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ABSTRACT

In this work, our objective is to adapt a Deep generative model trained on a large-
scale source dataset to multiple target domains with scarce data. Specifically, we
focus on adapting a pre-trained Generative Adversarial Network (GAN) to a tar-
get domain without re-training the generator. Our method draws the motivation
from the fact that out-of-distribution samples can be ‘embedded’ onto the latent
space of a pre-trained source-GAN. We propose to train a small latent-generation
network during the inference stage, each time a batch of target samples is to be
generated. These target latent codes are fed to the source-generator to obtain novel
target samples. Despite using the same small set of target samples and the source
generator, multiple independent training episodes of the latent-generation network
results in the diversity of the generated target samples. Our method, albeit simple,
can be used to generate data from multiple target distributions using a generator
trained on a single source distribution. We demonstrate the efficacy of our sur-
prisingly simple method in generating multiple target datasets with only a single
source generator and a few target samples. The code of the proposed method is
available at: https://github.com/arnabkmondal/GenDA

1 INTRODUCTION

1.1 FEW SHOT IMAGE GENERATION

Deep generative models learn to generate novel data points from an unknown underlying distribu-
tion. The family of auto-encoder based generative models (Kingma & Welling, 2014) use variational
inference to maximize evidence lower bound (ELBO) on the data likelihood; adversarial generators
such as GANs (Goodfellow et al., 2014) learn to sample by solving a min-max optimization game
and the normalizing flow-based methods utilize tractable transformations between the latent and
data distributions (Kobyzev et al., 2020). All such models are shown to be successful in generating
high-quality realistic data such as images (Karras et al., 2018; 2019; 2020b).
However, one of the caveats in deep generative models is that they require thousands of images for
proper training, limiting the scope of what can be explored (Sushko et al., 2021). This problem poses
practical restrictions on the applications of deep generative models, as the number of training data
is often limited to the order of hundreds or even tens at times; making it crucial to adapt generative
models for few-shot settings. One natural way to accomplish the above objective is to use the ‘prior-
knowledge’ that is already there in a generative model built on a larger, but ‘close’ source dataset
(Wang et al., 2018; 2020b). Several ideas ranging from learning latent transformations (Wang et al.,
2020b) to re-training generators on target data with regularizers such as Elastic-weight consolida-
tion (Li et al., 2020) and cross-domain correspondence (Ojha et al., 2021) have been proposed (See
section 2 for a detailed description). The basic principle in all these is to adapt the generator of Gen-
erative Adversarial Network (GAN) (Goodfellow et al., 2014), trained on a large source dataset, on
to the target dataset such that the re-trained generator imbibes the ‘style’ of the target while retain-
ing the ‘variability’ of the source domain. In other words, the re-training is geared towards reducing
the infamous problem of the catastrophic forgetting that bogs the realm of transfer learning (Mc-
Closkey & Cohen, 1989). While the aforementioned methods show good progress towards adapting
a pretrained GAN, there are still shortcomings such as lack of diversity due to over-fitting. Further,
these methods require de-novo re-training on every new target, which possibly leads to catastrophic
forgetting. In this paper, we intend to tackle some of these issues by addressing the following ques-
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Figure 1: (a) Emoji (Hua et al., 2017), (b) Amedeo Modigliani’s Art (Yaniv et al., 2019), (c) Fernand
Leger’s Art (Yaniv et al., 2019), (d) Moise Kisling’s Art (Yaniv et al., 2019), (e) Sketches (Wang
& Tang, 2009). The left image in each pair is the original image, the right image is the image
reconstructed using its embedding in the extended intermediate latent space of StyleGAN2 (Karras
et al., 2020b) trained on FFHQ dataset. The latent space accommodates a wide array of data.

tion - Can a GAN trained on a single large-scale source dataset be adapted to multiple target
domains containing very few examples without re-training the pretrained source generator?

