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Abstract

Graph Transformers have shown excellent results on a diverse set of datasets. How-
ever, memory limitations prohibit these models from scaling to larger graphs. With
standard single-GPU setups, even training on medium-sized graphs is impossible
for most Graph Transformers. While the O(nd2 + n2d) complexity of each layer
can be reduced to O((n + m)d + nd2) using sparse attention models such as
Exphormer for graphs with n nodes and m edges, these models are still infeasible
to train on training on small-memory devices even for medium-sized datasets. Here,
we propose to sparsify the Exphormer model even further, by using a small “pilot”
network to estimate attention scores along the graph edges, then training a larger
model only using O(n) edges deemed important by the small network. We show
empirically that attention scores from smaller networks provide a good estimate of
the attention scores in larger networks, and that this process can yield a large-width
sparse model nearly as good as the large-width non-sparse model.

1 Introduction

The predominant story of the last half-decade of machine learning has been the runaway success
of Transformer models (Vaswani et al., 2017), across domains from natural language processing
(Vaswani et al., 2017; Devlin et al., 2018; Zaheer et al., 2020b) to computer vision (Dosovitskiy et al.,
2020) and more recently in geometric deep learning (Dwivedi and Bresson, 2020; Kreuzer et al.,
2021; Ying et al., 2021; Rampásek et al., 2022; Shirzad et al., 2023; Müller et al., 2023). Conventional
(“full”) Transformers, however, have a time and memory complexity of O(nd2 + n2d), where n
is the number of entities (nodes, in the case of graphs), and d is the width of the network. Many
attempts have been made to make Transformers more efficient (Tay et al., 2020). One major line of
work involves sparsifying the attention mechanism, constraining attention from O(n2) all-pairs to
some smaller set of connections: BigBird, for sequential data, uses sliding windows, Erdős-Renyi
auxiliary graphs, and universal connectors (Zaheer et al., 2020a); Exphormer, for graphs, uses input
graph edges, expander graph edges, and universal connections (Shirzad et al., 2023). We refer to
these as sparse attention networks and call (i, j) an attention edge if node i attends to node j.

Sparse graph attention models such as Exphormer (Shirzad et al., 2023) reduce each layer’s complexity
from O(nd2 + n2d) to O((n+m)d+ nd2), for graphs with n nodes, m edges, and width-d hidden
features. Even so, training is still very memory-intensive for medium to large graphs. Also, for
densely-connected graphs where m = Θ(n2), there is no asymptotic improvement in complexity.
Our goal is to scale effective graph Transformers, particularly Exphormer, to larger graphs.
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One general approach for scaling models to larger graphs is based on batching techniques. Prominent
approaches include egocentric subgraphs and random node subsets (Wu et al., 2022, 2023a). Egocen-
tric subgraphs choose a node and include all of its k-hop neighbors, but the expander graphs used in
Exphormer, which provide short connections from each node to all other nodes, guarantee that the
size of these subgraphs will grow exponentially in the number of layers – prohibitively expensive
for larger graphs. A similar issue arises with universally-connected nodes, whose representation
depends on all other nodes. For uniformly random subset batching, as the number of batches b
into which the graph is divided grows, each edge has chance 1

b to appear in a given step. Thus, b
can not be very large without dropping important edges. A similar problem can happen in random
neighbor sampling methods such as GraphSAGE (Hamilton et al., 2017). Although this model works
well on message-passing neural networks (MPNNs) which only use the graph edges, using it for
expander-augmented graphs will select only a small ratio of the expander edges, thereby breaking
the universality properties provided by the expander graph. Expander graphs enable global informa-
tion propagation and, when created using Hamiltonian cycles and added self-loops (Shirzad et al.,
2023, Theorem E.3), produce a model that can provably approximate the full Transformer. Despite
universality properties, not all of these edges turn out to be important in practice: we expect some
neighboring nodes in the updated graph to have more of an effect on a given node than others. Thus,
removing low-impact neighbors can improve the scalability of the model. The challenge is to identify
low-impact edges without needing to train the (too-expensive) full model.

Our approach We first train a small-width network in order to estimate pairwise attention score
patterns, which we then use to sparsify the graph and train a larger network. Training with a much
smaller width d′ ≪ d reduces the time and memory complexity by at least a factor of d/d′. It is not
obvious a priori that attention scores learned from the smaller network will be a good estimator for
those in the larger network, but we present an experimental study verifying that attention scores are
surprisingly consistent as the network size reduces. We also introduce two additions to the model to
improve this consistency. Training this initial network can still be memory-intensive, but as the small
width means the matrix multiplications are small, it is practical to train this initial model on CPU for
systems with significant amounts of RAM without needing to distribute the calculation. Once this
initial model is trained and attention scores are found, scores can be reused for any training of the
second network. Attention scores can be shared as edge features for future use.

