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Abstract

Debiasing methods for learning systems fall
into two distinct philosophies of fairness: re-
moving the use of protected attributes from
the model, or including protected attributes in
decision-making. However, the source of the
bias that we seek to mitigate should dictate our
choice of debiasing strategy. We categorize ex-
isting debiasing methods in these two fairness
families, describe different types of biases, and
show in controlled experiments that the choice
of debiasing method should depend on the type
of bias. Our results yield recommendations for
practitioners moving forward.

1 Introduction

Numerous studies have demonstrated that NLP
models can produce biased decisions and predic-
tions through reliance on protected attributes (e.g.
De-Arteaga et al., 2019). Models that screen for
cancer, for example, may be less likely to suggest
screenings for minority patients by identifying cor-
relations between predictions and protected input
attributes, like race, ethnicity, and gender, with-
out critical social context. Without careful mea-
surement and mitigation, trained models can per-
petuate bias in tasks ranging from classification
(Czarnowska et al., 2021; Zhang et al., 2020; Buo-
lamwini and Gebru, 2018) to language generation
(Blodgett et al., 2021; Cheng et al., 2023; Parrish
et al., 2021; Dhamala et al., 2021). The exclusion
of protected attributions can be insufficient; models
identify other correlated attributes or embed demo-
graphic information into internal representations
(Blodgett et al., 2016; Elazar and Goldberg, 2018).

Fairness through Unawareness (FTU) — exem-
plified in debiasing methods like adversarial de-
biasing (Zhang et al., 2020; Elazar and Goldberg,
2018; Han et al., 2021) or debiasing methods on
embeddings (Liu et al., 2020; Huang et al., 2020) —
aims to remove protected attributes to reduce their
influence on learned representations and model
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Figure 1: Historical and Measurement Bias on the text
input, where Y is the predicted variable, A is protected
attributes and R (not observed) is the real underlying
feature that predicts Y.
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attributes. FTU reflects one of two world views
prevalent across decision-making in fields, such as
finance, healthcare, politics, and education. This
aligns with the philosophy of equality of treatment,
where individuals should be treated equally despite
differences in protected attributes.

Another view is equality of outcomes, where
some differences in treatment may be needed for
outcomes to be equal (Klarsfeld and Cachat-Rosset,
2021). This approach includes protected attributes
in decision-making to ensure fair outcomes. This
fairness distinction has been alluded to in prior
work (Lipton et al., 2018; Barocas et al., 2019;
Friedler et al., 2021; Hertweck et al., 2021), but
here we propose to label these methods as Fairness
through Awareness (FTA.) This paper connects
these two world views (FTU, FTA) with current
debiasing techniques in NLP and machine learn-
ing. Through theoretical and empirical analysis, we
demonstrate that the choice of debiasing method
crucially depends on the task and type of bias.

Complex factors lead to social biases that result
in a complex interplay between protected attributes
and decision (Friedler et al., 2021). We discuss two
types of bias that illustrate a clear difference in the
role of demographic attributes, measurement bias
and historical bias (Baumann et al., 2023; Friedler
et al., 2021); Fig. 1 shows these biases as well
as others included for context (Suresh and Guttag,



2021). First, protected attributes can influence fac-
tors in a decision such that their inclusion promotes
fair outcomes (historical bias: Zink et al., 2023).
Alternatively, protected attributes can misinform a
decision and promote surface correlations that lead
to unfair outcomes (measurement bias: Zhang
et al., 2020). We hypothesize that measurement
bias requires FTU methods while historical bias
necessitates FTA debiasing. We support this view
by defining bias types and debiasing method fam-
ilies, as well as controlled synthetic experiments
that allow us to change the type of bias present dur-
ing training. Finally, we discuss the implications
of these findings for debiasing language models.

2 Removing Decision Bias

While many NLP studies evaluate and mitigate
social biases, few focus on identifying types of
bias (Friedler et al., 2021; Hertweck et al., 2021).
We utilize the taxonomy in Baumann et al. (2023),
originally proposed by Suresh and Guttag (2021),
and describe historical and measurement bias.

2.1 Types of Bias

Historical Bias arises when input features of the
model and/or the target variable are influenced by
some demographic attribute when they should not
be, but have become part of the phenomenon to be
captured by the machine learning system. An illus-
trative example is screening for cancer. An impor-
tant factor in determining whether a patient should
be screened for cancer is family history, where
individuals with a history of cancer in their fam-
ily have a higher likelihood of developing cancer
themselves. Due to historical challenges in minor-
ity populations accessing healthcare in the United
States, Black patients are less likely to possess ac-
curate family history regarding cancer (Murff et al.,
2005; Kupfer et al., 2006; Chavez-Yenter et al.,
2022; Andoh, 2023). Models that build on positive
correlations between family history of cancer and
patient risk without considering racial confounds
will bias against screenings for Black patients (Zink
et al., 2023).