1.2 MOTIVATION AND CONTRIBUTIONS

Recently, it has been observed that the latent space of high-fidelity GANs (e.g. StyleGAN2 (Karras
et al., 2020b)) is versatile as it can ‘accommodate’ a large variety of out-of-distribution data (Abdal
et al., 2019; 2021; Richardson et al., 2021; Tov et al., 2021). In other words, given a pretrained GAN
on a source dataset (source-GAN) and samples from a certain target distribution, the corresponding
representations of them can be found out in the latent space of the source-GAN (Abdal et al., 2019;
2021; Richardson et al., 2021; Tov et al., 2021). For instance, Fig. 1 presents images from several
target distributions and corresponding reconstructed images using embeddings from the latent space
of a StyleGAN2 trained on a large-scale source dataset (FFHQ). It is seen that a wide range of out-
of-distribution samples can be embedded in the latent space of source generators. This motivates us
to hypothesize the existence of a target-data manifold in the latent space of the source-GAN.
To achieve the aforementioned objective, one straightforward way is to re-train the source-GAN with
custom regularization as in (Li et al., 2020). However, these methods are prone to over-fitting when
the target data has very few samples (of the order of tens). To alleviate these issues, we propose to
find the latent vectors that generate the target data on the fly during the inference without the need
to re-train the source-generator. This is accomplished by solving an inference-time optimization
problem on the latent space of a pretrained GAN. Recent works (Zhang et al., 2020; Pandey et al.,
2021; Wu et al., 2019) have shown the advantage of inference-time latent optimization for several
tasks which motivates us to explore the use of inference-time optimization for few-shot generation.
We list the contributions of this work below:

1. We propose a simple procedure to utilize a GAN trained on large-scale source-data to
generate samples from a target domain with very few (1-10) examples.

2. Our procedure is shown to be capable of generating data from multiple target domains
using a single source-GAN without the need for re-training or fine-tuning it.

3. Extensive experimentation shows that our method generates diverse and high-quality target
samples with very few examples surpassing the performance of the baseline methods.

2 RELATED WORK

Few shot generative domain adaptation: In ‘generative domain adaptation’, a base model pre-
trained on source domain is adapted to a related target domain by using few examples. Generally,
this is done by re-training the model on the target data via appropriate losses. For example, the
authors of Transfer-GAN (Wang et al., 2018) demonstrated that fine-tuning from a single pretrained
GAN (Goodfellow et al., 2014) is beneficial for domains with scarce data. Later, the authors in
(Noguchi & Harada, 2019) observed that this technique leads to mode collapse, and hence they only
fine-tune the scale and shift parameters of the generator. However, this may limit the flexibility of
the network. To address this concern, the authors in MineGAN (Wang et al., 2020b) prepend a miner
network to the generator to transform the input latent space modeled by multivariate normal distri-
bution so that the generated images resemble the target domain. They propose a two step-training
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procedure that trains the miner network first, and then the entire pipeline is re-trained using the tar-
get data. (Li et al., 2020) adopts Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) to
penalize large deviation of the important weights (estimated using Fisher information) while fine-
tuning a GAN pretrained on a source domain. (Mo et al., 2020) demonstrates that simple fine-tuning
of GANs by freezing the lower layers of the discriminator generates diverse good images in the
low data regime. (Zhao et al., 2020a) demonstrates that the filters in the layers close to the obser-
vations of both the generator and discriminator of pretrained GANs can be transferred to facilitate
generation in a perceptually distinct target domain with limited training data. Further, they propose
adaptive filter modulation (AdaFM) to adapt the transferred filters to the target domain. (Ojha et al.,
2021) leverage cross-domain correspondence while fine-tuning the source-model. (Lee et al., 2021)
uses pairs of positive and negative images from two different domains to learn the cross-domain
correspondence. (Xiao et al., 2022) aligns the spatial structural information between the generated
image of source and target domain using cross-domain spatial structural consistency loss.
Few shot augmented generation without pre-training: In (Karras et al., 2020a), the authors
achieve state-of-the-art generation quality with just a few thousand training examples through an
adaptive discriminator augmentation mechanism. (Zhao et al., 2020b) generates high-fidelity im-
ages using just 100 images utilizing differentiable augmentation (DiffAugment) technique. (Liu
et al., 2021) designs a skip-layer channel-wise excitation module and a self-supervised discrimina-
tor trained as a feature-encoder to achieve good generation quality using just 100 images. However,
the effectiveness of these techniques reduces in extreme few shot e.g., 10-shot settings. In the ex-
treme case, the generative model is trained on a single image (Rott Shaham et al., 2019; Sushko
et al., 2021). However, the learned model only manipulates the repeated patterns in that image, fails
to generate something that does not exist within the training data.
Text-guided Domain Adaptation for Image Generators: StyleGAN-NADA (Gal et al., 2021) de-
velops an interesting approach of CLIP-guided (Radford et al., 2021) training of the generator for
zero-shot domain adaptation. (Zhu et al., 2022) builds upon StyleGAN-NADA to develop a one-shot
adaptation model and introduces several regularizations to improve generation quality.
Image-to-Image translation and Style Transfer: Several methods (Kwong et al., 2021; Pinkney
& Adler, 2020; Song et al., 2021) leverage the correspondence between closely related domains and
the rich embedding space of StyleGAN2 (Karras et al., 2020b) to perform image-to-image transla-
tion. These methods first embed a source domain image into the latent space of StyleGAN2. Next,
the latent representation is passed through a model fine-tuned on target data (Song et al., 2021) or
a hybrid model obtained by swapping the layers between the source and fine-tuned model (Kwong
et al., 2021; Pinkney & Adler, 2020).
Example-based neural style transfer methods (Gatys et al., 2016; Huang & Belongie, 2017; Li et al.,
2017) may be employed to transfer the style of a few target domain examples to the plentiful source
domain data. However, one single example fails to represent the consistent style across the target
domain fully. For instance, the higher-level geometric shape can differ from domain to domain.
However, these methods are mostly effective in transferring the color and texture which limits the
scope of these methods in generative domain adaptation.
Uniqueness of our Approach: Our method is close in spirit to MineGAN (Wang et al., 2020b) that
aims to find a latent transformation yielding the target data. However, there are many differences -

