
Compressing Large Language Models by Joint Sparsification and Quantization

Jinyang Guo 1 2 Jianyu Wu 2 Zining Wang 1 Jiaheng Liu 1 Ge Yang 2 Yifu Ding 1 Ruihao Gong 3

Haotong Qin 4 Xianglong Liu 1 B

Abstract
In this paper, we introduce a novel model com-
pression technique named Joint Sparsification and
Quantization (JSQ), explicitly tailored for large
language models (LLMs). Traditional methods
employ either sparsification or quantization in-
dividually to compress LLMs, leading to perfor-
mance degradation at high compression ratios.
In contrast, our JSQ approach integrates sparsifi-
cation and quantization cohesively. As sparsi-
fication tend to preserve outliers that is harm-
ful to quantization, we introduce a novel spar-
sity metric to serves as a bridge between the
sparsification and quantization. Moreover, it is
proven outliers in LLMs have significant impact
but harmful to compression. Current solutions are
highly coupled with quantization process, which
is not helpful to sparsification. To this end, we
also introduce a search-based activation editor
to automatically eliminate relatively useless out-
liers. Comprehensive experiments across various
datasets and architectures affirm the efficacy of
our JSQ framework. Notably, our JSQ achieves
7.96× computation reduction without crashing
for the representative model LLaMA. This ac-
complishment stands in stark contrast to the lim-
itations of most state-of-the-art LLM compres-
sion methods, which typically fail under such ex-
treme compression ratios. Our code is released at
https://github.com/uanu2002/JSQ.

1. Introduction
Although large language model (LLM) like LLaMA (Tou-
vron et al., 2023a) has achieved increasing attention because
of its strong intelligence, it brings a huge computation and

1State Key Laboratory of Complex & Critical Software Envi-
ronment, Beihang University 2Institute of Artificial Intelligence,
Beihang University 3SenseTime Research 4ETH Zurich. Corre-
spondence to: Xianglong Liu <xlliu@buaa.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Pe
rp

le
xi

ty

Computation complexity (MACs)

LLaMA-7B (14.64T)

Crash

Usable

Figure 1. Performance of compressed LLM under different com-
putation complexities.

storage burden in real-world applications. To address this
issue, many model compression techniques are proposed to
compress LLMs, including sparsification, quantization, etc.

As LLM is much larger than previous state-of-the-art mod-
els, it requires larger compression ratio for practical usage.
However, current model compression methods specifically
designed for LLM only consider one specific technique
to compress the model, suffering from significant perfor-
mance degradation when compression ratio becomes large.
For example, in Fig. 1, the state-of-the-art approach Omni-
Quant (Shao et al., 2023) crashes under low computation
complexities. So a new problem emerges: Is it possible to
maintain LLM performance under high compression ratio?

To answer this question, in this paper, we propose the Joint
Sparsification and Quantization (JSQ) framework to simulta-
neously consider the sparsification and quantization, which
is the first work to jointly utilize these two methods for
compressing LLM under high compression ratio.

Simultaneously utilizing these two techniques is non-trivial
due to two significant issues. Firstly, sparsification and quan-
tization are in contradiction with each other. Sparsification
tends to preserve parameters with large absolute values in
LLM (Han et al., 2015), while quantization prefers a small
range of parameter values (Wei et al., 2023). Consequently,
the preserved parameters in sparsification may degrade the

1

https://github.com/uanu2002/JSQ

Compressing Large Language Models by Joint Sparsification and Quantization

performance of quantization. For instance, if we preserve
weights with extremely large absolute values, the model
after sparsification may perform well. However, the sub-
sequent quantization process will encounter a large value
range, hindering promising quantization performance. On
the other hand, preserving weights with small values can
lead to satisfying quantization performance but poor sparsi-
fication results. Therefore, designing a new mechanism to
balance the effects of these two techniques is desirable.

To address this issue, we propose a new sparsity metric
called Salience with Activation Range (SAR) in our JSQ
framework, bridging the mismatch between sparsification
and quantization. Specifically, our SAR metric additionally
takes activation ranges after sparsification into account in
the compression process. We assign lower importance of
specific weights if activation range becomes large after re-
moving these weights. As a result, the sparse model after
sparsification will have small activation ranges, which is
friendly to quantization.

In addition to the contradiction between sparsification and
quantization, the second issue is how to deal with out-
liers. It has been proven that outliers play a crucial role
in LLMs (Wei et al., 2023; Xiao et al., 2023). However,
these outliers make the LLM difficult to sparsify (Yin et al.,
2023) or quantize (Shao et al., 2023) due to their extremely
large values. Existing approaches mitigate this problem
by using migration (Wei et al., 2023) or clipping (Shao
et al., 2023) techniques. But these techniques are highly
coupled with the quantization process. If we directly apply
these techniques for joint sparsification and quantization,
it can only follow the sparsity-clip/migration-quantization
pipeline, in which these techniques are not helpful for the
sparsity process, causing a sub-optimal problem.

To tackle the second problem, we further propose a search-
based activation editor to automatically remove relatively
useless outliers before sparsity. We reveal that rather than
elegantly incorporating migration or clipping in quantiza-
tion, directly editing the outliers in activation before sparsity
and quantization proves remarkably effective. The core
challenge is to find which and how we should edit outliers.
Therefore, we propose employing the simulated annealing
algorithm to search for an optimal ratio for suppressing the
activation, allowing for the smooth removal of relatively
useless outliers to enhance sparsification and quantization.

Our contribution are as follows:

▶ To the best of our knowledge, we propose the first model
compression framework JSQ to simultaneously utilize spar-
sification and quantization to compress large language mod-
els under high compression ratios.
▶ We introduce a new sparsity metric called salience with
activation range that bridges the mismatch between sparsifi-

cation and quantization.
▶ We propose a new activation editing strategy called the
search-based activation editor, which utilizes a simulated
annealing algorithm to search for an optimal ratio to trun-
cate the outlier distribution.
▶ Comprehensive experiments on multiple datasets answer
the aforementioned problem: Yes, we can maintain the per-
formance of LLMs under high compression ratios.

2. Related Work
Large language models. The emergence of large language
models (LLMs) has become a milestone in the field of
natural language processing. For example, (Radford &
Narasimhan, 2018) proposed the GPT model to stack mul-
tiple transformer decoder blocks. Meta released LLaMA
(Touvron et al., 2023a) based on an improved transformer ar-
chitecture, which is further extended to LLaMA2 (Touvron
et al., 2023b). (Zheng et al., 2023) proposed Vicuna, which
has an excellent ability to understand long context. (Al-
mazrouei et al., 2023) proposed Falcon, which has state-of-
the-art performance on most benchmarks compared to other
models of the same size. Although these LLMs achieve
significant successes, they suffer from massive parameter
sizes and a huge computation burden. In this work, we aim
to compress these LLMs for better efficiency.

