CONFORMALIZED PREDICTIONS IN HYPERGRAPH NEU-RAL NETWORKS VIA CONTRASTIVE LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Hypergraph representation learning has gained immense popularity over the last few years due to its applications in real-world domains like social network analysis, recommendation systems, biological network modeling, and knowledge graphs. However, hypergraph neural networks (HGNNs) lack rigorous uncertainty estimates, which limits their deployment in critical applications where the reliability of predictions is crucial. To bridge this gap, we propose Contrastive Conformal HGNN (CCF-HGNN) that jointly accounts for aleatoric and epistemic uncertainties in hypergraph-based models for guaranteed and robust uncertainty estimates. CCF-HGNN accounts for epistemic uncertainty in HGNN predictions by producing a prediction set that leverages the topological structure and provably contains the true label with a pre-defined coverage probability. It also accounts for aleatoric uncertainty by leveraging contrastive learning on the structure of the hypergraph. To enhance the power of the predictions, CCF-HGNN performs an additional auxiliary task of hyperedge degree prediction with an end-to-end differentiable samplingbased approach. Extensive experiments on real-world hypergraph datasets demonstrate the superiority of CCF-HGNN by improving the efficiency of prediction sets while maintaining valid coverage.

1 Introduction

Network-structured data underpins a broad spectrum of scientific and real-world applications, ranging from social interactions Newman (2003) and recommender systems Ying et al. (2018) to biological networks Zhang et al. (2022) and knowledge graphs Nickel et al. (2015). This has fueled the rapid growth of graph-based machine learning, where graph neural networks (GNNs) have emerged as a dominant paradigm for learning from relational data Kipf & Welling (2016); Hamilton et al. (2017); Velickovic et al. (2017). More recently, attention has shifted towards *hypergraph representation learning*, which extends beyond pairwise relations to model higher-order interactions, thereby offering a more faithful abstraction for many complex systems Battaglia et al. (2018); Zhang et al. (2018b). The expressive power of hypergraphs has led to applications across diverse domains, including healthcare (e.g., multiple patients sharing a room) Xu et al. (2022); Choudhuri et al. (2025a); Xu et al. (2023), social networks (e.g., users joining groups or channels) Li et al. (2013), bioinformatics Tian et al. (2009), and cyber-security Lin et al. (2024). To exploit these structures, hypergraph neural networks (HGNNs) have been developed with specialized message-passing and aggregation mechanisms Feng et al. (2019); Yadati et al. (2019); Bai et al. (2021), demonstrating superior performance when group-wise relations, rather than dyadic links, are essential.

The evolution of HGNNs has closely paralleled that of GNNs. Early work, such as HGNN Feng et al. (2019), adapted the message-passing framework of GCN Kipf & Welling (2016), while HCHA Bai et al. (2021) extended the attention mechanism of GAT Velickovic et al. (2017) to hypergraphs. More recent efforts have introduced advanced ideas, including multiset functions Chien et al. (2021), network diffusion Wang et al. (2023a), energy-based formulations Wang et al. (2023b), and implicit modeling Li et al. (2025); Choudhuri et al. (2025b). Despite these innovations, a key limitation persists: *existing HGNNs provide no mechanism to quantify predictive uncertainty*. This omission is particularly problematic in high-stakes domains, where decisions require not only accuracy but also calibrated confidence. A principled solution is to construct *prediction sets* that guarantee high-probability coverage for each sample. While numerous uncertainty quantification methods have been proposed in the broader machine learning literature Guo et al. (2017); Zhang et al. (2020); Hsu et al.

(2022); Zhang et al. (2018a); Gal & Ghahramani (2016); Trivedi et al. (2023); Lakshminarayanan et al. (2017), they generally lack rigorous coverage guarantees—i.e., assurances that the true label lies within the predicted set with the desired probability.

The field of conformal prediction, pioneered by Vovk et al. (2005), provides a principled framework for constructing prediction sets with rigorous, finite-sample coverage guarantees under minimal distributional assumptions. By calibrating nonconformity scores on held-out data, conformal prediction methods ensure that the true label is included in the prediction set with a user-specified probability (e.g., $1-\alpha$), regardless of the underlying data distribution. This property has fueled widespread adoption in areas such as computer vision Angelopoulos & Bates (2021), natural language processing Kumar et al. (2023), and time-series forecasting Stankeviciute et al. (2021); Zaffran et al. (2022); Gibbs & Candes (2021). Conformal prediction has gained immense popularity in graph representation learning, with frameworks aimed at quantifying uncertainty in inductive Clarkson (2023); Zargarbashi & Bojchevski (2023) and transductive Zargarbashi et al. (2023); Huang et al. (2024) node classification and edge/link prediction Luo & Colombo (2024); Zhao et al. (2024); Choudhuri et al. (2025c).

While conformal prediction provides coverage guarantees, it only quantifies epistemic uncertainty (i.e., model-specific uncertainty) while ignoring aleatoric uncertainty (i.e., data uncertainty). Moreover, as highlighted in Table 1, uncertainty quantification in hy-

Table 1: Comparison of the features of the prior works. Our proposed framework jointly accounts for epistemic and aleatoric uncertainties while maintaining valid marginal coverage.

Method	Coverage	Epistemic	Aleatoric
TS and VS Guo et al. (2017)	×	×	√
ETS Zhang et al. (2020)	×	×	✓
CF-GNN Huang et al. (2024)	\checkmark	✓	×
Ours	✓	✓	✓

pergraph representation learning has not been studied before. Quantifying both sources of uncertainty is particularly important in hypergraphs, as data often appears in the form of higher-order relationships (e.g., co-authorship, biochemical complexes, and co-purchases) that are prone to noise, sparsity, and lack of standardization, limiting effective model training in practice. Unlike graphs, where uncertainty typically stems from missing or spurious edges, hypergraphs are subject to structural ambiguity in the semantics of multi-way relations (e.g., "all authors of a paper" or "all participants in a discussion"), which introduces additional sources of noise. Furthermore, in node classification tasks, a single mislabeled node does not merely affect its immediate neighbors, as in graphs, but can propagate errors to every node within the same hyperedge, significantly amplifying the impact of label noise.

To address these challenges, we introduce *Contrastive Conformal Hypergraph Neural Network* (**CCF-HGNN**), an end-to-end framework that jointly models aleatoric and epistemic uncertainty in hypergraph representation learning. Our contributions are as follows:

- To the best of our knowledge, this is the first work that combines aleatoric uncertainty (contrastive augmentation- aided learning) and epistemic uncertainty (conformal prediction).
- We propose an auxiliary hyperedge-degree prediction task to our overall conformal training
 algorithm to boost the power of the hypergraph representations. We additionally propose an
 efficient computational method to sample the important hyperedges based on the augmentation strategy and perform the hyperedge-degree prediction task only on those hyperedges.
- We provide theoretical evidence that guarantees that the joint modeling of epistemic and aleatoric uncertainties is both efficient (ie., the predictive bands returned are shorter) and effective (empirical coverage provably exceeds the given confidence level).
- Extensive experiments on several real-world hypergraph datasets for uncertainty quantification in the node classification task demonstrate the overall utility of our method.

2 Preliminaries

Let $H = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y})$ be a hypergraph, where \mathcal{V} is a set of nodes, \mathcal{E} is a set of hyperedges, and $\mathcal{X} = \{\mathbf{x}_v\}_{v \in \mathcal{V}}$ is the set of node attributes, where $\mathbf{x}_v \in \mathbb{R}^d$ is a d-dimensional feature vector for node $v \in \mathcal{V}$. Let $\mathcal{Y} = \{y_v\}_{(v) \in \mathcal{V}}$ be the set of node labels. Our paper focuses on classification problems,

Figure 1: **Contrastive Conformal Hypergraph Neural Network:** The overall framework minimizes three losses: 1) <u>Contrastive Loss:</u> Structural alterations generate multiple views of the hypergraph, encouraging the model to learn invariant representations. 2) <u>Conformal Inefficiency Loss:</u> Topologyaware conformal loss ensures similarity in uncertainties of a <u>node</u> based on its local neighbors (nodes that share hyperedges). 3) <u>Degree Loss:</u> Predicting the hyperedge degree of a sample of hyperedges to guide the model to learn the structure. This leads to shorter and more confident prediction bands.

but our theory and method naturally extend to regression problems. To perform point predictions, we are given a mean estimator $\hat{\mu}$ that predicts the node label \hat{y}_v given the node embedding x_v .

2.1 Transductive Setting

We focus on the transductive node classification problem with a random data split akin to Huang et al. (2024). In this setting, we partition the node labels into three disjoint sets: \mathcal{Y}_{train} , \mathcal{Y}_{cal} , and \mathcal{Y}_{test} . This leads to training data $D_{train} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{train})$, calibration data $D_{cal} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{cal})$, and testing data $D_{test} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{test})$. In particular, during training, the model can access $\mathcal{V}, \mathcal{E}, \mathcal{X}$, but only the training labels \mathcal{Y}_{train} are revealed to the model. Abusing the notation, we use \mathcal{V}_{train} to denote elements of \mathcal{V} for which the node labels are in \mathcal{Y}_{train} . We follow the same notation throughout the paper. After training, the calibration data $\{y_v\}_{v \in \mathcal{V}_{cal}}$ is used to construct uncertainty estimates. Finally, we predict the uncertainty bands for the remaining nodes (i.e., \mathcal{V}_{test}).