Historical bias is illustrated by the edge from the
node “world” to itself in Fig. 1. More formally,
given text input features 7Text, target variable Y and
demographic variable A, the directed graph shows
the historical bias of A on Text. The text features
are part of the phenomenon resulting in Y and we
typically assume we can measure these variables

reliably. However, due to historical societal biases,
the demographic variable A influences differences
in text features and consequently in the observed
target variable Y, even though, in principle, this
should not be true.

Measurement Bias occurs when the variables
causing the phenomenon are unobserved (1), and
the observed text features are only proxies. As
proxies, they are imperfect representations and may
be influenced by, among other variables, demo-
graphic attributes A, as shown in Fig. 1 by the
edge connecting world and data. An example of
measurement bias can be found in kidney func-
tion measures, which guide physicians in choosing
chemotherapy, nonprescription medication drugs,
and anti-inflammatory drugs. Kidney function (R)
often cannot be measured directly, therefore equa-
tions, such as the estimated glomerular filtration
rate from serum creatinine (¢CFRcr), are used in-
stead as proxies. The eCFRcr uses race (A) as a
feature because past work found that kidney func-
tion was different at similar levels of eCFRcr based
on demographics, however, this association has
been poorly justified and study replications remain
inconclusive (Eneanya et al., 2019). Recently, stud-
ies have found that removing the race corrections
in the eCFRcr leads to an increase in access to
specialist care, kidney disease education, and kid-
ney transplantation for African American patients
(Diao et al., 2021).

More formally, given unobserved variable R, ob-
served text features Text, label Y and demographic
attributes A, Fig. 1 shows the directed graph por-
traying measurement bias on R through the input
text features. The text features are not part of the
phenomenon but are an imperfect proxy of the real
phenomenon R, which has been influenced by A
due to social factors.

2.2 Debiasing Methods

We introduce families of debiasing methods: Fair-
ness through Unawareness (FTU) and Fairness
through Awareness (FTA.) This distinction is
present in conversations about fairness in other
fields, as they are also known as disparate treat-
ment (FTU) vs disparate impact (FTA) in eco-
nomics and law (Lipton et al., 2018; Barocas et al.,
2019), We Are Equal (FTU) vs What You See Is
What You Get (FTA) (Friedler et al., 2021; Her-
tweck et al., 2021), and race corrections (FTA) in
medicine (Zink et al., 2023).



Fairness through Awareness' methods seek
to actively change model predictions based on
protected attributes by either taking the demo-
graphic variables as input, applying a demographic-
dependent training/regularizing loss, or modifying
the prediction post-hoc. Traditionally, this could
be achieved by including demographic attributes
into the model input (Hovy, 2015), or adding a
demographic-specific classification threshold dur-
ing prediction (Hardt et al., 2016). In language
models, these methods are less common, possibly
because of the lack of demographic information
available in datasets and because adding tabular
data to language models is not trivial-requiring
changes in model architecture or lower perfor-
mance, e.g. (Suriyakumar et al., 2023). Exam-
ples of FTA methods for language models involve
adding auxiliary losses during training/finetuning
of models such as FairBatch (Roh et al., 2020;
Foulds et al., 2020) and Disparate Learning Pro-
cess (DLP) (Lipton et al., 2018), or, more recently,
adding demographic features to prompts in few-
shot learning (Réttger et al., 2021; Beck et al.,
2024; Cheng et al., 2023; Deshpande et al., 2023;
Aguirre et al., 2023; Santurkar et al., 2023).

Fairness through Unawareness methods re-
duce the influence of protected attributes on model
prediction. While FTU in machine learning in-
cludes any method whose input does not explic-
itly include protected attributes, it is well under-
stood that other features, such as text, can encode
protected attributes in them (Elazar and Goldberg,
2018), and have been shown to use them as short-
cuts that results in unfair behavior (Kotek et al.,
2023). Further, it is often common to not include
explicit demographic attributes in text, with a few
exceptions (Cheng et al., 2023). We use FTU to
include methods that seek to actively remove the
influence of protected attributes on the input fea-
tures, model parameters, or predictions. Some ex-
amples of these methods for language models are
applied to the data directly in pre-processing (De-
Arteaga et al., 2019), as adversarial debiasing for
text classification (e.g. Zhang et al., 2020; Elazar
and Goldberg, 2018; Beutel et al., 2017), for de-
biasing word embeddings (e.g. Bolukbasi et al.,
2016; Caliskan et al., 2017; Chowdhury et al., 2021;

'The term Fairness through Awareness was the title of Dwork
et al. (2012), and while the main contribution of the paper, a
method later known as individual fairness, is an FTU method,
an extension they present that includes the goal of “fair affir-
mative action” is considered FTA in our taxonomy.