Network sparsification. Network sparisification aims to
remove unimportant weights to accelerate the model (Yang
et al., 2024; Guo et al., 2023a;b; 2020b;a;c; 2022b; 2021).
(LeCun et al., 1989) proposed the first network sparsifica-
tion method OBD, using the second derivative information
of Taylor series as the weight importance. Based on OBD,
(Hassibi et al., 1993) achieves better performance by analyz-
ing the recursion relation for calculating the inverse Hessian
matrix. Recently, many network sparsification approaches
were proposed to reduce the computational and storage bur-
den of LLMs. For example, (Sun et al., 2023) proposed
an unstructural sparsity method called Wanda based on the
weight magnitudes and the corresponding input activations.
By taking activations into account, Wanda is able to effec-
tively remove less important weights and induce sparsity
in pretrained LLMs. LLM-Pruner (Ma et al., 2023) prunes
coupled structures in unison by analyzing structure depen-
dency. SparseGPT (Frantar & Alistarh, 2023a) incremen-
tally prunes each column of the weight matrix and update
the remaining weights in those rows as compensation. All
of these approaches do not jointly consider quantization. In
contrast, our JPQ approach truncates the distribution in the
sparsification process for better quantization.

Network quantization. Many methods were also proposed
for quantizing deep neural networks (Lv et al., 2024; Qin
et al., 2023a;b;c). For example, Quant-Noise (Fan et al.,
2021) quantizes some random parts of weights during each

2

Compressing Large Language Models by Joint Sparsification and Quantization

forward, and updates most of the weights using unbiased
gradients. (Guo et al., 2022a) proposed a data-free quanti-
zation method by taking advantage of approximate Hessian
information. Recently, with the popularity of LLMs, some
quantization methods especially designed for LLMs have
also been proposed (Wei et al., 2023; Huang et al., 2024; Qin
et al., 2024). For example, GPTQ (Frantar et al., 2023) im-
proves OBQ (Frantar & Alistarh, 2022) so that it can run on
LLMs with massive parameter scale. SmoothQuant (Xiao
et al., 2023) addresses the outlier issue by smoothly trans-
ferring the difficulty of quantizing activations to weights.
AWQ (Lin et al., 2023) greatly reduces the quantization er-
ror by protecting few salient parameters. OminiQuant (Shao
et al., 2023) introduces an omnidirectionally calibrated quan-
tization technique for LLMs by using learnable weight clip-
ping and learnable equivalent transformation. However,
these methods only consider how to quantize the model
without considering the sparsity. So, they often crash under
higher compression ratio.

Joint optimization. There are also joint optimization ap-
proaches to simultaneously consider sparsification and quan-
tization (Wang et al., 2020b). For example, (Ullrich et al.,
2017) utilizes soft weight-sharing to simultaneously perform
sparsification and quantization in a single step. (Wang et al.,
2020a) significantly reduces the time consumption of archi-
tecture searching by employing a quantization-aware accu-
racy predictor. (Wang et al., 2021) determines the optimal
trade-off between sparsity and quantization through solving
a joint gradient-based optimization problem. (Frantar & Al-
istarh, 2022) introduces a new compression framework that
considers both sparsity and quantization in a unified setting.
These methods are not designed for LLMs. Therefore, they
do not consider how to deal with outliers in LLM in the
joint sparsification and quantization scheme.

3. Methodology
3.1. Overview

The overview of our Joint Sparsification and Quantization
(JSQ) framework is shown in Fig. 2. Given a pretrained
LLM, we first use our activation editor to remove the rela-
tively useless outliers in activation. After editing the acti-
vation, we use our Salience with Activation Range (SAR)
metric to sparsify and quantize the weights and activation in
a layer-by-layer fashion. We iteratively perform this process
and use the simulated annealing search to find an optimal
editing vector. After searching, we use the best editing
vector to compress the LLM and obtain the compact model.

3.2. Salience with Activation Range

Motivation. As introduced in Sec. 1, sparsity and quanti-
zation are contradictory. Sparsification tends to preserve

parameters with a large absolute value, while quantization
prefers a small parameter range. To mitigate this problem,
we propose a new sparsity metric called Salience with Acti-
vation Range (SAR) to consider the subsequent quantization
process during sparsification.

Salience with activation outlier. Fig. 2 illustrates our SAR
metric. Formally, let us consider a linear layer in LLM. De-
note the input activation as X ∈ RN×cin and the weight as
W ∈ Rcout×cin , where N , cin, cout are number of tokens,
input dimensions, and output dimensions, respectively. The
output of this layer Y can be written as follows:

Y = XWT

where Yij = Σcin
k=1 Xik ·Wjk.

(1)

Here, the subscript ·ij denotes the element at ith row and
jth column in the weight or input matrix.

When compressing LLM, we aim to sparsify the weight
matrix of each layer and also quantize both weights and
activation subsequently for larger compression ratio. As
outliers play an important role in LLM, Wanda (Sun et al.,
2023) designs a criterion with the consideration of activation,
which can be written as follows:

Iij = ∥Xj∥2 · |Wij |, (2)

where ∥Xj∥2 is the Frobenius norm of the jth channel
aggregated along the token dimension. | · | denotes the
absolute value. In this way, we can calculate the importance
I ∈ Rcout×cin for each individual weight and sparsify them
based on the importance.

This metric tends to preserve outliers in LLM for more infor-
mation, resulting in an output activation with large values.
However, it does not consider the quantization process. In-
tuitively, quantization prefers the activation with a small
range, causing a contradiction with this sparsity metric. To
mitigate this problem, we design our SAR metric by con-
sidering both activation outliers and the active range. As
outliers often stay in specific channels, we are allowed to
perform per-channel outlier suppression, which often leads
to a smaller per-token activation range as well (Xiao et al.,
2023; Li et al., 2023). Therefore, our goal is to minimize the
activation range of each output channel in our SAR metric.

Auxiliary salience. To achieve the aforementioned goal, we
need to design a metric that can model the effect of each
weight on the output activation. The intuitive idea is to
measure the activation range of each channel after removing
each individual weight and incorporate this measurement
into the weight salience. From Eq. 1 and Fig. 2, we observe
the jth output channel is only related to jth row in W (i.e.,
jth column in WT). Based on this observation, we first

3

Compressing Large Language Models by Joint Sparsification and Quantization

�33

�21�31

�22�32

�13�23

Sparse
weight

��� = �� 2
∙ ���

×

�� �

Salience with Activation RangeSimulated annealing search
Activation Editor

Sparsify & Quantize

� = �1, �2, …, �� Activation encoding

Random select and update

�11 �12 �13

�21 �22 �23

�31 �32 �33

�

�11

�21

�12 �13

�22 �23

�31 �32 �33

��� =max {�:�} −min {�:�}

�1� �2� ··

·

���

sum

ab
s

���

���

�12remove

minmax

⨁

Sparsification
metric

Apply on �

…

Activation distribution

�1 �2 ��

�11

Activation layers

… local minimum

global minimum

update direction

Figure 2. Overview of our JSQ approach: We first edit the activation to remove relatively useless outliers. Then, we sparsify and quantize
the model based on salience with the activation range metric. We employ simulated anneal search to find the best editing vector.

define an auxiliary salience A ∈ Rcout×cin as follows:

Aij = max(Ŷ:i)−min(Ŷ:i),

where Ŷ = X · (Φ(W; i; j))T .
(3)

Here, Φ(W; i; j)) denotes an auxiliary weight matrix when
setting the element at ith row and jth column as 0 in W.
max(·) and min(·) denotes the maximum and minimum
values of the vector, respectively. Ŷ:i is the ith column of
the matrix Ŷ. Each element in auxiliary matrix A reflect a
simple characteristic: how will the activation range changes
if we sparsify this element in weight. In this way, we can
use the range salience to measure the effect of each weight
on the subsequent quantization process.