2.2 MEAN ESTIMATOR: HYPERGRAPH NEURAL NETWORK

Hypergraph Neural Networks (HGNNs) are powerful machine learning models that leverage the high-order network structure during message passing. Unlike traditional graph neural networks that only aggregate pairwise information, HGNNs can handle the complexity of hypergraphs, where relationships between nodes are generalized beyond pairwise connections. Like Graph Neural Networks (GNNs), HGNNs aggregate neighborhood information Bai et al. (2021); Feng et al. (2019) via a sequence of propagation layers where each layer consists of a Message Passing Step, and a Node Update Step. Further details about the propagation steps are provided in the Appendix A.1.

2.3 Conformal Prediction

In this work, we focus on split conformal prediction Vovk et al. (2005), which proceeds in four primary steps. Given a miscoverage rate $\alpha \in [0,1]$, the steps are: (1) **Training:** Train the mean estimator $\hat{\mu}$ on the training data D_{train} . (2) **Calibration:** For each node v in \mathcal{V}_{cal} , compute the nonconformity scores (heuristic notion of how off the prediction is from the true label) $\{V(\mathbf{x}_v, y_v)\}_{v \in \mathcal{V}_{\text{cal}}}$ and create an empirical distribution from the scores. (3) **Quantile Computation:** Compute the $(1-\alpha)^{\text{th}}$ quantile $\hat{Q}_{1-\alpha}$ of the distribution $\frac{1}{|\mathcal{V}_{cal}|+1}\sum_{v \in \mathcal{V}_{cal}}\delta_{V_v}+\delta_{\infty}$, where δ_a is Dirac Delta distribution at point a, and V_v is shorthand for $V(\mathbf{x}_v, y_v)$. (4) **Band Computation:** Given a test node v and corresponding feature \mathbf{x}_v , a prediction set/interval $\hat{C}(\mathbf{x}_v) = \{y \in \mathcal{Y} : V(\mathbf{x}_v, y) \leq \hat{Q}_{1-\alpha}\}$ is constructed. The notion of transferring the prediction bands computed on the calibration data to the points in test data relies on the following permutation invariance assumption Huang et al. (2024); Zargarbashi & Bojchevski (2023).

Assumption 1. For any permutation π on the calibration and test edges, the non-conformity score V obeys

 $V(\mathbf{x}_v, y_v; \{y_a\}_{(a) \in \mathcal{V}_{traint \mid cal}}, \mathcal{X}, \mathcal{V}, \mathcal{E}) = V(\mathbf{x}_v, y_v; \{y_a\}_{(a) \in \mathcal{V}_{traint \mid cal}}, \mathcal{X}, \mathcal{V}, \mathcal{V}_{\pi})$

This means that the non-conformity scores of nodes in a hypergraph H are exchangeable.

Assumption 1 imposes the permutation invariance condition for the HGNN training to later compute the non-conformity scores for node prediction, which means that the model output/non-conformity score is invariant to permuting the order of the calibration and test nodes on the hypergraph. HGNNs do not rely on the ordering of the nodes, hence they typically satisfy the assumption.

Lemma 1. (Coverage Guarantee for Conformal Inference) Vovk et al. (2005); Tibshirani et al. (2019) Under Assumption 1, for any $\alpha > 0$, the confidence band returned by the conformal inference algorithm satisfies:

$$\mathbb{P}(y_v \in \hat{C}_{1-\alpha}(\mathbf{x}_v)) \ge 1 - \alpha \tag{1}$$

where the probability is taken over the calibration fold D_{cal} and the testing point (\mathbf{x}_v, y_v) .

Here, $\mathbb{P}(y_v \in \hat{C}_{1-\alpha}(\mathbf{x}_v))$ denotes the **coverage**, i.e., the probability that the true label y_v lies in the predictive band.

3 Our Method

In this section, we propose our method, Contrastive Conformal Hypergraph Neural Network (CCF-HGNN), which aims to reduce the size of the predictive band length while maintaining coverage for hypergraph neural networks. The main idea is to boost the APS and RAPS scores (see section 4.1) with the help of local topological information and account for data-noise in the form of contrastive augmentations.

3.1 Computing Differentiable Inefficiency Loss

Instead of using pairwise local topological information as done by Huang et al. (2024), our work uses high-order local topological information that goes beyond homophily or other aggregation mechanisms (like mean, sum, etc.). To implement this idea, we use a separate HGNN learner $\tilde{\mu}$ parameterized by the weights ϑ for the same hypergraph network H with node features initialized by $\hat{\mu}(\mathcal{X})$. Here $\hat{\mu}(\cdot)$ denotes the mean estimator that has been used during the training process. Given $\tilde{\mu}(\mathcal{X}) = \mathrm{HGNN}_{\vartheta}(\hat{\mu}(\mathcal{X}), H)$, and a target miscoverage rate α , we partition the calibration data D_{cal} into $D_{\mathrm{corr-cal}}$ (correction subset) and $D_{\mathrm{cal-test}}$ (testing subset) compute a differentiable loss in the following steps: 1) **Differentiable Quantile Computation:** Compute the smooth differentiable quantile $\hat{\eta} = \mathrm{DiffQuantile}(\{V(\mathbf{x}_i,y_i) \mid i \in \mathcal{D}_{\mathrm{corr-cal}}\})$ on $D_{\mathrm{corr-cal}}$. 2) **Inefficiency Proxies Computation:** Construct a differentiable proxy of the miscoverage on $D_{\mathrm{cal-test}}$ by using $D_{\mathrm{corr-cal}}$ as calibration data. For class k and node i in $D_{\mathrm{cal-test}}$, the non-conformity score is given as $V(\mathbf{x}_i,k)$ (as per APS and RAPS scores). The inefficiency proxy will thus be $c_i = \sigma\left(\frac{V(\mathbf{x}_i,k)-\hat{\eta}}{\tau_1}\right)$, where $\sigma(\cdot)$ denotes the sigmoid function and τ_1 denotes the temperature hyperparameter Stutz et al. (2022). 3) **Overall Loss Computation:** Compute the overall inefficiency loss as an average of the inefficiency proxies $\mathcal{L}_{\mathrm{Ineff}} = \frac{1}{m} \sum_{i \in \mathcal{D}_{\mathrm{cal-test}}} \frac{1}{|\mathcal{Y}|} \sum_{k \in \mathcal{Y}} c_i$.

The proof that the inefficiency loss is exchangeable simply follows the proof of the same theorem given in Huang et al. (2024) as our setup also operates on the transductive setting, and hypergraphs can be represented as graphs through clique/star expansions Agarwal et al. (2006). Note that while the number of edges changes due to these expansions, the number of nodes remains the same, which is why the proof holds.

3.2 Using Contrastive Augmentations

While inefficiency quantifies a measure of the epistemic uncertainty, we have not yet accounted for the aleatoric uncertainty that can arise from a multitude of data-dependent properties. Minimizing the proxy of the epistemic uncertainty in isolation exposes our framework to noise that can arise from the structure of the hypergraph. As HGNNs rely on aggregating information by exploiting

the structural properties of hypergraphs, aleatoric uncertainties will be amplified by the model if unaccounted for. This motivated us to quantify and minimize the aleatoric uncertainty jointly with the epistemic uncertainty.

To execute this motivation, we utilize contrastive augmentations to boost the power of node embeddings in a self-supervised manner. We design contrastive structural augmentations akin to a prior work Wei et al. (2022) by constructing augmentations $\mathcal{H}_1 = \hat{f}(H,A_1)$ $\mathcal{H}_2 = \hat{f}(H,A_2)$ and corresponding node embeddings where $\hat{f}(\cdot,\cdot)$ is a function that perturbs the structure of a hypergraph given a perturbation schema A. Hence, A_1 and A_2 are two instantiations of the perturbation schema. Finally, we can obtain the node embeddings of the augmented hypergraphs as $\mathbf{Z}^1 = \tilde{\mu}(\mathcal{H}_1, \mathbf{X})$ $\mathbf{Z}^2 = \tilde{\mu}(\mathcal{H}_2, \mathbf{X})$ and minimizing the contrastive loss as follows:

$$\mathcal{L}_{\text{Contra}} = \text{InfoNCE}(\boldsymbol{Z}^1, \boldsymbol{Z}^2, \tau_2) = -\sum_{i=1}^{|\mathcal{V}|} \log \frac{\exp\left(\frac{\sin(\mathbf{z}_i^1, \mathbf{z}_i^2)}{\tau_2}\right)}{\sum_{j=1}^{|\mathcal{V}|} \exp\left(\frac{\sin(\mathbf{z}_i^1, \mathbf{z}_j^2)}{\tau_2}\right)},$$
 (2)

Here τ_2 is a temperature hyperparameter to the popular InfoNCE loss Chen et al. (2020) and sim(·) denotes a similarity function like cosine similarity. The contrastive loss is also exchangeable as the loss depends on the embeddings, which are thus dependent on the mean estimator (HGNN in this case). As HGNN is permutation invariant, the contrastive loss is also exchangeable.

