/abs/2101.06806.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Kridhenbiihl. Learning by cheating, 2019. URL https:
//arxiv.org/abs/1912.12294,

Shaoyu Chen, Bo Jiang, Hao Gao, Bencheng Liao, Qing Xu, Qian Zhang, Chang Huang, Wenyu Liu, and
Xinggang Wang. Vadv2: End-to-end vectorized autonomous driving via probabilistic planning, 2024a. URL
https://arxiv.org/abs/2402.13243.

Shaoyu Chen, Bo Jiang, Hao Gao, Bencheng Liao, Qing Xu, Qian Zhang, Chang Huang, Wenyu Liu, and
Xinggang Wang. Vadv2: End-to-end vectorized autonomous driving via probabilistic planning, 2024b.
URL https://arxiv.org/abs/2402.13243.

Zhili Chen, Maosheng Ye, Shuangjie Xu, Tongyi Cao, and Qifeng Chen. Ppad: Iterative interactions of predic-
tion and planning for end-to-end autonomous driving, 2024c. URL https://arxiv.org/abs/2311.
08100.

Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat: Neural attention fields for end-to-end autonomous
driving, 2021. URL https://arxiv.org/abs/2109.04456/

Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger. Transfuser:
Imitation with transformer-based sensor fusion for autonomous driving, 2022. URL https://arxiv.
org/abs/2205.15997.

Felipe Codevilla, Eder Santana, Antonio M. Lépez, and Adrien Gaidon. Exploring the limitations of behavior
cloning for autonomous driving, 2019. URL https://arxiv.org/abs/1904.08980.

Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao, and Raquel Urtasun. Lookout: Diverse multi-future
prediction and planning for self-driving. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE, October 2021. doi: 10.1109/iccv48922.2021.01580. URL http://dx.doi.org/10.
1109/ICCV48922.2021.01580.

Can Cui, Yunsheng Ma, Zichong Yang, Yupeng Zhou, Peiran Liu, Juanwu Lu, Lingxi Li, Yaobin Chen, Jitesh H.
Panchal, Amr Abdelraouf, Rohit Gupta, Kyungtae Han, and Ziran Wang. Large language models for au-
tonomous driving (llm4ad): Concept, benchmark, simulation, and real-vehicle experiment, 2024. URL
https://arxiv.org/abs/2410.15281.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open urban
driving simulator, 2017. URL https://arxiv.org/abs/1711.03938,

Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, and Qiang Xu. MagicDrive:
Street view generation with diverse 3d geometry control. In International Conference on Learning Repre-
sentations, 2024.

Ruiyuan Gao, Kai Chen, Bo Xiao, Lanqing Hong, Zhenguo Li, and Qiang Xu. Magicdrive-v2: High-resolution
long video generation for autonomous driving with adaptive control, 2025. URL https://arxiv.org/
abs/2411.13807.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https://arxiv.org/
abs/1406.2661.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.
URL https://arxiv.org/abs/1512.03385.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness and
uncertainty, 2019. URL https://arxiv.org/abs/1901.09960.

10


https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/2101.06806
https://arxiv.org/abs/1912.12294
https://arxiv.org/abs/1912.12294
https://arxiv.org/abs/2402.13243
https://arxiv.org/abs/2402.13243
https://arxiv.org/abs/2311.08100
https://arxiv.org/abs/2311.08100
https://arxiv.org/abs/2109.04456
https://arxiv.org/abs/2205.15997
https://arxiv.org/abs/2205.15997
https://arxiv.org/abs/1904.08980
http://dx.doi.org/10.1109/ICCV48922.2021.01580
http://dx.doi.org/10.1109/ICCV48922.2021.01580
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/2411.13807
https://arxiv.org/abs/2411.13807
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1901.09960

Under review as a conference paper at ICLR 2026

Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-to-end vision-
based autonomous driving via spatial-temporal feature learning, 2022. URL https://arxiv.org/
abs/2207.07601!

