
Published as a conference paper at ICLR 2021

ROBUST REINFORCEMENT LEARNING ON STATE OB-
SERVATIONS WITH LEARNED OPTIMAL ADVERSARY

Huan Zhang*,1 Hongge Chen*,2 Duane Boning2 Cho-Jui Hsieh1

1Department of Computer Science, UCLA 2Department of EECS, MIT
huan@huan-zhang.com, chenhg@mit.edu, boning@mtl.mit.edu
chohsieh@cs.ucla.edu
*Huan Zhang and Hongge Chen contributed equally.

ABSTRACT

We study the robustness of reinforcement learning (RL) with adversarially per-
turbed state observations, which aligns with the setting of many adversarial at-
tacks to deep reinforcement learning (DRL) and is also important for rolling out
real-world RL agent under unpredictable sensing noise. With a fixed agent pol-
icy, we demonstrate that an optimal adversary to perturb state observations can be
found, which is guaranteed to obtain the worst case agent reward. For DRL set-
tings, this leads to a novel empirical adversarial attack to RL agents via a learned
adversary that is much stronger than previous ones. To enhance the robustness
of an agent, we propose a framework of alternating training with learned adver-
saries (ATLA), which trains an adversary online together with the agent using
policy gradient following the optimal adversarial attack framework. Additionally,
inspired by the analysis of state-adversarial Markov decision process (SA-MDP),
we show that past states and actions (history) can be useful for learning a robust
agent, and we empirically find a LSTM based policy can be more robust under ad-
versaries. Empirical evaluations on a few continuous control environments show
that ATLA achieves state-of-the-art performance under strong adversaries. Our
code is available at https://github.com/huanzhang12/ATLA_robust_RL.

1 INTRODUCTION

Modern deep reinforcement learning agents (Mnih et al., 2015; Levine et al., 2015; Lillicrap et al.,
2015; Silver et al., 2016; Fujimoto et al., 2018) typically use neuron networks as function approxima-
tors. Since the discovery of adversarial examples in image classification tasks (Szegedy et al., 2013),
the vulnerabilities in DRL agents were first demonstrated in (Huang et al., 2017; Lin et al., 2017;
Kos & Song, 2017) and further developed under more environments and different attack scenar-
ios (Behzadan & Munir, 2017a; Pattanaik et al., 2018; Xiao et al., 2019). These attacks commonly
add imperceptible noises into the observations of states, e.g., the observed environment slightly dif-
fers from true environment. This raises concerns for using RL in safety-crucial applications such
as autonomous driving (Sallab et al., 2017; Voyage, 2019); additionally, the discrepancy between
ground-truth states and agent observations also contributes to the “reality gap” - an agent working
well in simulated environments may fail in real environments due to noises in observations (Jakobi
et al., 1995; Muratore et al., 2019), as real-world sensing contains unavoidable noise (Brooks, 1992).

We classify the weakness of a DRL agent on the perturbations of state observations into two classes:
the vulnerability in function approximators, which typically originates from the highly non-linear
and blackbox nature of neural networks; and intrinsic weakness of policy: even perfect features for
states are extracted, an agent can still make mistakes due to an intrinsic weakness in its policy.

For example, in the deep Q networks (DQNs) for Atari games, a large convolutional neural network
(CNN) is used for extracting features from input frames. To act correctly, the network must extract
crucial features: e.g., for the game of Pong, the position and velocity of the ball, which can observed
by visualizing convolutional layers (Hausknecht & Stone, 2015; Guo et al., 2014). Many attacks to
the DQN setting add imperceptible noises (Huang et al., 2017; Lin et al., 2017; Kos & Song, 2017;
Behzadan & Munir, 2017a) that exploit the vulnerability of deep neural networks so that they extract
wrong features, as we have seen in adversarial examples of image classification tasks. On the other

1

https://github.com/huanzhang12/ATLA_robust_RL

Published as a conference paper at ICLR 2021

(a) Path in unperturbed environ-
ment (found by policy iteration).
Agent’s reward = +1. Black ar-
rows and numbers show actions
and value function of the agent.

(b) Path under the optimal adver-
sary. Agent’s reward = −∞.
Red arrows and numbers show
actions and value function of the
optimal adversary (Section 3.1).