1. Proposed method finds point estimates via inference-time optimization compared to (Wang
et al., 2020b) where a distribution-level transformation is sought, leading to overfitting with
few samples.

2. We train a latent learner every time we desire to generate a batch of images. This contributes
to the diversity.

3. This method does not retrain the source generator with target data which preserves the
diversity imbibed via source-data and enables generation from multiple targets at once.

3 PROPOSED METHOD

3.1 OVERVIEW

Given a GAN trained on a source dataset and a few samples from the target distribution, our method
(Overview in Fig. 2) optimizes a new multi-layer perceptron to output ‘novel’ target latent vectors.
These are then fed to the source-generator to produce novel images from the target domain. Note
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that the generator is not a trainable module in our method, it is fixed throughout the training. The
only trainable module in our method is of the latent learning network.

3.2 BACKGROUND

3.2.1 GAN – STYLEGAN

Figure 2: Proposed Model: Given a trained
StyleGAN(Karras et al., 2019; 2020b) on a
source dataset and a few examples from the target
domain, our method trains a latent-learner LθL (a
MLP) to generate a new latent code starting from
a random Gaussian noise vector. The newly gen-
erated latent code is then fed to the source Gener-
ator to generate a ‘novel’ target domain sample.
Solid border indicates frozen modules and train-
able modules are shown with dotted border. For-
ward path and backpropagation are shown with
solid and dotted lines respectively.

As in previous works Ojha et al. (2021); Xiao
et al. (2022), we utilize StyleGAN2 Karras et al.
(2020b) for adaptation task. StyleGAN2 con-
sists of two latent spaces: (i) initial latent space,
Z ⊆ R512, and (ii) intermediate latent space,
W ⊆ R512. A 8-layer feed forward network
maps z ∈ Z to w ∈ W . Manipulating an im-
age needs finding its latent representation. Previ-
ous research (Abdal et al., 2019) suggests that a
shared latent representation in the Z orW space
may fail to faithfully embed a given image. Re-
sults improve if a separate code is selected for
each layer of the StyleGAN. We call this ex-
tended intermediate latent space and denote as
W+. We operate onW+.

3.2.2 PROBLEM FORMULATION

Consider a StyleGAN2 model with generator
GθG having parameters θG and discriminator
DθD with parameters θD. Let pS(s) be the un-
derlying distribution of the source data S on which it was trained. Let the extended intermediate
latent space of GθG be represented byW+. We are given few samples from target data T ∼ pT (t).
Our objective is to use the trained networks GθG , DθD and target images T to generate samples
I ∼ pT (t). Note, GθG(w) ∈ Rd represents the images generated by the generator GθG , and
w ∈ W+ ∈ Rm as the input from the extended latent space. Note that here m < d.

3.3 LATENT LEARNING NETWORK

During inference/generation, our objective is to find a latent vector wL ∈ W+ that lies on the target
manifold. To achieve this, we use a feed forward network with ReLU activations which we call
the latent learner LθL with parameters θL. The input to this network is a random vector χ where
χ ∼ N (0, I) is a sampled from the normal distribution with arbitrary dimensions. Therefore, the
objective is to obtain a wL = LθL(χ) such that GθG(wL) ∼ pT (t).
To train the latent learner LθL , we enforce properties of target domain on GθG(wL) using appro-
priate losses involving two components. The first component is the standard style loss (Gatys et al.,
2016) between t and GθG(wL) to capture the target domain features from the image. The second
component of the loss function is an adversarial loss: the discriminator DθD of StyleGAN2 acts as
a critic which aims to discriminate between generated image GθG(wL) and original target image
t ∈ T , whereas LθL aims to fool the discriminator, thus making the generated image more like that
of the target domain. Note, here we are fine-tuning the discriminator DθD along with the training of
LθL while the source generator GθG is untouched (Fig. 2). Our training objective is as follows:

θ∗L, θ
∗
D = argmin

θL
max
θD

(
Lstyle + Ladv

)
(1)

Lstyle = E
χ,t

[∑
l

βl

RlCl
||Al;GθG

(LθL
(χ)) −Al;t||22

]
(2)

Ladv = E
t

[
logDθD (t)

]
+ E

χ

[
log(1−DθD (GθG(LθL(χ))))

]
(3)

Here, Lstyle is the style loss, Rl and Cl are dimensions of feature map of lth-layer, Al denotes gram
matrix of corresponding feature maps as shown in (Gatys et al., 2016). We have used VGG-19 model
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(F (.) in Fig. 1) to get the feature maps. βl is the hyperparameter corresponding to lth-layer, which is
set to 1 for all l. Ladv is the adversarial loss explained above. While training, generator parameters
θG are kept constant, but the gradient is propagated to the latent learner. To update the latent learner,
LθL , we use non-saturating adversarial loss as outlined in (Goodfellow et al., 2014). Also note that
Lstyle in Equation 1 does not contribute to the maximization step but only to the minimization step
of the min-max game. Once the latent learner converges, its output w∗

L = Lθ∗
L
(χ) is used as the

input to the generator to obtain the final generated target images t∗ = GθG(w
∗
L).

3.3.1 INFERENCE-STAGE LATENT LEARNER RETRAINING

1

Algorithm 1: Proposed Method’s Pseudo Code
Input: Few target domain images T ,

A pretrained generator GθG and
Discriminator DθD

Output: A batch of latent vectors w∗
L

and corresponding generated
images t∗ = GθG(w

∗
L) ∈ T

1
2 Sample χ ∼ N (0, I)
3 while not converged do
4 L ← Lstyle + Ladv
5 θ∗D ← θ∗D − ν∇θ∗DL
6 θ∗L ← θ∗L − ν∇θ∗LL
7 Generate w∗

L = Lθ∗L(
χ)

8 Generate a batch of target images t∗ = GθG(w
∗
L)

Figure 3: Pseudo code for training.

We train the latent learner afresh during inference-
stage, whenever we desire to generate a batch of im-
ages from the target domain. Note that the same
set of target samples are used for training LθL ev-
ery time, albeit it is trained afresh with different ini-
tialization. This would ensure that LθL would not
overfit on the few target data points (unlike in (Wang
et al., 2020b)), thus inducing diversity in the gener-
ated samples. This procedure nevertheless, comes
at the cost of an increased inference time which is
manageable in many practical settings since the la-
tent learner is a simple 3-layer MLP.

3.4 THEORETICAL DISCUSSIONS

In this section, we discuss possible theoretical justi-
fication for the proposed inference time optimization framework. Our hypothesis is mostly based on
theory developed in Arjovsky & Bottou (2017). The summary of our discussion is that there exist
infinitely many optimal discriminators for the min-max problem in Eq. 1. Hence, due to different
sources of stochasticity in the proposed method, the algorithm could latch on to any of the optimal
discriminators leading to different latent learner networks, during each instance of inference. To
make the argument more formal, let wT denote the random variable for embedding of the target
domain samples T . Also, let wL = Lθ∗

L
(χ) denote the random variable for the latent vectors gen-

erated by the latent learner Lθ∗
L

upon convergence. Further, letMT andML denote the manifolds
spanned by GθG(wT ) and GθG(wL) respectively.

Now, as m < d (refer to Section 3.2.2), we have dim(wT ) < dim(GθG(wT )) and dim(wL) <
dim(GθG(wL)), henceMT andML will lie in a subspace of dimension less than d. In other words,
GθG(wT ) and GθG(wL) do not have full dimension. Also, MT andML will not align perfectly
almost surely. From this we can conclude that L =MT ∩ML has zero measure under bothMT

and ML (Lemma 1, Lemma 2 and, Lemma 3 Arjovsky & Bottou (2017)). From Theorem 2.2 of
Arjovsky & Bottou (2017), there exists a discriminator, Dθ∗

D
: Rd → [0, 1] that would optimally

discriminate between the samples of the generated and real data distributions. Now we hypothesise
that due to the stochasticity originating from different sources (such as initialization, SGD, etc.), the
proposed method will discover different manifold ML at each instance in inference, leading to a
different optimal discriminator Dθ∗

D
. This in turn leads to a different Lθ∗

L
during each inference-

time optimization. The aforementioned effect is pronounced especially in the case of extremely low
target data regime. This is because every novel inference time optimization routine facilitates the
Lθ∗

L
network to quickly latch on to a new manifold,ML. We believe that this serves as a plausible

explanation for the diversity in the generated samples that is observed in each inference time of our
approach. Developing these ideas further, including formally incorporating the effect of number of
target samples on the quality of generation, is a direction for future work.

