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ABSTRACT

Computer-Aided Design (CAD) has significant practical value in various industrial
applications. However, achieving high-quality and diverse shape generation, as
well as flexible conditional control, remains a challenge in the field of CAD
model generation. To address these issues, we propose CADiffusion, a diffusion-
based generative model with a hierarchical latent representation tailored to the
complexities of CAD design processes. To enhance the performance and reliability
of the model in generating accurate CAD models, we have developed a specialized
decoder with regularization strategies that navigate through the noise space of
the diffusion model, smoothing the results. This approach not only improves the
diversity and quality of the generated CAD models but also enhances their practical
applicability, marking a significant advancement in the integration of generative
models and automated CAD systems.

1 INTRODUCTION

In the field of 3D computer vision, exploring the generation of 3D shapes has emerged as a promi-
nent issue in recent times. Various research studies have been conducted that encompass explicit
representations such as point clouds Yang et al. (2019); Cai et al. (2020); Mo et al. (2019), polygon
meshes Groueix et al. (2018); Wang et al. (2018); Nash et al. (2020), voxel grids Liao et al. (2018);
Li et al. (2017), and implicit representations Park et al. (2019); Mescheder et al. (2019); Chen et al.
(2020) such as neural radiance fields (NeRFs) and signed distance functions (SDFs). Despite the
significant progress achieved by these methodologies, the effectiveness of generating 3D models for
practical applications remains unsatisfactory, mainly due to constraints related to data availability
and modeling capabilities of the models. In contrast to other forms of 3D data, Computer-Aided
Design (CAD) data holds immense practical value and finds applications across various industrial
domains, ranging from automotive and aerospace to manufacturing and architectural design. CAD
software serves as the cornerstone for creating 3D shapes in these domains, facilitating intricate
design processes, and streamlining manufacturing workflows. Therefore, exploring the generation
of CAD models is highly significant as it has the potential to innovate many existing production
processes. Our work primarily explores representations and the corresponding generative model
structures that are more suitable for CAD generation.

Despite some existing research on the generation of CAD data, challenges persist to enhance the
quality and diversity of the generated shapes. Current methodologies face challenges in generating
highly diverse CAD shapes, primarily due to limitations in supporting the intricacies of CAD spatial
modeling. DeepCAD Wu et al. (2021) generates CAD commands directly without modeling a space
suitable for CAD generation. Moreover, the exploration of generative models remains limited to
those such as GANs and autoregressive transformers Xu et al. (2022; 2023). Beyond the issues of
quality and diversity, existing methods also struggle to ensure the consistency and realism of the
generated results with the input conditions in conditional CAD generation.

To address these challenges, we introduce a hierarchical implicit space and, on top of it, we propose
CADiffusion, a diffusion-based generative model with a latent representation structured in a tree logic.
Most modern CAD design tools employ a “Sketch and Extrude” style workflow, where designers
first draw loops of 2D curves as outer and inner boundaries to create 2D profiles, then extrude the
2D profiles to 3D shapes, and finally add or subtract 3D shapes to build complex CAD models.
Therefore, a hierarchical representation perfectly aligns with the inherent logic of CAD itself. This
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hierarchical structure also offers effective design control at different levels of the hierarchy. When
modeling the latent space for CAD, we also need to consider the external, visible compositional logic
of CAD. In our approach, the CAD data is divided into three distinct hierarchical levels, with each
level employing a VAE to obtain latent representations. These representations are then organized into
a tree logic latent structure.

To learn the probability distribution in the proposed latent space, we leverage diffusion models, which
have recently achieved significant success in various 2D generation tasks. We find that diffusion
modeling method also exhibits high-quality and highly diverse generation capabilities in CAD data.
After using the diffusion model to fit the CAD data, to convert the CAD latent generated by the
diffusion model into CAD models accurately and efficiently, we designed a corresponding decoder
along with regularization terms. This involves navigating through the diffusion model’s noise space
and smoothing the outcomes of the sampled noise. This process ensures that the decoder can translate
any sample from the Gaussian noise space into a reasonable CAD model. The regularization approach
not only enhances the decoder’s ability to handle variations but also contributes to the overall stability
and reliability of CAD model generation in an automated setting. By integrating this regularized
training methodology, we can bridge the gap between generating realistic data and the latent diffusion
modeling, ensuring that the enhancements in generative model technology translate effectively into
practical improvements in CAD systems. We evaluate the effectiveness of CADiffusion on benchmark
datasets and show that it outperforms baseline approaches in a variety of metrics.

