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ABSTRACT

Hypergraph representation learning has gained immense popularity over the last
few years due to its applications in real-world domains like social network analysis,
recommendation systems, biological network modeling, and knowledge graphs.
However, hypergraph neural networks (HGNNs) lack rigorous uncertainty esti-
mates, which limits their deployment in critical applications where the reliability
of predictions is crucial. To bridge this gap, we propose Contrastive Conformal
HGNN (CCF-HGNN) that jointly accounts for aleatoric and epistemic uncertain-
ties in hypergraph-based models for guaranteed and robust uncertainty estimates.
CCF-HGNN accounts for epistemic uncertainty in HGNN predictions by producing
a prediction set that leverages the topological structure and provably contains the
true label with a pre-defined coverage probability. It also accounts for aleatoric un-
certainty by leveraging contrastive learning on the structure of the hypergraph. To
enhance the power of the predictions, CCF-HGNN performs an additional auxiliary
task of hyperedge degree prediction with an end-to-end differentiable sampling-
based approach. Extensive experiments on real-world hypergraph datasets demon-
strate the superiority of CCF-HGNN by improving the efficiency of prediction sets
while maintaining valid coverage.

1 INTRODUCTION

Network-structured data underpins a broad spectrum of scientific and real-world applications, ranging
from social interactions Newman (2003) and recommender systems Ying et al. (2018) to biological
networks Zhang et al. (2022) and knowledge graphs Nickel et al. (2015). This has fueled the rapid
growth of graph-based machine learning, where graph neural networks (GNNs) have emerged as a
dominant paradigm for learning from relational data Kipf & Welling (2016); Hamilton et al. (2017);
Velickovic et al. (2017). More recently, attention has shifted towards hypergraph representation
learning, which extends beyond pairwise relations to model higher-order interactions, thereby offering
a more faithful abstraction for many complex systems Battaglia et al. (2018); Zhang et al. (2018b). The
expressive power of hypergraphs has led to applications across diverse domains, including healthcare
(e.g., multiple patients sharing a room) Xu et al. (2022); Choudhuri et al. (2025a); Xu et al. (2023),
social networks (e.g., users joining groups or channels) Li et al. (2013), bioinformatics Tian et al.
(2009), and cyber-security Lin et al. (2024). To exploit these structures, hypergraph neural networks
(HGNNs) have been developed with specialized message-passing and aggregation mechanisms Feng
et al. (2019); Yadati et al. (2019); Bai et al. (2021), demonstrating superior performance when
group-wise relations, rather than dyadic links, are essential.

The evolution of HGNNs has closely paralleled that of GNNs. Early work, such as HGNN Feng et al.
(2019), adapted the message-passing framework of GCN Kipf & Welling (2016), while HCHA Bai
et al. (2021) extended the attention mechanism of GAT Velickovic et al. (2017) to hypergraphs.
More recent efforts have introduced advanced ideas, including multiset functions Chien et al. (2021),
network diffusion Wang et al. (2023a), energy-based formulations Wang et al. (2023b), and implicit
modeling Li et al. (2025); Choudhuri et al. (2025b). Despite these innovations, a key limitation
persists: existing HGNNs provide no mechanism to quantify predictive uncertainty. This omission
is particularly problematic in high-stakes domains, where decisions require not only accuracy but
also calibrated confidence. A principled solution is to construct prediction sets that guarantee high-
probability coverage for each sample. While numerous uncertainty quantification methods have been
proposed in the broader machine learning literature Guo et al. (2017); Zhang et al. (2020); Hsu et al.
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(2022); Zhang et al. (2018a); Gal & Ghahramani (2016); Trivedi et al. (2023); Lakshminarayanan
et al. (2017), they generally lack rigorous coverage guarantees—i.e., assurances that the true label
lies within the predicted set with the desired probability.

The field of conformal prediction, pioneered by Vovk et al. (2005), provides a principled framework
for constructing prediction sets with rigorous, finite-sample coverage guarantees under minimal dis-
tributional assumptions. By calibrating nonconformity scores on held-out data, conformal prediction
methods ensure that the true label is included in the prediction set with a user-specified probability
(e.g., 1 − α), regardless of the underlying data distribution. This property has fueled widespread
adoption in areas such as computer vision Angelopoulos & Bates (2021), natural language process-
ing Kumar et al. (2023), and time-series forecasting Stankeviciute et al. (2021); Zaffran et al. (2022);
Gibbs & Candes (2021). Conformal prediction has gained immense popularity in graph representation
learning, with frameworks aimed at quantifying uncertainty in inductive Clarkson (2023); Zargarbashi
& Bojchevski (2023) and transductive Zargarbashi et al. (2023); Huang et al. (2024) node classifica-
tion and edge/link prediction Luo & Colombo (2024); Zhao et al. (2024); Choudhuri et al. (2025c).

Table 1: Comparison of the features of the prior works. Our proposed
framework jointly accounts for epistemic and aleatoric uncertainties
while maintaining valid marginal coverage.

Method Coverage Epistemic Aleatoric
TS and VS Guo et al. (2017) ✗ ✗ ✓
ETS Zhang et al. (2020) ✗ ✗ ✓
CF-GNN Huang et al. (2024) ✓ ✓ ✗
Ours ✓ ✓ ✓

While conformal prediction
provides coverage guaran-
tees, it explicitly quantifies
epistemic uncertainty (i.e.,
model-specific uncertainty)
while ignoring aleatoric un-
certainty (i.e., data uncer-
tainty). Moreover, as high-
lighted in Table 1, uncer-
tainty quantification in hy-
pergraph representation learning has not been studied before. Quantifying both sources of uncertainty
is particularly important in hypergraphs, as data often appears in the form of higher-order relationships
(e.g., co-authorship, biochemical complexes, and co-purchases) that are prone to noise, sparsity, and
lack of standardization, limiting effective model training in practice. Unlike graphs, where uncertainty
typically stems from missing or spurious edges, hypergraphs are subject to structural ambiguity in the
semantics of multi-way relations (e.g., “all authors of a paper” or “all participants in a discussion”),
which introduces additional sources of noise. Furthermore, in node classification tasks, a single
mislabeled node does not merely affect its immediate neighbors, as in graphs, but can propagate
errors to every node within the same hyperedge, significantly amplifying the impact of label noise.

To address these challenges, we introduce Contrastive Conformal Hypergraph Neural Network
(CCF-HGNN), an end-to-end framework that jointly models aleatoric and epistemic uncertainty in
hypergraph representation learning. Our contributions are as follows:

• To the best of our knowledge, this is the first work that combines aleatoric uncertainty
(contrastive augmentation- aided learning) and epistemic uncertainty (conformal prediction).

• We propose an auxiliary hyperedge-degree prediction task to our overall conformal training
algorithm to boost the power of the hypergraph representations. We additionally propose an
efficient computational method to sample the important hyperedges based on the augmenta-
tion strategy and perform the hyperedge-degree prediction task only on those hyperedges.

• We provide theoretical evidence that guarantees that the joint modeling of epistemic and
aleatoric uncertainties is both efficient (ie, the predictive bands returned are shorter) and
effective (empirical coverage provably exceeds the given confidence level).

• Extensive experiments on several real-world hypergraph datasets for uncertainty quantifica-
tion in the node classification task demonstrate the overall utility of our method.

