

000 001 002 003 004 005 REVISITING MULTIMODAL POSITIONAL ENCODING IN 006 VISION–LANGUAGE MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors—ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding.

1 INTRODUCTION

The permutation-invariant nature of the self-attention mechanism requires the use of positional encodings to inform Large Language Models (LLMs) of sequence order, relative distance, and structural dependencies. While early methods relied on absolute position embeddings (Vaswani et al., 2017), relative encodings—which better generalize to varying sequence lengths—have become the standard. Among these, Rotary Position Embedding (RoPE) (Su et al., 2024) has emerged as the de facto choice in modern LLMs such as Llama (Grattafiori et al., 2024) and Qwen (Yang et al., 2025).

Vision-Language Models (VLMs) also require positional encodings that can handle heterogeneous modalities, including 1D text and 2D/3D visual inputs. Current methods fall into two main categories: 1D sequential and multi-dimensional designs. The former, exemplified by vanilla RoPE (Su et al., 2024) and V2PE (Ge et al., 2024), flattens and concatenates all inputs into a single sequence. While simple, this approach discards the native visual geometry, leading to a significant degradation in performance on tasks requiring visual grounding and spatial reasoning.

Multi-dimensional designs, the second approach, extend RoPE to multiple axes (time, height, width) by partitioning embedding channels. Qwen2-VL Wang et al. (2024a) adopts Multimodal RoPE (MRoPE) to unify positional encoding for text and visual tokens. However, MRoPE allocates the position embedding into t-h-w chunk, placing the temporal information entirely in the high-frequency channels. This bias in temporal encoding harms long-range video modeling. Subsequent work has attempted to improve it, but this has led to a fragmented landscape of highly specialized solutions. Some methods focus exclusively on image understanding (Wang et al., 2025), others on video comprehension (Wei et al., 2025; Li et al., 2025; Liu et al., 2025), and a third group on image generation (Liao et al., 2025; Wu et al., 2025). While these models achieve notable performance in their respective domains, the development of a truly robust and versatile VLM requires a more holistic positional encoding strategy. In this work, we aim to develop a more holistic positional encoding strategy capable of supporting the core, unified capabilities of image and video understanding, complemented by fine-grained visual grounding.

To build a more robust multimodal positional encoding, we build on MRoPE and systematically explore three underexplored design: (i) position design—how to assign unambiguous, well-separated coordinates to text and visual tokens; and (ii) frequency allocation—how to distribute rotary frequencies across embedding dimensions for each positional axis; (iii) compatibility with text-only RoPE—ensuring the design defaults to vanilla RoPE for pure text inputs to enable effective trans-

054
055
056 Table 1: Comparison of different RoPE methods.
057
058

Method	Position Design		Freq Allocation		Compatible with Text-only RoPE
	3D Struct.	Modal Int.	Range	Gran.	
Vanilla RoPE (Su et al., 2024)	✗	✓	-	-	✓
V2PE (Ge et al., 2024)	✗	✓	-	-	✓
RoPE-tie (Su, 2024)	✓	✗	✓	✗	✓
MRoPE (Bai et al., 2025)	✓	✓	✗	✗	✓
CircleRoPE (Wang et al., 2025)	✓	✗	✗	✗	✓
VideoRoPE (Wei et al., 2025)	✓	✗	✗	✗	✓
IL-RoPE (Liao et al., 2025)	✓	✓	✗	✗	✗
Omni-RoPE (Wu et al., 2025)	✓	✓	✗	✗	✗
MRoPE	✓	✓	✓	✓	✓
MRoPE-I	✓	✓	✓	✗	✓

069
070 fer learning. As Table 1 shows, we systematically compare recent methods across the three design
071 axes and conduct extensive experiments. From this analysis, we identify common pitfalls: modalities
072 confusion arising from positional ambiguity; degraded cross-modal fusion due to suboptimal
073 modality intervals; impaired multi-scale modeling from restricted frequency allocations; and com-
074 promised transfer learning caused by incompatibility with text-only RoPE.

075 Based on our experiment, we distill three core guidelines for designing robust VLM positional en-
076 codings: (i) positional coherence, requiring unambiguous coordinates with a well-defined modality
077 interval; (ii) full frequency allocation, ensuring all positional axes have access to the full frequency
078 spectrum; and (iii) preservation of textual priors, keeping the text RoPE identical to the base LLM.
079 To satisfy the guidelines of full frequency allocation, we propose two simple yet effective methods.
080 Multi-Head RoPE dedicates distinct attention heads to different positional axes to preserve full fre-
081 quency resolution. MRoPE-Interleave employs a fine-grained, round-robin distribution of channels
082 to ensure each axis is encoded with the full frequency spectrum. Besides, we introduce *spatial-reset*,
083 a novel mechanism that resets the spatial position for visual content. This simple modification was
084 found to significantly facilitate the model’s focus to visual information.

085 Our methods consistently outperform strong baselines across key tasks, including image and video
086 understanding and visual grounding. Our contributions are three-fold: (1) a systematic decom-
087 position of multimodal RoPE design; (2) two lightweight instantiations—Multi-Head RoPE and
088 MRoPE-Interleave that satisfy the guidelines; and (3) *spatial-reset*, a general-purpose optimization
089 for improved visual information flow.

090 2 ANALYSIS OF MULTIMODAL ROTARY POSITION EMBEDDING

092 This section provides a systematic analysis of multimodal RoPE. We begin by revisiting the ba-
093 sics of vanilla RoPE. We then evaluate existing multimodal extensions along three core design
094 axes—position design, frequency allocation and compatibility with text-only RoPE. Through this
095 analytical lens, we identify critical limitations in current approaches, directly motivating our pro-
096 posal of two simple yet effective methods: Multi-Head RoPE and MRoPE-Interleave.

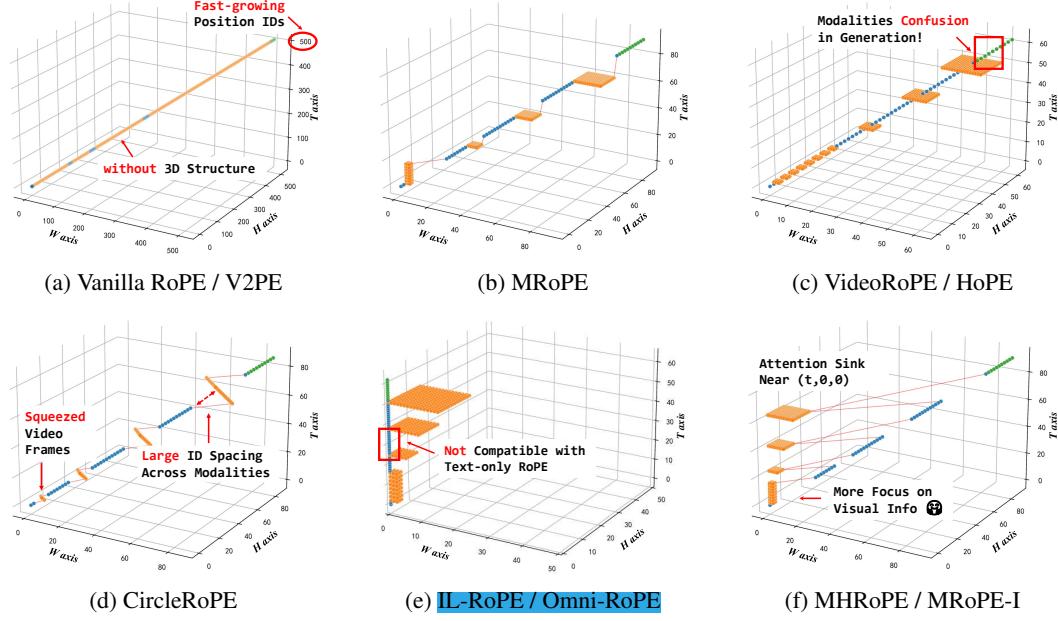
097 2.1 PRELIMINARIES: VANILLA ROPE

099 Vanilla RoPE (Su et al., 2024) is a pivotal method for encoding positional information in modern
100 LLMs. Unlike additive position embeddings, RoPE applies a rotational transformation to the query
101 and key vectors, thereby incorporating relative position dependencies directly into the self-attention
102 mechanism. Given a query vector q at position m and a key vector k at position n , the attention
103 scores S are calculated as:

$$104 \quad S = (\mathcal{R}_m q)^\top (\mathcal{R}_n k) = q^\top \mathcal{R}_m^\top \mathcal{R}_n k = q^\top \mathcal{R}_{n-m} k \quad (1)$$

106 The transformation \mathcal{R} is an orthogonal rotation, which causes the score S to depend solely on the
107 relative position $n - m$. This property is achieved by constructing \mathcal{R}_m as a block-diagonal matrix
108 parameterized by the absolute position m and a set of fixed frequencies θ_i . The rotation frequencies,

108 $\theta_i = \text{base}^{-2i/d}$ for $i \in [0, d/2 - 1]$, are set according to a geometric sequence. This design creates
 109 a spectrum of frequencies ranging from high (for small i) to low (for large i), corresponding to each
 110 pair of dimensions.