Therefore, our contributions can be summarized as follows: 1) We are the first to explore the use of
diffusion models for CAD generation, and have designed corresponding models and representations.
2) We have introduced a new regularization strategy specifically for CAD latent diffusion models,
enabling the decoder to produce more reasonable and higher quality results. 3) Our CAD generation
model achieves state-of-the-art performance, surpassing previous methods.

2 RELATED WORK

2.1 3D GENERATIVE MODELS

In recent years, significant attention has been directed towards the development of generative models
for 3D shapes. Many existing approaches generate 3D shapes discretely, employing representations
such as voxelized shapes Liao et al. (2018); Li et al. (2017), point clouds Yang et al. (2019); Cai
et al. (2020); Mo et al. (2019), polygon meshes Groueix et al. (2018); Wang et al. (2018); Nash et al.
(2020), and implicit signed distance fields Park et al. (2019); Mescheder et al. (2019); Chen et al.
(2020). Despite their prevalence, these models often produce shapes with noise, limited geometric
sharpness, and lack direct user editability. To address these limitations, recent research has focused
on neural network architectures that generate 3D shapes through sequences of geometric operations.
CSGNet Sharma et al. (2018), for instance, infers Constructive Solid Geometry (CSG) operations
from voxelized shape inputs, while UCSG-Net Kania et al. (2020) enhances the inference process
without relying on ground truth CSG trees. In addition, some approaches use domain-specific
languages (DSLs) Mo et al. (2019); Jones et al. (2020) to synthesize 3D shapes. For instance,
ShapeAssembly by Jones et al. Jones et al. (2020). introduces a DSL that constructs 3D shapes
using hierarchical and symmetrical cuboid proxies, which can be generated through a variational
autoencoder.

2.2 CAD GENERATION

Early research focused on direct CAD modeling without using any supervision from CAD modeling
sequences. A common theme is to construct parametric curves Wang et al. (2020) and surfaces Sharma
et al. (2020) with fixed Smirnov et al. (2021) or arbitrary topology for sketches Willis et al. (2021c)
and solid models Wang et al. (2022); Guo et al. (2022); Jayaraman et al. (2022). In recent years,
the availability of large-scale parametric CAD datasets has allowed learning-based methods to take
advantage of data from CAD modeling sequences Willis et al. (2021b); Wu et al. (2021); Xu et al.
(2022) and sketch constraints Seff et al. (2020) to generate engineering sketches and solid models.
The resulting sequences can be processed using a solid modeling kernel to acquire editable parametric
CAD files containing 2D engineering sketches Willis et al. (2021c); Para et al. (2021); Ganin et al.
(2021); Seff et al. (2022) or 3D CAD shapes Wu et al. (2021); Xu et al. (2022). Furthermore, the
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generation process may be influenced by the target B-rep Willis et al. (2021b); Xu et al. (2021),
sketches Li et al. (2020); Seff et al. (2022), images Ganin et al. (2021), voxel grids Lambourne et al.
(2022), or point clouds Uy et al. (2021), occasionally with sequence guidance Ren et al. (2022); Li
et al. (2023).

More recently, there have been some advancements in the field of CAD model generation. Deep-
CAD Wu et al. (2021) directly generates CAD commands without modeling the data representations
first. CAD models are graphically and geometrically complex, and generating commands can lead to
overly simplified results. Consequently, the outcomes from DeepCAD are generally quite simple.
Subsequent efforts, such as those by SkexGen Xu et al. (2022) and HNC Xu et al. (2023), have
employed autoregressive transformer models. Their use of discrete formats excessively compresses
the representations, failing to effectively capture the intrinsic logic of CAD data. The representations
utilized by these methods are either too redundant or semantically sparse, which impairs the genera-
tive model’s performance in fitting them. Compared to other 3D data, CAD possesses parametric
characteristics, and suitable representations and models for it are still under exploration.