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin,
Wenhai Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang Li. Planning-oriented
autonomous driving, 2023. URL https://arxiv.org/abs/2212.10156,

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional
adversarial networks, 2018. URL https://arxiv.org/abs/1611.07004,

Xiaosong Jia, Yulu Gao, Li Chen, Junchi Yan, Patrick Langechuan Liu, and Hongyang Li. Driveadapter:
Breaking the coupling barrier of perception and planning in end-to-end autonomous driving, 2023a. URL
https://arxiv.org/abs/2308.00398.

Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Conghui He, Junchi Yan, and Hongyang Li. Think twice
before driving: Towards scalable decoders for end-to-end autonomous driving, 2023b. URL https://
arxiv.org/abs/2305.06242.

Xiaosong Jia, Zhenjie Yang, Qifeng Li, Zhiyuan Zhang, and Junchi Yan. Bench2drive: Towards multi-ability
benchmarking of closed-loop end-to-end autonomous driving, 2024. URL https://arxiv.org/abs/
2406.03877.

Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu Liu, Chang
Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient autonomous driving, 2023.
URL https://arxiv.org/abs/2303.12077.

Sehwan Kim, Qifan Song, and Faming Liang. A new paradigm for generative adversarial networks based on
randomized decision rules, 2023. URL https://arxiv.org/abs/2306.13641,

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover cross-domain
relations with generative adversarial networks, 2017. URL https://arxiv.org/abs/1703.05192,

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better?, 2019. URL
https://arxiv.org/abs/1805.08974.

Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets, 2017. URL https:
//arxiv.orqg/abs/1703.02291l

Xiangtian Li, Xiaobo Wang, Zhen Qi, Han Cao, Zhaoyang Zhang, and Ao Xiang. Dtsgan: Learning dynamic
textures via spatiotemporal generative adversarial network, 2024. URL https://arxiv.org/abs/
2412.16948.

Xiaofan Li, Yifu Zhang, and Xiaoqing Ye. Drivingdiffusion: Layout-guided multi-view driving scene video
generation with latent diffusion model. arXiv preprint arXiv:2310.07771, 2023.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela Rus, and Song Han. Bevfusion:
Multi-task multi-sensor fusion with unified bird’s-eye view representation, 2024. URL https://arxiv.
org/abs/2205.13542.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer feature learning
with joint distribution adaptation. In Proceedings of the IEEE international conference on computer vision,
pp. 2200-2207, 2013.

Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style transfer, 2017. URL https:
//arxiv.orqg/abs/1703.07511l

Wanli Ma, Oktay Karakus, and Paul L. Rosin. Patch-gan transfer learning with reconstructive models for cloud
removal, 2025. URL https://arxiv.org/abs/2501.05265,

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014. URL https://arxiv.
org/abs/1411.1784.

Dean A. Pomerleau. Alvinn: an autonomous land vehicle in a neural network. In Proceedings of the Ist
International Conference on Neural Information Processing Systems, NIPS’88, pp. 305-313, Cambridge,
MA, USA, 1988. MIT Press.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-end au-
tonomous driving, 2021. URL https://arxiv.org/abs/2104.09224,

11


https://arxiv.org/abs/2207.07601
https://arxiv.org/abs/2207.07601
https://arxiv.org/abs/2212.10156
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/2308.00398
https://arxiv.org/abs/2305.06242
https://arxiv.org/abs/2305.06242
https://arxiv.org/abs/2406.03877
https://arxiv.org/abs/2406.03877
https://arxiv.org/abs/2303.12077
https://arxiv.org/abs/2306.13641
https://arxiv.org/abs/1703.05192
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/1703.02291
https://arxiv.org/abs/1703.02291
https://arxiv.org/abs/2412.16948
https://arxiv.org/abs/2412.16948
https://arxiv.org/abs/2205.13542
https://arxiv.org/abs/2205.13542
https://arxiv.org/abs/1703.07511
https://arxiv.org/abs/1703.07511
https://arxiv.org/abs/2501.05265
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/2104.09224

Under review as a conference paper at ICLR 2026

Haotian Qian, Yinda Chen, Shengtao Lou, Fahad Khan, Xiaogang Jin, and Deng-Ping Fan. Maskfactory:
Towards high-quality synthetic data generation for dichotomous image segmentation. In NeurIPS, 2024.