(c) A robust POMDP policy
solved by SARSOP (Kurniawati
et al., 2008) under the same ad-
versary. This policy is history de-
pendent (Section 3.2).

Figure 1: We show an agent in gridworld environment trained with no function approximators, and
its optimal policy is intrinsically not robust to perturbations of state observations. The red square and
blue circle are the starting point and target (reward +1) of the agent, respectively. The green triangles
are traps, with reward -1 once encountered. The adversary is allowed to perturb the observation to
adjacent states along four directions: up, down, left, and right. Adversary earns +1 at traps and -1 at
the target. We set γ = 0.9 for both agent and adversary. This example shows that the vulnerability
of a RL agent does not only come from the errors in function approximators such as DNNs.

hand, the fragile function approximation is not the only source of the weakness of a RL agent -
in a finite-state Markov decision process (MDP), we can use tabular policy and value functions so
there is no function approximation error. The agent can still be vulnerable to small perturbations on
observations, e.g., perturbing the observation of a state to one of its four neighbors in a gridworld-
like environment can prevent an agent from reaching its goal (Figure 1). To improve the robustness
of RL, we need to take measures from both aspects — a more robust function approximator, and a
policy aware of perturbations in observations.

Techniques developed in enhancing the robustness of neural network (NN) classifiers can be ap-
plied to address the vulnerability in function approximators. Especially, for environments like Atari
games with images as input and discrete actions as outputs, the policy network πθ behaves similarly
to a classifier in test time. Thus, Fischer et al. (2019); Mirman et al. (2018a) utilized existing cer-
tified adversarial defense (Mirman et al., 2018b; Wong & Kolter, 2018; Gowal et al., 2018; Zhang
et al., 2020a) approaches in supervised learning to enhance the robustness of DQN agents. Another
successful approach (Zhang et al., 2020b) for both Atari and high-dimensional continuous control
environment regularizes the smoothness of the learned policy such that maxŝ∈B(s)D(πθ(s), πθ(ŝ))
is small for some divergence D and B(s) is a neighborhood around s. This maximization can be
solved using a gradient based method or convex relaxations of NNs (Salman et al., 2019; Zhang
et al., 2018; Xu et al., 2020), and then minimized by optimizing θ. Such an adversarial minimax
regularization is in the same spirit as the ones used in some adversarial training approaches for (semi-
)supervised learning, e.g., TRADES (Zhang et al., 2019) and VAT (Miyato et al., 2015). However,
regularizing the function approximators does not explicitly improve the intrinsic policy robustness.

In this paper, we propose an orthogonal approach, alternating training with learned adversaries
(ATLA), to enhance the robustness of DRL agents. We focus on dealing with the intrinsic weakness
of the policy by learning an adversary online with the agent during training time, rather than directly
regularizing function approximators. Our main contributions can be summarized as:

• We follow the framework of state-adversarial Markov decision process (SA-MDP) and show how
to learn an optimal adversary for perturbing observations. We demonstrate practical attacks under
this formulation and obtain learned adversaries that are significantly stronger than previous ones.
• We propose the alternating training with learned adversaries (ATLA) framework to improve the
robustness of DRL agents. The difference between our approach and previous adversarial training
approaches is that we use a stronger adversary, which is learned online together with the agent.
• Our analysis on SA-MDP also shows that history can be important for learning a robust agent.
We thus propose to use a LSTM based policy in the ATLA framework and find that it is more robust
than policies parameterized as regular feedforward NNs.

2

Published as a conference paper at ICLR 2021

• We evaluate our approach empirically on four continuous control environments. We outperform
explicit regularization based methods in a few environments, and our approach can also be directly
combined with explicit regularizations on function approximators to achieve state-of-the-art results.

2 RELATED WORK

State-adversarial Markov decision process (SA-MDP) (Zhang et al., 2020b) characterizes the de-
cision making problem under adversarial attacks on state observations. Most importantly, the true
state in the environment is not perturbed by the adversary under this setting; for example, perturbing
pixels in an Atari environment (Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017; Behzadan
& Munir, 2017a; Inkawhich et al., 2019) does not change the true location of an object in the game
simulator. SA-MDP can characterize agent performance under natural or adversarial noise from sen-
sor measurements. For example, GPS sensor readings on a car are naturally noisy, but the ground
truth location of the car is not affected by the noise. Importantly, this setting is different from robust
Markov decision process (RMDP) (Nilim & El Ghaoui, 2004; Iyengar, 2005), where the worst case
transition probabilities of the environment are considered. “Robust reinforcement learning” in some
works (Mankowitz et al., 2018; 2019) refer to this different definition of robustness in RMDP, and
should not be confused with our setting of robustness against perturbations on state observations.