As mentioned previously, we use the attention scores obtained from the trained low-width network to
sparsify the graph. By selecting a fixed number of edges per attention layer for each node, we reduce
the complexity of each layer to O(nd2 + ndc), where c is a constant number of neighbors per node.
This sparsification alleviates the effect of a large number of edges, and allows for initial training with
a larger degree expander graph, since most of the expander edges will be filtered for the final network.
This sparsification differs from conventional graph sparsification algorithms (for MPNNs) in two
ways. First, we use expander edges, self-loops, and graph edges and sparsify the combination of these
patterns together. Second, this sparsification is layer-wise, which means that in a multi-layer network
the sparsity pattern will vary from layer to layer. Another advantage of this approach is that the fixed
number of neighbors for each node enables matrix calculations instead of the edge-wise calculations
used by Kreuzer et al. (2021); Shirzad et al. (2023), improving the speed of the model. After this
reduction, batching can be done based on the edges over different layers, enabling Transformers to be
effectively batchable while still effectively approximating the main Transformer model.

To summarize, the contributions of this paper are as follows: 1.) We experimentally analyze the
similarity of attention scores for networks of different widths, and propose two small architectural
changes to improve this similarity. 2.) We propose layer-wise sparsification, by sampling according
to the learned attention scores. 3.) Our two-phase training process decreases memory consumption
significantly, while maintaining competitive accuracy.

2 Related Work

Graph Transformer Architectures Attention mechanisms were proposed in early (message-
passing) Graph Neural Network (GNN) architectures such as Graph Attention Networks
(GAT) (Veličković et al., 2018), where they guide node aggregation among neighbors, without
using positional encodings. GraphBert (Zhang et al., 2020) finds node encodings based on the
underlying graph structure.
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Subsequent works have proposed full-fledged graph transformer models that generalize sequence
transformers (Dwivedi and Bresson, 2020) and are not limited to message passing between nodes
of the input graph; these include Spectral Attention Networks (SAN) (Kreuzer et al., 2021),
Graphormer Ying et al. (2021), GraphiT (Mialon et al., 2021), etc. GraphGPS (Rampásek et al.,
2022) combines attention mechanisms with message passing, allowing the best of both worlds.

Sparse Transformers Several recent works have proposed various scalable graph transformer
architectures. NAGphormer (Chen et al., 2022a) and Gophormer (Zhao et al., 2021) use a sampling-
based approach. On the other hand, Difformer (Wu et al., 2023a) proposes a continuous time
diffusion-based transformer model. Exphormer (Shirzad et al., 2023) proposes a sparse graph that
combines the input graph with edges of an expander graph as well as virtual nodes. They show that
their model works better than applying other sparse transformer methods developed for sequences.
Another work, NodeFormer (Wu et al., 2022), which is inspired by Performer (Choromanski et al.,
2021), uses the Gumbel-Softmax operator as a kernel to efficiently propagate information among all
pairs of nodes. SGFormer (Wu et al., 2023b) shows that just using a one layer transformer network
can sometimes improve the results of GCN-based network and the low-memory footprint can help
scale to large networks. Perhaps most conceptually similar to our work is Skeinformer (Chen et al.,
2022b), which uses sketching techniques to accelerate self-attention.

3 Preliminaries and Notation

Notation We use H to denote the attention pattern, and NH(i) the neighbors of node i under that
pattern. Our primary “driver” is then h-head attention: using ⊙ for element-wise multiplication,

ATTNH(X):,i = xi +

h∑
j=1

Vj · σ
((

Ej ⊙Kj
)T

Qj
i +Bj

)
,

where Vj = Wj
V XNH(i), K = Wj

KXNH(i), and Qj
i = Wj

Qxi, are linear mappings of the node
features for the neighbors XNH(i), and Ej = Wj

EENH(i) and Bj = Wj
BENH(i) are linear maps of

the edge features E , which is a dE × |NH(i)| matrix of features for the edges coming in to node i.
Compared to prior work, we introduced Bj as a simpler route for the model to adjust the importance
of different edge types. We always use dE = d, and have each layer output features of the same
width as its input, so that each of the Wj

· parameter matrices are d× d.

Exphormer EXPHORMER is an expander-based sparse attention mechanism for graph transformers
that uses O(|V |+ |E|) computation, where G = (V,E) is the underlying input graph. Exphormer
creates an interaction graph H that consists of three main components: (1) Edges from the original
graph, which captures the structure of the local neighborhood; (2) Virtual nodes, which are connected
to all the nodes; and (3) Expander graph edges.