3.5 IMPLEMENTATION DETAILS

The proposed approach is but inference time optimization. During inference, we solve an optimiza-
tion problem in the parameter space of the latent learner using a combination of style loss (Equation
2) and adversarial loss (Equation 3). We use VGG-19 model to calculate style loss; the layers used
to extract feature maps are - {conv1 2, conv2 2, conv3 4, conv4 4, conv5 4}. The latent learner
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is a 3-layer MLP with 512 neurons in each layer throughout all the experiments unless otherwise
specified. The hidden layers employ ‘ReLU’ activation, and the final layer has no activation. All the
few-shot target samples are used in a single batch (of size 8) for computing the style and adversarial
losses. The pseudo-code for the entire algorithm is shown in Algorithm 1 (Fig. 3).

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

Following previous work (Li et al., 2020; Ojha et al., 2021), we consider Flickr Faces HQ (FFHQ)
(Karras et al., 2019) as one of the source domain datasets and adapt to the following target do-
mains — (i) FFHQ-Babies (Ojha et al., 2021), (ii) FFHQ-Sunglasses (Ojha et al., 2021), (iii) face
sketches (Wang & Tang, 2009), (iv) emoji faces from bitmoji.com API (Taigman et al., 2016;
Hua et al., 2017), and (v) portrait paintings from the artistic faces dataset (Yaniv et al., 2019). Next,
we consider LSUN Church (Yu et al., 2015) as source domain and adapt to (i) haunted houses (Ojha
et al., 2021), and (ii) Van Gogh’s house paintings (Ojha et al., 2021). As in previous works (Li
et al., 2020; Ojha et al., 2021), we also consider combinations of unrelated source and target do-
mains (FFHQ→ haunted house and Church→ face sketches) to probe if the proposed method can
adapt successfully when the source and target domains are not ‘close’ (cf. supp.). We work with
256 × 256 images for both source and target domain. All our experiments consider 10 randomly
sampled target samples as in previous work unless otherwise specified. For source models, we reuse
a pretrained model (Seonghyeon, 2019) for FFHQ at 256×256 resolution and the official pretrained
checkpoint(Karras & Hellsten, 2019) for LSUN Church.

4.2 METHODOLOGY, METRICS AND BASELINES

Methodology: Even though very few (1, 5, or 10) target examples are used in the method for
adaptation, the evaluation is conducted on a larger target set. For example, there are approximately
300, 2500, 2700 and unlimited examples in the sketches (Wang & Tang, 2009), FFHQ-Babies (Ojha
et al., 2021), FFHQ-Sunglasses (Ojha et al., 2021), and emoji (Taigman et al., 2016; Hua et al., 2017)
datasets, respectively. In such settings, we use the entire target dataset (10000 samples for emoji)
for evaluation purposes by generating so many targets using our method. All the mentioned datasets
have a dimension of 256× 256, results on higher resolution images can be found in appendix.
Metrics: We compute and report the widely used Fréchet Inception Distance (FID) (Heusel et al.,
2017) for measuring the similarity of the generated images to the real ones. A lower FID score
indicates high similarity. However, being a uni-dimensional score, FID cannot disentangle the two
aspects of sample quality and diversity. To alleviate this issue, (Naeem et al., 2020) proposed den-
sity and coverage metrics to quantify quality and diversity, respectively. Density is unbounded, and
a higher density score indicates better quality. Coverage is bounded by 1, and a higher coverage
score is preferred. Another metric that we utilize is the Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018) metric, which gives an idea about overfitting on the small amount of
target data as shown in (Ojha et al., 2021).
Baselines: We compare our method against the following baselines (discussed in Sec. 2) - Trans-
ferring GAN (TGAN) (Wang et al., 2018), Batch Statistics Adaptation (BSA) (Noguchi & Harada,
2019), MineGAN (Wang et al., 2020b), Freeze-D (Mo et al., 2020), Non-leaking Adaptive Data
Augmentation (Karras et al., 2020a; Zhao et al., 2020b) (TGAN + ADA), Elastic Weight Consol-
idation (EWC) (Li et al., 2020), Few-shot Image Generation via Cross-domain Correspondence
(CDC) (Ojha et al., 2021), C3: Contrastive Learning for Cross-domain Correspondence (Lee et al.,
2021)1 and Relaxed Spatial Structural Alignment (Xiao et al., 2022).