2.3 DIFFUSION MODELS

Diffusion Probabilistic Models (DPMs) Sohl-Dickstein et al. (2015); Ho et al. (2020), commonly
referred to as diffusion models, have emerged as a robust class of generative models. Unlike
previous leading generative models such as the Generative Adversarial Network Goodfellow et al.
(2020), Variational Autoencoder (VAE) Kingma & Welling (2014), and flow-based generative
models Rezende & Mohamed (2015), diffusion models exhibit notable advantages in terms of training
stability and generative diversity Croitoru et al. (2023). They have shown promising performance
in image Ho et al. (2020); Dhariwal & Nichol (2021); Nichol et al. (2022); Rombach et al. (2022)
and speech Chen et al. (2021); Kong et al. (2021) synthesis. In particular, diffusion model-based
approaches have shown remarkable results in text-to-image synthesis Ramesh et al. (2022); Rombach
et al. (2022); Saharia et al. (2022). In the realm of 3D computer vision, several studies have embraced
diffusion models for generative 3D modeling Luo & Hu (2021); Zhou et al. (2021); Zeng et al. (2022).
For example, PVD Zhou et al. (2021) used diffusion models to create 3D shapes using a point-voxel
3D representation. Luo et al. Luo & Hu (2021) considered points in point clouds as particles within a
thermodynamic system with a heat bath. LION Zeng et al. (2022) introduced a VAE framework with
hierarchical diffusion models in latent space. Similar attempts Chou et al. (2023); Cheng et al. (2023)
have also applied diffusion models to the generation of SDFs. However, no exploration of diffusion
models has been made on CAD data. We are the first to attempt using diffusion models to generate
CAD data and have achieved very promising results.

3 METHOD

3.1 PRELIMINARIES: HIERARCHICAL CAD REPRESENTATION

CAD (Computer-Aided Design) models are inherently hierarchical because of the nature of the
objects they represent. This hierarchical structure is essential to accurately represent and manipulate
engineering designs, mechanical components, and architectural plans. Thus, in our approach, we
employ a hierarchical representation for CAD that builds on the foundations laid by SkexGen Xu
et al. (2022) and HNC Xu et al. (2023), which themselves are extensions of the pioneering work of
TurtleGen Willis et al. (2021a) and DeepCAD Wu et al. (2021).

CAD Representation: Similar to HNC Xu et al. (2023), we conceptualize a CAD model
as a tree, where it is organized into three levels: Solid, Profile, and Loop. At the low-
est level, a “loop” represents the basic connected curve in the model. It is composed of
a set of lines, arcs, and circles. Each such primitive is defined by two, three, or four xy-
coordinates, L = {(x1, y1) , (x2, y2) , ⟨SEP⟩, (x3, y3) , . . .}. Moving up the hierarchy, a “pro-
file” defines a closed area on a sketch plane. It is constructed from a group of 2D bounding
boxes. Each bounding box encompasses multiple loop elements that form part of the sketch,

P = {(xi, yi, wi, hi)}
N loop

i
i=1 . (xi, yi) is the bottom-left corner of the bounding box. (wi, hi) is

the width and height. Finally, at the top level, a “solid” represents a set of extruded profiles.
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Figure 1: Overview of CADiffusion. We employ three
distinct VQ-VAE models to perform data compression
(top). Building upon this, we represent CAD data as cor-
responding tree-structured latent representations, which
serve as input to our diffusion model and can be guided
by various inputs (middle). To obtain a decoder suitable
for CAD decoding, we designed specialized regulariza-
tion strategies to ensure that samples from the Gaussian
space generate reasonable CAD models (bottom).

These extruded profiles are combined
to form the entire 3D model, S =

{(xj , yj , zj , wj , hj , dj)}
N profile

j

j=1 . The solid
is described by a set of 3D bounding box
parameters, providing a comprehensive rep-
resentation of the volumetric aspects of the
model. j is the index of the N profile

j ex-
truded profiles within a model. (xj , yj , zj)
is the bottom-left corner of the bounding
box and (wj , hj , dj) is its dimension.