Salience with activation range. By jointly consider the
salience with activation outlier and auxiliary salience, our
salience with activation range metric S ∈ Rcout×cin can be
defined as:

Sij = Iij + λAij , (4)

where λ is the factor to trade-off different terms. In our
implementation, we empirically set λ as 2.

The SAR metric in Eq. 4 reflects an intuitive design concept.
If sparsifying a weight will result in a large activation range
(i.e., large Aij), we should assign higher salience on this
weight to preserve it, or vice versa. By using our SAR
metric, we can achieve a better trade-off between preserving
outliers for more information and minimizing activation
range for better quantization. In other words, the side-effect
of preserving outliers on quantization will be alleviated. The
activation range after sparsification can be seen in Fig. 5,
from which we have reduction on activation range after
considering the auxiliary salience.

3.3. Search-based Activation Editor

Motivation. It is proven that outliers are important in LLMs.
To deal with outliers, many compression approaches design
migration (Wei et al., 2023) or clipping (Shao et al., 2023)
strategy, which is elegantly coupled with quantization. How-
ever, we reveal that it is surprisingly effective to directly
edit the activation before compression, which can further
strengthen the balance between outliers and compression.
Fig. 3 demonstrates this finding. We measure the perplex-
ity of compressed LLaMA-7B on WikiText under different
editing strength. Specifically, we first suppress the outliers
in activation and then compress the model using sparsity
and quantization. As we start to remove the outliers in acti-
vation, the performance of compressed LLM first increase.
We argue that when we start the suppression, the benefit
from sparsification and quantization will surpass the perfor-
mance drop caused by the outlier removal. As we continue
to increase the editing strength, the critical outliers will start
to be edited as well, and thus the drawback of activation
editing will surpass its benefit from sparsification and quan-
tization. So it is important to find a proper activation editor
to suppress the outliers. To solve this problem, we propose
our search-based activation editor (SAE).

Activation editing. Formally, let us denote the activation of
one layer to be edited in LLM as F, the activation editing
can be written as:

Fedit = clamp(F, LB,HB),

where LB =r ·max(F) + (1− r) ·min(F),

and HB =(1− r) ·max(F) + r ·min(F).

(5)

clamp() denotes clamp operation on F with the lower

4

Compressing Large Language Models by Joint Sparsification and Quantization

Increase

Decrease

Compression benefit more
from outlier removal

Critical outliers
start to be removed

Optimal editing strength

Figure 3. Perplexity under different activation editing strengths.

bound LB and higher bound HB. r ∈ [0, 1] is the edit-
ing strength. Eq. 5 indicates we clamp the activation range
to [r, 1− r] of the original one to eliminate the outliers.

Activation encoding. It is non-trivial to determine the
editing strength r as there is a large amount of possible
combinations for the entire network. So we propose to
search for the optimal one. To enable search, we encode the
editing strength into a vector. For example, suppose we have
L activation layers to be edited, we design a set of editing
strength choices for each layer R = {r1, r2, . . . , rn}, where
n is the number of predefined choices to provide a good
starting point for searching. Therefore, we can form an
editing strength of the whole network into a L-dimensional
editing vector V = [v1, v2, . . . , vL] and each element vl can
be chosen from R.

Simulated annealing search. After the activation encoding,
we aim to search for the optimal editing vector V . Formally,
the overall goal can be written as follows:

V ∗ = argmax
V

P(COM(LLM ;V)). (6)

V is the editing vector for whole network. COM(LLM ;V)
denotes compressing the LLM using the editing vector V . P
is the performance of the model. In this equation, we aim to
search for a editing vector for the optimal LLM performance
after compression.

To achieve this, we first randomly initialize our editing vec-
tor. Then, we utilize the simulated annealing algorithm to
automatically search for the optimal editing vector. Specif-
ically, we edit the activation of each layer based on the
editing vector, and use our SAR metric to sparsify and quan-
tize the edited model. After that, we test the compressed
model on the calibration data. We randomly change one
element in the editing vector V and iteratively perform this
process to search for the best editing vector V ∗. In this
way, we can smoothly edit the relatively useless outliers for
subsequent sparsification and quantization process.

Algorithm 1 Our JSQ workflow for compressing LLMs
Input: Pretrained model LLM ; Calibration data D; Ini-
tial and final temperature Ti, Tf .
Initialize current temperature T = Ti, editing vector V .
while T > Tf do

//Activation editing and sparsification&quantization
Forward pass on D to obtain activations.
Edit LLM activation based on V .
Sparsify and quantization by SAR metric.
//Simulated annealing search
Test performance P of the compressed model on D.
if P is better than Pbest then

Update editing vector V and Pbest = P .
else

Update editing vector V and Pbest = P with the
probability 1− exp[(P − Pbest)/T].

end if
Reduce temperature T based on schedule.

end while
Output: Compressed large language model.

By seamlessly incorporating salience with activation range
and search-based activation editor, we construct our JSQ
framework, and the workflow can be seen in Algorithm 1.

4. Experiments
4.1. Datasets and Models

We evaluate JSQ framework on most widely used LLM
model families including: LLaMA (Touvron et al., 2023a),
LLaMA-2 (Touvron et al., 2023b), and ChatGLM3 (Du
et al., 2021). We follow LLaMA’s protocol to perform zero-
shot classification evaluation on commonly used datasets in-
cluding PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019),
MMLU (Hendrycks et al., 2020), HellaSwag (Zellers et al.,
2019), Arc-easy (Clark et al., 2018), Arc-challenge (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2021). Fol-
lowing previous works on LLM compression (Sun et al.,
2023; Xiao et al., 2023), we also evaluate the perplexity on
WikiText2 (Merity et al., 2016).

4.2. Implementation Details

For fair comparison, we follow (Sun et al., 2023) to uti-
lize uniform sparsity for all linear layers. We set the input
length as 2,048. The editing strength choice R is set as
{0, 4e−5, 5e−5, 6e−5, 7e−5}. To calculate the SAR metric,
we use 128 samples from C4 (Raffel et al., 2020) as the cal-
ibration data. In the simulated annealing search, we set the
initial and the final temperature as 300 and 10, respectively.

We adjust the sparsity level of each layer and the bit-width
of parameters to achieve compressed model with different

5

Compressing Large Language Models by Joint Sparsification and Quantization

Table 1. Zero-shot performance. Avg. is calculated among seven classification datasets. Red: the best result. Blue: the second-best result.
Method #MACs Model Size WikiText↓ PIQA BoolQ MMLU HellaSwag Arc-e Arc-c WinoGrande Avg.