4.3 RESULTS

As can be seen from Table 1, our method outperforms the current state-of-the-art methods on all
of the four datasets as measured by FID. From Table 2, it can be seen that the proposed method
achieves the best density and coverage scores, indicating the generated samples are diverse and of
high quality.

1We have taken the numbers from the paper itself, as the code is not yet published by the authors. For the
same reason, we are unable to present qualitative comparison with this method.
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Table 1: FID scores (↓) for different target datasets.

Method Babies Sunglasses Sketches Bitmoji
TGAN (Wang et al., 2018) 104.79 ± 0.03 55.61 ± 0.04 53.41 ± 0.02 66.69 ± 0.05
TGAN + ADA (Karras et al., 2020a) 102.58 ± 0.12 53.64 ± 0.08 66.99 ± 0.01 68.71 ± 0.07
BSA (Noguchi & Harada, 2019) 140.34 ± 0.01 76.12 ± 0.01 69.32 ± 0.02 105.56 ± 0.03
FreezeD (Mo et al., 2020) 110.92 ± 0.02 51.29 ± 0.05 46.54 ± 0.01 71.16 ± 0.01
MineGAN (Wang et al., 2020b) 98.23 ± 0.03 68.91 ± 0.03 64.34 ± 0.02 86.40 ± 0.04
EWC (Li et al., 2020) 87.41 ± 0.02 59.73 ± 0.04 71.25 ± 0.01 73.82 ± 0.04
CDC (Ojha et al., 2021) 74.39 ± 0.03 42.13 ± 0.04 45.67 ± 0.02 69.54 ± 0.05
C3 (Lee et al., 2021) 67.55 ± 2.23 36.69 ± 2.63 41.50 ± 1.64 —
RSSA (Xiao et al., 2022) 75.67 ± 0.39 44.35 ± 0.06 54.58 ± 0.51 67.14 ± 0.63
Proposed Method 63.31 ± 0.05 35.64 ± 0.15 35.59 ± 0.13 64.50 ± 0.12

Table 2: Comparison of Density (↑) and Coverage
(↑) scores for FFHQ babies and sketches datasets.

Method Babies Sketches
Density Coverage Density Coverage

TGAN (Wang et al., 2018) 0.379 0.250 0.221 0.401
TGAN + ADA (Karras et al., 2020a) 0.434 0.285 0.193 0.374
FreezeD (Mo et al., 2020) 0.418 0.217 0.415 0.436
MineGAN (Wang et al., 2020b) 0.803 0.125 0.394 0.263
EWC (Li et al., 2020) 0.301 0.325 — —
CDC (Ojha et al., 2021) 0.690 0.467 0.149 0.492
RSSA (Xiao et al., 2022) 0.961 0.402 0.070 0.691
Proposed Method 1.118 0.611 0.445 0.716

Table 3: Intra-cluster pairwise LPIPS distance (↑)
Method Amedeo’s Paintings Sketches

TGAN (Wang et al., 2018) 0.41±0.03 0.39±0.03
TGAN + ADA (Karras et al., 2020a) 0.51±0.04 0.41±0.05
BSA (Noguchi & Harada, 2019) 0.39±0.04 0.35±0.01
FreezeD (Mo et al., 2020) 0.40±0.03 0.39±0.03
MineGAN (Wang et al., 2020b) 0.42±0.03 0.40±0.05
EWC (Li et al., 2020) 0.52±0.03 0.42±0.03
CDC (Ojha et al., 2021) 0.60±0.01 0.45±0.02
C3 (Lee et al., 2021) — 0.45±0.03
RSSA (Xiao et al., 2022) 0.53±0.07 0.43±0.05
Proposed Method 0.61±0.02 0.48±0.02

Table 4: Ablation studies to understand the impact
of different loss terms.

Loss Components FID Score (↓)
Adv. Loss Sty. Loss Babies Sketches

✓ ✗ 69.78 68.99
✗ ✓ 212.87 139.12
✓ ✓ 62.14 35.59

As in (Ojha et al., 2021), we assign 1000 gener-
ated images to one of the k possible clusters (for
k-shot generative domain adaptation, k = 10
in Table 3) based on the lowest LPIPS distance
(Zhang et al., 2018). Next, we compute the av-
erage pair-wise LPIPS metric among the mem-
bers of the same cluster. Finally, we take the
average over the k clusters. A method will have
a zero score if it reproduces the original images.