3.3 BOOSTING CONTRASTIVE AUGMENTATION WITH AUXILIARY HYPEREDGE DEGREE PREDICTION

To appropriately guide the calibration model $\tilde{\mu}(\cdot)$ with the structure of the hypergraph, we propose jointly training the hypergraph augmentations with the task of predicting the original hyperedge degrees. However, as the number of hyperedges in real-world hypergraphs is much greater than the number of nodes, we propose an efficient augmentation strategy to sample the most important hyperedges to perform the auxiliary hyperedge degree prediction task.

Let the hyperedge-Laplacian matrix of the hypergraph be $L \in \mathbb{R}^{m \times n}$, where $m = |\mathcal{E}|$ is the number of hyperedges and $n = |\mathcal{V}|$ is the number of nodes. The hyperedge-Laplacian can be computed as $L = \mathbf{D}_e^{-\frac{1}{2}} \mathbf{H}^T \mathbf{D}_v^{-\frac{1}{2}}$ Feng et al. (2019), where \mathbf{H} denotes the incidence matrix. We apply self-attention mechanism Vaswani et al. (2017) over the hyperedge Laplacian to get attention weights α_j =Self-Attention($L_{:,j}$) for each hyperedge index j.

To sample the k most important hyperedges in a fully differentiable manner, we use the Gumbel-Softmax trick Jang et al. (2016) as $s = \text{GumbelSoftmax}(a, k, \tau_3)$, where $s \in \mathbb{R}^n$ is a soft selection mask, k is the desired number of hyperedges, and τ_3 is the temperature parameter. The auxiliary hyperedge degree prediction task is then $\hat{d}_j = h(\boldsymbol{L}_{:,j})$, where $h(\cdot)$ is a learnable predictor and \hat{d}_j is the predicted degree of hyperedge e_j . Given the true degree d_j for the hyperedge in the augmented hypergraph, the loss for the degree prediction task is $\mathcal{L}_{\text{deg}} = \sum_{j=1}^n s_j \cdot \ell(\hat{d}_j, d_j)$ where $\ell(\cdot, \cdot)$ is a regression loss, e.g., mean squared error. The degree prediction loss is also exchangeable as it does not relate to node labels in the transductive setting.

The overall training algorithm of our method is given in Algorithm 1 in the Appendix. This joint training encourages the model to learn representations sensitive to the structure of the most informative hyperedges while maintaining differentiability for end-to-end optimization.

3.4 THEORETICAL GUARANTEE

This section provides theoretical guarantees for our proposed method, in terms of shorter uncertainty band length (compared to the naive extension of the graph counterpart Huang et al. (2024) to hypergraphs). We will first define some notations that form the foundation of our theoretical results.

Notations: Assume an encoder-decoder architecture of the conformal corrector $\tilde{\mu}(\cdot)$, where the encoder maps the input node features to latent embeddings and the decoder maps those embeddings to predictions. Consider two models: (1) **CF-HGNN:** $\mathbf{Z}_0 = h_0(\mathcal{X})$ and $\hat{Y} = g_0(\mathbf{Z}_0)$ where $h_0(\cdot)$ and $g_0(\cdot)$ is the encoder and decoder, and \mathbf{Z}_0 is the latent representation. Its prediction set has expected

size $C_0(\mathbf{x})$ given the node embedding \mathbf{x} . This is the naive extension of Huang et al. (2024) to hypergraphs. (2) **CCF-HGNN:** $\mathbf{Z}_1 = h_1(\mathcal{X}, A)$ and $\hat{Y}_1 = g_1(\mathbf{Z}_1)$ where $h_1(\cdot)$ and $g_1(\cdot)$ is encoder and decoder, and \mathbf{Z}_1 is the latent representation under contrastive augmentation A. Its prediction set has expected size $C_1(\mathbf{x})$ given the node embedding \mathbf{x} . Recall, this is our proposed approach.

Lemma 2. Let $I(Y; \mathbf{Z}_1)$ and $I(Y; \mathbf{Z}_0)$ denote the mutual information between the labels and latent embeddings for CCF-HGNN and CF-HGNN, respectively, and $\Delta \in \mathbf{R}^+$ then,

 $I(Y; \mathbf{Z}_1) \ge I(Y; \mathbf{Z}_0) + \Delta. \tag{3}$

The proof is provided in Appendix A.2. Using the results from Lemma 2, we can prove the following theorem on the expected band length produced by CCF-HGNN and CF-HGNN.

Theorem 1. *Under the assumptions:*

1. **Bounded coverage:** Contrastive augmentations do not reduce conformal coverage (marginal coverage $\geq 1 - \alpha$ is preserved on average).

2. Large Mutual Information gap: $I(Y; \mathbf{Z}_1) - I(Y; \mathbf{Z}_0)$ is sufficiently large (Lemma 2).

Then, the expected conformal prediction set size under CCF-HGNN is smaller than under CF-HGNN:

$$\mathbb{E}[|\mathcal{C}_1(\mathbf{x})|] \le \mathbb{E}[|\mathcal{C}_0(\mathbf{x})|]. \tag{4}$$

The proof is provided in Appendix A.3. We also have a theoretical result on the band-length convergence guarantee for CCF-HGNN in the Appendix A.4..

4 EXPERIMENTS

Following the theoretical guarantees discussed earlier, we next demonstrate the empirical superiority of our proposed framework. Specifically, we evaluate the performance of our model and compare its performance against several non-trivial baselines on real-world datasets. We will first provide details about the experimental setup and then proceed to describe the evaluation metrics and experimental protocols, followed by the results.

4.1 SETUP

We conducted all experiments on AMD EPYC 7763 64-Core Processor with 1.08 TB memory and 8 NVIDIA A40 GPUs with CUDA version 13.0. Our code and experimental setup, including data construction, are available for peer review ¹.

Datasets: We evaluated the performance of our proposed framework on four real-world datasets used in prior works Chien et al. (2021); Wang et al. (2023a). The datasets include co-authorship datasets like DBLP Yadati et al. (2019), co-purchases large dataset like Walmart-Trips Amburg et al. (2020), and co-voting datasets like House-Bills Chodrow et al. (2021), and Congress Fowler (2006). Summary statistics and further descriptions are provided in the Appendix A.5.

Baseline Methods: As there are no prior works tailored to quantify uncertainty for hypergraphs specifically, we use traditional uncertainty quantification methods (that do not provide statistical coverage guarantees) as baseline methods. These include Temperature Scaling (TS) Guo et al. (2017), Vector Scaling (VS) Guo et al. (2017), and Ensemble Temperature Scaling (ETS) Zhang et al. (2020). Additionally, we adapt traditional conformal prediction methods by adopting an HGNN mean estimator to obtain point predictions on hypergraphs (CP). Finally, we adapted the SOTA conformal prediction method for GNNs Huang et al. (2024) to aggregate information and perform conformal prediction in hypergraphs (CF-HGNN). Detailed descriptions of the baselines are provided in the Appendix A.6.

Non-Conformity Score Functions: We evaluate two popular conformal prediction scores.

https://anonymous.4open.science/r/cont_conf_ml-3EB9

(1) APS (Adaptive Prediction Sets) Romano et al. (2020): For a model outputting class probabilities $\hat{p}(y \mid \mathbf{x})$, let $\pi(\mathbf{x})$ denote the ordering of labels sorted by decreasing probability. The APS score for class y is defined as $V_{\text{APS}}(\mathbf{x},y) = \sum_{j:\pi_j(\mathbf{x}) \prec y} \hat{p}(\pi_j(\mathbf{x}) \mid \mathbf{x}) + U \cdot \hat{p}(y \mid \mathbf{x})$, where $U \sim \text{Unif}(0,1)$ and $\pi_j(\mathbf{x}) \prec y$ means label $\pi_j(\mathbf{x})$ is ranked higher than y. APS adaptively constructs prediction sets by accumulating probabilities until the threshold calibrated by conformal prediction is reached.

(2) RAPS (Regularized Adaptive Prediction Sets) Angelopoulos et al. (2020): RAPS extends APS by adding a regularization term that penalizes large set sizes. For class y, the score is $V_{\text{RAPS}}(\mathbf{x},y) = S_{\text{APS}}(\mathbf{x},y) + \lambda \cdot \left| \{j: \pi_j(\mathbf{x}) \prec y\} \right|^{\gamma}$, where $\lambda \geq 0$ controls the strength of the penalty and $\gamma \geq 1$ controls its growth rate. This modification encourages tighter prediction sets while preserving coverage guarantees.

Evaluation Metrics: We randomly split data into train, validation, calibration-test folds with a 20:30:50 split ratio. We adopt the following metrics to evaluate the empirical performance:

- (1) Marginal Coverage: For a predictive confidence band $C(\mathbf{x})$ and test point (\mathbf{x}, y) , the marginal coverage is defined as $\Pr(y \in C(\mathbf{x}))$. A valid inference procedure should ensure that the empirical coverage satisfies $\Pr(y \in C(\mathbf{x})) > 1 \alpha$, where α is the target miscoverage rate.
- (2) Band Length: Given that the empirical coverage exceeds $1-\alpha$, the efficiency of the method is quantified by the expected length of the confidence band, $\mathbb{E}\big[\operatorname{length}(\mathcal{C}(\mathbf{x}))\big]$. Comparisons of band length are only meaningful under the regime $\Pr(y \in \mathcal{C}(\mathbf{x})) \geq 1-\alpha$, since trivially $\mathcal{C}(\mathbf{x}) = \emptyset$ yields zero length but violates the coverage constraint.