2 PRELIMINARIES

Let H = (V, E ,X ,Y) be a hypergraph, where V is a set of nodes, E is a set of hyperedges, and
X = {xv}v∈V is the set of node attributes, where xv ∈ Rd is a d-dimensional feature vector for node
v ∈ V . Let Y = {yv}(v)∈V be the set of node labels. Our paper focuses on classification problems,
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Figure 1: Contrastive Conformal Hypergraph Neural Network: The overall framework minimizes
three losses: 1) Contrastive Loss: Structural alterations generate multiple views of the hypergraph,
encouraging the model to learn invariant representations. 2) Conformal Inefficiency Loss: Topology-
aware conformal loss ensures similarity in uncertainties of a node based on its local neighbors (nodes
that share hyperedges). 3) Degree Loss: Predicting the hyperedge degree of a sample of hyperedges
to guide the model to learn the structure. This leads to shorter and more confident prediction bands.

but our theory and method naturally extend to regression problems. To perform point predictions, we
are given a mean estimator µ̂ that predicts the node label ŷv given the node embedding xv .

2.1 TRANSDUCTIVE SETTING

We focus on the transductive node classification problem with a random data split akin to Huang et al.
(2024). In this setting, we partition the node labels into three disjoint sets: Ytrain, Ycal, and Ytest. This
leads to training data Dtrain = (V, E ,X ,Ytrain), calibration data Dcal = (V, E ,X ,Ycal), and testing
data Dtest = (V, E ,X ,Ytest). In particular, during training, the model can access V, E ,X , but only the
training labels Ytrain are revealed to the model. Abusing the notation, we use Vtrain to denote elements
of V for which the node labels are in Ytrain. We follow the same notation throughout the paper. After
training, the calibration data {yv}v∈Vcal is used to construct uncertainty estimates. Finally, we predict
the uncertainty bands for the remaining nodes (i.e., Vtest).

2.2 MEAN ESTIMATOR: HYPERGRAPH NEURAL NETWORK

Hypergraph Neural Networks (HGNNs) are powerful machine learning models that leverage the
high-order network structure during message passing. Unlike traditional graph neural networks that
only aggregate pairwise information, HGNNs can handle the complexity of hypergraphs, where
relationships between nodes are generalized beyond pairwise connections. Like Graph Neural
Networks (GNNs), HGNNs aggregate neighborhood information Bai et al. (2021); Feng et al. (2019)
via a sequence of propagation layers where each layer consists of a Message Passing Step, and a
Node Update Step. Further details about the propagation steps are provided in the Appendix A.1.

2.3 CONFORMAL PREDICTION

In this work, we focus on split conformal prediction Vovk et al. (2005), which proceeds in four
primary steps. Given a miscoverage rate α ∈ [0, 1], the steps are: (1) Training: Train the mean
estimator µ̂ on the training data Dtrain. (2) Calibration: For each node v in Vcal, compute the non-
conformity scores (heuristic notion of how off the prediction is from the true label) {V (xv, yv)}v∈Vcal

and create an empirical distribution from the scores. (3) Quantile Computation: Compute the
(1 − α)th quantile Q̂1−α of the distribution 1

|Vcal|+1

∑
v∈Vcal

δVv
+ δ∞, where δa is Dirac Delta

distribution at point a, and Vv is shorthand for V (xv, yv). (4) Band Computation: Given a test node
v and corresponding feature xv, a prediction set/interval Ĉ(xv) = {y ∈ Y : V (xv, y) ≤ Q̂1−α} is
constructed. The notion of transferring the prediction bands computed on the calibration data to the
points in test data relies on the following permutation invariance assumption Huang et al. (2024);
Zargarbashi & Bojchevski (2023).
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Assumption 1. For any permutation π on the calibration and test nodes, the non-conformity score V
obeys

V (xv, yv; {ya}(a)∈Vtrain∪cal ,X ,V, E) = V (xv, yv; {ya}(a)∈Vtrain∪cal ,X ,Vπ, E)
This means that the non-conformity scores of nodes in a hypergraph H are exchangeable.

Assumption 1 imposes the permutation invariance condition for the HGNN training to later compute
the non-conformity scores for node prediction, which means that the model output/non-conformity
score is invariant to permuting the order of the calibration and test nodes on the hypergraph. HGNNs
do not rely on the ordering of the nodes, hence they typically satisfy the assumption.
Lemma 1. (Coverage Guarantee for Conformal Inference) Vovk et al. (2005); Tibshirani et al.
(2019) Under Assumption 1, for any α > 0, the confidence band returned by the conformal inference
algorithm satisfies:

P(yv ∈ Ĉ1−α(xv)) ≥ 1− α (1)
where the probability is taken over the calibration fold Dcal and the testing point (xv, yv).

Here, P(yv ∈ Ĉ1−α(xv)) denotes the coverage, i.e., the probability that the true label yv lies in the
predictive band.

3 OUR METHOD

In this section, we propose our method, Contrastive Conformal Hypergraph Neural Network (CCF-
HGNN), which aims to reduce the size of the predictive band length while maintaining coverage for
hypergraph neural networks. The main idea is to boost the APS and RAPS scores (see section 4.1)
with the help of local topological information and account for data-noise in the form of contrastive
augmentations.

3.1 COMPUTING DIFFERENTIABLE INEFFICIENCY LOSS

Instead of using pairwise local topological information as done by Huang et al. (2024), our work
uses high-order local topological information that goes beyond homophily or other aggregation
mechanisms (like mean, sum, etc.). To implement this idea, we use a separate HGNN learner µ̃
parameterized by the weights ϑ for the same hypergraph network H with node features initialized by
µ̂(X ). Here µ̂(·) denotes the mean estimator that has been used during the training process. Given
µ̃(X ) = HGNNϑ(µ̂(X ), H), and a target miscoverage rate α, we partition the calibration data Dcal
into Dcorr-cal (correction subset) and Dcal-test (testing subset) compute a differentiable loss in the fol-
lowing steps: 1) Differentiable Quantile Computation: Compute the smooth differentiable quantile
η̂ = DiffQuantile({V (xi, yi) | i ∈ Dcorr-cal}) on Dcorr-cal. 2) Inefficiency Proxies Computation:
Construct a differentiable proxy of the miscoverage on Dcal-test by using Dcorr-cal as calibration data.
For class k and node i in Dcal-test, the non-conformity score is given as V (xi, k) (as per APS and
RAPS scores). The inefficiency proxy will thus be ci = σ

(
V (xi,k)−η̂

τ1

)
, where σ(·) denotes the

sigmoid function and τ1 denotes the temperature hyperparameter Stutz et al. (2022). 3) Overall
Loss Computation: Compute the overall inefficiency loss as an average of the inefficiency proxies
LIneff =

1
m

∑
i∈Dcal-test

1
|Y|

∑
k∈Y ci.

The proof that the inefficiency loss is exchangeable simply follows the proof of the same theorem
given in Huang et al. (2024) as our setup also operates on the transductive setting, and hypergraphs
can be represented as graphs through clique/star expansions Agarwal et al. (2006). Note that while
the number of edges changes due to these expansions, the number of nodes remains the same, which
is why the proof holds.

3.2 USING CONTRASTIVE AUGMENTATIONS

While inefficiency quantifies a measure of the epistemic uncertainty, we have not yet accounted for
the aleatoric uncertainty that can arise from a multitude of data-dependent properties. Minimizing
the proxy of the epistemic uncertainty in isolation exposes our framework to noise that can arise
from the structure of the hypergraph. As HGNNs rely on aggregating information by exploiting
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the structural properties of hypergraphs, aleatoric uncertainties will be amplified by the model if
unaccounted for. This motivated us to quantify and minimize the aleatoric uncertainty jointly with
the epistemic uncertainty.