Several works proposed methods to learn an adversary online together with an agent. RARL (Pinto
et al., 2017) proposed to train an agent and an adversary under the two-player Markov
game (Littman, 1994) setting. The adversary can change the environment states through actions
directly applied to environment. The goal of RARL is to improve the robustness against environ-
ment parameter changes, such as mass, length or friction. Gleave et al. (2019) discussed the learning
of an adversary using reinforcement learning to attack a victim agent, by taking adversarial actions
that changes the environment and consequentially change the observation of the victim agent. Both
Pinto et al. (2017); Gleave et al. (2019) conduct their attack under on the two-player Markov game
framework, rather than considering perturbations on state observations. Besides, Li et al. (2019)
consider a similar Markov game setting in multi-agent RL environments. The difference between
these works and ours can be clearly seen in the setting where the adversary is fixed - under the
framework of (Pinto et al., 2017; Gleave et al., 2019), the learning of agent is still a MDP, but in our
setting, it becomes a harder POMDP problem (Section 3.2).

Training DRL agents with perturbed state observations from adversaries have been investigated
in a few works, sometimes referred to as adversarial training. Kos & Song (2017); Behzadan &
Munir (2017b) used gradient based adversarial attacks to DQN agents and put adversarial frames
into replay buffer. This approach is not very successful because for Atari environments the main
source of weakness is likely to come from the function approximator, so an adversarial regularization
framework such as (Zhang et al., 2020b; Qu et al., 2020) which directly controls the smoothness
of the Q function is more effective. For lower dimensional continuous control tasks such as the
MuJoCo environments, Mandlekar et al. (2017); Pattanaik et al. (2018) conducted FGSM and multi-
step gradient based attacks during training time; however, their main focus was on the robustness
against environment parameter changes and only limited evaluation on the adversarial attack setting
was conducted with relatively weak adversaries. Zhang et al. (2020b) systematically tested this
approach under newly proposed strong attacks, and found that it cannot reliably improve robustness.
These early adversarial training approaches typically use gradients from a critic function. They are
usually relatively weak, and not sufficient to lead to a robust policy under stronger attacks.

The robustness of RL has also been investigated from other perspectives. For example, Tessler et al.
(2019) study MDPs under action perturbations; Tan et al. (2020) use adversarial training on action
space to enhance agent robustness under action perturbations. Besides, policy teaching (Zhang &
Parkes, 2008; Zhang et al., 2009; Ma et al., 2019) and policy poisoning (Rakhsha et al., 2020; Huang
& Zhu, 2019) manipulate the reward or cost signal during agent training time to induce a desired
agent policy. Essentially, policy teaching is a training time “attack” with perturbed rewards from
the environments (which can be analogous to data poisoning attacks in supervised learning settings),
while our goal is to obtain a robust agent against test time adversarial attacks. All these settings differ
from the setting of perturbing state observations discussed in our paper.

3 METHODOLOGY
In this section, we first discuss the case where the agent policy is fixed, and then the case where
the adversary is fixed in SA-MDPs. This allows us to propose an alternating training framework to
improve robustness of RL agents under perturbations on state observations.

3

Published as a conference paper at ICLR 2021

Notations and Background We use S and A to represent the state space and the action space,
respectively; P(S) defines the set of all possible probability measures on S. We define a Markov
decision process (MDP) as (S,A, R, p, γ), where R : S × A × S → R and p : S × A → P(S)
are two mappings represent the reward and transition probability. The transition probability at
time step t can be written as p(s′|s, a) = Pr(st+1 = s′|st = s, at = a). Reward function
is defined as the expected reward R(s, a, s′) := E[rt|st = s, at = a, st+1 = s′]. γ ∈ [0, 1]
is the discounting factor. We denote a stationary policy as π : S → P(A) which is inde-
pendent of history. We denote history ht at time t as {s0, a0, · · · , st−1, at−1, st} and H as
the set of all histories. A history-dependent policy is defined as π : H → P(A). A par-
tially observable Markov decision process (Astrom, 1965) (POMDP) can be defined as a 7-tuple
(S,A,O,Ω, R, p, γ) where O is a set of observations and Ω is a set of conditional observation
probabilities p(o|s). Unlike MDPs, POMDPs typically require history-dependent optimal policies.