Katrin Renz, Kashyap Chitta, Otniel-Bogdan Mercea, A. Sophia Koepke, Zeynep Akata, and Andreas Geiger.
Plant: Explainable planning transformers via object-level representations, 2022. URL https://arxiv.
org/abs/2210.14222.

Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Martin§ MozZeiko, Eric Boise,
Geehoon Uhm, Mark Gerow, Shalin Mehta, et al. Lgsvl simulator: A high fidelity simulator for autonomous
driving. arXiv preprint arXiv:2005.03778, 2020.

Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel Urtasun. Perceive, predict,
and plan: Safe motion planning through interpretable semantic representations, 2020. URL https://
arxiv.org/abs/2008.05930.

Hao Shao, Yuxuan Hu, Letian Wang, Steven L. Waslander, Yu Liu, and Hongsheng Li. Lmdrive: Closed-loop
end-to-end driving with large language models, 2023. URL https://arxiv.org/abs/2312.07488|

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens Beilwenger, Ping
Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering, 2025.
URL https://arxiv.org/abs/2312.14150.

Wenchao Sun, Xuewu Lin, Yining Shi, Chuang Zhang, Haoran Wu, and Sifa Zheng. Sparsedrive: End-to-end
autonomous driving via sparse scene representation, 2024. URL https://arxiv.org/abs/2405.
19620.

Alexander Swerdlow, Runsheng Xu, and Bolei Zhou. Street-view image generation from a bird’s-eye view
layout, 2024. URL https://arxiv.org/abs/2301.04634,

Junming Wang, Xingyu Zhang, Zebin Xing, Songen Gu, Xiaoyang Guo, Yang Hu, Ziying Song, Qian Zhang,
Xiaoxiao Long, and Wei Yin. He-drive: Human-like end-to-end driving with vision language models, 2024.
URL https://arxiv.org/abs/2410.05051.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen Tong, Yang Wen, Silei Wu,
Hanming Deng, Zhiqi Li, Hao Tian, Lewei Lu, Xizhou Zhu, Xiaogang Wang, Yu Qiao, and Jifeng Dai.
Drivemlm: Aligning multi-modal large language models with behavioral planning states for autonomous
driving, 2023a. URL https://arxiv.org/abs/2312.09245,

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer: Towards
real-world-driven world models for autonomous driving. arXiv preprint arXiv:2309.09777, 2023b.

Guogiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Metaalign: Coordinating domain alignment
and classification for unsupervised domain adaptation, 2021. URL https://arxiv.org/abs/2103.
13575.

Yuqing Wen, Yucheng Zhao, Yingfei Liu, Fan Jia, Yanhui Wang, Chong Luo, Chi Zhang, Tiancai Wang,
Xiaoyan Sun, and Xiangyu Zhang. Panacea: Panoramic and controllable video generation for autonomous
driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6902-6912, 2024.

Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized architec-
ture for real-time autonomous driving. In 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 15449-15458, 2024. doi: 10.1109/CVPR52733.2024.01463.

Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided con-
trol prediction for end-to-end autonomous driving: A simple yet strong baseline, 2022. URL https:
//arxiv.orqg/abs/2206.08129.