132 Figure 1: Position design of different multimodal RoPE variants. The illustrated example follows an
 133 interleaved multimodal sequence: `<system prompt>`, `<video 1>`, `<text>`, `<image 1>`,
 134 `<text>`, `<image 2>`, `<text>`, `<image 3>`, `<text>`, `<generated text>`.

136 2.2 POSITION DESIGN

137 This section governs how the positional identifier m is assigned to text/visual tokens.

139 2.2.1 1D SEQUENTIAL DESIGN.

141 The most straightforward approach, employed by vanilla RoPE (Su et al., 2024) and V2PE (Ge et al.,
 142 2024), is to treat the multimodal input as a flattened, one-dimensional sequence. Position indices
 143 are assigned incrementally, with the position m_i of the i -th token defined as $m_i = m_{i-1} + s_{\text{mod}}$,
 144 where s_{mod} is a step size specific to the token’s modality. For vanilla RoPE, all modalities are treated
 145 uniformly, with $s = 1$.

146 As shown in Figure 1a, this design presents two significant drawbacks. First, it discards the inherent
 147 3D structure of visual content, which can alter the spatio-temporal reasoning capabilities of a VLM.
 148 Second, position indices can grow exceedingly large in long sequences, negatively affecting the
 149 model’s extrapolation performance (Wei et al., 2025).

151 To address the issue of large position indices, V2PE (Ge et al., 2024) introduces dynamic pos-
 152 ition scaling for visual tokens, setting their step size s_{visual} to a value in $\{1, 1/2, \dots, 1/256\}$. This
 153 modification mitigates the rapid growth of position indices and has shown benefits in long video
 154 understanding. However, the 3D structure of visual content is still ignored in 1D sequential design.

155 2.2.2 MULTI-DIMENSIONAL DESIGN.

157 To preserve the native 3D structure of visual content, methods like MRoPE (Wang et al., 2024a)
 158 (See Figure 1b) extend the scalar position identifier to a multi-dimensional tuple. For instance, a
 159 token’s position can be represented as $\mathbf{m}_i = (m_i^t, m_i^h, m_i^w)$, corresponding to its temporal, vertical,
 160 and horizontal axes. MRoPE conceptually treats each visual content (e.g., an image or a set of video
 161 frames) as a single, large “cube”. The temporal position of the subsequent token is then set by
 “jumping” past the maximum coordinate value of current block. This is achieved with the update

162 rule:

163
$$m_{\text{next}}^t = \max(m_{\text{prev}}^t, m_{\text{prev}}^h, m_{\text{prev}}^w) + 1 \quad (2)$$
 164

165 This strategy guarantees that no positional overlaps occur between modalities. However, proponents
166 of VideoRoPE (Li et al., 2025) and HoPE (Li et al., 2025) argue that MRoPE’s position design
167 lacks inter-modal symmetry, they introduce a “diagonal layout” by centering the spatial coordinates
168 (see Figure 1c). In this scheme, visual frames are not only stacked along the temporal axis but are
169 also shifted along the vertical and horizontal axes. Despite its theoretical elegance, this diagonal
170 layout introduces a critical flaw: the potential for position id overlap between visual content and
171 generated text tokens. For high-resolution image content like documents, the spatial coordinates of
172 visual tokens can extend into the index range subsequently assigned to the generated text tokens.
173 We identify this positional ambiguity as a source of “modalities confusion in generation”, a failure
174 mode that manifested as endless text repetition in our later experiments.
175176 CircleRoPE (Wang et al., 2025) arranges image tokens in a circular layout, orthogonal to the linear
177 axis of text positions (see Figure 1d). A key property of this design is that it renders all visual tokens
178 equidistant from any given text token, which theoretically promotes uniform attention across the
179 image. However, CircleRoPE’s design has two limitations. First, the large interval between modalities
180 may impede effective cross-modal interaction. Second, lacking a temporal axis, it collapses all
181 video frames onto a single ring, which introduces severe temporal ambiguity.
182183 2.2.3 TOWARDS AN OPTIMAL POSITION DESIGN
184185 Our preceding analysis, summarized in the first column of Table 1, indicates that a robust position
186 design must satisfy several criteria, which we collectively term Positional Coherence: (i) preserve
187 the 3D structure of visual content; (ii) maintain a slow growth rate; (iii) avoid modalities confusion
188 in generation; (iv) establish an appropriate modality interval.
189190 While MRoPE fulfills most of these requirements, our analysis uncovers a crucial phenomenon:
191 MRoPE exhibits a visual “attention sink”, where attention concentrates on the top-left corner of
192 each image or video frame, a behavior visualized in Figure 2. Specifically, for the image input
193 from ChartQA, it is duplicated and paired with the prompt “Describe the two images in detail” to
194 reveal the attention sink in an interleaved pattern. This phenomenon is analogous to the attention
195 sink observed at the initial tokens in large language models. This insight directly motivates our
196 proposal of *spatial-reset*: a mechanism that resets the spatial dimensions for each visual content. By
197 applying *spatial-reset*, we aim to align this visual sink with the LLM’s bias for small position IDs,
198 accelerating visual adaptation.
199200 Furthermore, *spatial-reset* provides another
201 benefit for video understanding by disentangling
202 the representation of motion. Consider an
203 object token at spatial coordinates (h_1, w_1) at
204 time t_1 and a second token for the same object
205 at (h_2, w_2) at time t_2 . Let their absolute position
206 indices be \mathbf{m}_1 and \mathbf{m}_2 , respectively. Under
207 the standard MRoPE formulation, the tem-
208 poral and spatial dimensions are coupled. The
209 absolute positions are $\mathbf{m}_1 = (t_1, t_1 + h_1, t_1 +$
210 $w_1)$ and $\mathbf{m}_2 = (t_2, t_2 + h_2, t_2 + w_2)$. The result-
211 ing relative position indices, $\mathbf{m}_{\text{rel}} = \mathbf{m}_2 - \mathbf{m}_1$,
212 becomes entangled:
213

214
$$\mathbf{m}_{\text{rel}} = (t_2 - t_1, (t_2 - t_1) + (h_2 - h_1), (t_2 - t_1) + (w_2 - w_1)) \quad (3)$$

215 In contrast, our method with *spatial-reset* decouples these dimensions. The positions are defined as
216 $\mathbf{m}_1 = (t_1, h_1, w_1)$ and $\mathbf{m}_2 = (t_2, h_2, w_2)$. This yields a purely spatio-temporal relative vector:
217

218
$$\mathbf{m}'_{\text{rel}} = (t_2 - t_1, h_2 - h_1, w_2 - w_1) \quad (4)$$

219 This disentangled representation of motion is more intuitive and provides a cleaner inductive bias
220 for the model to learn from. Therefore, the position design we adopt for our proposed MHRoPE and
221 MRoPE-I methods builds upon MRoPE by incorporating *spatial-reset* (as illustrated in Figure 1f).
222

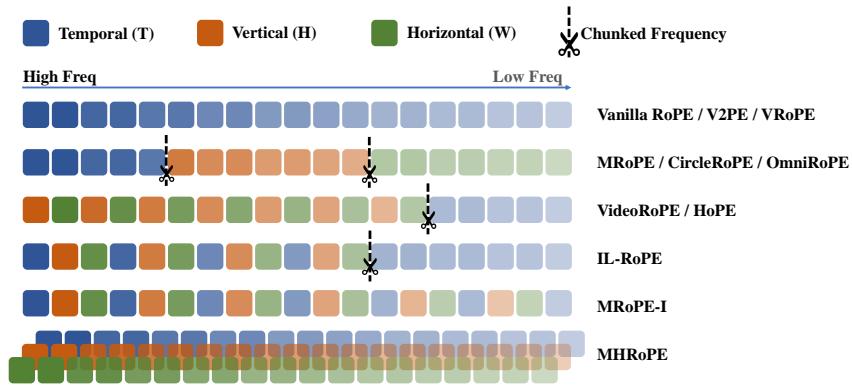


Figure 3: Frequency allocation of different multimodal RoPEs.

