
Causal Discovery for Cloud Microservice Architectures
Christopher Lohse1, 2, Diego Tsutsumi1, Amadou Ba1, Pavithra Harsha*,3 , Chitra Subramanian*,3 ,

Martin Straesser*,3 , Marco Ruffini2

1IBM Research Europe, Dublin
2 University of Dublin Trinity College

3IBM T. J Watson Research Center, Yorktown Heights, NY 10570s
{christopher-lohse, amadouba@ie., pharsha@us., cksubram@us.}ibm.com, martin.straesser@uni-wuerzburg.de,

marco.ruffini@tcd.ie

Abstract

The use of microservices-based architectures is becoming
more prominent due to their advantageous characteristics,
such as manageability, scalability, and flexibility. However,
their management can be complex, and their performance
can be affected by high latencies, which can alter the Ser-
vice Level Objective (SLO). In order to identify the causes of
high latency, we present a causal modelling framework which
is capable of analysing and reconstructing latency within
a microservice-based architectures. To this end, we employ
causal discovery to identify the causes of latency. Our model
integrates domain knowledge to impose constraints on the
causal graph, ensuring the accuracy of the discovered rela-
tionships as well as accelerating the causal discovery. To val-
idate our approach, we reconstruct the latency metrics using
machine learning techniques, and we demonstrate the effec-
tiveness of our approach by accurately capturing the interrela-
tions between the the resources of microservices. Our frame-
work provides an enhanced understanding of the causes of la-
tency leading to SLO violations and paves the way for sophis-
ticated mechanisms enabling proactive management of cloud
resources.

Introduction
Over the recent years, microservices-based architectures
have emerged as a popular choice for developing scal-
able, manageable, and flexible software applications (Al-
shuqayran, Ali, and Evans 2016; Abgaz et al. 2023). These
modular architectures enable software developers to build
complex applications through loosely coupled and inde-
pendently deployable services. However, the complexity of
microservices poses significant challenges, particularly in
terms of performance management (Straesser et al. 2022).
One of the main issues is high latency, which can lead to
the Service Level Objectives (SLOs) violation, and degraded
Quality of Service (QoS). Devising mechanisms for predict-
ing and mitigating the causes of latency in microservices-
based architectures is therefore essential for maintaining
system performance and reliability. To address this chal-
lenge, causal mechanisms are being employed in the pre-
diction of end-to-end latency. This is exemplified in Zhang

*Pavithra Harsha, Chitra Subramanian and Martin Straesser
contributed to this work by settting up the robotshop depoloyment
and providing the data.

et al. (2021), where the authors develop a data-driven clus-
ter manager for interactive cloud microservices that is QoS-
aware. In a similar way, Zhang et al. (2023) present a causal
modelling framework for estimating end-to-end latency dis-
tributions in microservice-based web applications. Tam et al.
(2023) uses the Program Evaluation and Review Technique
(PERT) to inform the design of their GNN. Their approach
determines the causal interaction between microservices
through a graph. Furthermore, Park et al. (2021) develop
and approach called GRAF, a graph neural network-based
proactive resource allocation framework for minimizing to-
tal CPU resources while satisfying the SLO. The existing ap-
proaches to latency prediction based on causal mechanisms
generally have a similar structure. However, they do not con-
sider constrained causal discovery mechanisms with domain
knowledge to enhance the causal discovery process.

This paper presents a causal discovery framework that
can be used to analyse latency within microservices-based
architectures. Causal discovery is the process of identify-
ing and recovering causal relationships between variables in
multivariate systems. Two distinct approaches to the recov-
ery of causal relationships can be distinguished: an interven-
tional setting, in which the system can be interacted with and
changes forced; and an observational setting, in which the
data is based on previous recordings. The modular setup of
contemporary microservice architectures presents a signifi-
cant challenge in identifying relationships between different
parameters of the services, such as CPU, memory, or the
number of replicas. Prior research has employed causal dis-
covery on a combination of observational and interventional
data to find out the causes of failures or high latency outliers
in complex microservice settings (Ikram et al. 2022; Bud-
hathoki et al. 2022). Other works use reinforcement learn-
ing with prior causal knowledge in order to enhance the
automatic scaling of services to accommodate varying de-
mands (Tournaire et al. 2022). However, these approaches
are not sufficient to identify the primary drivers of latency in
a real-world deployed cloud microservice architecture. Our
approach employs causal discovery methods to uncover the
underlying causal structure that contribute to high latency.
By integrating domain knowledge into our model, we con-
strain the causal graph, ensuring that the discovered rela-
tionships are accurate, as well as accelerating the causal dis-
covery process. In this paper, we provide several contribu-