Zhengpeng Xie, Jiahang Cao, Yulong Zhang, Qiang Zhang, and Renjing Xu. A dual-agent adversarial frame-
work for robust generalization in deep reinforcement learning, 2025. URL https://arxiv.org/abs/
2501.17384l

Yi Xu, Yuxin Hu, Zaiwei Zhang, Gregory P. Meyer, Siva Karthik Mustikovela, Siddhartha Srinivasa, Eric M.
Wolff, and Xin Huang. VIm-ad: End-to-end autonomous driving through vision-language model supervi-
sion, 2024a. URL https://arxiv.org/abs/2412.14446.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee. K. Wong, Zhenguo Li, and Heng-
shuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language model, 2024b.
URL https://arxiv.org/abs/2310.01412.

12


https://arxiv.org/abs/2210.14222
https://arxiv.org/abs/2210.14222
https://arxiv.org/abs/2008.05930
https://arxiv.org/abs/2008.05930
https://arxiv.org/abs/2312.07488
https://arxiv.org/abs/2312.14150
https://arxiv.org/abs/2405.19620
https://arxiv.org/abs/2405.19620
https://arxiv.org/abs/2301.04634
https://arxiv.org/abs/2410.05051
https://arxiv.org/abs/2312.09245
https://arxiv.org/abs/2103.13575
https://arxiv.org/abs/2103.13575
https://arxiv.org/abs/2206.08129
https://arxiv.org/abs/2206.08129
https://arxiv.org/abs/2501.17384
https://arxiv.org/abs/2501.17384
https://arxiv.org/abs/2412.14446
https://arxiv.org/abs/2310.01412

Under review as a conference paper at ICLR 2026

Yang Yang, Houjian Yu, Xibai Lou, Yuanhao Liu, and Changhyun Choi. Attribute-based robotic grasping with
data-efficient adaptation. IEEE Transactions on Robotics, 40:1566—1579, 2024. doi: 10.1109/TRO.2024.
3353484.

Tengju Ye, Wei Jing, Chunyong Hu, Shikun Huang, Lingping Gao, Fangzhen Li, Jingke Wang, Ke Guo, Wen-
cong Xiao, Weibo Mao, Hang Zheng, Kun Li, Junbo Chen, and Kaicheng Yu. Fusionad: Multi-modality
fusion for prediction and planning tasks of autonomous driving, 2023. URL https://arxiv.org/
abs/2308.01006.

Dapeng Zhang, Peng Zhi, Binbin Yong, Jin-Qiang Wang, Yufeng Hou, Lan Guo, Qingguo Zhou, and Rui Zhou.
Ehss: An efficient hybrid-supervised symmetric stereo matching network. 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC), pp. 1044-1051, 2023. URL https://api.
semanticscholar.org/CorpusID:267661311.

Dapeng Zhang, Dayu Chen, Peng Zhi, Yinda Chen, Zhenlong Yuan, Chenyang Li, Sunjing, Rui Zhou, and
Qingguo Zhou. Mapexpert: Online hd map construction with simple and efficient sparse map element
expert, 2024. URL https://arxiv.org/abs/2412.12704.

Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. End-to-end urban driving by
imitating a reinforcement learning coach, 2021. URL https://arxiv.org/abs/2108.08265,

A APPENDIX

A.1 PERCEPTION AND PREDICTION PERFORMANCE

To further evaluate our method, we conducted several sub-task experiments on the newly split
nuScenes validation set. Below, we compare our results with state-of-the-art methods.

Detection. We conduct a 3D detection evaluation experiment. As shown in table 3 AT-Drive
achieves 0.437 mAP, 0.572 mATE, 0.258 mASE, 0.402 mAOE, 0.255 mAVE, 0.170 mAAE and
0.563 NDS, surpassing SparseDrive [Sun et al.|(2024)) and UniAD [Hu et al.|(2023) over all metrics.
These results demonstrate the effectiveness of our model design.

Multi-object Tracking. Since our method is an end-to-end autonomous driving approach, we gen-
erate tracking results to enhance the continuity of temporal and spatial features. The evaluation
metrics for tracking are detailed in table E} Our method achieves 0.467 AMOTA, 1.143 AMOTP,
0.579 Recall, and 656 IDS, outperforming existing methods by 29.0%, 14.1%, 25.1%, and 8.8%,
respectively.