Hierarchical Latent Representation: We
use an adaptation of vector quantized VAE
(VQ-VAE) van den Oord et al. (2017) con-
sisting of a transformer encoder E and a de-
coder D to analyze and compress the CAD
dataset. The dataset comprising sketch and
extrude CAD models organized in a (S)olid-
(P)rofile-(L)oop tree structure. This ap-
proach learns the distinct patterns inherent
in the models by employing three discrete
codebooks. Although the formats vary at
each level, we have uniformly set the la-
tent code length to 256 dimensions for ease
of subsequent processing. Thanks to the
powerful generative capabilities of our dif-
fusion process, unlike HNC, we only need
to use the simplest VQ-VAE without resid-
ual connections for modeling. Similar to hierarchical CAD representation, hierarchical codes are
represented as a series of feature vectors, where each feature vector indicates a code or a separator
token. We organize latent codes of three different levels into a tree structure, which is represented as
follows: [S, ⟨SEP⟩,P,L,L, ⟨SEP⟩,P,L,L,L,L, ⟨END⟩], where uppercase letters represent latent
codes of the corresponding levels. The boundary command ⟨SEP⟩ indicates a new grouping of profile
and loop codes, ⟨END⟩ indicates the end of the data. We pad zeros after the ⟨END⟩ to unify the
length of different CAD models and then form two-dimensional tensors.

3.2 DIFFUSION MODEL FOR CAD

Diffusion models (DMs): DMs learn a specific distribution by iteratively denoising a Gaussian
variable through a fixed-length Markov chain, denoted as T . Specifically, given a data sample x0

drawn from the distribution q (x0), two distinct processes are defined: a forward process q (x0:T ),
which progressively transforms a data sample into Gaussian noise, and a reverse process (generation
process) pθ (x0:T ), which gradually denoises the Gaussian noise back into the real data.

q (x0:T ) = q (x0)Π
T
t=1q (xt | xt−1) , pθ (x0:T ) = p (xT )Π

T
t=1pθ (xt−1 | xt) , (1)

both q (xt | xt−1) and pθ (xt−1 | xt) represent Gaussian transition probabilities formulated as

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) , βtI) . (2)

The mean variable µθ (xt, t) for the reverse transition pθ (xt−1 | xt) can be represented as:

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
, (3)

where αt = 1 − βt, ᾱt = Πt
i=1αi, and βt gradually decreases to 0 as t approaches 0. During the

training stage of DMs, the evidence lower bound (ELBO) is maximized, eventually yielding the loss
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function:
LDM = Ex,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ (xt, t)∥2

]
(4)

In the process, xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ represents a noise variable and t is uniformly sampled

from the set {1, . . . , T}. The key component of denoising diffusion models is the neural network-
based score estimator ϵθ (xt, t), which serves as a time-step-conditioned denoising model.

Diffusion Model for CAD: Based on the description above, we organize tree logic latent representa-
tion into a 2-D tensor z corresponding to CAD. Since we have already captured the organizational
logic of CAD in the tree-latent space, we aim to use the diffusion model to fit the data on a holistic
level and generate coherent CAD models. Specifically, we obtain zt, t ∈ {1, . . . , T} from a sample zt
by incrementally introducing Gaussian noise with a predetermined variance schedule. Subsequently,
we employ a transformer-based time-conditional denoising model ϵθ. To train the denoising model,
we utilize the simplified objective introduced by Ho et al. Ho et al. (2020) :

Lsimple (θ) := Ez,ϵ∼N(0,1),t

[
∥ϵ− ϵθ (zt, t)∥2

]
. (5)

During the inference phase, we generate ẑ0 by progressively removing noise from a variable sampled
from the standard normal distribution N(0, 1).