Table 2: Empirical Marginal Coverage (%) of different models for the task of node classification on four datasets with $\alpha=0.05$. The result takes the average and standard deviation across 20 independent runs.

Model	Walmart-Trips	House-Bills	Congress	DBLP	Covered?
TS	$92.26 \pm 0.31 \text{X}$	91.21 ± 0.24 ×	89.04 ± 0.48 ×	87.34 ± 0.25 ×	Х
VS	$92.20 \pm 0.18 \text{X}$	$91.18 \pm 0.24 \text{\colored}$	$88.99 \pm 0.46 \text{\colored}$	$87.33 \pm 0.29 \text{\times}$	X
ETS	$92.20 \pm 0.26 \text{\colored}$	$92.93 \pm 1.77 \text{X}$	$89.23 \pm 0.44 \text{X}$	$88.29 \pm 0.65 \c ilde{ imes}$	X
CP-APS	$95.17 \pm 0.00 \checkmark$	$99.83 \pm 0.09 \checkmark$	$99.61 \pm 0.02 \checkmark$	$95.04 \pm 0.04 \checkmark$	1
CP-RAPS	$95.11 \pm 0.06 \checkmark$	$95.20 \pm 0.04 \checkmark$	$95.17 \pm 0.04 \checkmark$	$95.13 \pm 0.03 \checkmark$	1
CF-HGNN-APS	$95.05 \pm 0.01 \checkmark$	$99.97 \pm 0.00 \checkmark$	$99.94 \pm 0.01 \checkmark$	$97.31 \pm 2.58 \checkmark$	1
CF-HGNN-RAPS	$95.01 \pm 0.01 \checkmark$	$95.18 \pm 0.10 \checkmark$	$95.14 \pm 0.07 \checkmark$	$95.07 \pm 0.01 \checkmark$	✓
CCF-HGNN-APS (Ours)	$95.06 \pm 0.32 \checkmark$	$99.68 \pm 0.00 \checkmark$	$99.79 \pm 0.12 \checkmark$	$99.49 \pm 0.39 \checkmark$	
CCF-HGNN-RAPS (Ours)	$95.06 \pm 0.00 \checkmark$	$95.33 \pm 0.03 \checkmark$	$95.34 \pm 0.34 \checkmark$	$95.06 \pm 0.04 \checkmark$	✓

4.2 RESULTS

We will now provide empirical performances of all the baselines and our proposed framework to quantify uncertainty for classification tasks on the four datasets. The important conclusions derived from the experiments are listed below.

All Conformal Frameworks Achieve the Desired Empirical Marginal Coverage while Traditional UQ Methods do not: We report the marginal coverage of various UQ methods with target coverage at 95% in Table 2. There are two primary takeaways. Firstly, none of the traditional UQ methods (VS, TS, and ETS) achieves the target coverage for all datasets, while the conformal prediction methods (CP, CF-HGNN, and CCF-HGNN) do, highlighting the need for models with statistical guarantees when deployed in high-stakes environments. Secondly, these empirical results of all the conformal methods align with the theoretical coverage guarantee given in Lemma 1. Henceforth, we will only report the performance of models that obtain the desired coverage levels.

Our Proposed Framework (CCF-HGNN) achieves the shortest Band Length in Most Datasets: We report the empirical band length for 4 datasets in Table 3. The key observations are as follows. First, compared to standard conformal baselines (CP-APS, CP-RAPS). Our proposed approach CCF-HGNN-RAPS produces tighter bands across all but one dataset, while maintaining an impressive overall rank of 1.5 (the closest baselines get to 2.5). Second, while CF-HGNN offers improvements over GNN-based conformal methods, it is consistently outperformed by the proposed CCF-HGNN on hypergraph datasets. These results validate that incorporating contrastive learning with conformal prediction is crucial for boosting efficiency without compromising validity.

Table 3: Empirical Predictive Band Length of Different Models (that have the desired coverage level) on Four Datasets with $\alpha=0.05$. The result takes the average and standard deviation across 20 independent runs. Lower is better.

Model	Walmart-Trips	House-Bills	Congress	DBLP	Rank
CP-APS	9.198 ± 0.048	1.958 ± 0.005	1.961 ± 0.007	3.479 ± 0.127	5.0
CP-RAPS	9.053 ± 0.008	1.261 ± 0.054	1.317 ± 0.007	1.509 ± 0.038	2.5
CF-HGNN-APS	8.541 ± 0.023	$\overline{1.993 \pm 0.013}$	$\overline{1.989 \pm 0.008}$	4.346 ± 0.387	5.0
CF-HGNN-RAPS	8.595 ± 0.400	1.646 ± 0.191	1.619 ± 0.129	1.977 ± 0.184	3.25
CCF-HGNN-APS (Ours)	8.481 ± 0.007	1.953 ± 0.010	1.949 ± 0.008	4.354 ± 1.014	3.75
CCF-HGNN-RAPS (Ours)	8.528 ± 0.162	$\boldsymbol{1.189 \pm 0.027}$	$\boldsymbol{1.213 \pm 0.043}$	1.541 ± 0.060	1.5

As observed in Table 2, APS-based conformal methods often produce empirical coverage well above the target level (close to 99%). This behavior arises because APS adaptively accumulates class probabilities until the calibration cutoff is exceeded, which in practice tends to overshoot the nominal threshold. While this conservativeness ensures validity, it also leads to overly large prediction sets. Consequently, APS methods trade efficiency for coverage, resulting in inflated band lengths (Table 3). By contrast, RAPS introduces an explicit penalty on the set size, thereby reducing redundancy in the prediction sets while still maintaining the desired coverage guarantees. However, Walmart-Trips is an exception as the difference between APS and RAPS is less pronounced, with APS achieving competitive band lengths relative to RAPS. This can be attributed to the nature of Walmart-Trips, which has a relatively large number of classes (11) but moderate class imbalance. In such settings, APS's conservative accumulation of probabilities does not inflate the prediction sets as severely as in smaller-class datasets, since the distribution of probabilities is already more spread out across labels. As a result, while RAPS still improves efficiency, the margin of improvement over APS is narrower on Walmart-Trips compared to the other datasets.

Ablation Study: We analyze the effect of removing three key components—the topological-aware conformal loss, auxillary degree prediction loss, and contrastive loss on the Congress and House-Bills datasets on at a time. Figure 2 reports coverage and band length under RAPS with $\alpha = 0.05$. Our key observations are: (1) Topology-aware conformal prediction loss is crucial: removing it inflates RAPS length substantially (e.g., $1.213 \rightarrow 1.469$ on Congress, $1.214 \rightarrow 1.744$ on House-Bills), showing that structural

Figure 2: Ablation Study: Variation band length (right) for RAPS on CCF-HGNN on Congress (left) and House-Bills (right) dataset due to removal of individual components for $\alpha=0.05$. Smaller is better.

information yields tighter sets. (2) Minimizing the auxillary loss helps: excluding degree modestly increases lengths (e.g., $1.213 \rightarrow 1.328$ on Congress). (3) Contrastive learning improves efficiency: dropping it slightly lengthens sets (e.g., $1.213 \rightarrow 1.262$ on Congress). Overall, each component contributes to efficiency, with topology offering the largest gains. The complete model yields the tightest bands while maintaining the desired coverage guarantees.

Table 4: Effect of different contrastive strategies (mean \pm std dev across 20 runs.) for $\alpha = 0.05$.

Dataset	Technique	APS Coverage	APS Length	RAPS Coverage	RAPS Length
Congress	Hyperedge Drop	99.83 ± 0.13	1.997 ± 0.011	95.27 ± 0.19	1.309 ± 0.046
	Edge Drop	99.79 ± 0.12	1.949 ± 0.008	95.34 ± 0.034	1.213 ± 0.043
DBLP	Hyperedge Drop	99.39 ± 0.10	3.688 ± 0.384	95.08 ± 0.16	1.641 ± 0.132
	Edge Drop	99.49 ± 0.39	4.354 ± 1.014	95.06 ± 0.04	1.541 ± 0.060
House-Bills	Hyperedge Drop	99.68 ± 0.00	1.953 ± 0.010	95.33 ± 0.03	1.189 ± 0.027
	Edge Drop	99.64 ± 0.03	1.955 ± 0.006	95.19 ± 0.00	1.214 ± 0.018
Walmart-Trips	Hyperedge Drop	95.05 ± 0.05	8.506 ± 0.136	95.05 ± 0.00	8.571 ± 0.102
	Edge Drop	95.06 ± 0.32	8.481 ± 0.007	95.06 ± 0.00	8.528 ± 0.162

Sensitivity Study 1: Different Augmentation Strategies To account for aleatoric uncertainty, we exploit contrastive augmentations by perturbing the hypergraph structure. We compare two

strategies: (i) random hyperedge drop, which removes entire hyperedges, and (ii) random edge drop, which removes individual edges in the bipartite node—hyperedge graph. Table 4 summarizes the results. Across datasets, both strategies achieve the target coverage, but their impact on efficiency differs. On Congress and House-Bills, edge drop consistently yields shorter RAPS sets (e.g., 1.213 vs. 1.309 on Congress), indicating that fine-grained perturbations help the model learn more stable and discriminative representations. In contrast, DBLP benefits slightly more from hyperedge drop, where APS sets are tighter (3.688 vs. 4.354), suggesting that larger-scale perturbations are useful in high-homophily graphs with many small hyperedges. For Walmart-Trips, the differences between the two strategies are marginal, likely due to its large number of classes and moderate imbalance, where both perturbations introduce comparable variability. Overall, edge drop is generally more effective for heterophilic co-voting datasets, while hyperedge drop can be advantageous for homophilic graphs like DBLP. This demonstrates the importance of tailoring contrastive augmentation strategies to the structural properties of the underlying hypergraph.