s
t+1

Agent

Environment
r

t+1

r
t

ŝ
t
~ ν(ŝ |s

t
)

s
t Adversary

a
t
~ π(a|ŝ

t
)

Sec 3.1: Fix agent, find
optimal adversary

Sec 3.2: Fix adversary,
find optimal agent policy

Figure 2: SA-MDP introduces an adver-
sary on state observations in a MDP.

To study the decision problem under adversaries on state
observations, we use state-adversarial Markov decision
process (SA-MDP) framework (Zhang et al., 2020b). In
SA-MDP, an adversary ν : S → P(S) is introduced to
perturb the input state of an agent; however, the true en-
vironment state s is unchanged (Figure 2). Formally, an
SA-MDP is a 6-tuple (S,A,B, R, p, γ) where B is a map-
ping from a state s ∈ S to a set of states B(s) ∈ S. The
agent sees the perturbed state ŝ ∼ ν(·|s) and takes the
action π(a|ŝ) accordingly. B limits the power of adver-
sary: supp (ν(·|s)) ∈ B(s). The goal of SA-MDP is to solve an optimal policy π∗ under its optimal
adversary ν∗(π∗); an optimal adversary is defined as ν∗(π) such that π achieves the lowest possible
expected discounted return (or value) on all states. Zhang et al. (2020b) did not give an explicit
algorithm to solve SA-MDP and found that a stationary optimal policy need not exist.

3.1 FINDING THE OPTIMAL ADVERSARY UNDER A FIXED POLICY

In this section, we discuss how to find an optimal adversary ν for a given policy π. An optimal
adversary leads to the worst case performance under bounded perturbation set B, and is an absolute
lower bound of the expected cumulative reward an agent can receive. It is similar to the concept of
“minimal adversarial example” in supervised learning tasks. We first show how to solve the optimal
adversary in MDP setting and then apply it to the DRL settings.

A technical lemma (Lemma 1) from Zhang et al. (2020b) shows that, from the adversary’s point of
view, a fixed and stationary agent policy π and the environment dynamics can be essentially merged
into an MDP with redefined dynamics and reward functions:
Lemma 1 (Zhang et al. (2020b)) Given an SA-MDP M = (S,A, R,B, p, γ) and a fixed and sta-
tionary policy π(·|·), there exists an MDP M̂ = (S, Â, R̂, p̂, γ) such that the optimal policy of M̂ is
the optimal adversary ν for SA-MDP given the fixed π, where Â = S, and

R̂(s, â, s′) := E[r̂|s, â, s′] =

{
−

∑
a∈A π(a|â)p(s′|s,a)R(s,a,s′)∑

a∈A π(a|â)p(s′|s,a) for s, s′ ∈ S and â ∈ B(s) ⊂ Â,
C for s, s′ ∈ S and â /∈ B(s).

where C is a large negative constant, and

p̂(s′|s, â) =
∑
a∈A

π(a|â)p(s′|s, a) for s, s′ ∈ S and â ∈ Â.

The intuition behind Lemma 1 is that the adversary’s goal is to reduce the reward earned by the
agent. Thus, when a reward rt is received by the agent at time step t, the adversary receives a
negative reward of r̂t = −rt. To prevent the agent from taking actions outside of set B(s), a large
negative reward C is assigned to these actions such that the optimal adversary cannot take them.
For actions within B(s), we calculate R̂(s, â, s′) by its definition, R̂(s, â, s′) := E[r̂|s, â, s′] which
yields the term in Lemma 1. The proof can be found in Appendix B of Zhang et al. (2020b).