Exphormer uses a constant-degree random expander graph, with O(n) edges. Expander graphs
have several useful theoretical properties related to spectral approximation and random walk mixing,
which allow propagating information between pairs of nodes that are distant in the input graph G
without explicitly connecting all pairs of nodes. The expander edges introduce many alternative short
paths between the nodes and avoid the information bottleneck that can be caused by the virtual nodes.

Our network compared to Exphormer We use Exphormer as the base model because it is an
efficient sparse model. We cannot fit a full transformer in memory for a dataset like Physics (with
34K nodes). We add self-loops for every node and use d/2 random Hamiltonian cycles to construct
our expander graph as described in (Shirzad et al., 2023, Appendix C, Theorem E.3). We do not add
virtual nodes in the first attention score estimator network; the resulting network is still a universal
approximator. The best results from the Exphormer paper combined MPNNs with the Transformer
architecture, but in this work for scalability reasons we avoid the MPNN component as well. We also
make two additional changes explained in Section 4.1.
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4 Method

Our method is a two-phase training process. The goal of the first model, called the Attention Score
Estimator Network, is to estimate the attention scores for a larger network. This model is not
particularly accurate; its only goal is for each node to learn the more important neighbors. The second
model uses the learned attention scores per layer of the first network to sparsify the attention edges in
that layer. This model will be the final predictor, and its hyperparameters will be tuned for the best
results.

4.1 Attention Score Estimator Network

For this network, we use a width of 4 or 8, with just one attention head, in our training. Unless
training fails drastically, we do not intend to focus on improving the accuracy in this step. This
network will be trained with as many layers as the final network we want to train. Because it is so
narrow, it has many fewer parameters and hence much less memory and time complexity; it is thus
much cheaper to train. Moreover, we only need to do this training once per number of layers we
consider, even if we try many hyperparameters for the final model. Compared to Exphormer, we
use a much higher-degree expander graph: 30 instead of the 6 used for most transductive graphs
by Shirzad et al. (2023). As most of the considered datasets do not have edge features, we use a
learnable embedding for each type of edge (graph edge, expander edge, or self-loop). We also make
two small changes to the architecture and the training process of this model, discussed below.

In Section 5.1, we show experimentally that the low-width network is a good estimator of the attention
scores for a large-width network.

Normalizing V Having a smaller attention score, αij < αij′ , does not necessarily mean that j’s
contribution to i’s new features is smaller than that of j′: we may have ∥Vj∥ ≫ ∥Vj′∥. Although
Transformers typically use layer normalization, the do not typically do so after mapping X to V. We
normalize the rows of V to have the same vector sizes for all nodes. In our experiments, normalizing
to size one reduced the performance significantly; however, adding a learnable global scale s, so that
Vi becomes sVi/||Vi||2, maintained performance while making attention scores more meaningful.

Variable Temperature One of the side goals is to have sharper attention scores, guiding the nodes
to get their information from as few nodes as possible. Using temperature in the attention mechanism
is a natural way to do this, where logits before the softmax will be divided by a temperature factor
τ . Normal attention corresponds to τ = 1; smaller τ means sharper attention scores. However,
setting the temperature to a small value from the beginning will make the random initialization more
significant, and increase the randomness in the training process. Instead, we start with τ = 1.0 and
gradually anneal it to 0.05 by the end of the training. We set an initial phase for c epochs where
we use τ = 1; this lets the model learn which neighbors are more important for each node slowly.
Then we multiply the τ with a factor f after each epoch, getting a temperature in epoch t > c of
max(f t−c, 0.05). For fast-converging models, we use c = 5, f = 0.98; for slower-converging ones,
we use c = 10, f = 0.95.

4.2 Sparser Attention Pattern

The memory and time complexity of Exphormers is linearly dependent on the number of edges.
Reducing the number of edges can alleviate memory consumption. Additionally, a sparser pattern
means that batching techniques such as ego subgraphs can be effectively applied to the model. In
this work, we analyze how effective the sparser model can work and up to what factor we can
sparsify. Further improvements, such as batching techniques, are planned as future work. Having
the same degree for each node’s attention pattern also means that attention can be calculated as
(much-more-optimized) standard matrix multiplications, rather than the propagation techniques used
in Exphormer and SAN (Kreuzer et al., 2021).