tions. (1) We propose a comprehensive end-to-end frame-
work that infers the topological structure of microservices
through the analysis of latency data. (2) We incorporate do-
main knowledge into the causal discovery process, thereby
ensuring the relevance of the inferred relations between the
latencies of the various microservices. (3) We evaluate the
performance of several causal discovery approaches using
constraints in practical settings with microservices-based ar-
chitectures and a real dataset. (4) We validate our frame-
work by reconstructing latencies using machine learning ap-
proaches together with our causal discovery mechanism. To
the best of our knowledge, this is the first work to demon-
strate how constrained causal discovery methods can be used
to discover the latency model of microservices from obser-
vational data.

Background on Causal Discovery
Causality is the study of cause and effect relationships. In
this context, a variable X is said to cause another variable Y
if changes in X lead to changes in Y , denoted as X → Y
(Pearl 2009). For multivariate datasets comprising multiple
random variables, the causal relationships among variables
can be modeled using a Structural Causal Model (SCM).
In a SCM, each variable X is assigned a value based on a
function of a subset of its respecting causal parents PaX ,
such that X = fX(PaX , ηX), where ηX is an independent
noise term (Pearl 1995). The SCM can be represented graph-
ically as a Directed Acyclic Graph (DAG) G. Causal discov-
ery aims to infer the structure of G from observational or
interventional data (Spirtes and Zhang 2016).

For non-time series data, with no autocorrelation or
lagged dependencies, G = (V,D) is a DAG. Where V repre-
sents the set of vertices and D represents the set of directed
edges. The PC-Algorithm (Spirtes and Glymour 1991) is a
prominent causal discovery method for such data. It recon-
structs G by performing conditional independence tests to
determine the graph’s skeleton, starting from a fully con-
nected graph and iteratively removing edges. Subsequently,
edges are oriented using a set of rules outlined in Spirtes and
Glymour (1991). If the direction of an edge cannot be de-
termined, the algorithm outputs a bidirectional edge, which
might be directed using additional background knowledge.

For time series data, causal discovery focuses on iden-
tifying either the full time series graph G or a summary
graph Gsum. A stationary time series graph is defined as a
directed graph G = (V × Z,D), where V = {1, . . . , d},
with edges ((i, t − k), (j, t)) that are invariant under time
translation. Usually the existence of a finite maximum time
lag τ = maxi,j∈V {k | ((i, t − k), (j, t)) ∈ D} < ∞
is assumed, and that the contemporaneous component of G
is acyclic. The summary graph Gsum is a directed, poten-
tially cyclic graph over V which contains a directed edge
(i, j) if (i, t − k) → (j, t) ∈ D for some lag k. A no-
table algorithm for causal discovery in time series data is
PCMCI+ (Runge 2020), which extends the PC algorithm to
account for both contemporaneous and time-lagged depen-
dencies while considering autocorrelations. Similar to the
PC algorithm, PCMCI+ utilizes conditional independence
tests and starts with a nearly fully connected graph, as the

fact that dependencies can only propagate forward in time
is applied as a restriction. The algorithm applies orientation
rules and outputs a bidirectional edge when the direction is
not clearly determined (Runge 2020).

Constrained Causal Discovery in
Microservices-based Architecture

We first lay out some preliminaries about microservices-
based architecture, then present our assumptions. Subse-
quently, we formalize our proposed latency model and
present our causal discovery framework.

Assumed Background Knowledge
Based on domain-specific knowledge, we formulate the fol-
lowing assumptions regarding the causal relationships be-
tween resources and latency in a microservice application:

A1) Any two endpoints within the same microservice
never call each other.