After constructing the MDP M̂ , it is possible to solve an optimal agent ν of M̂ , which will be the
optimal adversary on SA-MDP M given policy π. For MDPs, under mild regularity assumptions an

4

Published as a conference paper at ICLR 2021

(a) No attack
(reward 5851)

(b) RS Attack
(reward 284)

(c) Our Attack
(reward −1140)

(d) No attack
(reward 7094)

(e) RS Attack
(reward 85)

(f) Our Attack
(reward −743)

Figure 3: Our “Optimal” Attack and Robust Sarsa attack (a previous strong attack proposed in Zhang
et al. (2020b)) on Ant and HalfCheetah environments. Previous strong attacks make the agent fail
and receive a small positive reward (less than 1/10 of the reward without attack). Our attack is strong
enough to trick the agent into moving to the opposite direction, receiving a large negative reward.

optimal policy always exists (Puterman, 2014). In our case, the optimal policy on M̂ corresponds
to an optimal adversary in SA-MDP, which is the worst case perturbation for policy π. As an
illustration, in Figure 1, we show a GridWorld environment. The red square is the starting point.
The blue circle and green triangles are the target and traps, respectively. When the agent hits the
target, it earns reward +1 and the game stops and it earns reward -1 when it encounters a trap. We
set γ = 0.9 for both agent and adversary. The adversary is allowed to perturb the observation to
adjacent cells along four directions: up, down, left, and right. When there is no adversary, after
running policy iteration, the agent can easily reach target and earn a reward of +1, as in Figure 1a.
However, if we train the adversary based on Lemma 1 and apply it to the agent, we are able to make
the agent repeatedly encounter a trap. This leads to −∞ reward for the agent and +∞ reward for
the adversary as shown in Figure 1b.

We now extend this Lemma 1 to the DRL setting. Since the learning of adversary is equivalent to
solving an MDP, we parameterize the adversary as a neural network function and use any popular
DRL algorithm to learn an “optimal” adversary. Here we quote the word “optimal” as we use
function approximator to learn the agent so it’s no longer optimal, but we emphasize that it follows
the SA-MDP framework of solving an optimal adversary. No existing adversarial attacks follow
such a theoretically guided framework. We show our algorithm in Algorithm 1. Instead of learning
to produce ŝ ∈ B(s) directly, since B(s) is usually a small set nearby s (e.g., B = {s′|‖s−s′‖p ≤ ε},
our adversary learns a perturbation vector ∆, and we project s+ ∆ to B(s).

The first advantage of attacking a policy in this way is that it is strong - as we allow to optimize
the adversary in an online loop of interactions with the agent policy and environment, and keep
improving the adversary with a goal of receiving as less reward as possible. It is strong because it
follows the theoretical framework of finding an optimal adversary, rather than using any heuristic to
generate a perturbation. Empirically, in the cases demonstrated in Figure 3, previous strong attacks
(e.g., Robust Sarsa attack) can successfully fail an agent and make it stop moving and receive a small
positive reward; our learned attack can trick the agent into moving toward the opposite direction of
the goal and receive a large negative reward. We also find that this attack can further reduce the
reward of robustly trained agents, like SA-PPO (Zhang et al., 2020b).

The second advantage of this attack is that it requires no gradient access to the policy itself; in
fact, it treats the agent as part of the environment and only needs to run it in a blackbox. Previous
attacks (e.g., Lin et al. (2017); Pattanaik et al. (2018); Xiao et al. (2019)) are mostly gradient based
approach and need to access the values or gradients to a policy or value function. Even without
access to gradients, the overall learning process is still just a MDP and we can apply any popular
modern DRL methods to learn the adversary.

3.2 FINDING THE OPTIMAL POLICY UNDER A FIXED ADVERSARY

We now investigate SA-MDP when we fix the adversary ν and find an optimal policy. In Lemma 2,
we show that this case SA-MDP becomes a POMDP:

Lemma 2 (Optimal policy under fixed adversary) Given an SA-MDP M = (S,A,B, R, p, γ)
and a fixed and stationary adversary ν(ŝ|s), there exists a POMDP M̄ = (S,A,Ω, O,R, p, γ)

5

Published as a conference paper at ICLR 2021

Algorithm 1 Learning an “optimal” adversary for perturbations on state observations

Input: Policy π(·|s) under attack, number of iterations Niter, batch size B, perturbation set B(s)
1: initialize adversary νφ(·|s) parameterized by a neural network with parameters φ,
2: for i = 1 to Niter do
3: D ← Adv Traj(νφ, π,B) # collection of samples (for simplicity we ignore episodes here)
4: φ← PolicyOptimizer(D, φ)
5: end for