3.3 CAD DECODER REGULARIZATION TERM

The unique challenges presented by our latent diffusion model, which generates hierarchical, tree
logic latent representations, are presented below. Parsing generated latents into different hierarchies
is prone to errors and can be overly cumbersome. Instead, the latents generated encapsulate the logic
and components of CAD, enabling direct decoding into a CAD model. This approach is indeed more
efficient; however, it is crucial to ensure its accuracy as well. Although the three different levels of
latents is logically assembled together, decoding it into a realistic CAD model is more challenging
than reconstructing a single level of CAD components separately. We found that training this decoder
solely with the latents of training dataset is insufficient and leads to some unrealistic decoded results.
To enhance the stability and fidelity of our CAD generation process, a novel regularization technique
is developed. This technique involves perturbing the latent space to simulate variations that the
diffusion model might generate, thus training the decoder to be resilient to these variations and
ensuring smoother transitions between different CAD models. The regularization process consists of
several steps, detailed below:

Inverse Mapping to Noise Space: Initially, the latent representation from dataset is mapped back to
the noise space using the DDIM inversion method Song et al. (2021). The DDIM inversion process
systematically reintroduces noise into a clean latent representation to reach a noised state that can
then be diffused to regenerate the original latent, effectively serving as a way to explore variations in
the generated CAD models. Starting from a latent at the initial time step, the DDIM inversion aims
to compute a corresponding noised latent after T steps. The inversion process is governed by the
following equation:

ẑt =
√
αt

ẑt−1 −
√
1− αt−1εθ√
αt−1

+
√
1− αtεθ, (6)

where αt is a pre-determined noise schedule parameter, and εθ is the neural network predicting the
noise component.

Gaussian Perturbation: Once the DDIM inversion maps the clean latent z0 to a noised latent ẑT ,
we apply Gaussian perturbation as part of our regularization strategy. The perturbed noise latent ẑ′T
is then given by:

ẑ′T = (1− σ)ẑT + σN (0, I), (7)

where σ is a scaling factor and N (0, I) represents isotropic Gaussian noise. The perturbed noise
vector is then used to regenerate a new latent vector ẑ′0 = DDIM(ẑ′T ) through the forward diffusion
process.

5
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Figure 2: Unconditional generation results of four different methods. DeepCAD and SkexGen
frequently resort to assembling simple components, resulting in CAD models that lack the rationality.
While HNC’s outcomes display significant improvement, they occasionally contain artifacts with
small components. In contrast, our method produces high quality results with well structure.

Distance Minimization: The perturbation does not deviate far enough from the original latent, we
can minimize the distance between the decoded results of the perturbed latents and the original CAD:

min
D

∥D(ẑ′0)− CAD∥. (8)

This regularization term aims to train the decoder to produce smooth and consistent CAD models,
reducing artifacts, and ensuring that the models are robust to variations in the latent input. The latent
representations z0 of the original data are also used to train this decoder. This enhanced approach
not only addresses the complexity of translating hierarchical latent structures into functional CAD
designs but also significantly improves the adaptability and quality of the generated models.

3.4 CONDITIONAL GENERATION

The ability to randomly sample shapes offers limited scope for interaction, underscoring the im-
portance of learning a conditional distribution for user applications. It is crucial to accommodate
multiple forms of conditional inputs to address diverse scenarios effectively. Using the flexible
conditional mechanism facilitated by the diffusion model, we integrate multiple conditional input
modalities using task-specific encoders Eϕ and a cross-attention module. To enhance flexibility in
controlling the distribution, we adopt classifier-free guidance for conditional generation. For training
such conditional model, the objective function is formulated as follows:

L (θ, {ϕi}) := E
z,c,ϵ,t

[
∥ϵ− ϵθ (zt, t,D ◦ Eϕi

(ci))∥2
]

(9)
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The task-specific encoder Eϕi
(ci) is employed for the ith modality, while D represents a dropout

operation facilitating classifier-free guidance. In this work, we mainly explore two conditions with
many practical applications: using point clouds and initial user input.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset: Using the extensive DeepCAD dataset Wu et al. (2021), we acquire ground truth sketch-and-
extrude models, comprising 178,238 instances. These models are divided into a training set (90%), a
validation set (5%), and a test set (5%). To ensure the integrity of the data set, we implement methods
similar to previous studies Willis et al. (2021c); Xu et al. (2022) to detect and eliminate duplicate
models from the training set. In addition to removing duplicate models, we extract hierarchical
properties for loops, profiles, and solids, and subsequently remove duplicate properties at each level.
Furthermore, for training purposes, CAD models are included only if they meet specific criteria: a
maximum of 5 solids, 20 loops per profile, 60 curves per loop, and a maximum of 200 commands
in the sketch-and-extrude sequence. Following the duplicate removal and filtering processes, the
training dataset comprises 102,114 solids, 60,584 profiles, and 150,158 loops for codebook learning.
Additionally, 124,451 sketch-and-extrude sequences are retained for CAD model generation training.
For CAD engineering drawings, we adopt the approach described in SkexGen Xu et al. (2022) and
extract sketches from DeepCAD. A total of 99,650 sketches are utilized for training purposes after
duplicate removal.