To execute this motivation, we utilize contrastive augmentations to boost the power of node em-
beddings in a self-supervised manner. We design contrastive structural augmentations akin to a
prior work Wei et al. (2022) by constructing augmentations H1 = f̂(H,A1) H2 = f̂(H,A2) and
corresponding node embeddings where f̂(·, ·) is a function that perturbs the structure of a hypergraph
given a perturbation schema A. Hence, A1 and A2 are two instantiations of the perturbation schema.
Finally, we can obtain the node embeddings of the augmented hypergraphs as Z1 = µ̃(H1,X)
Z2 = µ̃(H2,X) and minimizing the contrastive loss as follows:

LContra = InfoNCE(Z1,Z2, τ2) = −
|V|∑
i=1

log
exp

(
sim(z1

i ,z
2
i )

τ2

)
∑|V|

j=1 exp
(

sim(z1
i ,z

2
j )

τ2

) , (2)

Here τ2 is a temperature hyperparameter to the popular InfoNCE loss Chen et al. (2020) and sim(·)
denotes a similarity function like cosine similarity. The contrastive loss is also exchangeable as the
loss depends on the embeddings, which are thus dependent on the mean estimator (HGNN in this
case). As HGNN is permutation invariant, the contrastive loss is also exchangeable.

3.3 BOOSTING CONTRASTIVE AUGMENTATION WITH AUXILIARY HYPEREDGE DEGREE
PREDICTION

To appropriately guide the calibration model µ̃(·) with the structure of the hypergraph, we propose
jointly training the hypergraph augmentations with the task of predicting the original hyperedge
degrees. However, as the number of hyperedges in real-world hypergraphs is much greater than
the number of nodes, we propose an efficient augmentation strategy to sample the most important
hyperedges to perform the auxiliary hyperedge degree prediction task.

Let the hyperedge-Laplacian matrix of the hypergraph be L ∈ Rm×n, where m = |E| is the number
of hyperedges and n = |V| is the number of nodes. The hyperedge-Laplacian can be computed

as L = D
− 1

2
e HTD

− 1
2

v Feng et al. (2019), where H denotes the incidence matrix. We apply self-
attention mechanism Vaswani et al. (2017) over the hyperedge Laplacian to get attention weights
aj=Self-Attention(L:,j) for each hyperedge index j.

To sample the k most important hyperedges in a fully differentiable manner, we use the Gumbel-
Softmax trick Jang et al. (2016) as s = GumbelSoftmax(a, k, τ3), where s ∈ Rn is a soft selection
mask, k is the desired number of hyperedges, and τ3 is the temperature parameter. The auxiliary
hyperedge degree prediction task is then d̂j = h(L:,j), where h(·) is a learnable predictor and d̂j is
the predicted degree of hyperedge ej . Given the true degree dj for the hyperedge in the augmented
hypergraph, the loss for the degree prediction task is Ldeg =

∑n
j=1 sj · ℓ(d̂j , dj) where ℓ(·, ·) is a

regression loss, e.g., mean squared error. The degree prediction loss is also exchangeable as it does
not relate to node labels in the transductive setting.

The overall training algorithm of our method is given in Algorithm 1 in the Appendix. This joint
training encourages the model to learn representations sensitive to the structure of the most informative
hyperedges while maintaining differentiability for end-to-end optimization.

3.4 THEORETICAL GUARANTEE

This section provides theoretical guarantees for our proposed method, in terms of shorter uncertainty
band length (compared to the naive extension of the graph counterpart Huang et al. (2024) to
hypergraphs). We will first define some notations that form the foundation of our theoretical results.

Notations: Assume an encoder-decoder architecture of the conformal corrector µ̃(·), where the
encoder maps the input node features to latent embeddings and the decoder maps those embeddings to
predictions. Consider two models: (1) CF-HGNN: Z0 = h0(X ) and Ŷ = g0(Z0) where h0(·) and
g0(·) is the encoder and decoder, and Z0 is the latent representation. Its prediction set has expected
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size C0(x) given the node embedding x. This is the naive extension of Huang et al. (2024) to
hypergraphs. (2) CCF-HGNN: Z1 = h1(X , A) and Ŷ1 = g1(Z1) where h1(·) and g1(·) is encoder
and decoder, and Z1 is the latent representation under contrastive augmentation A. Its prediction set
has expected size C1(x) given the node embedding x. Recall, this is our proposed approach.

Lemma 2. Let I(Y ;Z1) and I(Y ;Z0) denote the mutual information between the labels and latent
embeddings for CCF-HGNN and CF-HGNN, respectively, and ∆ ∈ R+ then,

I(Y ;Z1) ≥ I(Y ;Z0) + ∆. (3)

The proof is provided in Appendix A.2. Using the results from Lemma 2, we can prove the following
theorem on the expected band length produced by CCF-HGNN and CF-HGNN.

Theorem 1. Under the assumptions:

1. Bounded coverage: Contrastive augmentations do not reduce conformal coverage (marginal
coverage ≥ 1− α is preserved on average).

2. Large Mutual Information gap: I(Y ;Z1)− I(Y ;Z0) is sufficiently large (Lemma 2).

Then, the expected conformal prediction set size under CCF-HGNN is smaller than under CF-HGNN:

E
[
|C1(x)|

]
≤ E

[
|C0(x)|

]
. (4)

The proof is provided in Appendix A.3. We also have a theoretical result on the band-length
convergence guarantee for CCF-HGNN in the Appendix A.4..

4 EXPERIMENTS

Following the theoretical guarantees discussed earlier, we next demonstrate the empirical superiority
of our proposed framework. Specifically, we evaluate the performance of our model and compare its
performance against several non-trivial baselines on real-world datasets. We will first provide details
about the experimental setup and then proceed to describe the evaluation metrics and experimental
protocols, followed by the results.

4.1 SETUP

We conducted all experiments on AMD EPYC 7763 64-Core Processor with 1.08 TB memory and
8 NVIDIA A40 GPUs with CUDA version 13.0. Our code and experimental setup, including data
construction, are available for peer review 1.

Datasets: We evaluated the performance of our proposed framework on four real-world datasets
used in prior works Chien et al. (2021); Wang et al. (2023a). The datasets include co-authorship
datasets like DBLP Yadati et al. (2019), co-purchases large dataset like Walmart-Trips Amburg et al.
(2020), and co-voting datasets like House-Bills Chodrow et al. (2021), and Congress Fowler (2006).
Summary statistics and further descriptions are provided in the Appendix A.5.

Baseline Methods: As there are no prior works tailored to quantify uncertainty for hypergraphs
specifically, we use traditional uncertainty quantification methods (that do not provide statistical
coverage guarantees) as baseline methods. These include Temperature Scaling (TS) Guo et al.
(2017), Vector Scaling (VS) Guo et al. (2017), and Ensemble Temperature Scaling (ETS) Zhang et al.
(2020). Additionally, we adapt traditional conformal prediction methods by adopting an HGNN mean
estimator to obtain point predictions on hypergraphs (CP). Finally, we adapted the SOTA conformal
prediction method for GNNs Huang et al. (2024) to aggregate information and perform conformal
prediction in hypergraphs (CF-HGNN). Detailed descriptions of the baselines are provided in the
Appendix A.6.

Non-Conformity Score Functions: We evaluate two popular conformal prediction scores.