A2) The number of client requests does not directly af-
fect application latency.

A3) High infrastructure usage degrades application per-
formance, not the other way around.

A4) Endpoints of the same microservice are deployed to
the same host.

A5) Any metric xi recorded at any microservice mi

only has a direct influence on the latency li of the
same microservice, and not on any other latency ly .

u1

m1

m2

m4

m3

m5

async

(a) Call Graph

u1

m1

m2

m4

m3

m5

no link
(b) Latency Graph

Figure 1: Comparison between Call Graph and Latency
Graph for five microservices mi ∈ M and one user request
u1.

A common way to visualise the dependendencies in a
microservice-based architecture is though a call graph as
shown in Figure 1a, where the microservices are connected
via edges D. (i, j) ∈ D indicates that the microservice mi

calls the microservice mj . A more insighful represenstation
of the microservice-based architecture is a latency graph,
which can be approximated by the reversed call graph as
shown in Figure 1b. The difference between the reversed call
graph and a theoretical latency graph is that asynchronous
calls represented in the call graph are not present in the la-
tency graph. Since we do not expect cyclical call or latency
relationships, we assume that the latency graph takes the

1 2 3 4 5 6 7

Observational
latency data

Causal
Discovery 1

Causal
Discovery 2

Reconstruction
Model

Observational
metric data

Inferred
latency Graph

Background
Knowledge

Full Causal
Graph

Figure 2: Overview of the proposed process: 1 Observational data of the recorded latencies is fed into a causal discovery
algorithm 2 . The constructed causal latency graph is then used in combination with expert knowledge and observational data
of microservice metrics 3 and fed into the second causal discovery algorithm 4 , which outputs the full causal graph of the
whole system, 5 is used as a feature selection process for any prediction model 6 to reconstruct the latency at the microservice
level 7 .

form of a DAG. For the latency DAG in Figure 1b, the struc-
tured causal model can be defined as:

lu1 := fu1
(l1, ηlu1

), l1 := fl1(l4, l3, ηl1),

l3 := fl3(l5, ηl3), l4 := fl4(l5, ηl4), l5 := fl5(ηl5),

where ηx represents the noise term for each latency. We fur-
ther know that ηx is not a random noise because the latency
of each microservice depends on external factors such as
CPU, memory limits and the number of pods. We can fur-
ther assume that the relationship between any latency lx and
another latency ly is approximately linearly, meaning that
we can rewrite l1 := fl1(lp1 , ηm1), where lp1 = c3l3 + c4l4
are the latency values of the causal parents of l1 and c3, c4
are constants. ηm1 can then be described by the latency lim-
iting resources r1i ∈ R1 of m1 plus a remaining random
noise term η

′

m1
thus ηm1

= fn1(R1, η
′

m1
) where fn1 is the

noise function for l1. Hence we propose for the general case
that the latency of any microservice mi can be reconstructed
by the latency of its causal parents Pali and its resources Ri

by the structural equation fi with

li = fi(Pali, Ri, η
′
mi). (1)

Considering these assumptions and the approach to mod-
elling latency, we propose a framework that utilizes causal
discovery to efficiently build a causal representation of
microservice-based architectures. An overview of the meth-
ods is given in Figure 2. We denote the available observa-
tional data as X ∈ RN×v , where N is the number of obser-
vations and v is the number of variables. In step 2 we first
select only the subset of all latency measurements L ⊂ X
(1) this is used to determine the latency Graph GL. We use
a linear conditional independence test as we assume that the
relationship between two latency measurements li, lj ∈ L
given a third latency lk can be regressed out by a linear func-
tion; meaning li and lj are conditional independent given lk.
Then, we determine GL using a causal discovery algorithm
fulfilling the assumptions about the data. Depending on the