Sensitivity Study 2: Dependence on Confidence Level We further study the sensitivity of our method to two key parameters: the miscoverage rate α (i.e., target confidence level) and the calibration set size. Figure 3 shows the results of this experiment for Congress and House-Bills datasets.

Figure 3a and Figure 3b show the

change in predictive band length as

Figure 3: Sensitivity study on varying α for Congress (3a) and House-Bills (3b).

the confidence level increases from 0.7 to 0.95. Across both datasets, the band length grows monotonically with confidence, as expected. While all methods follow this trend, our method consistently achieves shorter band lengths compared to CP and CF-HGNN, especially at higher confidence levels (e.g., $\alpha=0.05$). This demonstrates that our contrastive framework yields more informative uncertainty estimates without sacrificing coverage. More results are in Appendix A.7

5 RELATED WORKS

In this section, we briefly discuss some important works that have not been discussed before. For a more comprehensive survey, refer to Appendix A.8.

- (1) Uncertainty Quantification (UQ) on Networks: Traditional UQ methods on graph have gained more popularity over time Zhao et al. (2020); Stadler et al. (2021); Bertozzi et al. (2018); Han et al. (2025); Srinivasan et al. (2018) that has influenced training strategies Kang et al. (2022); Trivedi et al. (2024a) and other applications Huang & Chung (2020); Yu et al. (2024). While some methods have been proposed for hypergraphs Yao et al. (2025); Harit & Sun (2025), they are focused towards applications and not generalizable.
- (2) Conformal Prediction: Due to the statistical guarantee and distribution-free assumptions, conformal prediction has become very popular in recent times. Some directions include conditional conformal prediction Ding et al. (2023); Gibbs et al. (2025); Luo & Zhou (2025), reformulation of conformal prediction to other domains Correia et al. (2024); Cherian et al. (2024) and conformal prediction under distribution shift Barber et al. (2023); Clarkson (2023); Thopalli et al. (2025).

6 CONCLUSION

In this work, we extend the notion of UQ on hypergraphs by jointly accounting for both aleatoric and epistemic sources of uncertainty and proposing a hypergraph-based conformal prediction framework that leads to improved band lengths. While this is a promising direction, potential directions of future work include the evaluation of the performance of other HGNN models like Allset Chien et al. (2021), ED-HNN Wang et al. (2023a), and accounting for other sources of aleatoric uncertainty. On the side of conformal prediction, possible future directions include evaluation in the inductive setting Zargarbashi & Bojchevski (2023); Clarkson (2023) where the assumption of exchangeability is not maintained.

REFERENCES

- Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In *Proceedings of the 23rd international conference on Machine learning*, pp. 17–24, 2006.
- Ilya Amburg, Nate Veldt, and Austin Benson. Clustering in graphs and hypergraphs with categorical edge labels. In *Proceedings of the web conference 2020*, pp. 706–717, 2020.
- Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets for image classifiers using conformal prediction. *arXiv* preprint arXiv:2009.14193, 2020.
- Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.
- Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention. *Pattern Recognition*, 110:107637, 2021.
- Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.
- Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 68(6):1–34, 2021.
- Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. *arXiv preprint arXiv:1806.01261*, 2018.
- Andrea L Bertozzi, Xiyang Luo, Andrew M Stuart, and Konstantinos C Zygalakis. Uncertainty quantification in graph-based classification of high dimensional data. *SIAM/ASA Journal on Uncertainty Quantification*, 6(2):568–595, 2018.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PmLR, 2020.
- John Cherian, Isaac Gibbs, and Emmanuel Candes. Large language model validity via enhanced conformal prediction methods. *Advances in Neural Information Processing Systems*, 37:114812–114842, 2024.
- Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function framework for hypergraph neural networks. *arXiv preprint arXiv:2106.13264*, 2021.
- Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clustering: From blockmodels to modularity. *Science Advances*, 7(28):eabh1303, 2021.
- Akash Choudhuri, Hieu Vu, Kishlay Jha, and Bijaya Adhikari. Domain knowledge augmented contrastive learning on dynamic hypergraphs for improved health risk prediction. In *Proceedings of the 2025 SIAM International Conference on Data Mining (SDM)*, pp. 476–486. SIAM, 2025a.
- Akash Choudhuri, Yongjian Zhong, and Bijaya Adhikari. Implicit hypergraph neural network. *arXiv* preprint arXiv:2508.14101, 2025b.
- Akash Choudhuri, Yongjian Zhong, Mehrdad Moharrami, Christine Klymko, Mark Heimann, Jayaraman J Thiagarajan, and Bijaya Adhikari. Conformal edge-weight prediction in latent space. In *Proceedings of the 2025 SIAM International Conference on Data Mining (SDM)*, pp. 161–170. SIAM, 2025c.
- Jase Clarkson. Distribution free prediction sets for node classification. In *International conference on machine learning*, pp. 6268–6278. PMLR, 2023.
- Alvaro Correia, Fabio Valerio Massoli, Christos Louizos, and Arash Behboodi. An information theoretic perspective on conformal prediction. *Advances in Neural Information Processing Systems*, 37:101000–101041, 2024.

- Ed Davis, Ian Gallagher, Daniel John Lawson, and Patrick Rubin-Delanchy. Valid conformal prediction for dynamic gnns. *arXiv preprint arXiv:2405.19230*, 2024.
 - Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani. Class-conditional conformal prediction with many classes. *Advances in neural information processing systems*, 36:64555–64576, 2023.
 - Sofiane Ennadir, Amr Alkhatib, Henrik Bostrom, and Michalis Vazirgiannis. Conformalized adversarial attack detection for graph neural networks. In *Conformal and Probabilistic Prediction with Applications*, pp. 311–323. PMLR, 2023.
 - Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 3558–3565, 2019.
 - James H Fowler. Legislative cosponsorship networks in the us house and senate. *Social networks*, 28 (4):454–465, 2006.
 - Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059. PMLR, 2016.
 - Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. *Advances in Neural Information Processing Systems*, 34:1660–1672, 2021.
 - Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008, 2025.
 - Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
 - Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30, 2017.
 - Shen Han, Zhiyao Zhou, Jiawei Chen, Zhezheng Hao, Sheng Zhou, Gang Wang, Yan Feng, Chun Chen, and Can Wang. Uncertainty-aware graph structure learning. In *Proceedings of the ACM on Web Conference* 2025, pp. 4863–4874, 2025.
 - Anoushka Harit and Zhongtian Sun. Causal spherical hypergraph networks for modelling social uncertainty. *arXiv preprint arXiv:2506.17840*, 2025.
 - Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers. What makes graph neural networks miscalibrated? *Advances in Neural Information Processing Systems*, 35:13775–13786, 2022.
 - Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks. *arXiv preprint arXiv:2105.00956*, 2021.
 - Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. Uncertainty quantification over graph with conformalized graph neural networks. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Yongxiang Huang and Albert CS Chung. Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 562–572. Springer, 2020.
 - Rafael Izbicki, Gilson T Shimizu, and Rafael B Stern. Flexible distribution-free conditional predictive bands using density estimators. *arXiv preprint arXiv:1910.05575*, 2019.
 - Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv* preprint arXiv:1611.01144, 2016.
 - Jian Kang, Qinghai Zhou, and Hanghang Tong. Jurygen: quantifying jackknife uncertainty on graph convolutional networks. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 742–752, 2022.

- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
 - Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and Andrew Beam. Conformal prediction with large language models for multi-choice question answering. *arXiv* preprint arXiv:2305.18404, 2023.
 - Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. *Advances in neural information processing systems*, 30, 2017.
 - Dong Li, Zhiming Xu, Sheng Li, and Xin Sun. Link prediction in social networks based on hypergraph. In *Proceedings of the 22nd international conference on world wide web*, pp. 41–42, 2013.
 - Xiaoyu Li, Guangyu Tang, and Jiaojiao Jiang. Implicit hypergraph neural networks: A stable framework for higher-order relational learning with provable guarantees. *arXiv* preprint *arXiv*:2508.09427, 2025.
 - Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Conformal prediction with temporal quantile adjustments. *Advances in Neural Information Processing Systems*, 35:31017–31030, 2022.
 - Zong-Zhi Lin, Thomas D Pike, Mark M Bailey, and Nathaniel D Bastian. A hypergraph-based machine learning ensemble network intrusion detection system. *IEEE transactions on systems, man, and cybernetics: systems,* 2024.
 - Rui Luo and Nicolo Colombo. Conformal load prediction with transductive graph autoencoders. *arXiv* preprint arXiv:2406.08281, 2024.
 - Rui Luo and Zhixin Zhou. Conditional conformal risk adaptation. arXiv preprint arXiv:2504.07611, 2025.
 - Mark EJ Newman. The structure and function of complex networks. *SIAM review*, 45(2):167–256, 2003.
 - Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine learning for knowledge graphs. *Proceedings of the IEEE*, 104(1):11–33, 2015.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
 - Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. *Advances in neural information processing systems*, 32, 2019.
 - Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Advances in neural information processing systems*, 32, 2019.
 - Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage. *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020.
 - Nabeel Seedat, Jonathan Crabbé, and Mihaela van der Schaar. Data-suite: Data-centric identification of in-distribution incongruous examples. In *International Conference on Machine Learning*, pp. 19467–19496. PMLR, 2022.
 - Gowri Srinivasan, Jeffrey D Hyman, David A Osthus, Bryan A Moore, Daniel O'Malley, Satish Karra, Esteban Rougier, Aric A Hagberg, Abigail Hunter, and Hari S Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning. *Scientific reports*, 8(1):11665, 2018.
 - Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann. Graph posterior network: Bayesian predictive uncertainty for node classification. *Advances in Neural Information Processing Systems*, 34:18033–18048, 2021.

- Kamile Stankeviciute, Ahmed M Alaa, and Mihaela Van der Schaar. Conformal time-series forecasting. Advances in neural information processing systems, 34:6216–6228, 2021.
 - David Stutz, Krishnamurthy Dj Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning optimal conformal classifiers. In *International Conference on Learning Representations*, 2022.
 - Dirar Sweidan and Ulf Johansson. Probabilistic prediction in scikit-learn. In *The 18th International Conference on Modeling Decisions for Artificial Intelligence, On-line (from Umeå, Sweden), September 27-30, 2021.*, 2021.
 - Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, and Yang Yuan. Predictive inference with feature conformal prediction. In *The Eleventh International Conference on Learning Representations*, 2022.
 - Kowshik Thopalli, Vivek Narayanaswamy, and Jayaraman J Thiagarajan. The surprising utility of group partitioning in improving conformal prediction of visual classifiers under distributional shifts. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 1742–1751, 2025.
 - Ze Tian, TaeHyun Hwang, and Rui Kuang. A hypergraph-based learning algorithm for classifying gene expression and arraycgh data with prior knowledge. *Bioinformatics*, 25(21):2831–2838, 2009.
 - Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal prediction under covariate shift. *Advances in neural information processing systems*, 32, 2019.
 - Puja Trivedi, Mark Heimann, Rushil Anirudh, Danai Koutra, and Jayaraman J Thiagarajan. A stochastic centering framework for improving calibration in graph neural networks. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Puja Trivedi, Mark Heimann, Rushil Anirudh, Danai Koutra, and Jayaraman J Thiagarajan. Accurate and scalable estimation of epistemic uncertainty for graph neural networks. *arXiv preprint arXiv:2401.03350*, 2024a.
 - Puja Trivedi, Danai Koutra, and Jayaraman J Thiagarajan. On estimating link prediction uncertainty using stochastic centering. In *ICASSP 2024-2024 IEEE International Conference on Acoustics*, *Speech and Signal Processing (ICASSP)*, pp. 6810–6814. IEEE, 2024b.
 - Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al. Graph attention networks. *stat*, 1050(20):10–48550, 2017.
 - Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*, volume 29. Springer, 2005.
 - Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph diffusion neural operators. In *The Eleventh International Conference on Learning Representations*, 2023a. URL https://openreview.net/forum?id=RiTjKoscnNd.
 - Tuo Wang, Jian Kang, Yujun Yan, Adithya Kulkarni, and Dawei Zhou. Non-exchangeable conformal prediction for temporal graph neural networks. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.* 2, pp. 3031–3042, 2025.
 - Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph neural networks via confidence calibration. *Advances in Neural Information Processing Systems*, 34:23768–23779, 2021.
 - Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy functions to hypergraph neural networks. In *International Conference on Machine Learning*, pp. 35605–35623. PMLR, 2023b.

- Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Augmentations in hypergraph contrastive learning: Fabricated and generative. *Advances in neural information processing systems*, 35:1909–1922, 2022.
 - Hugo Werner, Lars Carlsson, Ernst Ahlberg, and Henrik Boström. Evaluation of updating strategies for conformal predictive systems in the presence of extreme events. In *Conformal and Probabilistic Prediction and Applications*, pp. 229–242. PMLR, 2021.
 - Ran Xu, Yue Yu, Chao Zhang, Mohammed K Ali, Joyce C Ho, and Carl Yang. Counterfactual and factual reasoning over hypergraphs for interpretable clinical predictions on ehr. In *Machine Learning for Health*, pp. 259–278. PMLR, 2022.
 - Ran Xu, Mohammed K Ali, Joyce C Ho, and Carl Yang. Hypergraph transformers for ehr-based clinical predictions. *AMIA Summits on Translational Science Proceedings*, 2023:582, 2023.
 - Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar. Hypergen: A new method for training graph convolutional networks on hypergraphs. *Advances in neural information processing systems*, 32, 2019.
 - Hong-Yu Yao, Chun-Yang Zhang, Qian-Xi Tang, and CL Philip Chen. Investigating all uncertainties in hypergraph representation learning and inference. *IEEE Transactions on Fuzzy Systems*, 33(8): 2867–2881, 2025.
 - Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983, 2018.
 - Linlin Yu, Yifei Lou, and Feng Chen. Uncertainty-aware graph-based hyperspectral image classification. Proceeding of the International Conference on Learning Representations (ICLR), 2024.
 - Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive conformal predictions for time series. In *International Conference on Machine Learning*, pp. 25834–25866. PMLR, 2022.
 - Soroush H Zargarbashi and Aleksandar Bojchevski. Conformal inductive graph neural networks. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Soroush H Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski. Conformal prediction sets for graph neural networks. In *International Conference on Machine Learning*, pp. 12292–12318. PMLR, 2023.
 - Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network robustness certification with general activation functions. *Advances in neural information processing systems*, 31, 2018a.
 - Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han. Mix-n-match: Ensemble and compositional methods for uncertainty calibration in deep learning. In *International conference on machine learning*, pp. 11117–11128. PMLR, 2020.
 - Liyan Zhang, Jingfeng Guo, Jiazheng Wang, Jing Wang, Shanshan Li, and Chunying Zhang. Hypergraph and uncertain hypergraph representation learning theory and methods. *Mathematics*, 10(11): 1921, 2022.
- Zizhao Zhang, Haojie Lin, Yue Gao, and KLISS BNRist. Dynamic hypergraph structure learning. In
 IJCAI, pp. 3162–3169, 2018b.
 - Tianyi Zhao, Jian Kang, and Lu Cheng. Conformalized link prediction on graph neural networks. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4490–4499, 2024.
 - Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised learning on graph data. *Advances in neural information processing systems*, 33:12827–12836, 2020.

7 LLM USAGE AND ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Representation Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here. LLMs were used to correct grammatical errors that originated during the writing of the manuscript. LLMs were not used to create any ideas. Our source code and experimental setup are provided through the anonymized link in the manuscript. All the datasets used in this work are publicly available, and there are no competing interests.

A APPENDIX

A.1 HYPERGRAPH NEURAL NETWORKS

The early structure of HGNNs mimicked the convolution step of GNNs. In particular, Feng et al. Feng et al. (2019) proposed the first spectral hypergraph convolution, formulated as

$$\mathbf{X}' = \sigma \left(\mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}} \mathbf{X} \mathbf{W} \right), \tag{5}$$

where **H** is the incidence matrix, \mathbf{D}_v and \mathbf{D}_e are vertex and hyperedge degree matrices, \mathbf{W}_e is a diagonal hyperedge weight matrix, and **W** is a trainable weight matrix.

Later, Bai et al. (2021) introduced a simplified hypergraph convolution operation, expressed as

$$\mathbf{X}' = \sigma(\mathbf{D}_v^{-1} \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{X} \mathbf{W}), \tag{6}$$

which removes the symmetric normalization and leads to a message-passing view of hypergraph learning. This formulation laid the foundation for subsequent works such as UniGNN Huang & Yang (2021). In all our experiments, we have used the formulation by Bai et al. (2021).