Table 5: Impact of the capacity of the LθL on gen-
eration quality.

Latent learner Capacity FID Score (↓)
Babies Sketches

Small Network
Trainable parameters: 787,456 66.28 35.22

Medium Network
Trainable parameters: 1,050,112 62.14 35.59

Large Network
Trainable parameters: 2,624,000 64.43 38.61

A lower value of this metric implies the gen-
erated images are similar or, in other words,
less diverse. As can be seen from Table 3,
our proposed method achieves the best intra-
cluster pair-wise LPIPS distance for Amedeo
Modigliani’s paintings and sketches datasets.
Figure 4 and 5 depicts a few examples of gener-
ated targets from our method and the previous
SoTA (Ojha et al., 2021; Xiao et al., 2022). It
can be seen that our method can generate di-
verse examples on multiple target domains. (See appendix for more qualitative results on different
target domains. Appendix also contains examples of editing using the learnt representations.)

4.4 ABLATION STUDIES

Table 6: Effect of k in k-shot adaptation on generation quality as mea-
sured by FID score (↓).

Method 1-shot 5-shot 10-shot
Babies Sketches Babies Sketches Babies Sketches

CDC (Ojha et al., 2021) 105.58 81.95 73.63 51.01 74.39 45.67
RSSA (Xiao et al., 2022) 157.84 119.66 96.42 63.34 75.67 54.58
Proposed Method 105.13 79.20 65.47 41.88 62.14 35.59

Loss Components: Table
4 presents the impact of the
two loss components using
two datasets FFHQ-Babies
and Sketches. The best
FID score is achieved when
both the loss components
are present. Further, the
style loss acts more as a regularizer, whereas adversarial loss improves quality.
LθL Capacity: Next, to understand the impact of the complexity of the latent learner (overfitting
vs underfitting) on generation quality, in Table 5, we consider three capacities for the latent learner.
The smaller capacity LθL is a 2-layer MLP with 512 neurons in each layer, the larger capacity LθL is
again a 3-layer MLP with 1024 neurons in the hidden layers and 512 neurons in the output layer, and
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(a) 10-shot training exam-
ples of Babies.

(b) Babies generated using
CDC.

(c) Babies generated using
RSSA.

(d) Babies generated using
our method.

(e) 10-shot training exam-
ples of Sunglasses.

(f) Images generated using
CDC.

(g) Images generated using
RSSA.

(h) Images generated using
our method.

(i) 10-shot sketch exam-
ples.

(j) CDC generated
sketches.

(k) RSSA generated
sketches.

(l) Sketches generated us-
ing our method.

(m) 10-shot examples of
bitmoji.com emojis.

(n) Emojis generated using
CDC.

(o) Emojis generated using
RSSA.

(p) Emojis generated using
our method.

(q) 10-shot training exam-
ples of Amedeo’s painting.

(r) CDC generated
Amedeo’s painting.

(s) RSSA generated paint-
ing.

(t) Amedeo’s painting gen-
erated using our method.

(u) 10-shot training exam-
ples of Moise Kisling’s art.

(v) CDC generated Moise
Kisling’s art.

(w) RSSA generated
Moise Kisling’s art.

(x) Our method generated
Moise Kisling’s art.

(y) 10-shot training exam-
ples of Fernand Leger’s art.

(z) CDC generated Fer-
nand Leger’s art.

(aa) RSSA generated Fer-
nand Leger’s art.

(ab) Proposed method gen-
erated Fernand Leger’s art.

Figure 4: Source: FFHQ. Each row represents one target domain among - Babies, Sunglasses,
Sketches, Emoji, Amedeo Modigliani’s paintings, Moise Kisling’s art, and Fernand Leger’s art. The
1st column presents 10-shot target examples. The 2nd, 3rd and 4th columns present 10 images
generated by CDC (Ojha et al., 2021), RSSA (Xiao et al., 2022), and proposed method respectively.

medium capacity is a 3-layer MLP with 512 neurons in each layer. It is seen, the medium-capacity
network used across all the experiments achieves the optimum performance.
Number of Target Examples: Till now, the results presented utilize 10 target domain images for
generative domain adaptation. Table 6 presents the impact of lesser training data on generation
quality. We compare the proposed method with the current SOTA methods (Ojha et al., 2021; Xiao
et al., 2022). It is seen, the generation quality improves with k, and the proposed method performs
considerably better in almost all cases considered. Refer to the appendix for qualitative analysis.