Online mapping. The results of the online mapping are illustrated in table [5] AT-Drive delivers
the expected performance, achieving a 22.3% improvement in Mean Average Precision (mAP)
compared to SparseDrive Sun et al.| (2024). Specifically, AT-Drive significant increase in all map
elements AP, yielding 40.1, 43.3 and 47.0 in terms of pedestrian crossings, lane dividers, and road
boundaries.

Prediction. Agent trajectory prediction significantly influences the final ego motion planning.
Therefore, we evaluate the prediction results to assess our method. table @illustrates that our model
outperforms the existing method by 0.09, 0.28, 0.008 and 0.066 in minADE, minFDE, MR and EPA
respectively.

Table 3: Object detection on the new split nuScenes dataset. AT-Drive achieves the best perfor-
mance on detection tasks. All other methods are re-implemented on the new split nuScenes dataset
for a fair comparison.

Methods mAP 1 mATE | mASE | mAOE | mAVE | mAAE | NDS 1
UniAD[Hu et al[(2023) 0.311  0.606  0.277 0.638 0.306 0.184  0.455
SparseDrive [Sun et al.[(2024) [ 0.396  0.581 0.282 0.505 0.284 0.175 0.515
Ours N 0.437 0.572  0.258 0.402 0.255 0.170  0.563
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Table 4: Multi-object tracking. AT-Drive achieves competitive performance against state-of-the-art
methods, Experiments are reproduced on the new split nuScenes.

Methods AMOTA T AMOTP | Recall 1 IDS |
UniADHu et al.|(2023)) 0.300 1.454 0.387 939
SparseDriveSun et al.| (2024)|  0.362 1.331 0463 719
Ours B 0.467 1.143 0.579 656

Table 5: Online mapping on the new split nuScenes dataset. Comparison with state-of-the-art
method, AT-Drive outperforms other methods over all metrics.

Methods APpea ! APdaivT APbouna T mAP 7
VADJiang et al.](2023) 27.5 24.6 40.8 31.0
SparseDriveSun et al.[(2024) 32.7 35.2 39.8 359
Ours B 40.1 43.3 47.0 43.9

A.2 CLOSED-LOOP EVALUATION

Since our goal is to transfer the model’s ability to handle challenging scenarios into real-world
settings, it is essential to perform closed-loop evaluations in real-world environments. To this end,
we adopted the open-source NAVSIM [6].

For a fair comparison with existing methods on the NAVSIM dataset, we used the standard navtrain
and navtest splits for training and validation, respectively, as these splits were also used in prior
work. We followed the community’s recommended PDMS metric for final evaluation. As shown in
table[/] our method achieves notable improvements over the existing ParaDrive baseline.

Furthermore, due to limitations in experimental facilities and road safety regulations, we were unable
to conduct certain experiments, such as those involving perturbations or sensor noise robustness.

A.3 EVALUATION ON ORIGINAL SPLIT NUSCENES DATASET

We provide a comparison of AT-Drive’s performance against existing methods on the original split
nuScenes dataset. As shown in table [§] our method achieves an average L2 distance of 0.61 and
an average collision rate of 0.09, which are slightly better than the competing methods by 0.02 and
0.01, respectively. When combined with the main experiments conducted above, the results indicate
that while our method excels in identifying and handling hard cases, it shows limited improve-
ment in normal scenarios, which have already been extensively studied during the training process.
Swerdlow et al.| (2024); Wen et al.| (2024); |Gao et al.[ (2024; [2025); Wang et al.| (2023b); L1 et al.
(2023))

A.4 EVALUATION ON STRAIGHT REGRESSOR BASELINE

we design a new dummy regressor baseline based on our method, termed Straight Regressor Base-
line. To produce a straight trajectory, we ignore the y-axis, only predict the x-axis trajectory values,
whereas existing methods predict both (X, y) coordinates. We trained and evaluated this Straight
Regressor Baseline on new nuScenes split, the results are illustrated in table@}

Table 6: Prediction. AT-Drive achieves competitive performance against state-of-the-art perception-
oriented methods on the new split nuScenes dataset.