2.3 FREQUENCY ALLOCATION

Frequency Allocation governs the assignment of feature channels and their corresponding frequencies θ_i to the various axes of the position identifier \mathbf{m} (temporal t , vertical h or horizontal w).

2.3.1 FREQUENCY ALLOCATION IN 1D ROPE.

In 1D methods like vanilla RoPE and V2PE, all feature channels are allocated to encode the temporal axis. The frequencies θ_i decay as the channel index i increases, creating a spectrum from high-frequency (for short-range dependencies) to low-frequency (for long-range dependencies). This design also imparts a long-range decay property on attention scores, as their upper bound is a function of the relative distance, which can be approximated by $\sum_{i=0}^{d/2-1} |S_{i+1}|$, where $S_j = \sum_{k=0}^{j-1} e^{i(m-n)\theta_k}$ (see Appendix D.2 for detailed derivation). V2PE’s position scaling for visual tokens effectively slows this decay, enhancing the model’s ability to focus on long visual content.

2.3.2 MULTI-DIMENSIONAL FREQUENCY ALLOCATION.

The standard MRoPE partitions the d feature dimensions into three contiguous blocks, dedicating one to each of the t , h , and w axes. As rotational frequencies decrease with channel index, this design forces the temporal axis to be encoded entirely by the highest-frequency channels. This creates a strong inductive bias that is detrimental to long-sequence understanding, as it leads to a rapid decay of attention over time. Furthermore, because the h and w axes are assigned distinct, non-overlapping frequency ranges, they exhibit different long-range decay rates, as visualized in Figure 4a. This asymmetry can impair the model’s ability to learn consistent spatial relationships.

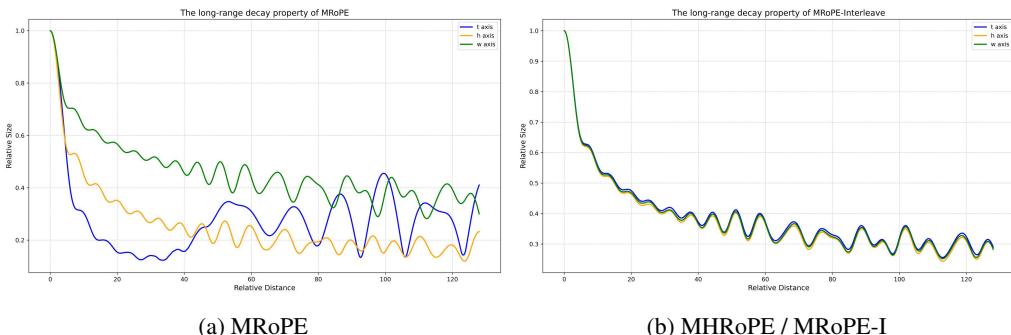


Figure 4: The long-range decay property of MRoPE, MHRoPE and MRoPE-I.

Subsequent methods have attempted to rectify this temporal bias through various frequency re-allocation strategies. VideoRoPE and HoPE, for example, move the temporal axis to occupy the low-frequency channels. IL-RoPE employs a form of interleaving but similarly reserves the lowest-

frequency channels for the temporal dimension. While these approaches can mitigate the long-context issue for the temporal axis, they introduce a critical, unaddressed trade-off: they force the spatial dimensions into a restricted, and often exclusively high-frequency, band. This severely limits the model’s ability to capture multi-scale spatial relationships, which can impair performance on tasks reliant on fine-grained spatial reasoning, such as visual grounding. Furthermore, the very act of partitioning feature dimensions inherently coarsens the frequency resolution for each positional axis. The performance implications of this reduced granularity is under-exploration.

2.3.3 TOWARDS AN OPTIMAL FREQUENCY ALLOCATION

To address the limitations of frequency allocation, we propose two effective strategies, as summarized in the second column of Table 1. Both methods resolve the rapid temporal decay and asymmetric spatial decay of MRoPE, yielding a unified decay profile for all axes as shown in Figure 4b.

Multi-Head Allocation. The first strategy, termed Multi-Head RoPE (MHRoPE), is inspired by recent work demonstrating channel-level redundancy in RoPE (e.g., partial RoPE (Barbero et al., 2025)). Based on the premise that similar redundancy exists at the attention head level, MHRoPE partitions the positional encoding task among different attention heads¹, as shown in Figure 3. A primary advantage of this strategy is that each axis is encoded using the full frequency spectrum available within its assigned heads. This approach avoids the loss of frequency resolution inherent to channel-splitting methods. Moreover, it may be more scalable. As the number of positional axes grows (Liu et al., 2025), partitioning a fixed channel channels (e.g., 128) becomes untenable, whereas dedicating distinct heads to new dimensions offers a far more robust and flexible approach.

Interleaved Allocation. Our second strategy, employed in our MRoPE-Interleaved (MRoPE-I) method, distributes feature channels to the temporal (t), vertical (h), and horizontal (w) axes in a fine-grained, round-robin manner, as shown in Figure 3. This design ensures that each positional axis is encoded using the full frequency spectrum, from high to low, thereby enabling robust multi-scale modeling for each positional axis. Moreover, the uniform frequency distribution of our interleaved design is compatible with extrapolation algorithms like NTK-aware (bloc97, 2023) and YaRN (Peng et al., 2024), which function by rescaling the frequency spectrum (see Appendix D.3).

2.4 COMPATIBILITY WITH TEXT-ONLY ROPE.

Most VLMs are adapted from LLMs, which typically use vanilla RoPE for positional encoding. This raises a natural question: should the encoding strategy for text tokens in VLMs remain identical to that of the base LLM? While most works implicitly agree, some methods have explored deviations.

From the Position Design aspect, methods like IL-RoPE (Liao et al., 2025) and Omni-RoPE (Wu et al., 2025) modify the text encoding. As shown in Figure 1e, they reset spatial coordinates for each image to aid editing but concurrently set the spatial dimensions for text tokens to zero. This design choice breaks compatibility with the standard RoPE used in the pre-trained LLM.

From the Frequency Allocation aspect, we also explored a potential modification. Since the coordinate range of spatial dimensions is much smaller than that of the temporal axis, a smaller rotary ‘base’ could be used to better encode the spatial dimension. However, our experiments showed that this strategy led to poor performance across most benchmarks. This outcome strongly indicates the critical importance of maintaining full compatibility with the text-only RoPE for effective knowledge transfer from pre-trained LLMs.

2.5 PROPOSED MULTIMODAL ROPES

Based on our analysis, we propose two novel multimodal RoPE variants: Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I). Both methods are built upon a shared set of design guidelines for robustness and performance.

For position design, we enhance MRoPE position design with *spatial-reset* to improve the model’s focus on visual information. We also maintain strict compatibility with text-only RoPE, ensuring the effective transfer of pre-trained knowledge.

¹For Group Query Attention (GQA), we partition on KV heads and repeat on corresponding query heads.

324 The key distinction between our variants lies in their frequency allocation strategy. MHRoPE
 325 employs Multi-Head Allocation, dedicating distinct attention heads to different axes to preserve fre-
 326 quency resolution and offer scalability. In contrast, MRoPE-I uses Interleaved Allocation, a fine-
 327 grained approach ensuring full-spectrum encoding and compatibility with extrapolation techniques.
 328 For a detailed discussion on the trade-offs between MHRoPE and MRoPE-I, see Appendix D.1.
 329

330 3 EXPERIMENT

331 3.1 EXPERIMENTAL SETUP

335 **Training Details.** All models use the QwenViT and connector from Qwen2.5VL², while initializing
 336 the VLM backbone with the Qwen2.5 7B LLM. During training, we freeze the ViT to fix the visual
 337 representations and unfreeze the connector and LLM backbone. **This strategy is designed to isolate**
 338 **the effects of our proposed RoPE modifications while adhering to the standard VLM adaptation**
 339 **paradigm of building upon a pre-trained LLM.** Notably, this initialization setting aligns with that of
 340 VideoRoPE (Wei et al., 2025) and HoPE (Li et al., 2025), and differs from alternative architectural
 341 explorations in VLMs such as Apollo (Orr Zohar & Xia, 2024) and CamBrain-1 (Tong et al., 2024).