Other Details: The model is trained on a Nvidia RTX A100 GPU with a batch size of 256. Each
VQ-VAE model and model decoder are trained for 250 epochs. For the randomly generated and
conditionally generated diffusion models, we train them for 350 epochs and 500 epochs, respectively.
We use the AdamW optimizer Loshchilov & Hutter (2018) with a learning rate of 0.001 after a
linear warm-up for the first 2000 steps. The VQ-VAE network consists of 4 layers. For the diffusion
model, there are six blocks, each comprising a self-attention layer and a fully-connected layer. If it
is a conditional generation, each block also includes a cross-attention layer. During the generation
process, we use DDIM for sampling, with a sampling step of 100 steps. For the corresponding scale
of the CFG, we set it to 3. σ for perturbation is set it to 0.1. More details can be found in the appendix.

Evaluation Metrics: We use five established metrics to quantitatively assess random generation.
Three metrics are based on point clouds sampled on the model surfaces. Two metrics scrutinizing
generated tokens originating from sketch and extrude construction sequences. For point-cloud
evaluation, 2,000 points are sampled from each generated and ground-truth dataset, facilitating a
comparative analysis of the two sets. Descriptions of metrics are referred to in the appendix.

4.2 UNCONDITIONAL GENERATION

Figure 3: Conditional generation results of CAD
from initial user input.

For the unconditional generation, we con-
duct comparisons with three CAD genera-
tion works, DeepCAD, SkexGen and HNC.
The results of the other three methods were
obtained using publicly available code, and
we used their default settings. Each method
produces 10,000 CAD models, which are
then compared with a randomly selected
subset of 2,500 ground truth models from
the test set. We compute all metrics three
times and take the average for comparison.

Quantitative Evaluation: As shown in
Table 1, our method performs better than
previous methods in all three metrics corre-
sponding to point clouds, especially MMD and JSD, which are significantly better than the baseline
methods, demonstrating notable improvements in both quality and diversity. The uniqueness score of
our method is similar to the previous two methods and significantly better than DeepCAD. Although
SkexGen’s novelty score is similar to ours, it fails to generate highly complex CAD models (see
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Table 1: Quantitative evaluations on the CAD generation task based on the Coverage (COV)
percentage, Minimum Matching Distance (MMD), Jensen-Shannon Divergence (JSD), the percentage
of Unique, Novel scores and Realism.

Method COV % ↑ MMD ↓ JSD ↓ Novel % ↑ Unique % ↑ Realism % ↑
DeepCAD 79.98 1.21 3.34 90.5 86.4 36.4
SkexGen 83.58 1.11 0.91 99.2 99.8 42.3
HNC 86.62 1.03 0.74 94.1 99.7 44.1
Ours w/o reg 89.03 0.12 0.13 99.8 99.7 43.1
Ours 90.08 0.10 0.13 99.8 99.6 51.3

Table 2: Comparison with DeepCAD and Draw Step by Step, mean and median Chamfer Distance
(CD) results. By employing more advanced conditional generation models, our method obtains more
accurate reconstruction results.

Model Mean CD ↓
(
×103

)
Median CD ↓

(
×103

)
DeepCAD 43.18 9.836
Draw Step by Step 39.16 7.821
Ours 32.17 6.304

Figure 2), as reported in previous methods. The comparison of these results demonstrates that our
distribution fitting is quite effective. However, these metrics are intended to indicate how closely
the model’s output matches the real distribution. They do not adequately measure the realism of the
results. To better demonstrate the effectiveness of our approach from a quantitative perspective, we
introduce a Human Evaluation similar to that in HNC Xu et al. (2023) to measure the realism of the
generated complex results. For specific practices, please refer to the appendix. From this realistic
comparison result in Table 1, it can further be seen that our method is capable of learning to generate
complex and realistic models.