LLaMA-7B (Touvron et al., 2023a) 14.64T 12.6G 9.42 79.16 74.95 33.0 76.20 72.81 44.71 70.01 64.41
Wanda (Sun et al., 2023) 3.24T 1.8G 260364.00 50.98 48.41 22.9 26.46 26.85 26.88 50.28 36.11
LLM-Pruner (Ma et al., 2023) 3.24T 1.8G 2535837.61 49.35 46.91 23.5 26.26 26.77 28.92 49.96 35.95
SparseGPT (Frantar & Alistarh, 2023b) 3.24T 1.8G 5789.33 51.41 37.98 23.2 27.15 26.01 25.09 48.70 34.22
SmoothQuant (Xiao et al., 2023) 3.24T 4.7G 12.70 76.93 72.60 28.4 71.56 70.16 41.72 66.06 61.06
OmniQuant (Shao et al., 2023) 3.24T 4.7G 12.49 77.24 73.27 28.5 71.33 69.10 42.11 68.10 61.38
Wanda+SmoothQuant 3.24T 3.5G 12.34 77.97 72.69 28.1 71.84 68.27 41.89 68.43 61.31
SparseGPT+SmoothQuant 3.24T 3.5G 11.98 77.20 73.24 30.2 70.91 68.48 41.21 69.30 61.51
JSQ (Ours) 3.24T 3.5G 11.04 78.72 74.58 30.0 72.33 69.30 43.42 69.58 62.56

LLaMA-13B (Touvron et al., 2023a) 26.52T 24.3G 8.21 80.14 77.89 42.1 79.09 74.75 47.70 72.77 67.78
Wanda (Sun et al., 2023) 4.09T 3.4G 172946.83 50.33 37.83 25.7 26.47 26.81 26.54 49.49 34.74
LLM-Pruner (Ma et al., 2023) 4.09T 3.4G 934523.91 49.67 38.10 25.0 25.52 25.97 29.10 49.96 34.76
SparseGPT (Frantar & Alistarh, 2023b) 4.09T 3.4G 1265.67 51.36 38.07 23.2 28.02 27.82 23.46 49.72 34.52
SmoothQuant (Xiao et al., 2023) 4.09T 9.1G 11.65 77.80 70.98 31.9 76.97 68.52 41.72 69.61 62.50
OmniQuant (Shao et al., 2023) 4.09T 9.1G 10.27 78.80 75.43 36.4 75.31 70.11 43.63 70.32 64.29
Wanda+SmoothQuant 4.09T 6.8G 10.39 78.45 75.66 31.5 75.54 71.21 44.71 69.61 63.81
SparseGPT+SmoothQuant 4.09T 6.8G 10.49 78.40 76.61 32.8 75.45 69.53 44.11 67.96 63.55
JSQ (Ours) 4.09T 6.8G 9.58 80.05 78.16 38.2 75.41 72.93 46.67 72.24 66.24

LLaMA-33B (Touvron et al., 2023a) 33.12T 60.6G 6.24 82.21 82.72 54.4 82.62 78.91 52.90 75.77 72.79
Wanda (Sun et al., 2023) 4.77T 8.5G 313764.56 50.00 42.78 22.8 26.20 26.56 27.39 49.64 35.05
LLM-Pruner (Ma et al., 2023) 4.77T 8.5G 3533383.20 48.97 39.63 24.2 25.94 26.18 26.96 49.01 34.41
SparseGPT (Frantar & Alistarh, 2023b) 4.77T 8.5G 461.82 52.34 57.25 22.9 29.10 28.70 22.18 47.99 37.21
SmoothQuant (Xiao et al., 2023) 4.77T 22.7G 11.05 77.04 76.24 36.8 76.86 72.56 50.17 72.45 66.02
OmniQuant (Shao et al., 2023) 4.77T 22.7G 9.41 79.05 78.20 45.1 78.54 73.37 50.82 75.22 68.61
Wanda+SmoothQuant 4.77T 17.0G 8.00 77.97 80.98 38.2 79.35 74.71 51.11 74.19 68.07
SparseGPT+SmoothQuant 4.77T 17.0G 8.05 77.75 82.78 43.7 79.20 74.37 50.43 74.66 68.98
JSQ (Ours) 4.77T 17.0G 7.68 79.20 81.92 49.3 80.76 76.35 51.92 77.51 70.27

LLaMA2-7B (Touvron et al., 2023b) 14.64T 12.6G 8.79 79.11 77.71 41.6 76.01 74.49 46.25 69.06 66.32
Wanda (Sun et al., 2023) 3.24T 1.8G 100584.54 48.97 37.83 25.5 26.31 26.26 26.96 49.96 34.54
SmoothQuant (Xiao et al., 2023) 3.24T 4.7G 12.22 76.12 72.32 35.2 72.86 70.63 43.69 64.56 62.20
Wanda+SmoothQuant 3.24T 3.5G 10.74 78.35 75.44 34.2 72.91 69.53 43.17 67.17 62.97
JSQ (Ours) 3.24T 3.5G 10.64 79.09 76.10 34.6 73.28 71.23 45.56 69.03 64.13

LLaMA2-13B (Touvron et al., 2023b) 26.52T 24.3G 7.90 80.52 80.61 52.1 79.37 77.48 49.06 72.30 70.21
Wanda (Sun et al., 2023) 4.09T 3.4G 201702.58 49.29 37.83 22.9 25.81 27.06 26.79 51.70 34.48
SmoothQuant (Xiao et al., 2023) 4.09T 9.1G 9.32 77.97 76.42 46.4 75.85 73.78 45.14 67.64 66.17
Wanda+SmoothQuant 4.09T 6.8G 9.79 78.54 78.91 46.7 76.64 73.23 47.61 70.09 67.38
JSQ (Ours) 4.09T 6.8G 8.58 79.25 79.61 48.5 76.32 75.51 46.25 71.84 68.18

ChatGLM3-6B (Du et al., 2021) 12.24T 11.6G 10.12 81.45 86.45 62.1 78.01 79.59 53.58 72.61 73.40
Wanda (Sun et al., 2023) 2.20T 1.6G 49249.03 51.58 49.20 23.0 26.18 25.00 25.94 49.33 35.75
SmoothQuant (Xiao et al., 2023) 2.20T 4.4G 15.23 73.12 75.54 48.7 51.30 60.82 36.60 53.83 57.13
Wanda+SmoothQuant 2.20T 3.3G 12.01 78.67 83.43 57.7 72.42 73.86 46.59 68.35 68.72
JSQ (Ours) 2.20T 3.3G 11.83 79.89 83.89 57.9 73.34 75.10 47.02 69.74 69.55

Table 2. Structured 2:4 and 4:8 sparsity performance on WikiText.
Method #MACs Model Size WikiText↓
LLaMA-7B 14.64T 12.6G 9.42
Unstructured 3.03T 3.2G 11.45
Structured 2:4 3.03T 3.2G 13.54
Structured 4:8 3.03T 3.2G 12.15