342 The training process adopts a batch size of 128 and **uses the AdamW optimizer with $\alpha=0.9$, $\beta=0.98$,**
 343 **and weight decay of 0.05. The learning rate follows a cosine decay schedule from an initial value of**
 344 **1×10^{-5} down to a minimum of 3×10^{-6} .** Each experiment consumes approximately 512 NVIDIA
 345 A100 GPU hours. The training context length is set to 32K, and the rotary base is set to 1000000.
 346 All experiments share identical training data, model architecture, and hyperparameters, with the sole
 347 difference being the choice of multimodal RoPE.

348 **Training Data and Evaluation Benchmarks.** We conduct experiments using approximately
 349 2M high-quality supervised fine-tuning (SFT) samples, covering a wide range of visual scenar-
 350 os including image captioning, OCR, visual reasoning, visual grounding, document comprehen-
 351 sion, long video understanding and multi-turn dialogue. For evaluation, we adopt more than
 352 20 benchmarks spanning images, videos, and grounding tasks. Specifically, the image bench-
 353 marks include MMMU (Yue et al., 2024), MMBench (Liu et al., 2024a), MMStar (Chen et al.,
 354 2024), OCRBench (Liu et al., 2024b), AI2D (Kembhavi et al., 2016), RealWorldQA (X.AI., 2024),
 355 DocVQA (Mathew et al., 2021), TextVQA Singh et al. (2019), InfoVQA (Mathew et al., 2022),
 356 and ChartQA (Masry et al., 2022). **To evaluate multi-image reasoning capabilities, we use the**
 357 **BLINK benchmark (Fu et al., 2024).** The video benchmarks consist of MVBench (Li et al.,
 358 2024), STAR (Wu et al., 2021), VideoMME (Fu et al., 2025), LVBench (Wang et al., 2024b),
 359 MLVU (Zhou et al., 2024b), and Charades-STA (Zhou et al., 2024a). For grounding, we evaluate
 360 on RefCOCO (Kazemzadeh et al., 2014) series.

361 **Evaluation Setup.** All results are reported following the official evaluation protocol of
 362 Qwen2VL (Bai et al., 2025). Since all models are trained with a 32K context length, we cap the
 363 maximum number of visual tokens at 24K and apply “smart resize” to preserve dynamic visual res-
 364 olution. For video inputs, we sample frames at 2 FPS by default; when this yields more than 768
 365 frames, we fall back to uniform sampling to retain at most 768 frames.

366 3.2 OVERALL PERFORMANCE

368 The overall performance of different multimodal RoPEs is presented in Table 2. Both MHRoPE and
 369 MRoPE-I achieve consistently better performance across the majority of benchmarks. For instance,
 370 MRoPE-I outperforms the vanilla RoPE baseline by a significant margin of +2.67% on MMMU,
 371 +5.28% on ChartQA, and +3.27% on RefCOCO_{val}.

372 The results also reveal that while vanilla RoPE serves as a competitive baseline, its performance is
 373 noticeably impaired on benchmarks that demand fine-grained spatial reasoning, such as ChartQA
 374 and the RefCOCO series. This performance gap highlights the fundamental limitations of its flat-
 375 tened, 1D position design. Vanilla RoPE also suffers from extrapolation, see Appendix D.4.

376 377 ²For fair comparison with prior work which using Qwen2VL, we disable the absolute time encoding used
 in Qwen2.5VL.

378 Table 2: Overall performance of multimodal RoPEs variants on various benchmarks. The highest
 379 score is shown in **bold**, while the second-highest score is underlined.
 380

381 Types	382 Benchmarks	Vanilla RoPE	383 MRoPE	384 VideoRoPE	385 HoPE	386 CircleRoPE	387 MHRoPE	388 MRoPE-I
389 Image	MMMU	50.56	50.22	49.89	49.89	47.22	<u>53.00</u>	53.22
	MMBench _{avg}	74.75	74.06	75.95	75.35	74.91	75.04	<u>75.56</u>
	MMstar	49.13	49.93	49.60	<u>50.33</u>	47.00	49.60	51.13
	OCR Bench	<u>73.40</u>	72.70	66.20	66.60	70.60	<u>73.40</u>	74.00
	AI2D	76.20	74.94	74.29	<u>76.10</u>	74.45	75.45	75.36
	RealworldQA	<u>58.30</u>	57.25	56.21	<u>57.12</u>	56.60	60.52	57.39
	DocVQA	<u>82.94</u>	81.49	60.13	60.12	77.70	81.32	83.72
	TextVQA	<u>66.80</u>	65.85	66.58	66.77	65.54	66.49	66.91
	InfoVQA	58.85	52.96	37.42	34.80	53.11	52.01	<u>58.24</u>
	ChartQA	56.84	63.56	54.88	55.44	53.72	<u>62.44</u>	62.12
390 Video	BLINK	<u>36.12</u>	<u>37.93</u>	<u>36.20</u>	<u>35.98</u>	<u>40.88</u>	<u>42.80</u>	44.08
	MVBench	57.05	57.85	56.78	<u>58.00</u>	57.10	58.93	57.05
	STAR	58.07	58.28	57.20	<u>58.30</u>	57.94	59.48	57.79
	MLVU	64.69	63.26	66.05	64.81	62.69	<u>65.69</u>	65.46
	VideoMME	58.63	58.22	58.70	59.52	57.70	57.48	<u>58.96</u>
	LVBench	38.93	39.22	40.15	40.99	38.80	40.32	<u>40.54</u>
	Charades-STA	32.49	32.23	34.21	36.07	32.27	33.56	<u>34.36</u>
	RefCOCO _{val}	77.67	78.35	77.95	77.72	79.59	79.87	80.94
	RefCOCO _{testA}	81.37	82.52	80.43	81.60	<u>83.98</u>	83.66	84.55
	RefCOCO _{testB}	72.66	72.31	72.62	71.44	<u>74.35</u>	73.20	75.05
397 Grounding	RefCOCO+ _{val}	69.16	68.80	68.15	69.61	<u>70.19</u>	<u>70.55</u>	71.80
	RefCOCO+ _{testA}	74.48	75.95	73.14	74.55	76.77	<u>76.88</u>	77.44
	RefCOCO+ _{testB}	61.67	59.97	60.50	61.69	62.59	61.96	61.96
	RefCOCOg _{val}	75.45	75.86	74.06	74.69	76.10	<u>76.55</u>	77.70
	RefCOCOg _{test}	75.40	75.73	73.90	75.45	76.12	<u>76.68</u>	77.34
	Image	<u>62.17</u>	<u>61.90</u>	<u>57.03</u>	<u>57.14</u>	<u>60.16</u>	<u>62.92</u>	63.79
	Overall	51.64	51.51	52.18	52.95	51.09	<u>52.58</u>	52.36
	Grounding	73.48	73.69	72.59	73.34	<u>74.96</u>	74.92	75.85

404
 405
 406 While VideoRoPE and HoPE demonstrate stronger performance on video benchmarks, they exhibit
 407 anomalous degradation on DocVQA, InfoVQA, and ChartQA. We attribute this discrepancy to a
 408 critical flaw in their position design: the overlap of position indices, which induces confusion
 409 between visual and generated text tokens. The ablation study in Table 4 confirms that this confusion is
 410 the root cause of the degradation.

411 The suboptimal designs of MRoPE and CircleRoPE manifest in their performance. MRoPE breaks
 412 the full frequency spectrum for each position axis. Consequently, it struggles on tasks demanding
 413 specific frequency ranges, such as long-video understanding (MLVU, LVbench), which requires
 414 robust low-frequency temporal encoding, and visual grounding (RefCOCO), which benefits from
 415 high-frequency spatial encoding. Similarly, CircleRoPE introduces a large modality interval and
 416 collapses the video positions, results in poor video understanding.

417 In contrast, MHRoPE and MRoPE-I leverage *spatial-reset* position design, which prevents modalities
 418 confusion and not introducing an improper modality interval. By providing each positional axis
 419 with a full frequency spectrum (interleave or multi-head allocation), they enable the models to bet-
 420 ter capture both fine-grained spatial details (high-frequency) and long-range temporal dependencies
 421 (low-frequency), leading to their superior overall performance.