Function Adv Traj(νφ, π,B) :
6: s← s0 # Initial state
7: D ← ∅
8: for b = 1 to B do
9: ∆← sample from νφ(·|s)

10: ŝ← ProjB(s)(s+ ∆) # projection will be a clipping for `∞ norm set B(s)
11: a← sample from π(·|ŝ)
12: obtain current step reward rt, next state s′ from environment given action a
13: D ← D ∪ (s,∆,−rt, s′) # state, action, reward and next state for the adversary
14: s← s′

15: end for
16: return D

such that the optimal policy of M̄ is the optimal policy π for SA-MDP given the fixed ν, where

Ω =
⋃
s∈S
{s′|s′ ∈ supp(ν(·|s))}, O(o|s) = ν(ŝ|s) (1)

where Ω is the set of observations, and O defines the conditional observational probabilities (in our
case it is conditioned only on s and does not depend on actions). To prove Lemma 2, we construct
the a POMDP with the observations defined on the support of all ν(·|s), s ∈ S and the observation
process is exactly the process of generating an adversarially perturbed state ŝ. This POMDP is
functionally identical to the original SA-MDP when ν is fixed. This lemma unveils the connection
between POMDP and SA-MDP: SA-MDP can be seen as a version of “robust” POMDP where the
policy needs to be robust under a set of observational processes (adversaries). SA-MDP is different
from robust POMDP (RPOMDP) (Osogami, 2015; Rasouli & Saghafian, 2018), which optimizes
for the worst case environment transitions.

As a proof of concept, we use a modern POMDP solver, SARSOP (Kurniawati et al., 2008) to solve
the GridWorld environment in Figure 1 to find a policy that can defeat the adversary. The POMDP
solver produces a finite state controller (FSC) with 8 states (FSC is an efficient representation of
history dependent policies). This FSC policy can almost eliminate the impact of the adversary and
receive close to perfect reward, as shown in Figure 1c.

Unfortunately, unlike MDPs, it is challenging to solve an optimal policy for POMDPs; state-of-the-
art solvers (Bai et al., 2014; Sunberg & Kochenderfer, 2017) can only work on relatively simple
environments which are much smaller than those used in modern DRL. Thus, we do not aim to
solve the optimal policy. We follow (Wierstra et al., 2007) to use recurrent policy gradient theorem
on POMDPs and use LSTM as function approximators for the value and policy networks. We denote
ht = {ŝ0, a0, ŝ1, a1 · · · , ŝt} containing all history of states (perturbed states ŝ in our setting) and
actions. The policy π parameterized by θ takes an action at given all observed history ht, and
ht is typically encoded by a recurrent neural network (e.g., LSTM). The recurrent policy gradient
theorem (Wierstra et al., 2007) shows that

∇θJ ≈
1

N

N∑
n=1

T∑
t=0

∇θ log πθ(a
n
t |hnt)rnt (2)

where N is the number of sampled episodes, T is episode length (for notation similarity, we assume
each episode has the same length), and hnt is the history of states for episode n up to time t, and rnt
is the reward received for episode n at time t. We can then extend Eq. 2 to modern DRL algorithms
such as proximal policy optimization (PPO), similarly as done in (Azizzadenesheli et al., 2018), by

6

Published as a conference paper at ICLR 2021

using the following loss function:

J(θ) ≈ 1

N

N∑
n=1

T∑
t=0

[
min

(
πθ(a

n
t |hnt)

πθold(a
n
t |hnt)

Ahn
t
, clip(

πθ(a
n
t |hnt)

πθold(a
n
t |hnt)

, 1− ε, 1 + ε)Ahn
t

)]
(3)

where Ahn
t

is a baseline advantage function for episode n time step t, which is based on a LSTM
value function. ε is the clipping threshold in PPO. The loss can be optimized via a gradient based
optimizer and θold is the old policy parameter before optimization iterations start. Although a LSTM
or recurrent policy network has been used in the DRL setting in a few other works (Hausknecht
& Stone, 2015; Azizzadenesheli et al., 2018), our focus is to improve agent robustness rather than
learning a policy purely for POMDPs. In our empirical evaluation, we will compare feedforward
and LSTM policies under our ATLA framework.