A.2 PROOF OF LEMMA 2

Proof. From Proposition E.2 in Oord et al. (2018), we know

$$I(Y; \mathbf{Z}) \geq \log(N) - \mathcal{L}_{\mathbf{Z}}^{\text{InfoNCE}},$$

where N is the number of samples and $\mathcal{L}_{\mathbf{Z}}^{\text{InfoNCE}}$ the InfoNCE loss. Applying to both models, we get:

$$I(Y; \mathbf{Z}_1) \ge \log(N) - \mathcal{L}_{\mathbf{Z}_1}^{\text{InfoNCE}},$$
 (7)

$$I(Y; \mathbf{Z}_0) \ge \log(N) - \mathcal{L}_{\mathbf{Z}_0}^{\text{InfoNCE}},$$
 (8)

As our framework explicitly minimizes $\mathcal{L}_{\mathbf{Z}_1}^{\text{InfoNCE}}$, we can assume $\mathcal{L}_{\mathbf{Z}_1}^{\text{InfoNCE}} \approx 0$, which means:

$$I(Y; \mathbf{Z}_1) \ge \log(N) \tag{9}$$

Using Equations 9 and 8, we get

$$I(Y; \mathbf{Z}_1) - I(Y; \mathbf{Z}_0) \ge \mathcal{L}_{\mathbf{Z}_0}^{\text{InfoNCE}}$$

Which helps us arrive at:

$$I(Y; \mathbf{Z}_1) \geq I(Y; \mathbf{Z}_0) + \mathcal{L}_{\mathbf{Z}_0}^{\text{InfoNCE}}.$$

A.3 PROOF OF THEOREM 1

Lemma 3. Correia et al. (2024) For any conformal prediction scheme with the coverage guarantee of $1 - \alpha$, and any distribution $q(\cdot)$, we have:

$$\mathbb{E}([\log |\mathcal{C}(x)|]^+) \geq$$

$$(1 - \alpha) \frac{H(Y|X) - h_b(a) - a \log M - \alpha \mathbb{E}_{P_{Y,X,\mathcal{D}_{cal}|E=0}} \left[-\log \hat{Q}_{Y|X}^0 + \log \mathbb{E}_{u(y_{\mathcal{C}(x)})}[q(y|x)] \right]}{1 - \alpha + \frac{1}{n+1}}$$

$$- (1 - \alpha) \mathbb{E}_{P_{Y,X,\mathcal{D}_{cal}|E=1}} \left[-\log \hat{Q}_{Y|X}^1 + \log \mathbb{E}_{u(y_{C(x)})}[q(y|x)] \right], \tag{10}$$

Algorithm 1 Contrastive Hypergraph Conformal Prediction (CCF-HGNN)

Input: Hypergraph $H = \{\mathcal{V}, \mathcal{E}\}$, feature matrix X, label set \mathcal{Y} , Incidence Matrix HHGNN train Model $\hat{\mu}(\cdot)$, calibration model $\tilde{\mu}(\cdot)$ with weights ϑ , non-conformity score function $V(\cdot,\cdot)$, Calibration dataset \mathcal{D}_{cal} partitioned into $\mathcal{D}_{corr-cal} = \{(\mathbf{x}_i,y_i)\}_{i=1}^{n_{corr-cal}}$, and $\mathcal{D}_{\text{cal-test}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{n_{\text{cal-test}}}$, significance level α , Hypergraph incidence, node and hyperedge degree matrices $\mathbf{H}, \mathbf{D}_e, \mathbf{D}_v$

- 1: Train HGNN model $\hat{\mu}(H, \mathbf{X})$ on prediction task.
- 2: while Not converged do

810

811

812

813

814

815

816

817

818

820

821

822

823

824

825

826

829

830 831

832

833

835 836

837

838

839 840

841

842 843

844

845

846

847 848

849

850

851 852

853

854

855

856

858 859

860

861

862

863

- 3: Obtain augmentations \mathcal{H}_1 and \mathcal{H}_2 of H.
- 819 4: Compute the hyperedge Laplacians L_1 and L_2 , corresponding attention weights α^1 and α^2 .
 - 5: Select the k important hyperedges using the Gumbel-Softmax trick.
 - 6: Compute the overall degree loss $\mathcal{L}_{\text{deg}} = \mathcal{L}_{\text{deg}}^1 + \mathcal{L}_{\text{deg}}^2$
 - Get embeddings $\mathbf{Z}^1 = \tilde{\mu}(\mathcal{H}_1, f(\mathbf{X})), \mathbf{Z}^2 = g(\mathcal{H}_2, f(\mathbf{X})).$ 7:
 - Get calibration predictions $\mathbf{Z}_{\text{cal}}^1, \mathbf{Z}_{\text{cal}}^2$ from $\mathbf{Z}^1, \mathbf{Z}^2$. 8:
 - 9:
 - 10:
 - Compute $\mathbf{Z}_{\text{test}} = \frac{\mathbf{Z}_{\text{test}}^1 + \mathbf{Z}_{\text{test}}^2}{2}$. 11:
- 827 Compute $\hat{\alpha} = \frac{1}{n+1} \cdot \alpha$. 12: 828
 - $\hat{\eta} = \text{DiffQuantile}(\{V(\mathbf{Z}_i, y_i) \mid i \in \mathcal{D}_{\text{cal}}\}).$ 13:
 - $\mathcal{L}_{\text{Ineff}} = \frac{1}{m} \sum_{i \in \mathcal{D}_{\text{cal-test}}} \frac{1}{|\mathcal{Y}|} \sum_{k \in \mathcal{Y}} \sigma\left(\frac{V(\mathbf{z}_i, k) \hat{\eta}}{\tau_1}\right).$ $\mathcal{L}_{\text{Contra}} = \text{INFONCE}(\mathbf{Z}^1, \mathbf{Z}^2, \tau_2)$ 14:
 - 15:
 - $\mathcal{L}_{\text{Total}} = \gamma \mathcal{L}_{\text{Ineff}} + (1 \gamma) \mathcal{L}_{\text{Contra}}^{\gamma \gamma 2 \gamma} + \mathcal{L}_{\text{deg}}.$ 16:
 - $\vartheta = \vartheta \nabla_{\vartheta} \mathcal{L}_{Total}.$ 17:
- 18: end while 834

where $Q_{Y|X}^0 = q(y|x)\mathbb{I}[y \notin \mathcal{C}(x)]$ and $Q_{Y|X}^1 = q(y|x)\mathbb{I}[y \in \mathcal{C}(x)]$. Here, $|\mathcal{C}(x)|$ denotes the size of the prediction set for input x, H(Y|X) the conditional entropy of Y given X, $h_b(\cdot)$ the binary entropy function, a the error probability, and $M = |\mathcal{Y}|$ the number of classes.

Lemma 3 shows that the expected prediction set size is lower bounded by the conditional entropy H(Y|X), penalized by calibration-dependent terms.

Proof. By Lemma 2, $I(Y; Z_1) \ge I(Y; Z_0) + \Delta$. Equivalently, $H(Y|Z_1) \le H(Y|Z_0) - \Delta$.

Lemma 3 lower bounds the expected log set size in terms of H(Y|X). Since Z_1 captures more information about Y than Z_0 , the effective conditional entropy $H(Y|Z_1)$ is smaller. Thus, the bound for $C_1(X)$ is tighter than for $C_0(X)$.

Formally,

$$\mathbb{E}[\log |\mathcal{C}_0(X)|]^+ \geq f(H(Y|Z_0)),$$

$$\mathbb{E}[\log |\mathcal{C}_1(X)|]^+ \geq f(H(Y|Z_1)),$$

where $f(\cdot)$ is the lower-bound functional in Lemma 3. Since $H(Y|Z_1) < H(Y|Z_0)$, the bound for $\mathcal{C}_1(X)$ is strictly smaller, which implies:

$$\mathbb{E}[|\mathcal{C}_1(X)|] \leq \mathbb{E}[|\mathcal{C}_0(X)|].$$

CONVERGENCE OF CCF-HGNN

Theorem 2. If the calibration model $\tilde{\mu}(\cdot)$ produces stable predictions $\hat{p}(y_i|\mathcal{X}_i)$ as the number of calibration samples $n_{cal} \to \infty$, the expected prediction set size $\mathbb{E}[|C(\mathbf{x})|]$ for a test point converges in probability to a fixed value:

$$\mathbb{E}[|C(\mathbf{x})|] \to \sum_{y \in \mathcal{Y}} \mathbb{P}(\hat{p}(y|\mathbf{x}) \ge 1 - q^*), \tag{11}$$

where $q^* = F^{-1}(1 - \alpha)$ is the $(1 - \alpha)^{th}$ -quantile of the true non-conformity score distribution.

Proof. Let $F_n(v) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(V_i \leq v)$ be the empirical CDF of the non-conformity scores $V_i = 1 - \hat{p}(y_i | \mathcal{X}_i)$.

Using Glivenko-Cantelli Theorem Van der Vaart (2000) with Assumption 1, $\sup_v |F_n(v) - F(v)| \to 0$ as $n \to \infty$. Assuming the calibration model $\tilde{\mu}(\cdot)$ produces stable predictions $\hat{p}(y_i|\mathcal{X}_i)$ as the number of calibration samples $n_{cal} \to \infty$, and as F is continuous and strictly increasing, F^{-1} is continuous at $1 - \alpha$.