Methods minADE(m)| minFDE(m)| MR| EPAYT
UniADHu et al.|(2023) 0.78 1.17 0.142 0.462
SparseDriveSun et al.| (2024) 0.76 1.35 0.145 0.445
Ours 0.67 1.07 0.137 0.511
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Table 7: Experiments on NAVSIM.

Methods PMDS
UniAD 83.4
ParaDrive 84.0
Ours 85.3

Table 8: Open-loop planning performance on the original split nuScenes dataset. AT-Drive
achieves a slight improvement over other methods across evaluation metrics. These experiments are
reproduced on the original split nuScenes and simulation dataset. *: Official checkpoint re-validated
with corrected metrics.

L2 (m) | Collision Rate (%) |
MethOdi Is 2s 3s Avg. Is 2s 3s Avg.
ST-P3Hu et al.{(2022) 1.33 211 290 2.11 | 023 062 127 0.71

UniADHu et al.|(2023)* 045 070 1.04 073 | 0.62 058 0.63 0.61
VADlJiang et al.| (2023)* 041 070 1.05 072 | 0.07 0.17 041 0.22
PPADChen et al.| (2024c) 030 0.69 126 075 | 003 022 0.73 0.33
ParaDrive Weng et al.[(2024) | 026 0.59 1.12 0.66 | 0.00 0.12 0.65 0.26
SparseDriveSun et al[(2024) | 029 0.63 097 0.63 | 0.03 0.09 0.19 0.10
Ours B 024 0.60 084 056 | 0.03 0.07 013 0.076

This result demonstrates that the new split of the nuScenes dataset, which includes challenging
scenarios, effectively shows that our strategy successfully transfers challenge handling capabilities
to the real-world model.

Table 9: Performance of Straight Regressor Baseline on new nuScenes split.

L2 (@m) | Collision Rate (%) |
Methods 1s 2s 3s Avg. 1s 2s 3s Avg.
Straight Regressor Baseline | 0.82 1.10 2.07 133 | 0.74 1.18 1.65 1.19
Ours 033 0.64 090 062 | 0.06 0.11 0.19 0.126

We also evaluated the Straight Regressor Baseline on the original nuScenes split. The results in table
indicate that the new split strategy is significantly more challenging than the original nuScenes
split.

A.5 GRANULAR STUDIES

In our main method, the ratio of simulation data vs real-world data is 0.6 (600:1000), we added an
experiment of 0.3. for ratio 0.3, we have achieved the results in table

A.6  QUALITATIVE ANALYSIS

We conducted additional qualitative comparisons to systematically evaluate the performance of our
AT-Drive method. fig. 2] and fig. 3] illustrate a continuous bypass scenario. In fig. 2] our method
bypasses the vehicles on the left and prepares to return to its lane. However, when another vehicle
appears ahead in the path, as shown in fig. 3| the ego vehicle aborts the lane return and executes
a new bypass maneuver. fig. ] depicts a complex intersection scenario, where crosswalk markings
could mislead trajectory planning. However, our method successfully generates an optimal path, as
observed in fig.[] fig.[5]illustrates a turning scenario surrounded by vehicles. The qualitative results
indicate that our method generates an effective trajectory plan.

AT-Drive’s ability to transfer rare and challenging scenarios knowledge enables it to handle complex
trajectory predictions. As shown in fig.[6] at a road junction, the vehicles behind (captured in the
rear and rear-right camera views) are positioned at a critical point for lane switching. Our method
generates complex predicted trajectories, which is one of the major limitations.
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Table 10: Performance of Straight Regressor Baseline on origin nuScenes split.