Kaneko and Bollegala, 2021), iterative nullspace
projection (INLP, Ravfogel et al., 2020; Subrama-
nian et al., 2021; Ravfogel et al., 2022) and others
(Chowdhury and Chaturvedi, 2022).

2.3 Limitations of Fairness through
Unawareness

What happens when we use FTU with models
trained on biased data? Formally, assume that for
a model M trained on dataset D = {x;,¥;,a;},
composed of input features x; € X, labelsy; € Y,
and demographic attributes a; € A, we observed
that the predicted variable M(X) = Y is some-
how correlated with A. Thus, we train an unbiased
model M with an FTU debiasing method.

Under measurement bias our observed fea-
tures X are imperfect proxies influenced by de-
mographic attributes A of the phenomenon R,
where Y = fi(R), X = fo(R,A), where f;
are some naturally occurring function. Debiasing
with FTU ensures that ¢; are independent of a;
(Y 1 A). By eliminating the bias previously ob-
served, while still allowing the model to approx-
imate fi(R) ~ M(X), FTU can be effective for
measurement bias.

Under historical bias X is accurately observed
R = X,andY 1L A|X. The model trained with
FTU, ensuring Y 1L A, looses important classifi-
cation information as Y is dependent on A through
X. Therefore, FTU is either not able to debias
a model M or obtains a suboptimal model when
historical bias is present.

3 Experiments

We now turn to a series of empirical demonstrations
of the limitations of FTA versus FTU methods on
datasets that contain historical and measurement
bias, measuring the overall performance and fair-
ness. We rely on synthetic datasets to control for
the specific type of bias, which is not possible in
natural datasets that arise from real social factors.
Data. We use a synthetic data generator’ to
create random variables (shown in Fig. 1) R =
—ﬁffA + Ng, Ngp ~ Gamma(kg,0r), A ~
Ber(pa), and PR = R — BEA + Np,, Np,, ~
N(0, JI%R) as described in Baumann et al. (2023).
Notably, ﬁf‘ controls the presence and intensity of
historical bias on input feature R, and B controls
the measurement bias on the proxy feature Pr. We

ttps://github.com/rcrupiISP/
BiasOnDemand/tree/main
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Performance Fairness

Model p o " o

Measurement Base 747 075 549 1.10

Bias FTU 573 3.86

FTA 713 032 990 0.66

Historical Base 847 045 534 0.72
Bias FTU 834 0.60

FTA 803 033 987 0.79

Table 1: Adversarial debiasing (FTU) results in fairer
models without loss of performance for data with
measurement bias, but worse and less fair performance
for data with historical bias. Non-significant changes
to the baseline (p < .05) over 20 random seeds in

use their framework to create two datasets, one
with historical bias on the input feature (Bff =3)
and the other with measurement bias on the proxy
feature (ﬁﬁ = 3), with the rest of variables with
their default values. Appendix A.1 contains more
details about the datasets as well as data statistics.

Models. We implement a standard neural
network design with two feed-forward layers:
an input layer and a classification layer (hidden
size = 100). This model is labeled as Base. To
represent FTU methods, we use the adversarial
learning method proposed in Zhang et al. (2018)3
and outlined in Appendix A.3. For the FTA
methods, we use the fair threshold method
(Threshold Optimizer)* initially proposed by
Hardt et al. (2016), which chooses a different
threshold for each demographic group based on a
fairness constraint. The fairness constraint for both
methods is demographic parity, which is also used
to assess the fairness of the methods. Performance
is measured in F1. We describe model architecture
as well as more training details in Appendix A.2

Results. Table 1 shows the results for each
method trained on both biased datasets. When
the dataset includes measurement bias, both FTA
and FTU methods yield models that are statistically
more fair compared to the baseline, while maintain-
ing similar or better overall performance. However,
for historical bias, only the FTA method results in a
fairer model than the baseline, while FTU performs
worse and is less fair.