1https://anonymous.4open.science/r/cont_conf_ml-3EB9
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(1) APS (Adaptive Prediction Sets) Romano et al. (2020): For a model outputting class probabilities
p̂(y | x), let π(x) denote the ordering of labels sorted by decreasing probability. The APS score for
class y is defined as VAPS(x, y) =

∑
j:πj(x)≺y p̂(πj(x) | x) + U · p̂(y | x), where U ∼ Unif(0, 1)

and πj(x) ≺ y means label πj(x) is ranked higher than y. APS adaptively constructs prediction sets
by accumulating probabilities until the threshold calibrated by conformal prediction is reached.

(2) RAPS (Regularized Adaptive Prediction Sets) Angelopoulos et al. (2020): RAPS extends APS
by adding a regularization term that penalizes large set sizes. For class y, the score is VRAPS(x, y) =

SAPS(x, y) + λ ·
∣∣{j : πj(x) ≺ y}

∣∣γ , where λ ≥ 0 controls the strength of the penalty and γ ≥ 1
controls its growth rate. This modification encourages tighter prediction sets while preserving
coverage guarantees.

Evaluation Metrics: We randomly split data into train, validation, calibration-test folds with a
20:30:50 split ratio. We adopt the following metrics to evaluate the empirical performance:

(1) Marginal Coverage: For a predictive confidence band C(x) and test point (x, y), the marginal
coverage is defined as Pr

(
y ∈ C(x)

)
. A valid inference procedure should ensure that the empirical

coverage satisfies Pr
(
y ∈ C(x)

)
≥ 1− α, where α is the target miscoverage rate.

(2) Band Length: Given that the empirical coverage exceeds 1− α, the efficiency of the method is
quantified by the expected length of the confidence band, E

[
length(C(x))

]
. Comparisons of band

length are only meaningful under the regime Pr(y ∈ C(x)) ≥ 1− α, since trivially C(x) = ∅ yields
zero length but violates the coverage constraint.

Table 2: Empirical Marginal Coverage (%) of different models for the task of node classification
on four datasets with α = 0.05. The result takes the average and standard deviation across 20
independent runs.

Model Walmart-Trips House-Bills Congress DBLP Covered?

TS 92.26 ± 0.31 ✗ 91.21 ± 0.24 ✗ 89.04 ± 0.48 ✗ 87.34 ± 0.25 ✗ ✗
VS 92.20 ± 0.18 ✗ 91.18 ± 0.24 ✗ 88.99 ± 0.46 ✗ 87.33 ± 0.29 ✗ ✗
ETS 92.20 ± 0.26 ✗ 92.93 ± 1.77 ✗ 89.23 ± 0.44 ✗ 88.29 ± 0.65 ✗ ✗
CP-APS 95.17 ± 0.00 ✓ 99.83 ± 0.09 ✓ 99.61 ± 0.02 ✓ 95.04 ± 0.04 ✓ ✓
CP-RAPS 95.11 ± 0.06 ✓ 95.20 ± 0.04 ✓ 95.17 ± 0.04 ✓ 95.13 ± 0.03 ✓ ✓
CF-HGNN-APS 95.05 ± 0.01 ✓ 99.97 ± 0.00 ✓ 99.94 ± 0.01 ✓ 97.31 ± 2.58 ✓ ✓
CF-HGNN-RAPS 95.01 ± 0.01 ✓ 95.18 ± 0.10 ✓ 95.14 ± 0.07 ✓ 95.07 ± 0.01 ✓ ✓
CCF-HGNN-APS (Ours) 95.06 ± 0.32 ✓ 99.68 ± 0.00 ✓ 99.79 ± 0.12 ✓ 99.49 ± 0.39 ✓ ✓
CCF-HGNN-RAPS (Ours) 95.06 ± 0.00 ✓ 95.33 ± 0.03 ✓ 95.34 ± 0.34 ✓ 95.06 ± 0.04 ✓ ✓

4.2 RESULTS

We will now provide empirical performances of all the baselines and our proposed framework to
quantify uncertainty for classification tasks on the four datasets. The important conclusions derived
from the experiments are listed below.

All Conformal Frameworks Achieve the Desired Empirical Marginal Coverage while Tradi-
tional UQ Methods do not: We report the marginal coverage of various UQ methods with target
coverage at 95% in Table 2. There are two primary takeaways. Firstly, none of the traditional UQ
methods (VS, TS, and ETS) achieves the target coverage for all datasets, while the conformal predic-
tion methods (CP, CF-HGNN, and CCF-HGNN) do, highlighting the need for models with statistical
guarantees when deployed in high-stakes environments. Secondly, these empirical results of all the
conformal methods align with the theoretical coverage guarantee given in Lemma 1. Henceforth, we
will only report the performance of models that obtain the desired coverage levels.

Our Proposed Framework (CCF-HGNN) achieves the shortest Band Length in Most Datasets:
We report the empirical band length for 4 datasets in Table 3. The key observations are as follows.
First, compared to standard conformal baselines (CP-APS, CP-RAPS). Our proposed approach CCF-
HGNN-RAPS produces tighter bands across all but one dataset, while maintaining an impressive
overall rank of 1.5 (the closest baselines get to 2.5). Second, while CF-HGNN offers improvements
over GNN-based conformal methods, it is consistently outperformed by the proposed CCF-HGNN
on hypergraph datasets. These results validate that incorporating contrastive learning with conformal
prediction is crucial for boosting efficiency without compromising validity.
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Table 3: Empirical Predictive Band Length of Different Models (that have the desired coverage level)
on Four Datasets with α = 0.05. The result takes the average and standard deviation across 20
independent runs. Lower is better.

Model Walmart-Trips House-Bills Congress DBLP Rank

CP-APS 9.198 ± 0.048 1.958 ± 0.005 1.961 ± 0.007 3.479 ± 0.127 5.0
CP-RAPS 9.053 ± 0.008 1.261 ± 0.054 1.317 ± 0.007 1.509 ± 0.038 2.5
CF-HGNN-APS 8.541 ± 0.023 1.993 ± 0.013 1.989 ± 0.008 4.346 ± 0.387 5.0
CF-HGNN-RAPS 8.595 ± 0.400 1.646 ± 0.191 1.619 ± 0.129 1.977 ± 0.184 3.25
CCF-HGNN-APS (Ours) 8.481 ± 0.007 1.953 ± 0.010 1.949 ± 0.008 4.354 ± 1.014 3.75
CCF-HGNN-RAPS (Ours) 8.528 ± 0.162 1.189 ± 0.027 1.213 ± 0.043 1.541 ± 0.060 1.5

As observed in Table 2, APS-based conformal methods often produce empirical coverage well
above the target level (close to 99%). This behavior arises because APS adaptively accumulates
class probabilities until the calibration cutoff is exceeded, which in practice tends to overshoot
the nominal threshold. While this conservativeness ensures validity, it also leads to overly large
prediction sets. Consequently, APS methods trade efficiency for coverage, resulting in inflated
band lengths (Table 3). By contrast, RAPS introduces an explicit penalty on the set size, thereby
reducing redundancy in the prediction sets while still maintaining the desired coverage guaran-
tees. However, Walmart-Trips is an exception as the difference between APS and RAPS is less
pronounced, with APS achieving competitive band lengths relative to RAPS. This can be attributed
to the nature of Walmart-Trips, which has a relatively large number of classes (11) but moderate
class imbalance. In such settings, APS’s conservative accumulation of probabilities does not inflate
the prediction sets as severely as in smaller-class datasets, since the distribution of probabilities
is already more spread out across labels. As a result, while RAPS still improves efficiency, the
margin of improvement over APS is narrower on Walmart-Trips compared to the other datasets.