Figure 4: Conditional generation results of CAD
from point clouds.

Qualitative Evaluation: As shown in Fig-
ure 2, the results of DeepCAD do not ex-
hibit significant issues when generating a
simple CAD. However, when tasked with
generating complex structures, it often re-
sorts to assembling original components
and struggles to create CADs that resem-
ble real-world examples in a rational man-
ner. SkexGen may perform slightly better
than DeepCAD, but it still encounters sim-
ilar challenges. HNC’s results show con-
siderable improvement, yet artifacts with
small components are occasionally present.
In comparison, our approach yields results
with more well-structured characteristics,
closely resembling real mechanical parts.

4.3 CONDITIONAL GENERATION

Autocompletion from User Input: We
consider generating a detailed model given an initial model, and we can also use this type of input
as control conditions for the diffusion model to generate corresponding potential CAD models for
automatic completion purposes. During the training process, we utilize random initial inputs as
conditions for the conditional encoder, which serves as input for the diffusion model to reconstruct
the corresponding complete CAD models. The encoder encodes the extruded profile parameters and
shares the same structure as the encoder employed in training the codebook with VQ-VAE. Figure 3
shows the corresponding CAD autocomplete results with rich details from initial extruded profiles.
Each row contains multiple generated results, each corresponding to different noise samples. It can be
observed that the autocomplete results are generally reasonable and of high quality, which can assist
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designers in CAD design. HNC has also implemented a similar functionality, and we have compared
it. Due to the lack of a more suitable comparative method, we also employed human evaluation to
test Realism. The results for the HNC Realism were 48.2%, while ours were 52.5%.

Point to CAD: 3D reverse engineering entails inferring a CAD model from a 3D scan, a process that
demands the expertise of designers and often consumes considerable time. Our method can control
the generation process through conditional input from point clouds to obtain CAD models that closely
resemble the point clouds, thus achieving a relatively rapid and accurate reverse engineering process
to some extent. The encoder used here is a pre-trained ULIP Xue et al. (2023) PointNet Qi et al.
(2017). Next, we assess the proposed method for CAD generation based on the point cloud condition.
As shown in Figure 4, given a point cloud, our method can obtain a CAD model that is generally
similar in overall structure. DeepCAD has also implemented a similar functionality, and we have
compared it with our method and another method called Draw Step by Step Ma et al. (2024). For the
reconstructed CAD results, we assess them quantitatively against ground truth CAD models using
mean and median Chamfer Distances (CD). The quantitative comparison results are shown in Table 2.

4.4 ABLATION STUDY

Figure 5: Ablation study. It can be observed that the
results on the right, which incorporate regularization,
are more aesthetically pleasing and logical, with less
noise compared to those without regularization.

To demonstrate the significance of the reg-
ularization term we introduced, we con-
ducted a comparative analysis between
models with and without this regulariza-
tion. As illustrated in Figure 5, the de-
coder enhanced with regularization is capa-
ble of rationalizing outputs that were previ-
ously deemed unrealistic. Initially, some of
these unsatisfactory results were attributed
to noise and a lack of inherent symmetrical
logic in the decoded outputs. By integrat-
ing a smoothness-inducing regularization,
we observed that the decoder could pro-
duce CAD models that more closely align
with the intrinsic logic of mechanical parts. For more visual results, please refer to the appendix.

As shown in the last two rows of Table 1, after adding the regularization terms, the realism of the
results generated by our method has significantly improved. Our regularization improves other metrics
as well, but not as significantly, because, as with HNC, the Realism metric measures the complex
results with three or more extrusions, as only such complex results have evaluative value. Other
metrics measure the average across all generated results, and our regularization does not significantly
improve simple CAD results, which have limited potential for improvement. This leads to a relatively
minor improvement in other metrics when averaged. No single metric can fully evaluate the quality of
generated results, generating complex but unrealistic results can lead to high Novelty and Uniqueness
scores, without significantly affecting other metrics that measure the diversity of generated results.