3https ://fairlearn.org/main/user_guide/
mitigation/adversarial.html

*https://fairlearn.orqg/v0.5.0/api_
reference/fairlearn.postprocessing.html

4 Conclusion & Recommendations

Our field has embraced the importance of demo-
graphic fairness, developing many methods for de-
biasing trained models. However, many studies fail
to differentiate between types of bias, nor identify
which biases their methods are meant to combat
(Blodgett et al., 2020). However, our analysis and
experiments demonstrate that without these details,
debiasing methods can produce less fair models.
When historical bias is present and demographic
attributes are important for prediction, FTU’s objec-
tive directly conflicts with the prediction objective,
resulting in a bias or a suboptimal predictor. On
the other hand, there are also reasons why FTA
methods are not effective and/or feasible: demo-
graphic variables may not be relevant to the task
(De-Arteaga et al., 2019), demographic groups are
too coarse to appropriately define harm towards
people (Dwork et al., 2012), or it may be simply
illegal for some tasks in the case of protected at-
tributes. Failure to explicitly consider these factors
will produce the opposite of the desired result.
We recommend the following best practices:

1. Debate. The effectiveness of debiasing methods
depends on the bias type. Researchers should
take a moment to reflect, debate, and decide
what philosophy of debiasing method most ap-
plies for each task.

2. Reporting for Researchers. Researchers who
develop debiasing methods should report on the
type of method (FTA or FTU) and the assumed
bias type(s) of interest.

3. Reporting for Practitioners. Practitioners ap-
plying existing debiasing methods to new tasks
or settings should report on the known and as-
sumed types of bias in the data (historical or
measurement bias), and how the choice of debi-
asing methods addresses these biases. We cau-
tion against using debiasing methods without
first understanding the source of bias.

Our community does not evaluate NLP systems
in isolation; our choice of methods is meant to
address specific social and data biases, whether due
to historical factors, measurement issues, or other
complex social issues. We must understand how
our technical choices promote fairness of treatment
or fairness of outcomes; without engaging in these
conversations we cannot achieve our goals. We
believe our analysis and recommendations will lead
to more effective efforts to create fair NLP systems.
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5 Ethical Considerations & Limitations

In this work we described two types of biases and
how they interact with our classification of debias-
ing methods, however, we acknowledge there are
many other types of bias, as shown in Figure 1,
for which we did not explore the impact of the de-
biasing methods discussed here. The distinction
we make, FTU vs FTA, may not have a significant
difference in fairness or performance under other
types of biases; however, this does not affect the
scope of our claims and conclusions, as we found
scenarios where debiasing methods can produce
less fair models, thus affecting the choice of debi-
asing method families.

In addition, we assume that datasets have a sin-
gle type of bias, however, it is likely that real life
scenarios contain multiple types of biases at once,
making the choice of FTU vs FTA harder to make
from a theoretical point of view. Our experiments
were performed under controlled settings in order
to properly test our hypothesis where we ensured
only one type of bias was introduced, however, the
inter-relation of language and society is complex
and is unlikely to produce datasets with only one
type of social bias. This highlights the importance
of our first recommendation, debate, as researchers
will have to reflect and decide what philosophy to
use in uncertain scenarios.
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A Experiment Details

In this section we provide more details about the
implementation and use of the dataset and models
for the experiments in §3.

A.1 Data Details

We use a synthetic data generator’ to create ran-
dom variables (shown in Fig. 1) as described in
Baumann et al. (2023):

R=-BffA+ Ng

Npr ~ Gamma(kg,0R)

A ~ Ber(pa)

Q ~ Bin(K,pg(R, A))
Pr=R—BRA+ Np,

Np, ~N(0,0%,)

S =arR—agQ — B A+ Ng
Ng ~ N(0,0%)

Y =155 pgy

Here, R is a random variable drawn from a
Gamma distribution, that optionally depends on
B}If which controls the presence and intensity of
historical bias from A on the feature. A is a bi-
nary random variable drawn from a Bernoulli dis-
tribution. Ppg is the proxy variable that may be
optionally influenced by 5% which controls the
measurement bias.

‘We use their framework to create two datasets,
one with historical bias, where R (along with Q)
are the input features X = [R, Q] with Bf = 3
and the other with measurement bias, where Pr
(along with Q) are the input features X = [Pg, Q]
with B2 = 3. The rest of the variables are left with
their default values. Each dataset contains 100K
data points, with a train-test split (.66-.33) with
stratified sampling on the demographics ensuring
each split has equal demographic distributions. Ta-
ble 2 shows the statistics for both datasets and their
train-test splits.