Figure 2: Ablation Study: Variation band length (right) for
RAPS on CCF-HGNN on Congress (left) and House-Bills
(right) dataset due to removal of individual components for
α = 0.05. Smaller is better.

Ablation Study: We analyze
the effect of removing three key
components—the topological-aware
conformal loss, auxillary degree
prediction loss, and contrastive loss—
on the Congress and House-Bills
datasets on at a time. Figure 2 reports
coverage and band length under
RAPS with α = 0.05. Our key
observations are: (1) Topology-aware
conformal prediction loss is crucial:
removing it inflates RAPS length
substantially (e.g., 1.213 → 1.469
on Congress, 1.214 → 1.744 on
House-Bills), showing that structural
information yields tighter sets. (2) Minimizing the auxillary loss helps: excluding degree modestly
increases lengths (e.g., 1.213 → 1.328 on Congress). (3) Contrastive learning improves efficiency:
dropping it slightly lengthens sets (e.g., 1.213 → 1.262 on Congress). Overall, each component
contributes to efficiency, with topology offering the largest gains. The complete model yields the
tightest bands while maintaining the desired coverage guarantees.

Table 4: Effect of different contrastive strategies (mean ± std dev across 20 runs.) for α = 0.05.

Dataset Technique APS Coverage APS Length RAPS Coverage RAPS Length

Congress Hyperedge Drop 99.83 ± 0.13 1.997 ± 0.011 95.27 ± 0.19 1.309 ± 0.046
Edge Drop 99.79 ± 0.12 1.949 ± 0.008 95.34 ± 0.034 1.213 ± 0.043

DBLP Hyperedge Drop 99.39 ± 0.10 3.688 ± 0.384 95.08 ± 0.16 1.641 ± 0.132
Edge Drop 99.49 ± 0.39 4.354 ± 1.014 95.06 ± 0.04 1.541 ± 0.060

House-Bills Hyperedge Drop 99.68 ± 0.00 1.953 ± 0.010 95.33 ± 0.03 1.189 ± 0.027
Edge Drop 99.64 ± 0.03 1.955 ± 0.006 95.19 ± 0.00 1.214 ± 0.018

Walmart-Trips Hyperedge Drop 95.05 ± 0.05 8.506 ± 0.136 95.05 ± 0.00 8.571 ± 0.102
Edge Drop 95.06 ± 0.32 8.481 ± 0.007 95.06 ± 0.00 8.528 ± 0.162

Sensitivity Study 1: Different Augmentation Strategies To account for aleatoric uncertainty,
we exploit contrastive augmentations by perturbing the hypergraph structure. We compare two
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strategies: (i) random hyperedge drop, which removes entire hyperedges, and (ii) random edge
drop, which removes individual edges in the bipartite node–hyperedge graph. Table 4 summa-
rizes the results. Across datasets, both strategies achieve the target coverage, but their impact on
efficiency differs. On Congress and House-Bills, edge drop consistently yields shorter RAPS
sets (e.g., 1.213 vs. 1.309 on Congress), indicating that fine-grained perturbations help the model
learn more stable and discriminative representations. In contrast, DBLP benefits slightly more
from hyperedge drop, where APS sets are tighter (3.688 vs. 4.354), suggesting that larger-scale
perturbations are useful in high-homophily graphs with many small hyperedges. For Walmart-
Trips, the differences between the two strategies are marginal, likely due to its large number of
classes and moderate imbalance, where both perturbations introduce comparable variability. Overall,
edge drop is generally more effective for heterophilic co-voting datasets, while hyperedge drop
can be advantageous for homophilic graphs like DBLP. This demonstrates the importance of tai-
loring contrastive augmentation strategies to the structural properties of the underlying hypergraph.

(a) (b)

Figure 3: Sensitivity study on varying α for Congress (3a)
and House-Bills (3b).

Sensitivity Study 2: Dependence
on Confidence Level We further
study the sensitivity of our method
to two key parameters: the miscov-
erage rate α (i.e., target confidence
level) and the calibration set size. Fig-
ure 3 shows the results of this ex-
periment for Congress and House-
Bills datasets. Figure 3a and Fig-
ure 3b show the change in predic-
tive band length as the confidence level increases from 0.7 to 0.95. Across both datasets, the
band length grows monotonically with confidence, as expected. While all methods follow this
trend, our method consistently achieves shorter band lengths compared to CP and CF-HGNN,
especially at higher confidence levels (e.g., α = 0.05). This demonstrates that our con-
trastive framework yields more informative uncertainty estimates without sacrificing coverage.

(a) (b)

Figure 4: Sensitivity Study on varying the calibration set
fraction (4a and 4b) for Congress and House-Bills datasets
respectively.

Sensitivity Study 3: Size of Cali-
bration Set We also evaluate the ef-
fect of calibration set fraction (25%,
50%, 75%). Results in Figure 4a and
Figure 4b show that our method re-
mains stable with minimal fluctuation
in band length as calibration data de-
creases. In contrast, CF-HGNN ex-
hibits higher variance and inflated in-
tervals, especially at smaller calibra-
tion fractions. This stability highlights
the robustness of our approach under
limited calibration resources, which is
important in real-world healthcare applications where labeled calibration data may be scarce.

Performance in Multi-Class Hypergraph Datasets To additionally observe the performance of the
conformal prediction methods for multi-class datasets, we used two datasets, namely Trivago-Clicks
and High-School. The descriptions and summaries of these datasets are provided in Section A.5.

Table 5: APS and RAPS coverage and length across multi-class datasets for α = 0.05. Mean ±
standard deviation over 20 runs.

Dataset Model APS Coverage APS Length RAPS Coverage RAPS Length

High-School
CP 97.86 ± 0.45 7.81 ± 0.07 96.14 ± 0.00 7.66 ± 0.04
CF-HGNN 97.33 ± 0.01 7.44 ± 0.06 95.98 ± 0.06 7.28 ± 0.05
Ours 97.79 ± 0.00 7.30 ± 0.32 96.13 ± 0.00 7.13 ± 0.73

Trivago-clicks
CP 95.08 ± 0.04 56.23 ± 2.55 95.11 ± 0.04 54.79 ± 1.41
CF-HGNN 95.03 ± 0.00 52.09 ± 1.04 95.01 ± 0.03 51.38 ± 2.01
Ours 95.11 ± 0.04 51.47 ± 1.44 95.11 ± 0.00 50.89 ± 1.66
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The results in Table 5 show that all conformal methods maintain the desired marginal coverage
at the target level α = 0.05. However, consistent with our observations in the main paper, our
proposed approach achieves notably shorter prediction sets—particularly under RAPS, demonstrating
improved efficiency while preserving valid coverage. On both datasets, our method outperforms CP
and CF-HGNN in terms of band length, with the largest gains observed on Trivago-Clicks, where
the high number of classes amplifies the benefits of contrastive regularization and topology-aware
conformal correction. These results further confirm that jointly modeling aleatoric and epistemic
uncertainties yields tighter and more informative prediction sets in multi-class hypergraph settings.

5 RELATED WORKS

In this section, we briefly discuss some important works that have not been discussed before. For a
more comprehensive survey, refer to Appendix A.7.