To sparsify the graph, in each epoch, we sample a new set of edges according to the learned attention
scores from the smaller network. The reason why we do this rather than a simpler strategy such as
selecting top-scored edges is that in many cases several nodes can have very similar node features. If
we assume nodes u1, u2, . . . , up from the neighbors of node v have almost the same features, and if
the attention scores for these nodes are α1, α2, . . . , αp, any linear combination of

∑p
i=1 αi = α will
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Figure 1: Steps of our method. (a) The attention mechanism for the attention score estimator network combines
graph edges with an expander graph and self-loops. The expander graphs are constructed by combining a small
number of Hamiltonian cycles – here two, in red and in purple – then confirming the spectral gap is large enough.
(b) Self-attention layers in the estimator network use this sparse attention mechanism; its self-attention layers
normalize V. (c, d) Attention scores are extracted from this network for each layer, and used to sample, in (e), a
sparse directed graph, which becomes the attention graph for the final network (f). This network, with a much
larger feature dimension, does not normalize V.

lead to the same result. If features are exactly the same α will be divided between these nodes, and
even if α is large, each node’s attention score from v can be small. By sampling, we have a total α
chance of selecting any of the nodes u1:p. On each epoch, we sample a new set of edges for each
node from its original neighborhood.

4.3 Theoretical underpinnings for sparsification

There is a large body of work for sketching and approximating matrices. Our model follows the
sampling approach and the approximation guarantee of Achlioptas et al. (2013, Theorem 4.3).
Specifically, they show that the sketch values are not significantly different from the original matrix,
which we also observe in practice (Section 5.1). Our method differs from their work in that we sample
without replacement. Sampling without replacement works better in practice, and the normalization
before edge selection in our second phase would not make a difference for duplicate samples.

5 Experimental Results

5.1 Attention Score Estimation

To show how well the smaller network estimates the attention scores for a larger network, we conduct
experiments on two smaller datasets, where we can reasonably train the full network at higher width.
To this end, we use Actor (Lim et al., 2021) and Photo (Shchur et al., 2018) datasets. We train the
network for hidden dimensions, h varying from 4 to 64 for both datasets. For each h we train the
network 100 times. We consider the distribution of attention scores for each node, and estimate the
energy distance (Székely and Rizzo, 2013; an instance of the maximum mean discrepancy, Sejdinovic
et al., 2013) for that node across each pair of h sizes.
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Figure 2: Energy distance between the attention scores of various networks to a network of width 64.

Model Actor Computer Photo CS Physics
GCN 33.23±1.16 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07
GAT 33.93±2.47 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08
GRAPHSAINT - 90.22 ± 0.15 91.72 ± 0.13 94.41 ± 0.09 96.43 ± 0.05
NODEFORMER 36.9 ± 1.0 - - - -

EXPHORMER+GCN 38.68 ± 0.38 91.59 ± 0.31 95.27 ± 0.42 95.77 ± 0.15 97.16 ± 0.13
EXPHORMER W.O. MPNN 39.01 ± 0.69 91.16 ± 0.26 95.36 ± 0.17 95.19 ± 0.26 96.40 ± 0.20

Our model 38.44 ± 0.42 90.93 ± 0.08 94.43 ± 0.34 95.00 ± 0.15 96.70 ± 0.05

Table 1: Comparison of our model with other GNNs.

Exphormer+GCN Exphormer w.o. MPNN BigBird+GCN Performer+GCN Nodeformer Our Model

ogbn-arxiv 72.44 ± 0.28 71.27 ± 0.27 71.16 ± 0.19 70.92 ± 0.04 59.90 ± 0.42 70.82 ± 0.24

Table 2: Comparison of Transformer-based models’ results on ogbn-arxiv.

Actor Photo Computer CS Physics ogbn-arxiv
Dataset
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Figure 3: Comparing memory usage of our model with the Exphormer with expander degree 30.

We have conducted this experiment both when learning with just graph edges and when adding
expander and self-loop edges. It might be that the model, just by examining the category of the edges,
may give a lower score to one type, making distributions will seem more similar even though it has
not identified a small number of important neighbors as we want. We show that in the presence of
only one type of edge, the model can still consistently estimate which nodes should have a higher
attention score.

As baselines, we compare attention scores from our model with the uniform distribution on the
neighbors (each score for neighbors of node i will be 1

di
), and to a distribution with logits uniform

over [−8, 8]. The choice of 8 here is because in the network we clip the logits with an absolute value
higher than 8. Figure 2 shows that even width-4 networks provide far superior estimates of attention
scores than these baselines.
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5.2 Model quality

We conduct experiments on six transductive graph datasets: CS, Physics, ogbn-arxiv are academic
graphs, Photo and Computer are co-purchasing graphs, and Actor is a heterophilic graph dataset
from Lim et al. (2021). On CS, Physics, Photo, Computer, and Actor we use a random split of
60%/20%/20%. For the ogbn-arxiv, we use the standard split, based on the years of the publications.
We keep the random split consistent as the smaller network should have access to the same information
as the second network. Further dataset details are in Appendix A.