423 3.3 GENERALIZATION ACROSS ARCHITECTURES

424 Current Vision-Language Models (VLMs) are converging towards a unified architectural paradigm
 425 comprising a vision encoder, a connector, and a Large Language Model (LLM). Since multimodal
 426 positional encodings primarily operate within the LLM backbone, which exhibits minimal structural
 427 variation across different VLM families. We hypothesize that our proposed MHRoPE and MRoPE-I
 428 possess strong generalizability.

429 To empirically validate this hypothesis, we extended our evaluation to Qwen3-VL-4B-
 430 Instruct (QwenVL Team, 2025) and Qwen3-VL-8B-Instruct. Although they belong to the same
 431 lineage as Qwen2.5-VL, they feature significant architectural distinctions: (1) the removal of win-

432 dow attention in the vision encoder; (2) the introduction of a DeepStack architecture between the
 433 connector and the backbone; (3) the application of QK-Norm within the LLM backbone; and (4)
 434 specific to the 4B variant, the tying of weights between the embedding layer and the LM head.

435 The results are presented in Table 3 (with full details in Appendix D.6). Despite these architectural
 436 shifts, our methods consistently achieve the best performance. Furthermore, previously observed
 437 phenomena, such as the performance degradation caused by diagonal layouts, are corroborated in
 438 these new experiments, further solidifying the validity and robustness of our approach.

439 **Table 3:** Average performance across modalities for RoPE variants on Qwen3-VL-4B and Qwen3-
 440 VL-8B Instruct models. Highest scores are in **bold**, second-highest are underlined. Grnd: average
 441 grounding score on RefCOCO benchmarks.

(a) Qwen3-VL-4B-Instruct				(b) Qwen3-VL-8B-Instruct			
Method	Image	Video	Grnd	Method	Image	Video	Grnd
RoPE	47.00	49.90	20.77	RoPE	63.35	56.78	70.09
MRoPE	46.67	49.60	23.67	MRoPE	62.95	57.03	70.97
VideoRoPE	42.77	49.86	18.91	VideoRoPE	60.26	57.75	67.99
HoPE	43.20	50.25	18.74	HoPE	59.96	57.81	70.19
CircleRoPE	47.36	49.23	18.84	CircleRoPE	63.54	54.88	71.20
MHRoPE	48.22	50.80	25.23	MHRoPE	64.63	57.46	73.03
MRoPE-I	48.82	50.49	27.52	MRoPE-I	64.82	57.64	75.46

453 3.4 ABLATION STUDY

454 This section presents ablation studies on key design choices for our robust multimodal RoPEs. Ad-
 455 dditional results are provided in Appendix D.5.

456 3.4.1 ABLATION STUDY ON POSITION DESIGN

457 We previously argued that an optimal position design should: (1) incorporate 3D structure to capture
 458 native spatio-temporal information, (2) maintain a proper modality interval, and (3) preserve compati-
 459 bility with text-only RoPE. To systematically dissect the impact of these factors, we conduct an
 460 ablation study, fixing the frequency allocation strategy to our interleaved allocation while varying
 461 the position design. The results are presented in Table 4. Simply introducing a 3D structure over
 462 the vanilla RoPE provides a notable boost to grounding performance. The addition of *spatial-reset*
 463 mechanism yields substantial gains across all benchmark categories, confirming its effectiveness.
 464 We also ablated other position designs proposed in prior work, as shown in Table 4.

465 **Diagonal Layout:** Implementing the diagonal layout from VideoRoPE leads to a severe degradation
 466 in performance on document-centric benchmarks (DocVQA, InfoVQA and ChartQA). A qualitative
 467 analysis reveals a specific failure mode: repetitive, nonsensical text generation (e.g., “1111...”),
 468 which occurs even when the layout is applied only at inference time. We attribute this behavior
 469 to modalities confusion induced by positional overlap, causing the model to misinterpret its own
 470 generated text tokens as visual tokens, resulting in this unpredictable repetitive output.

471 **Enlarged Modality Interval:** We also tested artificially enlarging the modality interval to match
 472 that of vanilla RoPE, a strategy similar to RoPE-Tie (Su, 2024). This also resulted in poor document-
 473 related performance. However, the failure mode was distinct: the model generated fluent but context-
 474 ually irrelevant text, effectively ignoring the visual input. This suggests that while a clear modality
 475 interval is necessary, simply maximizing its size to align with vanilla RoPE can be detrimental by

476 **Text spatial-reset.** We also tested the strategy from IL-RoPE and Omni-RoPE, which resets spatial
 477 dimensions for visual tokens as well as text ones (Fig. 1e). This approach resulted in a notable per-
 478 formance degradation compared to the vanilla RoPE, emphasizing that preserving RoPE alignment
 479 for text is critical for successfully adapting LLMs into VLMs.

480 **Scaling rotary base.** Motivated by the smaller coordinate range of the spatial axes, we experimen-
 481 ted with scaling their corresponding rotary base (e.g., from 1,000,000 to 10,000). This consistently
 482 resulted in a clear performance drop on image benchmarks. This finding demonstrates that even

well-intentioned deviations from the base LLM’s RoPE formulation can break compatibility and severely impair knowledge transfer.

Position Design	Image	Grounding	Video	DocVQA	InfoVQA	ChartQA
vanilla RoPE	65.69	73.48	51.64	82.94	58.85	56.84
+ 3D structure	<u>65.87</u>	<u>74.40</u>	51.29	82.33	57.24	<u>61.44</u>
+ 3D + <i>spatial-reset</i>	66.65	75.85	52.36	83.72	58.24	62.12
+ diagonal layout	61.20	72.33	52.51	60.13	37.42	54.88
+ modality interval	62.80	73.19	50.88	70.43	42.18	51.28
+ text <i>spatial-reset</i>	58.27	68.2	50.71	77.30	52.15	44.33
+ scaling rotary base	60.15	74.13	52.11	80.44	52.16	58.80

Table 4: Ablation study of different position design strategies.

3.4.2 ABLATION STUDY ON FREQUENCY ALLOCATION

To determine the optimal frequency allocation strategy, we fix the position design the same as MRoPE with *spatial-reset* enhancement, and vary only the frequency allocation scheme. As shown in Table 5, a more uniform allocation strategy consistently outperforms alternatives that split the spectrum into partial chunks. This highlights the importance of ensuring that each positional axes (time, height, width) retains access to the full frequency spectrum.

Allocation Type	Image	Video	Grounding	Overall
VideoRoPE-like	65.33	52.11	72.50	63.31
IL-RoPE-like	65.26	51.15	72.80	63.07
Multi-Head	66.40	52.58	74.92	64.63
Interleave	66.65	52.36	75.85	64.95

Table 5: Ablation results of different frequency allocation strategies.

4 CONCLUSION

In this work, we conducted the first systematic investigation into multimodal Rotary Positional Embedding (RoPE) for Vision-Language Models (VLMs). From our systematic comparison and extensive experiments, we identified three key design considerations for robust multimodal RoPE: positional coherence, full frequency utilization, and preservation textual priors from pre-trained LLMs. Guided by these insights, we proposed two plug-and-play RoPE variants: Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I). Both methods adhere to our identified guidelines, effectively addressing common failure modes and achieving significant performance in both general and fine-grained multimodal understanding. This work offers a comprehensive guide for designing effective multimodal positional encodings, paving the way for future advancements in VLMs.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *CoRR*, abs/2502.13923, 2025. URL <https://doi.org/10.48550/arXiv.2502.13923>.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Velickovic. Round and round we go! what makes rotary positional encodings useful? In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=GtvuNrk58a>.

bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation., 2023. URL https://www.reddit.com/r/LocalLLaMA/comments/141z7j5/ntkaware_scaled_ropeAllows_llama_models_to_have/.

540 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 541 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
 542 language models? In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich
 543 Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing
 544 Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
 545 Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.

546 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 547 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
 548 Tong Xu, Xiawu Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme:
 549 The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. In
 550 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville, TN,
 551 USA, June 11-15, 2025*, pp. 24108–24118. Computer Vision Foundation / IEEE, 2025.

552 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A.
 553 Smith, Wei-Chiu Ma, and Ranjay Krishna. BLINK: multimodal large language models can see
 554 but not perceive. 2024. URL https://doi.org/10.1007/978-3-031-73337-6_9.