(1) Uncertainty Quantification (UQ) on Networks: Traditional UQ methods on graph have gained
more popularity over time Zhao et al. (2020); Stadler et al. (2021); Bertozzi et al. (2018); Han et al.
(2025); Srinivasan et al. (2018) that has influenced training strategies Kang et al. (2022); Trivedi
et al. (2024a) and other applications Huang & Chung (2020); Yu et al. (2024). While some methods
have been proposed for hypergraphs Yao et al. (2025); Harit & Sun (2025), they are focused towards
applications and not generalizable.

(2) Conformal Prediction: Due to the statistical guarantee and distribution-free assumptions, con-
formal prediction has become very popular in recent times. Some directions include conditional
conformal prediction Ding et al. (2023); Gibbs et al. (2025); Luo & Zhou (2025), reformulation of
conformal prediction to other domains Correia et al. (2024); Cherian et al. (2024) and conformal
prediction under distribution shift Barber et al. (2023); Clarkson (2023); Thopalli et al. (2025).

6 CONCLUSION

In this work, we extend the notion of UQ on hypergraphs by jointly accounting for both aleatoric and
epistemic sources of uncertainty and proposing a hypergraph-based conformal prediction framework
that leads to improved band lengths. While this is a promising direction, potential directions of
future work include the evaluation of the performance of other HGNN models like Allset Chien
et al. (2021), ED-HNN Wang et al. (2023a), and accounting for other sources of aleatoric uncertainty.
On the side of conformal prediction, possible future directions include evaluation in the inductive
setting Zargarbashi & Bojchevski (2023); Clarkson (2023) where the assumption of exchangeability
is not maintained.
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A APPENDIX

A.1 HYPERGRAPH NEURAL NETWORKS

The early structure of HGNNs mimicked the convolution step of GNNs. In particular, Feng et al. Feng
et al. (2019) proposed the first spectral hypergraph convolution, formulated as

X′ = σ
(
D

− 1
2

v HWeD
−1
e H⊤D

− 1
2

v XW
)
, (5)

where H is the incidence matrix, Dv and De are vertex and hyperedge degree matrices, We is a
diagonal hyperedge weight matrix, and W is a trainable weight matrix.

Later, Bai et al. (2021) introduced a simplified hypergraph convolution operation, expressed as

X′ = σ
(
D−1

v HD−1
e H⊤XW

)
, (6)

which removes the symmetric normalization and leads to a message-passing view of hypergraph
learning. This formulation laid the foundation for subsequent works such as UniGNN Huang & Yang
(2021). In all our experiments, we have used the formulation by Bai et al. (2021).

A.2 PROOF OF LEMMA 2

Proof. From Proposition E.2 in Oord et al. (2018), we know

I(Y ;Z) ≥ log(N)− LInfoNCE
Z ,

where N is the number of samples and LInfoNCE
Z the InfoNCE loss.

For our method, LInfoNCE
Z1

is explicitly minimized, compared to CF-HGNN, which consequently
means that log(N)− LInfoNCE

Z1
≥ log(N)− LInfoNCE

Z0
.

This implies the proof statement:

I(Y ;Z1) ≥ I(Y ;Z0) + ∆

A.3 PROOF OF THEOREM 1

Lemma 3. Correia et al. (2024) For any conformal prediction scheme with the coverage guarantee
of 1− α, and any distribution q(·), we have:

E([log |C(x)|]+) ≥

(1− α)
H(Y |X)− hb(a)− a logM − αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
1− α+ 1

n+1

− (1− α)EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + logEu(yC(x))[q(y|x)]
]
, (7)

where Q̂0
Y |X = q(y|x)I[y /∈ C(x)] and Q̂1

Y |X = q(y|x)I[y ∈ C(x)]. Here, |C(x)| denotes the size
of the prediction set for input x, H(Y |X) the conditional entropy of Y given X , hb(·) the binary
entropy function, a the error probability, and M = |Y| the number of classes.
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Algorithm 1 Contrastive Hypergraph Conformal Prediction (CCF-HGNN)

Input: Hypergraph H = {V, E}, feature matrix X , label set Y , Incidence Matrix H
HGNN train Model µ̂(·), calibration model µ̃(·) with weights ϑ, non-conformity score function
V (·, ·), Calibration dataset Dcal partitioned into Dcorr-cal = {(xi, yi)}ncorr-cal

i=1 ,
and Dcal-test = {(xi, yi)}ncal-test

i=1 , significance level α, Hypergraph incidence, node and hyperedge
degree matrices H,De,Dv

1: Train HGNN model µ̂(H,X) on prediction task.
2: while Not converged do
3: Obtain augmentations H1 and H2 of H .
4: Compute the hyperedge Laplacians L1 and L2, corresponding attention weights a1 and a2.
5: Select the k important hyperedges using the Gumbel-Softmax trick.
6: Compute the overall degree loss Ldeg = L1

deg + L2
deg.

7: Get embeddings Z1 = µ̃(H1, f(X)), Z2 = g(H2, f(X)).
8: Get calibration predictions Z1

cal,Z
2
cal from Z1,Z2.

9: Compute Zcal =
Z1

cal+Z2
cal

2 .
10: Get test predictions Z1

test,Z
2
test from Z1,Z2.

11: Compute Ztest =
Z1

test+Z2
test

2 .
12: Compute α̂ = 1

n+1 · α.
13: η̂ = DiffQuantile({V (Zi, yi) | i ∈ Dcal}).
14: LIneff =

1
m

∑
i∈Dcal-test

1
|Y|

∑
k∈Y σ

(
V (zi,k)−η̂

τ1

)
.

15: LContra = INFONCE(Z1,Z2, τ2)
16: LTotal = γLIneff + (1− γ)LContra + Ldeg.
17: ϑ = ϑ−∇ϑLTotal.
18: end while

Lemma 3 shows that the expected prediction set size is lower bounded by the conditional entropy
H(Y |X), penalized by calibration-dependent terms.

Proof. By Lemma 2, I(Y ;Z1) ≥ I(Y ;Z0) + ∆. Equivalently, H(Y |Z1) ≤ H(Y |Z0)−∆.

Lemma 3 lower bounds the expected log set size in terms of H(Y |X). Since Z1 captures more
information about Y than Z0, the effective conditional entropy H(Y |Z1) is smaller. Thus, the bound
for C1(X) is tighter than for C0(X).

Formally,

E[log |C0(X)|]+ ≥ f(H(Y |Z0)),

E[log |C1(X)|]+ ≥ f(H(Y |Z1)),

where f(·) is the lower-bound functional in Lemma 3. Since H(Y |Z1) < H(Y |Z0), the bound for
C1(X) is strictly smaller, which implies:

E[|C1(X)|] ≤ E[|C0(X)|].

A.4 CONVERGENCE OF CCF-HGNN

Theorem 2. If the calibration model µ̃(·) produces stable predictions p̂(yi|Xi) as the number of
calibration samples ncal → ∞, the expected prediction set size E[|C(x)|] for a test point converges
in probability to a fixed value:

E[|C(x)|] →
∑
y∈Y

P(p̂(y|x) ≥ 1− q∗), (8)

where q∗ = F−1(1− α) is the (1− α)th-quantile of the true non-conformity score distribution.
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Proof. Let Fn(v) =
1
n

∑n
i=1 1(Vi ≤ v) be the empirical CDF of the non-conformity scores Vi =

1− p̂(yi|Xi).