frequency of the recorded data it might be necessary to use
a time series causal discovery algorithm where the maxi-
mum time lag τ has to be determined by using data analysis
methods, or if the recorded frequency of the values is to low
we might also use non-time series causal discovery algo-
rithms. If we assume latent confounding, meaning that two
latency values are caused by the same unknown factor e.g.
an external API, then, we also need to consider this informa-
tion in this step. The graph GL is combined with the remain-
ing measurements of the performance metrics and resources
R ⊂ X = X/L and the background knowledge based on as-
sumptions A1) - A4), which rules out some possible edges
(e.g., calls and latency cannot be directly connected based on
A2) or helps orient edges (e.g., the CPU cannot be caused by
latency but the opposite is possible in). In 3 causal discov-
ery is performed on a microservice level retrieving m sub-
graphs GRi which contain information about latency drivers
for each service (4). In 4 these sub-graphs can be com-
bined to the overall causal graph G as they all have the la-
tency nodes li ∈ GL as a common element with GL. Thus,
G = GL∪(

⋃m
i=1 GRi

). This graph 5 gives us information of
the latency driving factors in the whole system. To test if the
determined factors are correct and thus the proposed latency
model holds we select the causal features Xc to reconstruct
the latency of a given endpoint mi by Xc = a(mi,G, d),
where a returns the causal ancestors of mi up to a specified
depth d. These features are then fed into a reconstruction
model which estimates the structural equation of li if the re-
construction is successful based on an error metric we can
assume that the causally determined features are useful in
reconstructing the latency. This does not guarantee that the
features are indeed causal, but it shows that these features
are empirically contributing factors to the latency.

web

usercart

shipping

catalogue ratings

(a) True Graph

user

web

ratingscatalogue

shipping

cart

(b) PCMCI+

user

web

ratingscatalogue

shipping

cart

(c) Stable PC

user

web

catalogue

cart

ratings

shipping

(d) FCI

Figure 3: Results provided by the different Causal Discovery algorithms compared to ground truth graph.

Robot Shop

Our use case focuses on Robot Shop1, an e-commerce web-
site that provides a comprehensive environment and func-
tionalities present in real e-commerce websites. Some of the
components present are the catalogue, cart, payments, and
shipping. Each of these components within the Robot Shop
is represented by a distinct microservice. Metrics such as
cpu utilisation, calls per seconds and memory utilisation are
reported on an endpoint or microservice level. This archi-
tectural approach demonstrates the practical implementation
of microservices and provides a robust platform for testing
various resource provisioning mechanisms specific to a mi-
croservice environment. Robot Shop illustrates the advan-
tages and intricacies of a microservices-based application.
For our experiments, we used a total of 1,563 values in a
sample interval of 1 minute (roughly 26 hours of observa-
tional data). We replace the few missing values with previ-
ous value imputation, and remove variables with fewer than
two unique values across all observations.

Experiments and Results

The following section outlines the experimental setup em-
ployed for step (2), the causal discovery of the full causal
graph (4), and the reconstruction of the latency at the end-
point level (6) for the Robot Shop case study. After this,
the obtained results are discussed. Prior to executing the
two causal discovery algorithms and the prediction model,
a train-test split is conducted, with 10% of the data set aside
for evaluation of the reconstruction step of the latency per
endpoint. This is done to guarantee that data known in the
causal discovery step is not used for assessment of the re-
construction. To validate the suitability of the data for most
causal discovery algorithm we test each observed variable
for stationarity. Therefore we perform the augmented Dick-
Fuller test and reject the null hypothesis of a unit-root with
pvalue < 0.01 for each time-series. Thus, the data fulfils the
stationarity assumption.

1https://github.com/instana/robot-shop

Causal Latency Graph Discovery
Setup For the causal latency graph discovery for obtaining
GL, we compare the performance of three causal discovery
algorithms: PCMCI+, the PC algorithm, and FCI, using ac-
curacy, recall, F1, and structural Hamming distance (SHD)
as validation metrics. As the ground truth, we set the re-
versed call graph based on the known topology of the Robot
Shop deployment as an approximation of the latency graph.
This approximation may not represent the true latency graph
since some function calls could be asynchronous.