L2 (m) | Collision Rate (%) |
Methods Is 2s 3s Avg. Is 2s 3s Avg.
Straight Regressor Baseline | 0.58 0.77 131 089 | 0.66 0.69 0.75 0.70
Ours 024 060 0.84 056 | 0.03 0.07 013 0.076

Table 11: Granular Studies over simulation data vs real-world.

Methods L2 Collision Rate
Ours (with dataset ratio =0.3) | 0.300 1.454

A.7 DATASET ANALYSIS

Simulation Dataset

We have included a statistical distribution of the challenging simulation scenarios, as shown in table
[12] A new supplementary table below provides detailed counts for each scenario category. We hope
these additions enhance the transparency of our dataset and support a more rigorous interpretation
of the model’s performance in handling rare but critical driving events.

Table 12: CARLA Scenarios Statistical Distribution.

Scenarios Category Proportion(%) Clips Count(total 600)
Normal (Straight, Left, Right Turn) 61.6 370
Pedestrian Intrusion 4.7 28
Fog 6.7 40
Rain 7.8 47
NearMiss Vehicle Interactions 2.7 16
Traffic Jam 4.5 27
Traffic Accident 1.8 11
Vehicle Cut In 2.2 13
Opposite Vehicle Intrusion 0.8 5
Vehicle U-Turning 0.5 3
Construction Obstacle 4.0 24
Bicycle Intrusion 0.5 3
Lane Merge 1.2 7
No Traffic Light Intersection 0.7 4
Turn Left and Merge In 0.3 2

Real-World Dataset

To demonstrate our model’s ability to handle uncommon cases, we used the challenging subset of the
nuScenes dataset as the val set (a total of 122 scenes), while the remaining easier cases were used for
training. The test set includes scenarios such as: Scene-0026_379: The ego vehicle is intercepted by
a construction worker yielding to a construction truck approaching from the left. Scenes 0046_568,
0094948, 0131_1153, and 0162_1556: Instances of pedestrian intrusion. Scene-0150_1358: A
construction worker blocks the road using traffic cones or water barriers in front of the ego vehicle.
Scene-0201_1978: The ego vehicle is blocked by a car attempting to park in a designated area. As
shown in the last two rows of Table 1, our proposed method outperforms existing standard methods
on these challenging scenarios.
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A.8 DATASET SPLITTING

Most end-to-end autonomous driving methods evaluate their performance using the nuScenes
dataset, which follows the original 700/150/150 split for training, validation, and testing scenes.
However, this original split was designed for normal case scenarios, not hard cases. In the original
split, the training and validation sets overlap by over 84% in terms of static environments, with both
easy and hard scenarios proportionally distributed across both sets. This overlap means that a model
could easily memorize the static environments from the training set and perform exceptionally well
on the validation set, which can lead to complete failure when generalizing to new, unseen scenes.
To better assess the model’s ability to generalize to unfamiliar environments and adapt to challeng-
ing cases, we propose a new dataset split, where hard cases are used for validation and easy cases
for training. This approach focuses on testing the model’s ability to transfer simulated hard cases to
unseen real-world scenarios.

To provide a clearer understanding, we visualize both the original and the new dataset splits. As
shown in fig. [7] and fig. [§] the green line represents the training set, the blue line indicates the
validation set, and the red line denotes the test set. We ensure that there is no overlap between the
training and validation datasets across all six cities, maintaining a balanced distribution. As depicted
in these figures, our new split strategy assigns the hard cases to the validation set, thereby preventing
the model from memorizing scenarios during the training process.