Using Glivenko-Cantelli Theorem Van der Vaart (2000) with Assumption 1, supv |Fn(v)− F (v)| →
0 as n → ∞. Assuming the calibration model µ̃(·) produces stable predictions p̂(yi|Xi) as the
number of calibration samples ncal → ∞, and as F is continuous and strictly increasing, F−1 is
continuous at 1− α.

For any ϵ > 0, choose δ > 0 such that

F (q∗ − ϵ) < 1− α− δ, F (q∗ + ϵ) > 1− α+ δ.

As ncal grows, supv |Fncal(v)− F (v)| < δ, which means

Fncal(q
∗ − ϵ) ≥ F (q∗ − ϵ)− δ < 1− α,

and
Fncal(q

∗ + ϵ) ≤ F (q∗ + ϵ) + δ > 1− α.

So q∗ − ϵ < q̂ < q∗ + ϵ, which means

P(|q̂ − q∗| > ϵ) → 0 as ncal → ∞.

The prediction set is thus
C(x) = {y ∈ Y : p̂(y|x) ≥ 1− q̂}.

So the expected set size is

E[|C(x)|] = E

∑
y∈Y

1(p̂(y|x) ≥ 1− q)

 =
∑
y∈Y

P(p̂(y|x) ≥ 1− q).

As q̂ → q∗, and since g(·) is stable,

1(p̂(y|x) ≥ 1− q̂) → 1(p̂(y|x) ≥ 1− q∗).

So,
E[|C(x)|] →

∑
y∈Y

P(p̂(y|x) ≥ 1− q∗).

This limit is a fixed value determined by the distribution of p̂(y|x) and q∗.

Conformal prediction ensures that as long as q̂ is calibrated,

P(y ∈ C(x)) ≥ 1− α.

A.5 DESCRIPTIONS OF THE DATASETS

Table 6: Statistics of the selected datasets. Here, DBLP is a homophilic dataset while the others are
heterophilic.

Property DBLP Congress House-Bills Walmart-Trips High-School Trivago-Clicks
# nodes 41,302 1,718 1,494 88,860 327 170,994
# hyperedges 22,363 83,105 60,987 69,906 7818 232,013
# classes 6 2 2 11 9 80
avg. |e| 4.452 8.656 20.500 6.589 2.300 3.116

This work uses four hypergraph classification datasets in the main text. They are as follows:

• Walmart-Trips: This is a customer recruitment prediction dataset where the hyperedges
are sets of co-purchased products at Walmart. Products (nodes) are assigned to one of ten
broad departments in which the product appears on walmart.com (e.g., ”Clothing, Shoes,
and Accessories”), and these serve as node labels (there is also an additional ”Other” class).
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• DBLP: This is a co-authorship hypergraph dataset created by Yadati et al. (2019). It
represents collaborations among authors listed in DBLP, the computer science bibliographic
database, as of 3 Sept. 2017. Each node represents an author, and each publication is
represented by a simplex (a set of nodes, i.e., a hyperedge), timestamped by the year of
publication. This is the only homophilic hypergraph dataset

• Congress: In this hypergraph dataset, nodes are US Congresspersons and simplices are
comprised of the sponsor and co-sponsors of legislative bills put forth in both the House of
Representatives and the Senate.

• House-Bills: In this hypergraph dataset, nodes are US Congresspersons and hyperedges
are the sponsors and co-sponsors of bills put forth in the House of Representatives. Some
hyperedges are repeated. Each node is labeled with political party affiliation.

Additionally, this work also used two multi-class hypergraph datasets. They are as follows:

• High-School Chodrow et al. (2021); Mastrandrea et al. (2015): This is a static, annotated
hypergraph version of the temporal higher-order contact-high-school dataset. Each hyper-
edge corresponds to a group of people who were all in proximity of one another at a given
time, based on data from sensors worn by students. Each node is labeled with the classroom
to which the student belongs.

• Trivago-Clicks Chodrow et al. (2021): This is a hypergraph, where nodes are accom-
modations (mostly hotels), and hyperedges are sets of accommodations for which a user
performed the ”click-out” action during the same browsing session, which means the user
was forwarded to a partner site. Although the original dataset has 160 node classes, a lot of
them are singular. We selected the nodes belonging to the top 80 labels in our experiments.

A.6 DESCRIPTIONS OF THE BASELINES

The baseline models used in this work can be characterized into the following categories:

• Traditional UQ Methods: These methods do not provide any statistical guarantee about
marginal coverage. The 3 baseline methods used under this category are as follows:

1. Temperature Scaling (TS) Guo et al. (2017): It is a post-processing calibration
method for UQ. It takes the model’s logits (pre-softmax outputs) and divides them by a
learned scalar parameter called the temperature. Higher temperature values produce
softer probability distributions with lower confidence.

2. Vector Scaling (VS) Guo et al. (2017): Vector scaling is a more flexible version of
temperature scaling. Instead of using a single global adjustment for all classes, it
assigns each class its own adjustment with a small bias. This allows the model to adjust
situations where some classes are consistently overconfident or underconfident, thereby
improving the calibration of predicted probabilities across all classes.

3. Ensemble Temperature Scaling (ETS) Zhang et al. (2020): Ensemble Temperature
Scaling applies temperature scaling to the aggregated outputs of a model ensemble. A
single temperature parameter is learned on the ensemble’s averaged logits to adjust
overall confidence. This method preserves the accuracy advantages of ensembling
while improving calibration, resulting in more reliable uncertainty estimates.

• Conformal Prediction Methods: These methods have a theoretical guarantee for marginal
coverage. We adapted two prior works as baselines:

1. Conformal Predictor (CP) Vovk et al. (2005): For this model, the mean estimator
(HGNN) was trained on the classification task on the training data. After that, the
non-conformity scores were obtained for the calibration data (node set), a quantile was
selected (based on the type of the non-conformity score function), and predictive bands
were constructed for test nodes.

2. Conformalized Hypergraph Neural Network Huang et al. (2024) (CF-HGNN):
This model integrates conformal prediction with hypergraph neural networks to provide
uncertainty estimates with guaranteed marginal coverage. The key idea is to adapt
non-conformity scores to hypergraph learning tasks, where nodes, edges, and higher-
order relationships need to be considered simultaneously. CF-HGNN first trains a base
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HGNN to produce class probability estimates, then applies a conformal calibration
step using a held-out calibration set. Unlike CP, CF-HGNN explicitly accounts for
hypergraph structures, leading to tighter predictive sets and better utilization of higher-
order relational information. As such, it represents the current state-of-the-art approach
for principled uncertainty quantification in hypergraph datasets, balancing theoretical
guarantees with strong empirical performance.

A.7 RELATED WORKS

We discuss here related works that are closest to the ideas in CCF-HGNN in this section.

(1) Uncertainty Quantification in deep learning and GNNs: Several approaches address model-
agnostic risk estimation for Graph Neural Networks (GNNs) in both classification and regression
tasks Zhang et al. (2020); Ovadia et al. (2019); Seedat et al. (2022). Other studies leverage struc-
tural properties of graphs to explore calibration challenges, particularly the tendency of GNNs to
be underconfident Wang et al. (2021); Hsu et al. (2022). A foundational perspective is provided
by Gal & Ghahramani (2016), who interpret dropout training in deep neural networks as approximate
Bayesian inference in deep Gaussian Processes. Complementary work investigates factors such as
network depth, width, weight decay, batch normalization, and temperature scaling for improving
calibration Lakshminarayanan et al. (2017); Guo et al. (2017). More recently, stochastic centering
has been proposed and applied as an effective calibration technique for GNNs Trivedi et al. (2023;
2024b).