LLaMA2-7B 14.64T 12.6G 8.79
Unstructured 3.03T 3.2G 10.89
Structured 2:4 3.03T 3.2G 13.24
Structured 4:8 3.03T 3.2G 12.07

complexity. For quantization methods like SmoothQuant
and OmniQuant, we quantize the full-precision model to
different bit-width. For sparsity methods like Wanda, LLM-
Pruner, and SparseGPT, we adjust sparsity ratio of the model
to achieve similar #MACs. For joint optimization methods
like Wanda+SmoothQuant, SparseGPT+SmoothQuant, and
our JSQ, we jointly adjust bit-width and sparsity ratio to
achieve target #MACs. We report the results under this
setting because most of baseline methods will crash under

Table 3. Ablation study for different components on WikiText.
Method #MACs Model Size WikiText↓
JSQ 3.24T 3.5G 11.04
-SAR 3.24T 3.5G 11.75
-Editing 3.24T 3.5G 11.62
-Search 3.24T 3.5G 11.29

lower computation complexities. So it is less meaningful to
compare with them under lower complexities.

4.3. Experimental Results

We compare our JSQ framework with several state-of-the-
art LLM compression approaches, including sparsity ap-
proaches: LLM-Pruner (Ma et al., 2023), Wanda (Sun et al.,
2023), SparseGPT (Frantar & Alistarh, 2022), and quanti-
zation approaches: SmoothQuant (Xiao et al., 2023), Om-
niQuant (Shao et al., 2023), as well as their combination:
Wanda+SmoothQuant and SparseGPT+SmoothQuant. For
Wanda+SmoothQuant or SparseGPT+SmoothQuant, we

6

Compressing Large Language Models by Joint Sparsification and Quantization

0 10 20 30 40 50 60 70
Time (ms/sample)

Pretrained

Compressed
(unstructured)

Compressed
(structured 2:4)

0 2 4 6 8 10 12 14
GPU memory usage (GB)

Time
GPU memory

Figure 4. Inference speed and memory usage before and after com-
pression.

Table 4. Performance of JSQ using different subsequent quantiza-
tion approaches.

Method #MACs Model Size WikiText↓
JSQ 3.24T 3.5G 11.04
JSQ (GPTQ) 3.24T 3.5G 11.06

first use the corresponding sparsity approach to sparsify
the model and then quantize the sparse model using the cor-
responding quantization methods. For #MACs and Model
Size, we report the theoretical value for these metrics.

Zero-shot performance. Table 1 shows the zero-shot per-
formance of the compressed model. From Table 1, we have
the following observations: (1) Under the same compu-
tation, quantization is better than the sparsity approaches.
Therefore, quantization can act as a more useful model com-
pression methods for large language models. (2) Under
high compression ratio, sparsity methods like Wanda and
SparseGPT collapse under most of cases, indicating sparsity
only compression paradigm may not suitable for LLM under
high compression ratio. (3) The performance of combining
different compression methods (e.g., sparsity and quanti-
zation) is better than only using one specific compression
approach in the most of cases. So it is useful to simultane-
ously use different compression methods for efficient LLM
application. (4) Our JSQ framework outperforms state-of-
the-art LLM compression approaches including Wanda and
SmoothQuant, and their combination. For example, our JSQ
can surpass SmoothQuant by 22.04% on HellaSwag when
compressing ChatGLM.

Structured 2:4 and 4:8 sparsity. In Table 1, we report the
performance of our JSQ when we use unstructured sparsity
in the sparsification process. In Table 2, we also report the
performance when using structured 2:4 and 4:8 sparsities in
the sparsification process. Compared with unstructured spar-
sity, we can have better practical acceleration performance
using 2:4 and 4:8 sparsities with limited performance drop.

Figure 5. Visualization of activation range after sparsification with
and without considering activation range.

Table 5. Performance of JSQ with and without finetuning.
Method #MACs Model Size WikiText↓
LLaMA-7B 14.64T 12.6G 9.42
JSQ 3.24T 3.5G 11.04
JSQ (finetune) 3.24T 3.5G 10.30

Inference speed. We demonstrate the acceleration and the
GPU memory reduction of the compressed model in Fig. 4.
From Fig. 4, our JSQ framework can bring 23% inference ac-
celeration for compressed model with unstructured sparsity,
and 33% acceleration for compressed model with structured
2:4 sparsity. In terms of GPU memory, the compressed
model can achieve 68% reduction.

4.4. Ablation Study

In this section, we use LLaMA-7B on WikiText as an exam-
ple to perform extensive ablation studies.

Effect of salience with activation range. To investigate the
effect of the SAR metric, we remove the auxiliary salience
A in Eq. 4, and the result is denoted as “-SAR” in Table 3.
Our SAR metric can bring 0.71 performance improvement
on WikiText.

Effect of activation editing. We also report the perfor-
mance without editing activation. In this case, we only use
the SAR metric in Eq. 4 to compress the LLM, and the
result is shown as “-Editing” in Table 3. Our search-based
activation editor brings 0.58 performance improvement on
WikiText for LLM compression.

Effect of simulated annealing search. We also report the
performance without using the simulated annealing search

Table 6. Hyperparameter analysis of λ.
Value of λ 1 2 3 4 5

WikiText↓ 11.15 11.04 14.22 147.83 136.64

7

Compressing Large Language Models by Joint Sparsification and Quantization

Table 7. Some examples of generations obtained with the original model and the compressed model.
Model Origin Model Compressed Model

LLaMA It is a beautiful day. My wife is looking good. She has
on a pretty dress. Her smile is as big as the sun. We go
to the beach and have a picnic. We play in the water
and eat a big juicy hamburger. We have a great day
together...

It is a beautiful day. I can’t help but to get out of the
car and walk along the beach. I see a couple fish-
ing, and a group of kids playing soccer on the sand.
I’m looking at the sky, and it’s just like the sky in a
Thomas Kinkade painting...

LLaMA2 The moon is so beautiful tonight. I am outside and
look up and I see it and my heart starts to beat faster.
It is an amazing sight and I am in awe. It’s as if the
moon knows what is going on in my life and it is
beckoning me to it...

The moon is so beautiful tonight. Everybody in the
neighbourhood is taking photos of the moon. It seems
to be the day for it. I even saw people taking photos
of the moon on a bridge. All this reminds me of a
beautiful time a few years ago...

ChatGLM3 Write a poem about life. Life is a strange journey,
filled with ups and downs, twists and turns. It’s not
always easy, but it’s worth the ride. Some days are
sunny, some days are stormy, but it’s how we weather
the storm that matters...

Write a poem about life. My life like a poem, a story
of growth. The pain and the joy, the laughter and the
tears. Each chapter of my story contains many words,
together they form a picture of a life well lived. As the
years go by, I write more lines...

for activation editing. In this case, we empirically set the
editing strength r for each layer as 5e−5, and the result is
denoted as “-Search” in Table 3. The simulated annealing
search for activation editing can bring 0.25 performance
improvement on WikiText.