556 Junqi Ge, Ziyi Chen, Jintao Lin, Jinguo Zhu, Xihui Liu, Jifeng Dai, and Xizhou Zhu. V2PE:
 557 improving multimodal long-context capability of vision-language models with variable visual
 558 position encoding. *CoRR*, abs/2412.09616, 2024. URL <https://doi.org/10.48550/arXiv.2412.09616>.

559 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
 560 URL <https://arxiv.org/abs/2407.21783>.

561 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
 562 objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter Daele-
 563 mans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language
 564 Processing (EMNLP)*, October 2014.

565 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali
 566 Farhadi. A diagram is worth a dozen images. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
 567 Max Welling (eds.), *Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
 568 The Netherlands, October 11-14, 2016, Proceedings, Part IV*, volume 9908 of *Lecture Notes in
 569 Computer Science*, pp. 235–251. Springer, 2016.

570 Haoran Li, Yingjie Qin, Baoyuan Ou, Lai Xu, and Ruiwen Xu. Hope: Hybrid of position embedding
 571 for length generalization in vision-language models. *CoRR*, abs/2505.20444, 2025. URL <https://doi.org/10.48550/arXiv.2505.20444>.

572 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 573 Ping Lou, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video under-
 574 standing benchmark. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
 575 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 22195–22206. IEEE, 2024.

576 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
 577 Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
 578 generation. *CoRR*, abs/2505.05472, 2025. URL <https://doi.org/10.48550/arXiv.2505.05472>.

579 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 580 Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model
 581 an all-around player? In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
 582 Sattler, and GüL Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan,
 583 Italy, September 29-October 4, 2024, Proceedings, Part VI*, volume 15064 of *Lecture Notes in
 584 Computer Science*, pp. 216–233. Springer, 2024a.

585 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 586 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of OCR in large
 587 multimodal models. *Sci. China Inf. Sci.*, 67(12), 2024b.

594 Zikang Liu, Longteng Guo, Yepeng Tang, Junxian Cai, Kai Ma, Xi Chen, and Jing Liu. Vrope:
 595 Rotary position embedding for video large language models. *CoRR*, abs/2502.11664, 2025. URL
 596 <https://doi.org/10.48550/arXiv.2502.11664>.

597 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: A
 598 benchmark for question answering about charts with visual and logical reasoning. In Smaranda
 599 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the Association for Compu-
 600 tational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022*, pp. 2263–2279. Association
 601 for Computational Linguistics, 2022.

602 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on doc-
 603 ument images. In *IEEE Winter Conference on Applications of Computer Vision, WACV 2021,
 604 Waikoloa, HI, USA, January 3-8, 2021*, pp. 2199–2208. IEEE, 2021.

605 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawahar.
 606 Infographicvqa. In *IEEE/CVF Winter Conference on Applications of Computer Vision, WACV
 607 2022, Waikoloa, HI, USA, January 3-8, 2022*, pp. 2582–2591. IEEE, 2022.

608 **Yann Dubois Nikhil Mehta Tong Xiao Philippe Hansen-Estruch Licheng Yu Xiaofang Wang Felix
 609 Juefei-Xu Ning Zhang Serena Yeung-Levy Orr Zohar Xiaohan Wang and Xide Xia.** Apollo: An
 610 exploration of video understanding in large multimodal models. *arXiv preprint arXiv:2412.10360*,
 611 2024.

612 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
 613 dow extension of large language models. In *The Twelfth International Conference on Learning
 614 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

615 **QwenVL Team.** Qwen3-VL: The Most Powerful Vision-Language Model in the Qwen Series, 2025.
 616 URL <https://github.com/QwenLM/Qwen3-VL>. Accessed: 2025-11-22.

617 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 618 and Marcus Rohrbach. Towards VQA models that can read. In *IEEE Conference on Computer
 619 Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 8317–
 620 8326. Computer Vision Foundation / IEEE, 2019.

621 Jianlin Su. Transformer upgrade path: 17. insights into multimodal positional encoding, March
 622 2024. URL <https://spaces.ac.cn/archives/10040>.

623 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 624 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. URL
 625 <https://doi.org/10.1016/j.neucom.2023.127063>.

626 **Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 627 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann
 628 LeCun, and Saining Xie.** Cambrian-1: A fully open, vision-centric exploration of multimodal
 629 ILMs, 2024.

630 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 631 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
 632 Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
 633 Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on
 634 Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 635 5998–6008, 2017.

636 Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, and Kai Han.
 637 Circle-rope: Cone-like decoupled rotary positional embedding for large vision-language mod-
 638 els. *CoRR*, abs/2505.16416, 2025. URL <https://doi.org/10.48550/arXiv.2505.16416>.

639 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 640 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 641 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 642 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024a. URL <https://doi.org/10.48550/arXiv.2409.12191>.

648 Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Shiyu Huang, Bin
 649 Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Lvbench: An extreme long video understanding
 650 benchmark. *CoRR*, abs/2406.08035, 2024b.

651
 652 Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong
 653 Duan, Qipeng Guo, Jiaqi Wang, et al. Videopepe: What makes for good video rotary position
 654 embedding? In *International Conference on Machine Learning*, 2025.

655
 656 Bo Wu, Shoubin Yu, Zhenfang Chen, Josh Tenenbaum, and Chuang Gan. STAR: A benchmark
 657 for situated reasoning in real-world videos. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
 658 *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1,*
 659 *NeurIPS Datasets and Benchmarks 2021, December 2021, virtual*, 2021.

660
 661 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 662 Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun
 663 Luo, Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu.
 664 Omnipgen2: Exploration to advanced multimodal generation. *CoRR*, abs/2506.18871, 2025. URL
 665 <https://doi.org/10.48550/arXiv.2506.18871>.

666 X.AI. Grok-1.5 vision preview., 2024. URL <https://x.ai/blog/grok-1.5v>.

667
 668 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 669 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 670 *arXiv:2505.09388*, 2025.

671
 672 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 673 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 674 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 675 Wenhui Chen. MMMU: A massive multi-discipline multimodal understanding and reasoning
 676 benchmark for expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 677 *nition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 9556–9567. IEEE, 2024.

678
 679 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 680 Tiejun Huang, and Zheng Liu. MLVU: A comprehensive benchmark for multi-task long video
 681 understanding. *CoRR*, abs/2406.04264, 2024a.

682
 683 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 684 Tiejun Huang, and Zheng Liu. MLVU: A comprehensive benchmark for multi-task long video
 685 understanding. *CoRR*, abs/2406.04264, 2024b.

686 A ETHICS STATEMENT

687
 688 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
 689 perimentation was involved. All datasets used were sourced in compliance with relevant usage
 690 guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
 691 natory outcomes in our research process. No personally identifiable information was used, and no
 692 experiments were conducted that could raise privacy or security concerns. We are committed to
 693 maintaining transparency and integrity throughout the research process.

694 B REPRODUCIBILITY STATEMENT

695
 696 We have made every effort to ensure that the results presented in this paper are reproducible. Code
 697 will be made publicly available to facilitate replication and verification after inspection. The ex-
 698 perimental setup, including training steps, model configurations, and hardware details, is described in
 699 detail in the paper. We believe these measures will enable other researchers to reproduce our work
 700 and further advance the field.