5 CONCLUSIONS AND FUTURE WORK

In conclusion, we have introduced CADiffusion, a novel diffusion-based generative model tailored for
Computer-Aided Design (CAD) data generation. Our approach addresses the persistent challenges
in producing diverse and high-quality CAD shapes by seamlessly integrating diffusion models and
Vector Quantized Variational Autoencoders (VQVAE) to obtain latent representations. Through
extensive experimentation, we have demonstrated the effectiveness of CADiffusion, achieving state-
of-the-art performance on benchmark datasets. Additionally, we introduced a regularization method
specifically tailored for training the decoder. This method employs perturbations in the Gaussian
space to smooth the decoder’s outputs, thereby enabling it to produce more reasonable results. We
believe that CADiffusion opens up new possibilities for advancing 3D shape generation in practical
CAD modeling and design applications.

limitation. The current results of point to CAD do not fully match the input yet. In the future, we
hope to explore better reverse engineering methods using diffusion priors.
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A EVALUATION METRICS

Due to the unique characteristics of CAD data modalities, we have provided detailed explanations of
the five different metrics mentioned in the main paper here, to facilitate reader understanding.

• Coverage (COV) denotes the proportion of ground-truth models that contain at least one
matched generated sample, where matching is determined based on the Chamfer distance
(CD) or Earth Mover’s distance (EMD). COV serves as a measure of the diversity of
generated shapes, revealing potential mode collapse if only a few ground-truth models are
matched, resulting in low coverage scores.

• Minimum Matching Distance (MMD) calculates the average minimum matching distance
between the ground truth and generated sets.

• Jensen-Shannon divergence (JSD) assesses the similarity between two probability distribu-
tions, reflecting the degree to which ground truth and generated point clouds occupy similar
locations. Utilizing voxelization, occupancy distributions are computed to derive the JSD
score.

• Novelty indicates the percentage of generated CAD sequences absent in the training set,
while uniqueness signifies the percentage of generated data that appear once within the
generated set.

B INPLEMETATION DETAILS

The tree structure corresponding to the CAD is obtained directly by parsing according to the CAD
logic, implemented by a segment of code. This part is the same as in HNC. The CAD latent used
for diffusion learning is in the form of tensors with a shape of 32 × 256, the input and output
shapes are the same. Therefore, all our model architectures use 1D transformer structures, which
mainly include Self-Attention, Fully Connected Layers, and Cross-Attention layers. In the Self-
Attention mechanism, the basic QKV form corresponds to different matrix transformations followed
by attention calculations. In the Cross-Attention layer, the input conditions are also transformed
into an n× 256 format by a specific encoder and then used as the KV components in the attention
computation.

C HUMAN EVALUATION

Our approach to Human Evaluation is similar to HNC and SolidGen. For each method that need to
be evaluated, we randomly select models with three or more extrusions from their results generated
without any conditions. For each model created by a generation method, we randomly choose a
real model from the dataset and display the rendered images of these two models side by side.
We randomly select 100 results from each method, and the image pairs are presented to college
participants, who are asked to assess which one appears more “realistic.”

D MORE EXPERIMENTAL RESULTS

Here, we include visualizations of more results. Randomly generated results are shown in Figure 6,
autocompletion results are shown in Figure 7, and Point2CAD results are shown in Figure 8. For
more ablation study results, please refer to Figure 9.
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Figure 6: Random generation results of CADiffusion. The CADiffusion model can generate
diverse and realistic CAD models.
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Figure 7: Conditional generation results of CAD from initial user input. The leftmost column
represents initial conditional inputs. The autocomplete results demonstrate a consistent level of
quality and reasonableness, providing valuable assistance to CAD designers in their design processes.
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Figure 8: Conditional generation results of CAD from point clouds. The rows from top to bottom
consist of input point clouds and their corresponding generated CAD models. Based on a provided
point cloud, our approach is capable of deriving a CAD model that exhibits a broad similarity in its
overall structure.
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Figure 9: Ablation studies. It can be observed that the results which incorporate regularization, are
more aesthetically pleasing and logical, with less noise compared to those without regularization.
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