4.5 APPLICATION: IMAGE TRANSLATION

One potential application of our method is to transfer the style of the image of one domain to another
domain. Figure 6 presents some examples where source domain (FFHQ) images have been trans-

8

bitmoji.com


Published as a conference paper at ICLR 2023

(a) Random images generated using a source StyleGAN2 trained on LSUN Church (Yu et al., 2015).

(b) 10-shot training exam-
ples of haunted house.

(c) Haunted house gener-
ated using CDC.

(d) Haunted house gener-
ated using RSSA.

(e) Proposed method gen-
erated haunted houses.

(f) 10-shot examples of
Van Gogh’s paintings.

(g) CDC generated Van
Gogh style paintings.

(h) RSSA generated Van
Gogh style paintings.

(i) Proposed method gener-
ated Van Gogh paintings.

Figure 5: Source: LSUN Church (Yu et al., 2015). Target: Haunted house (Ojha et al., 2021) and
Van Gogh’s house paintings (Ojha et al., 2021). The 1st column of 2nd and 3rd row presents 10-
shot examples from the target domains. The 2nd, 3rd, and 4th columns present 10 images generated
using CDC (Ojha et al., 2021), RSSA (Xiao et al., 2022), and proposed method respectively.

(a) (b) (c) (d)
Figure 6: Transferring source domain (FFHQ) image (left most image in each sub-figure) to target
domains Babies (center image) and Sketches (right most image).

lated to two target domains — babies and sketches. To do this, we use the embedding of the source
image and target images in place of random input noise to the latent learner. Further, we incorporate
two additional loss terms: (i) Multi-scale SSIM loss between the source image and generated image,
(ii) Structural loss between source, target, and generated images. Please note, as before, we keep the
source generator fixed and update only the latent learner parameters. See appendix for more details.

5 LIMITATIONS, RISK AND CONCLUSION

We conclude this article with a discussion on limitation of this work and possible future directions.
Limitation: In our method, inference time optimization mandates that we solve an optimization
problem every time we want to generate new images, which may increase the inference time for
certain applications. One way to address this issue is to store the outputs of the latent learner as we
solve inference-time optimization and train another generative model to sample from the manifold
of interest in the latent space. To validate the proof of this concept, we trained a WGAN (Arjovsky
et al., 2017; Gulrajani et al., 2017) to generate latent codes for the babies and sunglasses datasets
and achieved comparable FID scores. We intend to probe this direction further in our future work.
Risk: One of the possible negative social impacts of deep generative frameworks is the creation of
deepfakes (Vaccari & Chadwick, 2020). However, significant amount of work (Wang et al., 2020a;
Dolhansky et al., 2020; Mirsky & Lee, 2021) have been done to tackle the problem of identifying
real vs. fake images to counter deepfakes.
Conclusion: In this work, we present a methodology to build data-efficient generative models,
demonstrating that existing source models can be used as it is (without retraining or fine-tuning) to
model new distributions with less data. We believe that our work is an important step towards few-
shot ‘generative domain adaptation’ where we have demonstrated that the same source generator
can be utilized effectively to generate source domain samples and multiple target domain samples.
Additionally, our proposed method can be viewed as a step towards continual learning for generative
task where the same generator can generate data from different domains.
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REPRODUCIBILITY STATEMENT

To ensure that the proposed work is reproducible, we have included an Algorithm (Refer to Fig.
3). We have clearly mentioned different loss terms (Refer to Eq. 1, 2 and 3). Further, we have an
explicit section (Refer to Sec. 3.5) on implementation details. The code of the proposed method
is available at: https://github.com/arnabkmondal/GenDA. This is an anonymous link
which doesn’t reveal author identity. For convinience, we have also included a ReadMe file using
which our results can be reproduced.

ACKNOWLEDGMENTS

We thank IIT Delhi HPC facility2 for computational resources. Parag Singla is supported by IBM
AI Horizon Networks (AIHN) grant and IBM SUR awards. Any opinions, findings, conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the
views or official policies, either expressed or implied, of the funding agencies.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proc. of ICCV, pp. 4432–4441, 2019.

Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter Wonka. Styleflow: Attribute-conditioned
exploration of stylegan-generated images using conditional continuous normalizing flows. ACM
Trans. Graph., 40(3), 2021. ISSN 0730-0301. doi: 10.1145/3447648.
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