702 C LLM USAGE
703
704705 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
706 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
707 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
708 grammar checking.709 It is important to note that the LLM was not involved in the ideation, research methodology, or
710 experimental design. All research concepts, ideas, and analyses were developed and conducted by
711 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
712 of the paper, with no involvement in the scientific content or data analysis.713 The authors take full responsibility for the content of the manuscript, including any text generated
714 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
715 and does not contribute to plagiarism or scientific misconduct.717
718 D APPENDIX
719
720721 D.1 PRACTICAL CONSIDERATIONS: MHRoPE vs. MRoPE-I
722723 While both of our proposed methods are effective, we currently recommend MRoPE-I over
724 MHRoPE for two primary reasons: its consistent (albeit slight) performance advantage and its
725 greater implementation simplicity. We attribute MHRoPE’s minor performance deficit to its head-
726 level information partitioning, which prevents the integration of different positional axes within the
727 self-attention mechanism. From an engineering perspective, MRoPE-I is also simpler, avoiding the
728 complexities that MHRoPE introduces with distributed training paradigms like tensor parallelism.
729 Nevertheless, MHRoPE’s design offers a potentially more scalable architecture for future models
730 that may need to accommodate a larger number of positional axes.731
732 D.2 DERIVATION OF THE ATTENTION SCORE UPPER BOUND IN MRoPE
733
734735 Here, we provide a formal derivation for the upper bound of the RoPE attention score. The RoPE
736 dot product between a query q and a key k at a relative position $m - n$ can be expressed in complex
737 form as:

738
739
740
741
742
743
$$(\mathcal{R}_m q)^\top (\mathcal{R}_n k) = \operatorname{Re} \left[\sum_{i=0}^{d/2-1} (q_{[2i:2i+1]} \cdot k_{[2i:2i+1]}^*) e^{i(m-n)\theta_i} \right] \quad (5)$$

744
745
746
747
748

749 where v^* denotes the complex conjugate of a 2D vector treated as a complex number, and \cdot is the
750 complex product.751 To derive the upper bound, we analyze the magnitude of the summation term. To apply summation
752 by parts, let us define a content-dependent sequence $h_i = q_{[2i:2i+1]} \cdot k_{[2i:2i+1]}^*$ and a position-
753 dependent sequence of partial sums $S_j = \sum_{k=0}^{j-1} e^{i(m-n)\theta_k}$. We also set the boundary conditions
754 $S_0 = 0$ and $h_{d/2} = 0$. The standard summation by parts formula is $\sum_{i=a}^b u_i \Delta v_i = [u_i v_i]_a^{b+1} -$
755 $\sum_{i=a}^b v_{i+1} \Delta u_i$. Applying this, the magnitude of the summation can be rewritten and bounded as

756 follows:

$$\begin{aligned}
757 \quad & \left| \sum_{i=0}^{d/2-1} h_i e^{i(m-n)\theta_i} \right| = \left| [h_i S_i]_0^{d/2} - \sum_{i=0}^{d/2-1} S_{i+1} (h_{i+1} - h_i) \right| \\
758 \quad & = \left| (h_{d/2} S_{d/2} - h_0 S_0) - \sum_{i=0}^{d/2-1} S_{i+1} (h_{i+1} - h_i) \right| \\
759 \quad & = \left| - \sum_{i=0}^{d/2-1} S_{i+1} (h_{i+1} - h_i) \right| \\
760 \quad & \leq \sum_{i=0}^{d/2-1} |S_{i+1}| |h_{i+1} - h_i| \\
761 \quad & \leq \left(\max_{0 \leq i < d/2} |h_{i+1} - h_i| \right) \sum_{i=0}^{d/2-1} |S_{i+1}|
\end{aligned} \tag{6}$$

773 This final expression reveals that the upper bound is a product of two distinct components. 774 $\max |h_{i+1} - h_i|$ is a content-dependent term that acts as a scaling factor based on the specific query 775 and key vectors. The second, $\sum |S_{i+1}|$, is a purely position-dependent term whose value is deter- 776 mined only by the relative position $m - n$ and the fixed frequencies θ_i . Since the content-dependent 777 term is independent of position, the long-range decay property of the attention score is governed 778 primarily by this position-dependent term. Therefore, its average value, $\frac{1}{d/2} \sum_{i=1}^{d/2} |S_i|$, serves as a 779 practical indicator to characterize how the upper bound attenuates with relative distance. 780

781 D.3 COMPATIBILITY WITH YARN EXTRAPOLATION

783 As shown in Figure 4b, the interleaved frequency allocation of MRoPE-I makes it compatible with 784 extrapolation algorithms like NTK-aware (bloc97, 2023) and YaRN (Peng et al., 2024). Whereas 785 standard MRoPE’s partitioned spectrum complicates the application of a consistent frequency scal- 786 ing boundary, our interleaved design provides a full spectrum across all positional axes, enabling a 787 straightforward and symmetric application of these methods. 788

789 To validate this effect, we apply YaRN to both MRoPE and MRoPE-I under a 256K context window 790 and evaluate their performance on LVBench and MLVU. As shown in Table 6, MRoPE-I with YaRN 791 demonstrates substantially larger gains in long-video understanding compared to MRoPE. 792

793 **Table 6:** Performance comparison of MRoPE and MRoPE-I with and without YaRN under a 256K 794 context.

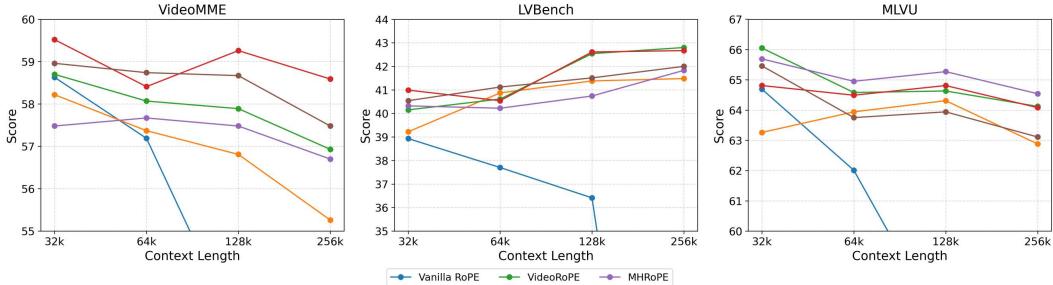
795 Method	796 LVBench	797 MLVU
798 MRoPE	41.5	62.9
799 MRoPE + YaRN	41.2	63.3
800 MRoPE-I	42.0	63.2
MRoPE-I + YaRN	43.6	64.1

801 D.4 LONG-CONTEXT VIDEO UNDERSTANDING

803 We further compare the performance of different methods on long video understanding, with context 804 lengths ranging from 32K to 256K. As shown in Figure 5, apart from LVBench, we do not observe 805 clear performance improvements or degradation when extrapolating to longer sequences. The only 806 exception is Vanilla RoPE, which suffers from a sharp performance drop at 128K/256K. We attribute 807 this to excessively fast-growing position IDs, which lead to degraded extrapolation capability, which 808 also discussed in other works (Wei et al., 2025; Li et al., 2025). 809

Overall, methods such as VideoRoPE and HoPE, which allocate most low-frequency channels to 810 the temporal axis, exhibit slightly better extrapolation ability in long video scenario. However, when

810
811 considering performance across images and grounding tasks, MHRoPE and MRoPE-I remain the
812 most comprehensive and balanced designs.



823
824 Figure 5: Video extrapolation performance. Models are trained with a context length of 32k (256
825 frames) and extrapolated to 64k (512 frames), 128k (1024 frames), and 256k (2048 frames).

826 D.5 MORE ABLATION RESULTS.

828 D.5.1 ENHANCED VISUAL ATTENTION IN *spatial-reset*

830 To understand the mechanism driving the effectiveness of *spatial-reset*, we analyzed its impact on
831 the model’s attention patterns. As detailed in Table 7, we calculated the total attention scores on vi-
832 sual tokens using the DocVQA test set. Specifically, we extracted attention scores from layers 4, 12,
833 20, and 28, and averaged the scores across all attention heads and samples. The result demonstrates
834 that MRoPE equipped with *spatial-reset* allocate more attention on visual content, particularly in
835 deeper layers, confirming it’s effectiveness in enhancing the model’s visual focus.

Method	Layer 4	Layer 12	Layer 20	Layer 28
MHRoPE	40.31	21.76	32.05	19.00
w/o <i>spatial-reset</i>	35.99	19.68	22.02	9.93
MRoPE-I	37.48	15.68	28.08	23.23
w/o <i>spatial-reset</i>	31.22	17.66	16.02	11.69

841 Table 7: Average attention scores (%) on visual contents. The inputs are from DocVQA test set.
842 And the scores are averaged between attention heads and samples.

844 D.5.2 ALLOCATION RATIO OF FREQUENCY

846 We further investigate different allocation ratios under the interleave frequency strategy. The results
847 are summarized in Table 8. The balanced allocation (t:h:w = 24:20:20) achieves the best overall per-
848 formance. Increasing the proportion of channels assigned to the temporal axis reduces the available
849 high-frequency capacity for spatial dimensions. This leads to a degradation in grounding ability and
850 negatively impacts benchmarks involving spatial understanding in both images and videos.