(2) Conformal Prediction: Conformal inference provides distribution-free uncertainty quantification
with rigorous coverage guarantees, enabling applications across diverse domains such as model
calibration Sweidan & Johansson (2021), passenger booking systems Werner et al. (2021), computer
vision Angelopoulos et al. (2020); Bates et al. (2021), and time-series forecasting Gibbs & Candes
(2021); Lin et al. (2022). Given a user-specified miscoverage rate α ∈ (0, 1), the framework uses
a calibration dataset to construct prediction sets or intervals that contain the true outcome with
probability at least 1 − α. A variety of nonconformity scores have been proposed to improve
performance in classification settings Romano et al. (2019; 2020); Izbicki et al. (2019), with recent
work introducing scores in the latent feature space Teng et al. (2022). While the classical framework
relies on exchangeability, several extensions relax this assumption to handle label shift, covariate
shift, or dependent data Gibbs & Candes (2021); Barber et al. (2023); Tibshirani et al. (2019); Lin
et al. (2022).

(3) Conformal Prediction for GNNs: The use of conformal inference for network-structured data has
recently gained traction. The first application in the inductive setting Clarkson (2023) demonstrated
that nonconformity scores in this context are not exchangeable. In contrast, subsequent works Huang
et al. (2024); Zargarbashi et al. (2023); Luo & Colombo (2024) study the transductive setting, where
nonconformity scores retain exchangeability. These approaches exploit the local neighborhood
structure of graphs to improve effectiveness while maintaining computational efficiency. More
recently, Zargarbashi & Bojchevski (2023) introduced the notions of node-exchangeability and edge-
exchangeability in growing graphs for the inductive setting, and proposed nonconformity scores
defined on the evolving graph structure at each step. Recent works also include conformalized link
prediction Zhao et al. (2024), weighted edge prediction Choudhuri et al. (2025c); Luo & Colombo
(2024), dynamic GNNs Davis et al. (2024); Wang et al. (2025) and adversasial attack detection Ennadir
et al. (2023).

A.8 ABLATION STUDY: OPTIMIZING OTHER NON-CONFORMITY SCORES

While our main experimental results were based on optimizing APS, we performed an additional
experiment by using DAPS Zargarbashi et al. (2023) as the non-conformity score function. The
neighbour diffused scores of DAPS is given by Ĥ = (1− λ)H+D−1AH, where D denotes the
node degree matrix, A denotes the node adjacency matrix and H denotes the node-wise score matrix.
We experimented on Walmart-Trips and DBLP datasets for a target coverage of 95%. The results of
our experiments are presented in Table 7.

We notice that for Walmart-Trips, using DAPS does not improve performance for our method
compared to optimizing the APS score in Table 3. However, the performance of our method improves
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Table 7: Average Marginal Coverage and Band Length for all conformal methods using DAPS
non-conformity score across 20 runs. α = 0.05

Dataset Method Coverage Length

Walmart-Trips

CP-APS 95.16± 0.02 8.973± 0.003

CP-RAPS 95.08± 0.01 8.901± 0.053

CF-HGNN-APS 95.05± 0.02 8.588± 0.003

CF-HGNN-RAPS 95.01± 0.00 8.611± 0.001

Our-APS 95.07± 0.03 8.518± 0.001

Our-RAPS 95.05± 0.01 8.592± 0.003

DBLP

CP-APS 97.05± 0.00 3.470± 0.065

CP-RAPS 95.07± 0.00 1.600± 0.011

CF-HGNN-APS 97.11± 0.01 3.920± 0.011

CF-HGNN-RAPS 95.08± 0.00 1.703± 0.002

Our-APS 98.79± 0.01 3.734± 0.067

Our-RAPS 95.13± 0.00 1.508± 0.067

when evaluated on the DBLP dataset. This is primarily due to the fact that the non-conformity score
of DAPS induces homophily and thus does not improve performance in a heterophilous hypergraph
like Walmart-Trips. However, for a homophilous hypergraph like DBLP, the performance of all
methods improves significantly when using an appropriate non-conformity score.

A.9 EFFECT OF MEAN ESTIMATOR ON OUR METHOD

Table 8: Performance of Models using ED-HNN averaged across 20 runs. α = 0.05

Dataset Model APS Coverage APS Length RAPS Coverage RAPS Length

Congress CP 99.49± 0.00 1.95± 0.00 95.29± 0.00 1.78± 0.12

Ours 98.99± 0.00 1.97± 0.02 95.28± 0.00 1.40± 0.05

House-Bills CP 99.53± 0.00 1.95± 0.01 95.25± 0.00 1.24± 0.07

Ours 98.74± 0.01 1.96± 0.03 95.19± 0.00 1.15± 0.15

The mean estimator used for all experiments in the main text was HCHA Bai et al. (2021). As
the conformal methods quantify uncertainty estimates on top of the point predictions made by the
mean estimator, altering the mean estimator will cause fluctuations in performance. To illustrate this
fact, we used a more recent backbone model, ED-HNN Wang et al. (2023a), that had slightly lower
validation accuracy than HCHA Congress and slightly higher validation accuracy on House-Bills
datasets. The results of our experiment are shown in Table 8.

The experimental results show that using ED-HNN instead of HCHA produces wider uncertainty
estimates for the Congress dataset. On the other hand, for the House-Bills dataset, we observe
slightly shorter predictive bands. This empirically validates the correlation between the predictive
performance of the mean estimator and the size of the uncertainty bands. The higher the predictive
accuracy of the mean estimator, the shorter the size of the uncertainty bands, and vice versa.

A.10 SCALABILITY OF CF-HGNN AND OUR METHOD

The limitation of both our method and CF-GNN is that they are more computationally expensive.
However, this comes at a cost of shorter predictive bands (as the losses encourage shorter band length
while maintaining desired levels of coverage). On that front, both CF-GNN and our method do not
take too much time for this optimization in the calibration step. To demonstrate this, we perform an
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Figure 5: Comparison of total time taken for calibration optimization for both models on different
calibration set sizes (averaged across 20 runs).

additional experiment on Walmart-Trips dataset by altering the size of the calibration set and noting
the total time taken for calibration for 5000 epochs(in s). The results are shown in Figure 5.

While our method takes 2.5x more time than CF-HGNN (due to additions), our method scales by the
same rate when increasing the calibration set size. This cost is offset by the improved performance in
producing the uncertainty bands.

A.11 EXAMPLES OF VIOLATION OF ASSUMPTION 1 IN THEOREM 2

There are some extreme examples where the contrastive augmentations (structure-altering augmenta-
tions) will violate this assumption. They are, as follows:

1. In multi-class node classification with extreme label imbalance, where even small aug-
mentation may disproportionately isolate nodes from minority classes. In such cases, the
topology-aware correction mechanism may no longer propagate reliable information through
the local neighborhood, causing calibration to break down and resulting in lower empirical
marginal coverage on average.

2. Another example occurs in hypergraphs with extremely poor connectivity, such as containing
a single bridging hyperedge that connects two or more large, otherwise disconnected
hypergraph components. If a contrastive augmentation removes or perturbs this bridging
hyperedge, the connectivity between the components is disrupted. As a result, the local
neighborhood information used in the topology-aware correction may no longer reflect the
true label dependencies across the hypergraph, potentially violating the Bounded Coverage
assumption and leading to miscalibrated prediction sets.
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