For PCMCI+, we set the maximum time lag τ = 3, deter-
mined from autocorrelation plots showing that correlation
degrades at this lag. The significance level for the condi-
tional independence test is set to pα = 0.01. We use the
linear partial correlation (ParCorr) test due to expected lin-
ear dependencies between latency values. Metrics are cal-
culated based on the discovered summary graph, as ground-
truth data for time-lagged dependencies is unavailable.

We compare PCMCI+ with the PC algorithm to assess
whether lagged information improves edge discovery and
orientation. Additionally, we use the FCI algorithm to ex-
amine if accounting for latent confounders, like an external
API in some cloud deployments, enhances causal discovery.
For both PC and FCI, we use the linear Fisher-Z conditional
independence test with α = 0.01. All algorithms use A1) as
background knowledge, removing any connections between
latency values of endpoints on the same host.

Algorithm Accuracy Precision Recall F1 SHD

m e m e m e m e m e

PCMCI+ 0.83 0.91 0.55 0.42 1.00 0.83 0.71 0.56 5 8
PC 0.80 0.91 0.50 0.42 0.83 0.83 0.63 0.56 6 8
FCI 0.83 0.93 0.60 0.50 0.50 0.50 0.54 0.50 5 6

Table 1: Results provided by the different causal discovery
algorithms at a microservice level (m) and an endpoint level
(e) for 2 the first step of the causal discovery.

Results Table 1 shows the accuracy, precision, recall, and
F1 scores for the three causal discovery algorithms at both
the endpoint and microservice levels. At the microservice
level, connections are aggregated: if an endpoint in mi-

croservice mi connects to an endpoint in mj , an edge
(mi,mj) is added to the graph. For PCMCI+, the dis-
covered summary graph Gsum is derived from the results.
At the endpoint level, results are compared without post-
processing, except for removing edges where endpoints
from the same microservice are connected. Recall is a key
metric here, as it measures the proportion of accurately in-
ferred edges. PCMCI+ recovers all edges at the microser-
vice level with moderate precision. As shown in Figure 3,
incorrect edges are mainly due to uncertain orientation. This
is consistent across endpoint graphs, where no spurious in-
fluences are found; only the direction of the causes may be
misidentified.

The time series data in PCMCI+ appears to help in more
accurately orienting edges. At the endpoint level, PC and
PCMCI+ have similar recall, while the FCI algorithm has a
lower structural Hamming distance (SHD), suggesting fewer
edge modifications are needed to achieve the ground truth
graph. For step 3 , the graph from PCMCI+ is selected as it
includes time-dependent information useful for understand-
ing system dynamics, making it the preferred input for 3 .

Full Causal Graph Discovery
Setup In order to construct the complete causal graph G, it
is necessary to perform causal discovery for each endpoint
to obtain the corresponding GRi. The resulting subgraph de-
pendencies are then added to the complete causal graph.

We again use the PCMCI+ algorithm for this. The lagged
mutual information and autocorrelation plots reveal a time-
dependency up to three time steps behind, thus we again set
τ = 3. The p-value is set to 0.01, and the Regression con-
ditional independence test (Tsagris et al. 2018) is employed,
as this test is capable of handling categorical variables, as
is the case for the number of pods used in our experiment.
Subsequently, background knowledge A1) - A5) is included
to constrain causal discovery and reduce the amount of con-
ditional independence testing of the algorithm, as not every
variable combination needs to be checked.

user

web

ratingscatalogue

shipping

cart

Calls per second
Cpu limit
Memory limit

Memory utilization
Cpu utilization
Pods running

Figure 4: Discovered causal graph from observational data
summarised at the microservice level. White circles repre-
sent the microservices and coloured circles represent the rel-
evant resources for each service.

Results Figure 4 presents the retrieved full causal graph G
of the entire topology at the microservice level, thus provid-
ing better visibility. The graph provides a visual representa-
tion of the service dependencies. The graph indicates which
resources are the primary drivers of latency in a particular
service.

The main drivers of latency are identified as the cart, ship-
ping and catalogue microservices. The relevant resources
here are the running pods and CPU limit for cart, CPU us-
age for shipping, and memory limit and CPU usage for cata-
logue. The latency of the user service is not affected by any
of its resources, nor is the web service, which is the entry
point for user requests.