4.5. Algorithm Analysis

In this section, we also use LLaMA-7B on WikiText to
conduct the experiments on algorithm analysis.

Visualization on activation range. In Fig. 5, we visual-
ize the activation range after sparsification with and without
considering activation range. The height indicates the activa-
tion range, while the width suggests the distribution density
at different value. We observe our SAR metric can effec-
tively reduce the activation range of the sparse model, which
is more beneficial to the subsequent quantization process.

Analysis on different quantization approaches. We also
report the performance when using different subsequent
quantization approach, and the results are shown in Table 4.
JSQ (GPTQ) uses GPTQ (Frantar et al., 2023) as the sub-
sequent quantization approach. JSQ and JSQ (GPTQ) can
achieve comparable performance, demonstrating the gener-
alization ability of JSQ.

Impact of finetuning. Although we do not use finetuning
technique in our JSQ for faster compression speed, we can
further improve the LLM compression performance by ad-
ditionally utilizing the finetuning. In Table 5, we report the
performance after using C4 datasets (Raffel et al., 2020)
to finetune our compressed model. Our JSQ can achieve
further improvement using the finetuning technique.

Analysis on λ in Eq. 4. We conduct the experiment to
investigate the performance when using different values of
λ, and the result is shown in Table 6. The sweet range

Table 8. Performance using different numbers of calibration data.
#Calibration data 8 16 32 64 128

WikiText↓ 11.14 11.13 11.06 11.05 11.04

of λ is from 1 to 3. This is because the importance I and
auxiliary salience λA in Eq. 4 are in similar magnitude
when 1 < λ < 3. When λ > 3, λA will much larger than I,
causing degraded performance.

Impact of calibration data. In Table 8, we investigate
the impact of the amount of calibration data. We find our
JSQ framework can achieve best performance using 128
calibration data. So we use 128 calibration data by default.

Generalization on different complexities. To demonstrate
the generalization ability of our JSQ framework, we report
the performance of compressed LLMs under different com-
plexities. From Fig. 1, we observe our JSQ framework
outperforms other model compression methods under differ-
ent #MACs, especially under large compression ratio. We
hypothesize that this is because if we only compress LLM
from one dimension (e.g., sparsity), parameters containing
critical information will be removed. However, if we jointly
use multiple compression dimension, we can avoid remov-
ing significant parameter in each dimension to achieve high
compression ratio. So it is beneficial to simultaneously use
sparsification and quantization for LLM compression.

Case study. We provide some examples of sentences gen-
erated by the original and compressed models in Table 7.
The sentences generated by the compressed model are com-
parable to original model in terms of fluency, relevance,
and informativeness regarding the given topic. Neverthe-
less, during our experiments, we observe the compressed
model occasionally generate sentences that are meaningless
or contain repetitive tokens.

8

Compressing Large Language Models by Joint Sparsification and Quantization

5. Conclusion
In this paper, we proposed Joint Sparsification and Quan-
tization (JSQ) framework to compress LLM under high
compression ratio, which is the first work to simultaneously
utilize sparsification and quantization techniques for com-
pression LLMs. We first propose a new sparsity metric
called salience with activation range to bridge the mismatch
between sparsification and quantization. We also reveal it is
surprisingly effective to directly edit activations for outlier
elimination. So we proposed search-based activation editor
to automatically remove relatively useless outliers. Exten-
sive experiments on multiple datasets demonstrate we can
maintain LLM performance under high compression ratio.

One limitation of our JSQ is we need to predefine the edit-
ing strength R, which requires prior knowledge. We will
investigate how to automatically design them in future work.

Acknowledgement
This work was supported by the National Science and Tech-
nology Major Project (2021ZD0110503), the National Nat-
ural Science Foundation of China (No. 62306025, No.
92367204), and Beijing Municipal Science and Technol-
ogy Project (Nos. Z231100010323002).

Impact Statement
This work aims to compress the large language models for
better efficiency in practical usage. So it does not have
ethical concerns. It can reduce the computation burden of
large language models. So it can help more people in society
to use the model, which has positive societal impact.

References
Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A.,

Cojocaru, R., Debbah, M., Goffinet, E., Heslow, D., Lau-
nay, J., Malartic, Q., Noune, B., Pannier, B., and Penedo,
G. Falcon-40B: an open large language model with state-
of-the-art performance. 2023.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved

question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z.,
and Tang, J. Glm: General language model pretrain-
ing with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R.,
Jegou, H., and Joulin, A. Training with quantization noise
for extreme model compression, 2021.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive
language models can be accurately pruned in one-
shot. ArXiv, abs/2301.00774, 2023a. URL https:
//api.semanticscholar.org/CorpusID:
255372747.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. 2023b.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers, 2023.

Guo, C., Qiu, Y., Leng, J., Gao, X., Zhang, C., Liu, Y.,
Yang, F., Zhu, Y., and Guo, M. SQuant: On-the-fly data-
free quantization via diagonal hessian approximation. In
International Conference on Learning Representations,
2022a. URL https://openreview.net/forum?
id=JXhROKNZzOc.

Guo, J., Ouyang, W., and Xu, D. Channel pruning guided by
classification loss and feature importance. AAAI, 2020a.

Guo, J., Ouyang, W., and Xu, D. Multi-dimensional pruning:
A unified framework for model compression. In CVPR,
2020b.

Guo, J., Zhang, W., Ouyang, W., and Xu, D. Model com-
pression using progressive channel pruning. IEEE Trans-
actions on Circuits and Systems for Video Technology,
2020c.

Guo, J., Liu, J., and Xu, D. Jointpruning: Pruning networks
along multiple dimensions for efficient point cloud pro-
cessing. IEEE Transactions on Circuits and Systems for
Video Technology, 2021.

Guo, J., Liu, J., and Xu, D. 3d-pruning: A model com-
pression framework for efficient 3d action recognition.
IEEE Transactions on Circuits and Systems for Video
Technology, 32(12):8717–8729, 2022b.

9

https://api.semanticscholar.org/CorpusID:255372747
https://api.semanticscholar.org/CorpusID:255372747
https://api.semanticscholar.org/CorpusID:255372747
https://openreview.net/forum?id=JXhROKNZzOc
https://openreview.net/forum?id=JXhROKNZzOc

Compressing Large Language Models by Joint Sparsification and Quantization

Guo, J., Xu, D., and Lu, G. Cbanet: Towards complexity
and bitrate adaptive deep image compression using a
single network. IEEE Transactions on Image Processing,
2023a.

Guo, J., Xu, D., and Ouyang, W. Multidimensional pruning
and its extension: A unified framework for model com-
pression. IEEE Transactions on Neural Networks and
Learning Systems, 2023b.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain
surgeon and general network pruning. IEEE International
Conference on Neural Networks, pp. 293–299 vol.1,
1993. URL https://api.semanticscholar.
org/CorpusID:61815367.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Huang, W., Liu, Y., Qin, H., Li, Y., Zhang, S., Liu, X.,
Magno, M., and Qi, X. Billm: Pushing the limit of
post-training quantization for llms. In International Con-
ference on Machine Learning, 2024.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Neural Information Processing Systems,
1989. URL https://api.semanticscholar.
org/CorpusID:7785881.