For any $\epsilon > 0$, choose $\delta > 0$ such that

$$F(q^* - \epsilon) < 1 - \alpha - \delta, \quad F(q^* + \epsilon) > 1 - \alpha + \delta.$$

As $n_{\rm cal}$ grows, $\sup_v |F_{n_{\rm cal}}(v) - F(v)| < \delta$, which means

$$F_{n_{\text{cal}}}(q^* - \epsilon) \ge F(q^* - \epsilon) - \delta < 1 - \alpha,$$

and

$$F_{n_{\text{cal}}}(q^* + \epsilon) \le F(q^* + \epsilon) + \delta > 1 - \alpha.$$

So $q^* - \epsilon < \hat{q} < q^* + \epsilon$, which means

$$\mathbb{P}(|\hat{q} - q^*| > \epsilon) \to 0 \quad \text{as } n_{cal} \to \infty.$$

The prediction set is thus

$$C(\mathbf{x}) = \{ y \in \mathcal{Y} : \hat{p}(y|\mathbf{x}) \ge 1 - \hat{q} \}.$$

So the expected set size is

$$\mathbb{E}[|C(\mathbf{x})|] = \mathbb{E}\left[\sum_{y \in \mathcal{Y}} \mathbf{1}(\hat{p}(y|\mathbf{x}) \ge 1 - q)\right] = \sum_{y \in \mathcal{Y}} \mathbb{P}(\hat{p}(y|\mathbf{x}) \ge 1 - q).$$

As $\hat{q} \to q^*$, and since $g(\cdot)$ is stable,

$$\mathbf{1}(\hat{p}(y|\mathbf{x}) \ge 1 - \hat{q}) \to \mathbf{1}(\hat{p}(y|\mathbf{x}) \ge 1 - q^*).$$

So,

$$\mathbb{E}[|C(\mathbf{x})|] \to \sum_{y \in \mathcal{Y}} \mathbb{P}(\hat{p}(y|\mathbf{x}) \ge 1 - q^*).$$

This limit is a fixed value determined by the distribution of $\hat{p}(y|\mathbf{x})$ and q^* .

Conformal prediction ensures that as long as \hat{q} is calibrated,

$$\mathbb{P}(y \in C(\mathbf{x})) > 1 - \alpha.$$

A.5 DESCRIPTIONS OF THE DATASETS

Table 5: Statistics of the selected datasets. Here, DBLP is a homophilic dataset while the others are heterophilic.

Property	DBLP	Congress	House-Bills	Walmart-Trips
# nodes	41,302	1,718	1,494	88,860
# hyperedges	22,363	83,105	60,987	69,906
# classes	6	2	2	11
avg. $ e $	4.452	8.656	20.500	6.589

This work uses four hypergraph classification datasets. They are as follows:

- Walmart-Trips: This is a customer recruitment prediction dataset where the hyperedges are sets of co-purchased products at Walmart. Products (nodes) are assigned to one of ten broad departments in which the product appears on walmart.com (e.g., "Clothing, Shoes, and Accessories"), and these serve as node labels (there is also an additional "Other" class).
- **DBLP:** This is a co-authorship hypergraph dataset created by Yadati et al. (2019). It represents collaborations among authors listed in DBLP, the computer science bibliographic database, as of 3 Sept. 2017. Each node represents an author, and each publication is represented by a simplex (a set of nodes, i.e., a hyperedge), timestamped by the year of publication. This is the only homophilic hypergraph dataset
- **Congress:** In this hypergraph dataset, nodes are US Congresspersons and simplices are comprised of the sponsor and co-sponsors of legislative bills put forth in both the House of Representatives and the Senate.
- House-Bills: In this hypergraph dataset, nodes are US Congresspersons and hyperedges are the sponsors and co-sponsors of bills put forth in the House of Representatives. Some hyperedges are repeated. Each node is labeled with political party affiliation.

A.6 DESCRIPTIONS OF THE BASELINES

The baseline models used in this work can be characterized into the following categories:

- Traditional UQ Methods: These methods do not provide any statistical guarantee about marginal coverage. The 3 baseline methods used under this category are as follows:
 - 1. **Temperature Scaling (TS) Guo et al. (2017):** It is a post-processing calibration method for UQ. It takes the model's logits (pre-softmax outputs) and divides them by a learned scalar parameter called the temperature. Higher temperature values produce softer probability distributions with lower confidence.
 - 2. Vector Scaling (VS) Guo et al. (2017): Vector scaling is a more flexible version of temperature scaling. Instead of using a single global adjustment for all classes, it assigns each class its own adjustment with a small bias. This allows the model to adjust situations where some classes are consistently overconfident or underconfident, thereby improving the calibration of predicted probabilities across all classes.
 - 3. Ensemble Temperature Scaling (ETS) Zhang et al. (2020): Ensemble Temperature Scaling applies temperature scaling to the aggregated outputs of a model ensemble. A single temperature parameter is learned on the ensemble's averaged logits to adjust overall confidence. This method preserves the accuracy advantages of ensembling while improving calibration, resulting in more reliable uncertainty estimates.
- Conformal Prediction Methods: These methods have a theoretical guarantee for marginal coverage. We adapted two prior works as baselines:
 - Conformal Predictor (CP) Vovk et al. (2005): For this model, the mean estimator (HGNN) was trained on the classification task on the training data. After that, the non-conformity scores were obtained for the calibration data (node set), a quantile was selected (based on the type of the non-conformity score function), and predictive bands were constructed for test nodes.
 - 2. Conformalized Hypergraph Neural Network Huang et al. (2024) (CF-HGNN): This model integrates conformal prediction with hypergraph neural networks to provide uncertainty estimates with guaranteed marginal coverage. The key idea is to adapt non-conformity scores to hypergraph learning tasks, where nodes, edges, and higher-order relationships need to be considered simultaneously. CF-HGNN first trains a base HGNN to produce class probability estimates, then applies a conformal calibration step using a held-out calibration set. Unlike CP, CF-HGNN explicitly accounts for hypergraph structures, leading to tighter predictive sets and better utilization of higher-order relational information. As such, it represents the current state-of-the-art approach for principled uncertainty quantification in hypergraph datasets, balancing theoretical guarantees with strong empirical performance.

Figure 4: Sensitivity Study on varying the calibration set fraction α (4a and 4b) for Congress and House-Bills datasets respectively.

A.7 SENSITIVITY STUDY: SIZE OF CALIBRATION SET

We also evaluate the effect of calibration set fraction (25%, 50%, 75%). Results in Figure 4a and Figure 4b show that our method remains stable with minimal fluctuation in band length as calibration data decreases. In contrast, CF-HGNN exhibits higher variance and inflated intervals, especially at smaller calibration fractions. This stability highlights the robustness of our approach under limited calibration resources, which is important in real-world healthcare applications where labeled calibration data may be scarce.

A.8 RELATED WORKS

We discuss here related works that are closest to the ideas in CCF-HGNN in this section.

(1) Uncertainty Quantification in deep learning and GNNs: Several approaches address model-agnostic risk estimation for Graph Neural Networks (GNNs) in both classification and regression tasks Zhang et al. (2020); Ovadia et al. (2019); Seedat et al. (2022). Other studies leverage structural properties of graphs to explore calibration challenges, particularly the tendency of GNNs to be underconfident Wang et al. (2021); Hsu et al. (2022). A foundational perspective is provided by Gal & Ghahramani (2016), who interpret dropout training in deep neural networks as approximate Bayesian inference in deep Gaussian Processes. Complementary work investigates factors such as network depth, width, weight decay, batch normalization, and temperature scaling for improving calibration Lakshminarayanan et al. (2017); Guo et al. (2017). More recently, stochastic centering has been proposed and applied as an effective calibration technique for GNNs Trivedi et al. (2023; 2024b).

(2) Conformal Prediction: Conformal inference provides distribution-free uncertainty quantification with rigorous coverage guarantees, enabling applications across diverse domains such as model calibration Sweidan & Johansson (2021), passenger booking systems Werner et al. (2021), computer vision Angelopoulos et al. (2020); Bates et al. (2021), and time-series forecasting Gibbs & Candes (2021); Lin et al. (2022). Given a user-specified miscoverage rate $\alpha \in (0,1)$, the framework uses a calibration dataset to construct prediction sets or intervals that contain the true outcome with probability at least $1-\alpha$. A variety of nonconformity scores have been proposed to improve performance in classification settings Romano et al. (2019; 2020); Izbicki et al. (2019), with recent work introducing scores in the latent feature space Teng et al. (2022). While the classical framework relies on exchangeability, several extensions relax this assumption to handle label shift, covariate shift, or dependent data Gibbs & Candes (2021); Barber et al. (2023); Tibshirani et al. (2019); Lin et al. (2022).

(3) Conformal Prediction for GNNs: The use of conformal inference for network-structured data has recently gained traction. The first application in the inductive setting Clarkson (2023) demonstrated that nonconformity scores in this context are not exchangeable. In contrast, subsequent works Huang et al. (2024); Zargarbashi et al. (2023); Luo & Colombo (2024) study the transductive setting, where

nonconformity scores retain exchangeability. These approaches exploit the local neighborhood structure of graphs to improve effectiveness while maintaining computational efficiency. More recently, Zargarbashi & Bojchevski (2023) introduced the notions of node-exchangeability and edge-exchangeability in growing graphs for the inductive setting, and proposed nonconformity scores defined on the evolving graph structure at each step. Recent works also include conformalized link prediction Zhao et al. (2024), weighted edge prediction Choudhuri et al. (2025c); Luo & Colombo (2024), dynamic GNNs Davis et al. (2024); Wang et al. (2025) and adversasial attack detection Ennadir et al. (2023).