Latency Reconstruction Model
Setup The latency reconstruction model serves two pur-
poses: 1. It acts as a proxy for evaluating the second causal
discovery step in the absence of ground truth data. 2. It helps
identify which variables impact latency, offering insights
into which service or resource may be increasing latency at
a specific endpoint. To select causal features, we consider
depths d ∈ 1, 2, 3, where depth 1 includes second-degree
predecessors as features, depth 2 includes third-degree pre-
decessors of an endpoint mi in the full causal graph G. The
optimal depth and maximum time lag (τ) are determined for
each endpoint and model, with τ ranging from 0 to 3.

We use a Lasso model (Tibshirani 1996), a linear model
with feature selection, and Support Vector Regression
(SVR) model (Drucker et al. 1996) with a radial basis func-
tion kernel, thus making it a non-linear model. An XGBoost
model (Chen and Guestrin 2016), known for strong feature
selection and capturing non-linear relationships, is used as
a benchmark with access to all features except the endpoint
under reconstruction. The optimal time lag for XGBoost is
also selected. The models are evaluated using the R2 score,
with 1 being the best, and mean squared error (MSE), where
a lower value indicates better performance. For the SVR the
best hyperparameters are determined over a grid of 1100 dif-
ferent model over a 10-fold cross-validation, the Lasso pa-
rameters are also selected using 10 fold cross-validation.

Results Table 2 shows the metrics for latency reconstruc-
tion using either features from the causal graph, and in
case of the XGBoost baseline model using all features ex-
cept the endpoint’s own latency. The SVR model, using
only causal features, is the only one with an R2 value
over 0.5 for all endpoints. Except for cart shipping and
shipping confirm, the XGBoost benchmark generally out-
performs other models. The Lasso model struggles with
complex routes, indicating linear models are insufficient
for these cases. Reconstructions are not feasible for the
catalogue product and user unique id services with causal
ground truth latency graphs due to the absence of causal
parents. For cart shipping, input features like CPU limit and
pods running are inadequate for latency reconstruction. Sim-
ilarly, catalogue product has only one dependency, and its
resources are insufficient for accurate predictions. Lagged
data of the latency value at the endpoint level might be
needed for this due to observed autocorrelation of latency.

SVR SVR (ground truth) Lasso XGBoost

τ d R2 MSE τ d R2 MSE τ d R2 MSE τ d R2 MSE

web user unique id 3 1 0.88 31.66 1 1 0.88 31.3 3 0 0.82 7579.87 1 - 0.96 10.28
web ship confirm 2 1 0.61 580.27 0 1 0.99 1.01 3 1 -82 4522.09 1 - 0.98 32.41
web catalogue products 3 1 0.82 21.31 3 1 0.83 20.74 3 2 0.57 150.15 1 - 0.84 18.64
web cart add 3 1 0.92 280.48 2 1 0.93 257.03 1 0 -3.52 8.11 0 - 0.95 190.94
user unique id 3 1 0.92 2.18 0 - - - 3 0 0.6 346.57 1 - 0.98 0.67
shipping confirm 0 1 0.79 314.82 0 1 0.98 33.01 3 1 0.77 11.06 1 - 0.47 788.62
catalogue products 3 2 0.82 1.85 3 2 -0.19 12.13 3 2 0.2 16222.78 1 - 0.86 1.46
catalogue product 3 1 0.96 27.92 0 - - - 1 2 0.8 50.53 1 - 0.96 26.71
cart shipping 0 1 0.94 85.84 1 1 -0.1 1638.4 0 0 -2.01 123382.31 1 - 0.17 1240.63
cart add 3 1 0.92 122.25 0 1 0.92 121.37 3 1 -3.7 46.61 3 - 0.97 51

Table 2: Latency prediction for each endpoint. We determine the best τ and d value and then report the respective best model.
The SVR ground truth model uses the ground truth latency graph based on the reversed call graph with discovered features for
GR. The XGBoost model uses all features (47) the other models use the causal features as described above.