Li, Q., Zhang, Y., Li, L., Yao, P., Zhang, B., Chu, X., Sun,
Y., Du, L., and Xie, Y. Fptq: Fine-grained post-training
quantization for large language models. arXiv preprint
arXiv:2308.15987, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., Gan, C., and
Han, S. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2023.

Lv, C., Chen, H., Guo, J., Ding, Y., and Liu, X. Ptq4sam:
Post-training quantization for segment anything. CVPR,
2024.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On
the structural pruning of large language mod-
els. ArXiv, abs/2305.11627, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258823276.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Qin, H., Ding, Y., Zhang, X., Wang, J., Liu, X., and Lu, J.
Diverse sample generation: Pushing the limit of genera-
tive data-free quantization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023a.

Qin, H., Zhang, M., Ding, Y., Li, A., Cai, Z., Liu, Z., Yu,
F., and Liu, X. Bibench: Benchmarking and analyzing
network binarization. In International Conference on
Machine Learning, pp. 28351–28388. PMLR, 2023b.

Qin, H., Zhang, X., Gong, R., Ding, Y., Xu, Y., and Liu, X.
Distribution-sensitive information retention for accurate
binary neural network. International Journal of Computer
Vision, 131(1):26–47, 2023c.

Qin, H., Ma, X., Zheng, X., Li, X., Zhang, Y., Liu, S., Luo,
J., Liu, X., and Magno, M. Accurate lora-finetuning quan-
tization of llms via information retention. In International
Conference on Machine Learning, 2024.

Radford, A. and Narasimhan, K. Improving language
understanding by generative pre-training. 2018.
URL https://api.semanticscholar.org/
CorpusID:49313245.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models, 2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

10

https://api.semanticscholar.org/CorpusID:61815367
https://api.semanticscholar.org/CorpusID:61815367
https://api.semanticscholar.org/CorpusID:7785881
https://api.semanticscholar.org/CorpusID:7785881
https://api.semanticscholar.org/CorpusID:258823276
https://api.semanticscholar.org/CorpusID:258823276
https://api.semanticscholar.org/CorpusID:258823276
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245

Compressing Large Language Models by Joint Sparsification and Quantization

Ullrich, K., Meeds, E., and Welling, M. Soft weight-sharing
for neural network compression, 2017.

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., and Han, S.
Apq: Joint search for network architecture, pruning and
quantization policy, 2020a.

Wang, Y., Lu, Y., and Blankevoort, T. Differentiable joint
pruning and quantization for hardware efficiency. In
European Conference on Computer Vision, pp. 259–277.
Springer, 2020b.

Wang, Y., Lu, Y., and Blankevoort, T. Differentiable joint
pruning and quantization for hardware efficiency, 2021.

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., and
Liu, X. Outlier suppression+: Accurate quantization of
large language models by equivalent and optimal shifting
and scaling. arXiv preprint arXiv:2304.09145, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models, 2023.

Yang, G., Zhang, C., Gao, L., Guo, Y., and Guo, J. Do-
main adaptive channel pruning. Electronics, 13(5), 2024.
ISSN 2079-9292. doi: 10.3390/electronics13050887.
URL https://www.mdpi.com/2079-9292/13/
5/887.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Pechenizkiy, M., Liang, Y., Wang, Z., and Liu, S. Outlier
weighed layerwise sparsity (owl): A missing secret sauce
for pruning llms to high sparsity, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena, 2023.

11

https://www.mdpi.com/2079-9292/13/5/887
https://www.mdpi.com/2079-9292/13/5/887

Compressing Large Language Models by Joint Sparsification and Quantization

A. Quantitative Results on Different Complexity
The quantitative results on different complexities are shown in Table 9. We use LLaMA-7B as an example to conduct the
experiment. We find our JSQ can significantly surpass other baseline methods under low computation complexities. For
example, when #MAC=1.84T, the state-of-the-art quantization approach OmniQuant (Shao et al., 2023) crashes. Even
the combination method Wanda+SmoothQuant or SparseGPT+SmoothQuant obtain over 100 perplexity on WikiText. In
contrast, our JSQ can achieve 21.53 perplexity under this setting, making a notable improvement.

We also notice under low computation, it is beneficial to combine sparsity and quantization methods to compress the model,
which further demonstrates the importance of this combination under high compression ratio.

Table 9. Results under different computation complexities. The average is calculated among seven classification datasets. Red: the best
result. Blue: the second-best result.

Method #MACs Model Size WikiText↓ PIQA BoolQ MMLU HellaSwag Arc-e Arc-c WinoGrande Avg.

LLaMA-7B (Touvron et al., 2023a) 14.64T 12.6G 9.42 79.16 74.95 33.0 76.20 72.81 44.71 70.01 64.41
Wanda (Sun et al., 2023) 1.84T 0.4G 2770390.71 49.73 37.83 24.7 26.18 25.21 29.01 49.09 34.54
LLM-Pruner (Ma et al., 2023) 1.84T 0.4G 1853892.00 49.35 45.32 24.7 26.22 25.08 30.63 50.99 36.04
SparseGPT (Frantar & Alistarh, 2023b) 1.84T 0.4G 95290.93 50.22 38.53 23.0 26.03 26.14 27.9 50.43 34.61
SmoothQuant (Xiao et al., 2023) 1.84T 2.4G 4165426.51 48.69 47.49 25.5 25.92 25.93 28.24 54.14 36.56
OmniQuant (Shao et al., 2023) 1.84T 2.4G 120871.22 50.18 48.35 25.8 25.74 25.92 29.17 54.32 37.07
Wanda+SmoothQuant 1.84T 1.4G 403.69 60.12 56.39 23.0 35.28 37.25 24.23 52.09 41.19
SparseGPT+SmoothQuant 1.84T 1.4G 109.11 62.08 59.60 23.0 42.09 43.73 26.28 53.51 44.33
JSQ (Ours) 1.84T 1.4G 21.53 72.70 67.85 26.9 60.44 60.17 31.44 61.74 54.46

LLaMA-7B (Touvron et al., 2023a) 14.64T 12.6G 9.42 79.16 74.95 33.0 76.20 72.81 44.71 70.01 64.41
Wanda (Sun et al., 2023) 2.20T 0.8G 810596.71 49.29 47.03 24.7 25.94 26.6 26.02 50.99 35.80
LLM-Pruner (Ma et al., 2023) 2.20T 0.8G 1460384.52 50.27 41.07 24.5 26.37 25.00 29.27 48.38 34.98
SparseGPT (Frantar & Alistarh, 2023b) 2.20T 0.8G 95653.57 49.51 37.71 27.0 25.70 27.48 26.71 50.36 34.92
SmoothQuant (Xiao et al., 2023) 2.20T 3.2G 260035.17 48.91 38.72 23.5 26.83 27.15 24.15 50.59 34.26
OmniQuant (Shao et al., 2023) 2.20T 3.2G 89752.17 49.21 38.79 25.2 27.72 27.43 26.12 50.57 35.01
Wanda+SmoothQuant 2.20T 2.1G 20.43 72.52 68.65 24.9 61.47 56.99 34.22 60.77 54.22
SparseGPT+SmoothQuant 2.20T 2.1G 19.39 73.67 67.98 27.1 60.95 57.24 36.35 62.90 55.17
JSQ (Ours) 2.20T 2.1G 15.65 75.45 69.77 27.3 63.96 65.58 36.98 66.53 57.94