Allocation Ratio	Image	Video	Grounding	Overall
0:32:32	66.42	51.01	76.02	64.48
12:26:26	66.30	51.93	75.77	64.67
24:20:20	66.65	52.36	75.85	64.95
32:16:16	64.07	51.15	74.65	63.29
48: 8: 8	65.06	51.17	72.87	63.03

857 Table 8: Ablation results of different frequency allocation ratios under interleave design.

860 D.5.3 TEMPORAL STRIDE IN VIDEO MODELING

862 This section investigates the impact of different temporal strides between video frames. Specifically,
863 we experiment with $\delta = 0.5, 1, 2$, as well as dynamic strides as used in V2PE and HoPE (with $\delta = 1$
864 applied during inference). The results are shown in Table 9.

864	Stride	MVBench	STAR	VideoMME	LVBench	MLVU	Charades	Overall
865	0.5	56.55	57.90	58.96	38.99	62.37	31.88	51.11
866	1	57.05	57.79	58.96	40.54	65.46	34.36	52.36
867	2	55.70	58.13	58.15	38.02	63.11	33.51	51.10
868	Dynamic	56.28	57.93	58.74	41.12	63.75	32.99	51.80

869
870 Table 9: Comparison of temporal stride settings for video benchmarks on MRoPE-I.
871872 From the results, $\delta = 1$ achieves the best overall performance, while smaller ($\delta = 0.5$) or larger
873 ($\delta = 2$) strides lead to performance drops. Incorporating the dynamic stride from V2PE does not
874 shows a significant benefit.
875876 **D.6 FULL EXPERIMENT RESULTS ON QWEN3-VL**
877878 We present the complete results of our main experiments on Qwen3-VL. Table 10 and Table 11
879 report the performance of **Qwen3-VL-4B-Instruct** and **Qwen3-VL-8B-Instruct**, respectively.
880 Across both model scales, MHRoPE and MRoPE-I consistently outperform other multimodal posi-
881 tional encoding variants. The experimental settings are identical to those in the main experiments.
882883 Table 10: Overall performance of multimodal RoPEs variants on various benchmarks, evaluated
884 on Qwen3-VL-4B-Instruct. The highest score is shown in **bold**, while the second-highest score is
885 underlined.

886	Types	Benchmarks	Vanilla RoPE	MRoPE	VideoRoPE	HoPE	CircleRoPE	MHRoPE	MRoPE-I
887	Image	MMMU	45.78	42.89	44.44	45.44	45.33	46.11	46.33
		MMBench _{avg}	68.77	71.26	69.20	70.79	<u>71.35</u>	71.56	71.20
		MMstar	43.67	42.87	41.87	43.53	43.73	43.73	45.00
		OCRBench	35.20	37.30	32.10	28.70	37.10	38.60	38.30
		AI2D	66.71	67.29	63.21	63.46	66.06	68.32	69.29
		RealworldQA	57.12	56.60	57.25	57.52	57.25	58.86	59.78
		DocVQA	46.59	43.13	25.27	27.25	44.60	46.77	46.89
		TextVQA	46.65	48.25	47.10	47.16	47.27	48.60	48.27
		InfoVQA	30.55	28.14	16.22	17.32	30.02	30.93	32.46
		ChartQA	39.64	38.80	39.37	39.52	40.68	39.76	41.64
		BLINK	36.33	36.80	34.44	34.46	<u>37.52</u>	37.22	37.88
		MVBench	54.30	53.95	53.83	<u>54.53</u>	53.13	54.98	54.30
896	Video	STAR	58.07	57.90	58.77	56.73	55.89	<u>58.66</u>	58.23
		MLVU	60.03	60.76	60.21	61.72	59.40	61.00	<u>61.29</u>
		VideoMME	50.93	50.41	50.19	51.41	50.44	51.30	50.70
		LVBench	36.93	36.35	36.09	<u>37.02</u>	35.54	37.20	36.99
		Charades-STA	39.16	38.20	40.06	40.08	40.98	41.68	41.44
900	Grounding	RefCOCO _{val}	22.51	25.53	19.58	19.74	20.38	<u>26.70</u>	28.82
		RefCOCO _{testA}	22.91	27.40	20.03	21.35	21.21	26.60	28.91
		RefCOCO _{testB}	23.20	25.14	21.90	20.27	20.88	28.13	30.68
		RefCOCO+ _{val}	17.12	20.37	15.45	15.98	15.48	<u>21.33</u>	22.61
		RefCOCO+ _{testA}	18.49	21.76	15.37	16.66	16.59	21.87	23.85
		RefCOCO+ _{testB}	18.20	20.37	17.71	16.32	16.22	23.54	25.81
		RefCOCOg _{val}	22.32	24.90	20.34	20.45	20.10	<u>26.80</u>	30.00
		RefCOCOg _{test}	21.38	23.89	20.93	19.19	19.82	<u>26.90</u>	29.52
907	Overall	Image	47.00	46.67	42.77	43.20	47.36	48.22	48.82
	Overall	Video	49.90	49.60	49.86	50.25	49.23	50.80	50.49
	Overall	Grounding	20.77	23.67	18.91	18.74	18.84	25.23	27.52

909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931

932 **Table 11:** Overall performance of multimodal RoPEs variants on various benchmarks, evaluated
933 on Qwen3-VL-8B-Instruct. The highest score is shown in **bold**, while the second-highest score is
934 underlined.

Types	Benchmarks	Vanilla RoPE	MRoPE	VideoRoPE	HoPE	CircleRoPE	MHRoPE	MRoPE-I
Image	MMMU	51.18	50.11	51.78	51.89	50.67	<u>53.33</u>	53.89
	MMBench _{avg}	<u>79.29</u>	<u>78.27</u>	<u>78.74</u>	<u>79.59</u>	<u>79.00</u>	80.78	79.50
	MMstar	51.88	52.53	53.33	52.86	54.40	53.20	53.47
	OCRBench	73.20	72.90	67.70	61.70	73.60	74.40	73.90
	AI2D	78.90	77.56	78.34	77.85	77.59	78.22	79.50
	RealworldQA	63.27	64.05	62.48	62.48	61.96	67.33	65.22
	DocVQA	<u>82.41</u>	<u>82.85</u>	<u>71.71</u>	<u>72.95</u>	<u>82.28</u>	<u>82.41</u>	83.67
	TextVQA	63.15	66.05	61.54	62.33	64.94	67.20	67.32
	InfoVQA	53.84	49.60	39.15	41.69	51.06	52.22	52.62
	ChartQA	62.52	61.04	61.00	59.04	62.96	61.89	63.44
	BLINK	37.21	37.44	37.08	37.22	<u>40.52</u>	40.00	40.45
Video	MVBench	60.35	59.90	59.70	<u>60.53</u>	59.53	60.20	60.70
	STAR	61.65	62.29	61.21	62.19	61.51	62.33	62.45
	MLVU	66.01	67.34	68.31	68.81	66.61	67.20	67.52
	VideoMME	60.07	59.78	61.48	60.56	51.04	<u>60.89</u>	60.89
	LVBench	42.22	41.06	42.93	42.48	38.80	42.00	41.58
	Charades-STA	50.39	51.79	52.90	52.30	51.77	52.13	52.70
Grounding	RefCOCO _{val}	73.22	74.16	71.68	73.22	74.70	76.88	77.72
	RefCOCO _{testA}	<u>76.45</u>	<u>77.11</u>	<u>73.77</u>	74.50	76.77	<u>79.41</u>	83.21
	RefCOCO _{testB}	71.40	72.09	69.89	70.93	73.22	<u>72.89</u>	76.45
	RefCOCO+ _{val}	65.77	65.94	62.05	66.33	66.37	<u>67.99</u>	70.88
	RefCOCO+ _{testA}	71.17	72.25	68.08	72.89	72.41	<u>75.08</u>	77.79
	RefCOCO+ _{testB}	59.97	60.46	59.26	60.58	61.16	<u>63.18</u>	64.33
	RefCOCOg _{val}	71.14	73.10	69.77	71.28	72.33	<u>74.14</u>	76.47
	RefCOCOg _{test}	71.57	72.68	69.45	71.82	72.67	<u>74.65</u>	76.79
Overall	Image	63.35	62.95	60.26	59.96	63.54	<u>64.63</u>	64.82
	Video	56.78	<u>57.03</u>	<u>57.75</u>	57.81	54.88	<u>57.46</u>	<u>57.64</u>
	Grounding	70.09	70.97	67.99	70.19	71.20	<u>73.03</u>	75.46

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971