A.9 METRIC ACRONYMS

We have add a subsection below to explain the metric acronyms. The short summary is below:
L2(m): L2 distance, unit is meter. Avg.: Average of 1 second, 2 second and 3 second. mAP:
Mean Average Precision. mATE: Mean Average Translation Error. mASE: Mean Average Scale
Error. mAOE: Mean Average Orientation Error. mAVE: Mean Average Velocity Error. mAAE:
Mean Average Attribute Error. NDS: nuScenes Detection Score. AMOTA: Average Multi Object
Tracking Accuracy. AMOTP: Average Multi Object Tracking Precision. APped,APdiv,APbound:
Average Precision of pedestrian crossings, lane dividers, and road boundaries. minADE: Minimum
Average Displacement Error. minFDE: Minimum Final Displacement Error. MR: Miss Rate.

A.10 TRAINING DETAILS

We have put the hyper-parameters in the end of our appendix, the main parameters are:
total_batch_size =64

step 1:

optimizer:AdamW,

Ir=4.5¢e-4,

learning rate policy: CosineAnnealing,
warmup="linear”,

warmup_iters=1100,

warmup_ratio=1.0/ 3,

min_lr_ratio=2.7e-4,

optimizer must use grad_clip: max_norm=42
Must use DistributedGroupSampler

step 2:

optimizer:AdamW,

Ir=2.0e-5,

optimizer must use grad_clip: max_norm=23
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We were tortured by the adversarial training for a period time. We were conducted experiments by
adjust the learning rate, decay rate, increase batch size. We found that if the batch size is small, the
two discriminator loss has large fluctuations. In the adversarial training step 1, we increase batch
size to 64, then, we found our model convergence rapidly in the preliminary 3000 iters, then the
loss is hard to decrease, the variance of each losses is increase, even we adjust the learning rate, it
does not solve the problem, just postpone fluctuations. So, we added a gradient clipping to limit
the gradient values. We choose L2 norm and a set of max norm value 42, we found the we can
safely pass the fluctuations, then, after 5000 iters, the loss is declined as we expected. During the
adversarial training step 2, we set gradient clipping with L2 norm and max norm value 23, then, we
achieved the expected results. I think gradients conflict happened in all multi-task models, not only
in our adversarial training, if we adjust hyper-parameters let the model pass the fluctuation period,
the convergence will converge normally.

A.11 LIMITATIONS
While our model significantly improves upon existing methods, it still has certain limitations. The
complexity of our training process makes optimization challenging, particularly during the initial

epochs. If minor deviations occur in the initial epochs, the entire training process may diverge.
Moreover, maintaining two baseline models results in high training costs.

A.12 THE USE OF LLMS

This project only uses a large language model (LLM) to correct grammatical, morphological, and
syntactic errors in Polish text.

A.13 ETHICS STATEMENT

We followed the ICLR Code of Ethics. Our work uses public datasets with proper attribution. The
proposed approach does not involve experiments on human subjects, personal data collection, or
sensitive attributes.
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Figure 2: Qualitative results on continuity bypass case. Part 1.
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Figure 3: Qualitative results on continuity bypass case. Part 2.
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Figure 4: Qualitative results on confused road intersection scenario (multiple cross line on intersec-
tion).
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Figure 5: Qualitative results on turning scenario that surrounded by vehicles.
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CAM_BACK

Figure 6: Failure case: Qualitative results of complex prediction trajectories.
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(a) Original Boston-Seaport Map (b) New Split Boston-Seaport Map
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(c) Original Boston-Seaport Data distribution (d) New Split Boston-Seaport Data distribution

Figure 7: Comparison of original and new split datasets on the Boston Seaport map in nuScenes
dataset. (a) and (c) are the original split visualization, (b) and (d) are the new split visualization. To
ensure diversity in zone types within each set, regions from various parts of the city are included.
Green: Train, Blue: Validation, Red: Test.
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(a) Original Boston-Seaport Map (b) New Split Boston-Seaport Map
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Figure 8: Comparison of original and new split datasets on the Singapore Hollandvillage map in
nuScenes dataset. (a) and (c) are the original split visualization, (b) and (d) are the new split visual-
ization. To ensure diversity in zone types within each set, regions from various parts of the city are
included. Green: Train, Blue: Validation, Red: Test.
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