A.2 Models

We implement a standard neural network de-
sign on PyTorch® with two fully connected feed-
forward layers: an input layer (input_size
= 2, output_size = hidden_dim = 100)
Shttps://github.com/rcrupiISpP/

BiasOnDemand/tree/main
®https://pytorch.org/

Labels

Class. Y

Features <

A
\TV/

Encoder

X

> Demographics

z

Figure 2: Schematic of adversarial debiasing method
for an encoder based model.

and a classification layer (input_size =
hidden_dim = 100, output_size = 2) with
a ReLu activition function in between. This model
was trained using a binary cross-entropy loss, we
used Adam as the optimizer with a learning
rate =.001 and batch size = 32 for one epoch of
the dataset. This model is labeled as Base.

To represent FTU methods, we use the
adversarial learning method proposed in
Zhang et al. (2018) and outlined in Ap-
pendix A.3. We use the FairLearn implementation
(AdversarialFairnessClassifier’)
with both the task classifier and the adversarial
classifier with the same architecture as Base, the
a = .7, and demographic parity as the fairness
constraint.

For the FTA methods, we use the fair thresh-
old method (ThresholdOpt imizer?) initially
proposed by Hardt et al. (2016), which chooses
a different threshold for each demographic group
based on a fairness constraint. The classifier has
the same architecture as the Base, and the fairness
constraint is also demographic parity.

We measure performance in F1, and fairness
in demographic parity. Table 1 show the average
and standard deviation of both performance and
fairness of the models trained over 20 random seeds.
Statistical significance was calculated by random
samples of the train data and training each model
with different random seeds to obtain a distribution
of test scores. Then, we perform an ANOVA test
with subsequent pairwise t-tests with Bonferroni
corrections.

A.3 Adversarial Debiasing

Briefly, adversarial debiasing involves adding an
adversarial loss to the main objective during train-
ing with the goal to discourage the model’s hidden

"https://fairlearn.org/main/user_guide/
mitigation/adversarial.html

$https://fairlearn.org/v0.5.0/api_
reference/fairlearn.postprocessing.html
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Historical Bias

Measurement Bias

train

test

train test
R Q A Y R Q A
count 67k 67k 67k 67k 33k 33k 33k
1 451 150 050 045 451 150 0.50
o 452 0.8 050 050 447 087 0.50

min -2.99 0.00 0.00 0.00 -296 0.00 0.00
25% 136 1.00 0.00 0.00 137 1.00 0.00
50% 370 1.00 1.00 0.00 3.74 1.00 1.00
75% 681 200 1.00 1.00 6.86 2.00 1.00
max 4141 3.00 1.00 1.00 4232 3.00 1.00

Y

33k
0.45
0.50
0.00
0.00
0.00
1.00
1.00

Pr

67k
4.51
4.94
-8.93
1.05
3.87
7.24
47.15

Q

67k
1.50
0.86
0.00
1.00
1.00
2.00
3.00

A

67k
0.50
0.50
0.00
0.00
1.00
1.00
1.00

Y

67k
0.44
0.50
0.00
0.00
0.00
1.00
1.00

Pr

33k
4.51
4.90
-9.22
1.12
3.89
7.23
42.99

Q

33k
1.50
0.87
0.00
1.00
1.00
2.00
3.00

A

33k
0.50
0.50
0.00
0.00
1.00
1.00
1.00

Y

33k
0.44
0.50
0.00
0.00
0.00
1.00
1.00

Table 2: Data statistics for the train and test split for both datasets.

representations from predicting demographic at-
tributes. In a typical neural network style model,
this is implemented by adding a demographic at-
tribute classification layer and incorporate its loss
to the main classification layer’s loss. Fig. 2 shows
a schematic of an adversarial model.

More formally, we assume data points x; € X
with paired target variables y; € Y, and z; € Z
are the corresponding demographic attribute for
{zi,y;}. We train a model M (X) that is com-
posed of: an encoder f(X), that takes as input the
features x; and outputs hidden representations h;,
as well as a classification layer ¢(H) that takes
as input the hidden representations h; and out-
puts the prediction y. Adversarial debiasing seeks
hidden representations h; that are independent of
z;. This is achieved if there is not a demographic
classifier adv(H) that predicts the attributes z;
from h;. Let 6 be the parameters of the model,
0 = {0¢,0¢,044,}. To such an end, the training
procedure concretely seeks to optimize both objec-
tives jointly:

11>

L(X,Y,[0FU6])
- ﬁadv(Xv 27 [9f U eadv])

m@inM(X, 0)

Importantly, this method assumes that Y can be
predicted without information from Z, the demo-
graphic attributes. Otherwise, the adversarial loss
would be in direct contradiction with the classifier
loss, and would obtain a suboptimal classifier.