We train the smaller network once and then for the second network, we always use the same initial
network’s learned attention scores. Attention scores will be collected from the network training step
with the highest validation accuracy. We measure the memory usage of our model as the maximum
memory between the first and second network and compare it with both versions of Exphormer —
with and without an MPNN.

Results are shown in Tables 1 and 2 and Figure 3. Our model obtains comparable accuracies with
greatly-reduced memory consumption.

6 Conclusion & Future Work

In this work, we analyzed the alignment of the attention scores among models trained with different
widths. We found that usually the smaller network’s attention scores distributions align with the larger
network’s. Based on this observation we used a sampling algorithm to sparsify the graph on each
layer and sampled a smaller number of edges per layer. As a result of these two steps, the model’s
memory consumption reduces significantly while achieving a competitive accuracy.

This strategy sets up opportunities for batching techniques that were not feasible with expander
graphs of large degree. However, batching techniques and experiments on large datasets are planned
future work. There are a number of hyperparameters in our model; in the future we want to tune
them to improve accuracy. Theoretical analysis on the lower-width networks estimation power of the
attention score and sparsifying method will also be fruitful for future work.
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A Dataset Descriptions

Below, we provide descriptions of the datasets on which we conduct experiments.

ogbn-arxiv (Hu et al., 2021) The ogbn-arxiv dataset consists of one large directed graph of 169343
nodes and 1,166,243 edges representing a citation network between all computer science papers on
arXiv that were indexed by the Microsoft academic graph. Nodes in the graph represent papers, while
a directed edge indicates that a paper cites another. Each node has an 128-dimensional feature vector
derived from embeddings of words in the title and abstract of the underlying paper. The prediction
task is a 40-class node classification problem — to identify the primary category of each arXiv paper,
as listed by the authors. Moreover, the nodes of the citation graph are split into 90K training nodes,
30K validation notes, and 48K test nodes.

Coauthor datasets Coauthor CS and Physics are co-authorship graphs from Microsoft Academic
Graph. The nodes represent the authors and two authors who share a paper are connected by an edge.
The node features are from the keywords in the papers. The class represent the active area of study
for the author.

Amazon datasets Amazon Computers and Amazon photo are Amazon co-purchase graphs. Nodes
represents products purchased an edges indicate pairs of products purchased together. Node features
are bag-of-words encoded reiews of the products. Class labels are the product category.

Actor dataset Dataset created by co-occurrence of actor, director, writer and film on a wikipedia
page. The node features are based on the wikipedia page. The goal is to correctly classify nodes into
one of five categories (Pei et al., 2020).

Dataset Graphs Nodes Edges Prediction Level No. Classes Metric
ogbn-arxiv 1 169,343 1,166,243 Node 40 Accuracy
Amazon Computer 1 13381 245778 Node 10 Accuracy
Amazon Photo 1 7487 119043 Node 8 Accuracy
Coauthor CS 1 18333 81894 Node 15 Accuracy
Coauthor Physics 1 34493 247962 Node 5 Accuracy
Actor 1 7600 29926 Node 5 Accuracy

Table 3: Dataset statistics

B Hyperparameters

Both for the Exphormer without MPNN models and our initial model, we have used an expander
graph of degree 30. All numbers in the Tables 1 and 2 and Figure 3 are reported with the same
expander degree. For the initial network except for the ogbn-arxiv we have trained the initial network
with a width of 4. We train the initial network until convergence. For the second network, we finetune
hyperparameters for the best results. Hyperparameters have been reported in Table 4.

Hyperparameter OGBN-Arxiv Computer Photo CS Physics Actor
Num Layers 3 4 4 4 4 4
Constant Node Degree 6 5 5 5 5 5
Low-Width Dim (d’) 8 4 4 4 4 4
Hidden Dim (d) 96 80 56 64 64 16
Num Heads 2 2 2 2 2 2
Dropout 0.3 0.4 0.5 0.4 0.4 0.3
Learning Rate 0.01 0.001 0.001 0.002 0.001 0.001
Num Epochs 600 150 250 120 80 100

Table 4: Hyperparameters used for training the networks. For the attention score estimator network, the learning
rate is similar to the final network and training continues until the convergence. We do not use dropout in the
attention score estimator network, and we only use one attention head in these networks. The number of layers
is always equal between both networks.
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