Overall, predictions using the inferred latency graph are
more consistent than those using the ground truth latency
graph, suggesting that the reversed call graph may not fully
capture the underlying dynamics.

As illustrated in Figure 5, both the SVR with causal fea-
tures and the XGBoost model are able to reconstruct the
latency at the selected endpoint, which also generalises to
other endpoints. While the SVR model generally underper-
forms compared to XGBoost, the focus is not on perfor-
mance alone but on demonstrating that latency reconstruc-
tion is feasible using causal features. The good result for
the SVR with causal features shows that we can estimate
latency values li based on causal predecessors, suggesting
that the proposed latency model in (1) holds empirically.
We further investigate the contributing features to the pre-
diction with permuation importance, while for example the
web cart add endpoint have meaningful features contribut-
ing to the SVR predictions, such as cpulimit@cart and cpu-
utilisation@shipping as well as latency@cartadd. For the
XGBoost model solely features which are not intervenable
on such as latency and calls per second and also some la-
tency values for endpoints which according to the ground
truth should not influence the latency at the web cart add
are determined using permutation importance. We observe
similar behaviour for all other endpoints.

The results were obtained on an M3-Max MacBook with
64GB RAM, with 12 performance cores at up to 4.06 GHz
and 4 efficiency cores at 2.8 GHz. The first causal discovery
takes 2 seconds, the second takes 37 seconds, and the re-
construction model takes 3 seconds due to hyperparameter
tuning. The overall evaluation process, including hyperpa-
rameter choice and multiple model training, takes 60 min-
utes.

Discussion and Limitations
This paper can be seen as an initial proof of concept how to
causally model cloud microservice applications by showing
that we can successfully reconstruct the topology of the de-
ployment with known causal discovery algorithms and em-
pirically find meaningful contributors to high latency, which
we evaluate with the reconstruction model due to the ab-
sence of ground truth data. This is all done purely on obser-

0 20 40 60 80 100 120 140 160
time

20

30

40

50

60

70

la
te

nc
y

XGBOOST
SVR
Ground Truth

Figure 5: Comparison between the predictions of SVR with
causal features and XGBoost model with all features for
Web cart add endpoint.

vational data without the need of potential costly interven-
tions. However, having access to interventional data could
potentially strengthen the evaluation process as well if used
in addition with observational data potentially lead to the
recovery of more accurate causal graphs. Furthermore, it is
likely that the full strength of using causal features to recon-
struct latency lies in being robust in the presence of distribu-
tion shifts such as in case of an anomaly in the system. Thus,
evaluating the proposed model on anomalous data additional
comparing it to reconstruction models without causal fea-
tures could be a sensible set of experiments to include. Nev-
ertheless we believe that our approach can help to gather
interesting insights can be derived from observational data
alone, thus avoiding the necessity for costly and potentially
inefficient interventions on a deployed system. Therefore,
making it applicable in practical industry applications.

Conclusions
We developed a latency modelling approach inspired by
causality, with the objective of gaining insight into the
underlying cause-and-effect relationships that influence la-
tency within a microservice-based architecture. By employ-

ing causal discovery techniques, our methodology aims to
find the elements that contribute to high latency. Further-
more, we proposed a novel causal discovery framework that
efficiently reconstructs latency graphs with high accuracy at
the microservice level based on background domain knowl-
edge. The results of our experiments demonstrate that the
causally derived features achieve R2-scores above 0.5 for all
reconstructed latency on endpoints. This suggests that the
features obtained through our causal discovery framework
are effective in reconstructing latency, thereby demonstrat-
ing their efficiency in identifying contributing factors to per-
formance degradation in cloud-native applications. Finally,
due to the extensive assumption and background knowledge
used for the causal discovery, our approach recovers the
causal graph in a relatively short time suggesting that the ap-
proach also works for large scale applications. Future work
building on top of the proposed latency model could try to
estimate the full causal graph of a microservice application
jointly with finding the best ways to scale and intervene by
using causal reinforcement learning.