LLaMA-7B (Touvron et al., 2023a) 14.64T 12.6G 9.42 79.16 74.95 33.0 76.20 72.81 44.71 70.01 64.41
Wanda (Sun et al., 2023) 2.67T 1.2G 734849.55 49.24 37.83 22.9 26.29 26.43 26.45 51.70 34.41
LLM-Pruner (Ma et al., 2023) 2.67T 1.2G 1167339.08 51.03 45.11 24.3 26.13 25.88 27.65 52.01 36.02
SparseGPT (Frantar & Alistarh, 2023b) 2.67T 1.2G 24074.31 49.67 37.83 24.4 25.95 26.35 26.54 48.86 34.23
SmoothQuant (Xiao et al., 2023) 2.67T 3.9G 15.30 73.61 66.67 26.7 66.72 63.38 39.16 63.38 57.09
OmniQuant (Shao et al., 2023) 2.67T 3.9G 14.12 74.48 67.64 27.1 66.87 63.89 41.02 63.29 57.76
Wanda+SmoothQuant 2.67T 3.3G 11.92 76.93 73.64 28.4 71.72 68.94 41.55 65.75 60.99
SparseGPT+SmoothQuant 2.67T 3.3G 11.81 77.80 74.16 28.9 72.31 69.57 41.98 65.75 61.50
JSQ (Ours) 2.67T 3.3G 11.53 78.47 74.41 28.9 73.07 68.51 42.88 70.36 62.37

LLaMA-7B (Touvron et al., 2023a) 14.64T 12.6G 9.42 79.16 74.95 33.0 76.20 72.81 44.71 70.01 64.41
Wanda (Sun et al., 2023) 3.91T 2.4G 76782.09 50.16 62.26 23.0 26.53 27.31 27.22 50.83 38.19
LLM-Pruner (Ma et al., 2023) 3.91T 2.4G 89197.57 50.11 42.39 24.7 25.86 25.88 28.07 50.99 35.43
SparseGPT (Frantar & Alistarh, 2023b) 3.91T 2.4G 697.06 52.94 39.69 23.4 29.42 29.42 22.35 49.96 35.31
SmoothQuant (Xiao et al., 2023) 3.91T 5.5G 9.93 79.16 74.80 30.9 75.02 73.65 44.71 70.01 64.04
OmniQuant (Shao et al., 2023) 3.91T 5.5G 9.51 79.52 75.10 31.2 74.91 73.17 44.83 70.68 64.20
Wanda+SmoothQuant 3.91T 4.6G 10.03 79.00 75.87 31.9 75.12 72.52 44.80 69.46 64.10
SparseGPT+SmoothQuant 3.91T 4.6G 9.89 78.45 76.15 31.2 75.47 70.75 44.45 69.53 63.71
JSQ (Ours) 3.91T 4.6G 9.02 79.72 76.19 32.4 75.80 75.89 45.06 71.13 65.44

12

Compressing Large Language Models by Joint Sparsification and Quantization

B. More Sentence Examples
In Table 10, we provide more examples generated by the original and compressed models. We find the sentences generated
by the compressed model are comparable to original model in terms of fluency, relevance, and informativeness regarding the
given topic.

Table 10. More examples of generations obtained with the original model and the compressed model.
Model Origin Model Compressed Model

LLaMA With the development of science and technology, the
demand of people’s life is also constantly improving,
and is inseparable from the sustainable development
of science and technology. Therefore, the new equip-
ment must be scientific and high-quality. For the
company, the energy conservation equipment is also
very important, therefore, the choice of machine will
pay more attention to the environment to promote the
sustainable development of the company...

With the development of science and technology, it is
getting more and more important to deal with big data.
With the use of computers, big data is processed better
and more efficiently than before, though what we
can do is really limited. Among big data processing
techniques, there is one technique which is important
enough to be mentioned but not so famous as the other
related techniques, called the big data preprocessing...

LLaMA The extinction of the dinosaurs can be traced back long.
At the end of the Devonian Period, some 350 million
years ago, the “Great Dying” occurred—an extinction
event wiping out 70 percent of all animal species.
The Devonian Period saw the first appearance of
sharks and land plants. A vast marine predator called
Dunkleosteus ruled the shallow sea. With its armored
hide, jaws of crocodile-like teeth, and a bite of 7,000
pounds-per-square...

The extinction of the dinosaurs can be traced back long.
While they’ve been part of myth and legend in our
society’s imagination for millennia, scientific evidence
of dinosaurs really took off in the 19th century. The
first dinosaur was identified in 1841, which was
named Megalosaurus. It sparked a lot of interest, and
more discoveries took place. Moving into the late 19th
century, theories started to evolve to explain what
caused the dinosaurs to become extinct...

LLaMA2 The world is made of atoms. Most of these atoms in
our galaxy are the same. It is the atoms that make up
what we see. The sky, the land, the food we eat, the air
that we breathe. All of the life on earth is made from
the same elements. Elements are the basic building
blocks of life. When atoms smash together it releases
energy which generates heat and light. In a nuclear
reactor, the energy is released with the goal of pro-
ducing heat. Heat can be used to create energy, create
electricity, and heat your home in the winter...

The world is made of atoms. According to modern
physics, nothing can be smaller than an atom. And
yet, the universe is made of atoms. If you look closely
enough at any material you’ll see it’s not a single
atom, but a collection of atoms arranged in one of
many possible ways, or a crystal structure. The crys-
tal structures that atoms can form are largely based
on three-dimensional shapes such as the cube, the
hexagon, or the octahedron – but there are hundreds
more...

LLaMA2 In 2008, Beijing hosted the Olympic Games. The
magnificent National Stadium, also known as Bird’s
Nest, was the centerpiece of the entire event. It was
an instant visual icon, standing proudly amongst
Beijing’s other landmark buildings. Bird’s Nest was
the meeting place for the athletes from around the
world. Their unity resonated across the entire world.
In Beijing and across China, they united around a love
for Chinese food, Chinese culture and Chinese sport.
And today, we’re all united again...

In 2008, Beijing hosted the Olympic Games. As in all
Olympic cities, a large-scale cultural program was
set up. A large sports complex, called the Bird’s Nest,
was built. Today the “Bird’s Nest” is a symbol of Bei-
jing’s urban cultural life. But is it really a symbol of a
new cultural district? Or is this a place of public and
entertainment? When approaching the National Sta-
dium, we see a huge square that covers 20.5 hectares
of urban space. There are four roads leading from all
directions...

13