References
Abgaz, Y.; McCarren, A.; Elger, P.; Solan, D.; Lapuz, N.;
Bivol, M.; Jackson, G.; Yilmaz, M.; Buckley, J.; and Clarke,
P. 2023. Decomposition of monolith applications into mi-
croservices architectures: A systematic review. IEEE Trans-
actions on Software Engineering, 49(8): 4213–4242.
Alshuqayran, N.; Ali, N.; and Evans, R. 2016. A systematic
mapping study in microservice architecture. In 2016 IEEE
9th international conference on service-oriented computing
and applications (SOCA), 44–51. IEEE.
Budhathoki, K.; Minorics, L.; Bloebaum, P.; and Janzing,
D. 2022. Causal structure-based root cause analysis of out-
liers. In Chaudhuri, K.; Jegelka, S.; Song, L.; Szepesvari,
C.; Niu, G.; and Sabato, S., eds., Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, 2357–2369.
PMLR.
Chen, T.; and Guestrin, C. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, 785–794.
Drucker, H.; Burges, C. J.; Kaufman, L.; Smola, A.; and
Vapnik, V. 1996. Support vector regression machines. Ad-
vances in neural information processing systems, 9.
Ikram, A.; Chakraborty, S.; Mitra, S.; Saini, S.; Bagchi, S.;
and Kocaoglu, M. 2022. Root Cause Analysis of Failures
in Microservices through Causal Discovery. Advances in
Neural Information Processing Systems, 35: 31158–31170.
Park, J.; Choi, B.; Lee, C.; and Han, D. 2021. GRAF: a graph
neural network based proactive resource allocation frame-
work for SLO-oriented microservices. Proceedings of the
17th International Conference on emerging Networking EX-
periments and Technologies.
Pearl, J. 1995. Causal diagrams for empirical research.
Biometrika, 82(4): 669–688.
Pearl, J. 2009. Causality. Cambridge university press.

Runge, J. 2020. Discovering contemporaneous and lagged
causal relations in autocorrelated nonlinear time series
datasets. In Conference on Uncertainty in Artificial Intel-
ligence, 1388–1397. PMLR.
Spirtes, P.; and Glymour, C. 1991. An algorithm for fast
recovery of sparse causal graphs. Social science computer
review, 9(1): 62–72.
Spirtes, P.; and Zhang, K. 2016. Causal discovery and in-
ference: concepts and recent methodological advances. In
Applied informatics, volume 3, 1–28. Springer.
Straesser, M.; Grohmann, J.; von Kistowski, J.; Eismann, S.;
Bauer, A.; and Kounev, S. 2022. Why is it not solved yet?
challenges for production-ready autoscaling. In Proceedings
of the 2022 ACM/SPEC on International Conference on Per-
formance Engineering, 105–115.
Tam, D. S. H.; Liu, Y.; Xu, H.; Xie, S.; and Lau, W. C.
2023. PERT-GNN: Latency Prediction for Microservice-
based Cloud-Native Applications via Graph Neural Net-
works. In Proceedings of the 29th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, KDD ’23,
2155–2165. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9798400701030.
Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1): 267–288.
Tournaire, T.; Jin, Y.; Aghasaryan, A.; Castel-Taleb, H.; and
Hyon, E. 2022. Factored Reinforcement Learning for Auto-
scaling in Tandem Queues. In NOMS 2022-2022 IEEE/I-
FIP Network Operations and Management Symposium, 1–7.
ISSN: 2374-9709.
Tsagris, M.; Borboudakis, G.; Lagani, V.; and Tsamardinos,
I. 2018. Constraint-based causal discovery with mixed data.
International journal of data science and analytics, 6: 19–
30.
Zhang, Y.; Hua, W.; Zhou, Z.; Suh, E.; Delimitrou, C.; and
WeizheHua. 2021. Sinan: ML-based and QoS-aware re-
source management for cloud microservices. Proceedings
of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems.
Zhang, Y.; Isaacs, R.; Yue, Y.; Yang, J.; Zhang, L.; and Vig-
fusson, Y. 2023. LatenSeer: Causal Modeling of End-to-End
Latency Distributions by Harnessing Distributed Tracing. In
Proceedings of the 2023 ACM Symposium on Cloud Com-
puting, 502–519.