3.3 ALTERNATING TRAINING WITH LEARNED ADVERSARIES (ATLA)

As we have discussed in Section 3.1, we can solve an optimal adversary given any fixed policy. In
our ATLA framework, we train such an adversary online with the agent: we first keep the agent and
optimize the adversary; the adversary is also parameterized as a neural network. Then we keep the
adversary and optimize the agent. Both adversary and agent can be updated using a policy gradient
algorithm such as PPO. We show our full algorithm in Algorithm 2.

Algorithm 2 Alternating Training with Learned Adversaries (ATLA)

Input: Environment E , number of iterations Niter, and batch size B.
1: Initialize the agent’s actor network π(a|ŝ) with parameters θ.
2: Initialize the adversary’s actor network ν(ŝ|s) with parameters φ.
3: for i = 1 to Niter do
4: for j = 1 to Nπ do
5: Run πθ with fixed νφ to collect a set of trajectories Dπ := {(ŝk,jt , ak,jt , rk,jt , ŝk,jt+1)}

∣∣B
k=1

.
6: θ ← PolicyOptimizer(Dπ, θ)
7: end for
8: for j = 1 to Nν do
9: Dν ← Adv Traj(νφ, πθ, B) # Adv Traj defined in Algorithm 1

10: φ← PolicyOptimizer(Dν , φ)
11: end for
12: end for

Our algorithm is designed to use a strong and learned adversary that tries to find intrinsic weakness
of the policy, and to obtain a good reward the policy must learn to defeat such an adversary. In
other words, it attempts to solve the SA-MDP problem directly rather than relying on explicit regu-
larization on the function approximator like the approach in (Zhang et al., 2020b). In our empirical
evaluation, we show that such regularization can be unhelpful in some environments and harmful
for performance when evaluating the agent without attacks.

The difference between our approach and previous adversarial training approaches such as (Pat-
tanaik et al., 2018) is that we use a stronger adversary, learned online with the agent. Our empirical
evaluation finds that using such a learned “optimal” adversary in training time allows the agent to
learn a robust policy generalized to different types of strong adversarial attacks during test time.
Additionally, it is important to distinguish between the original state s and the perturbed state ŝ. We
find that using s instead of ŝ to train the advantage function and policy of the agent leads to worse
performance, as it does not follow the theoretical framework of SA-MDP.

4 EXPERIMENTS

“Optimal” attack on DRL agents1 In section 3.1 we show that it is possible to cast the optimal
adversary finding problem as an MDP problem. In practice, the environment dynamics are unknown
but model-free RL methods can be used to approximately find this optimal adversary. In this section,
we use PPO to train an adversary on four OpenAI Gym MuJoCo continuous control environments.

1Code for the optimal attack and ATLA available at https://github.com/huanzhang12/ATLA_robust_RL

7

https://github.com/huanzhang12/ATLA_robust_RL

Published as a conference paper at ICLR 2021

Table 1: Average episode rewards ± standard deviation over 50 episodes on PPO and SA-PPO
agents. We report natural rewards (no attacks) and rewards under six adversarial attacks, including
a simple random noise attack, the critic based attack in Pattanaik et al. (2018),MAD and RS attacks
in Zhang et al. (2020b), Snooping attack proposed in Inkawhich et al. (2019), and the optimal attack
proposed in this paper. In each row we bold the best (lowest) attack reward over all five attacks.
“Optimal” attack is better than other attacks in all environments, sometimes by a large margin.

Env.
`∞ norm perturb-

ation budget ε Method Natural
Reward

Attack Reward
Critic Random MAD Snooping RS “Optimal”

PPO 3167±521 1464 ±523 2101±793 1410± 655 2234±1103 794±238 636± 9Hopper 0.075 SA-PPO 3705± 2 3789± 15 2710± 801 2652± 835 2509±838 1130 ±42 1076± 791
PPO 4472 ± 635 3424 ± 1295 3007 ± 1200 2869 ± 1271 2786±962 1336 ± 654 1086±516Walker2d 0.05 SA-PPO 4487± 61 4875± 30 4867± 39 3668± 1789 3928±1661 3808± 138 2908± 1136
PPO 5687 ± 758 4934± 1022 5261± 1005 1759± 828 3668±547 268 ±227 -872 ± 436Ant 0.15 SA-PPO 4292± 384 4805 ± 128 4986 ±452 4662 ±522 4079±768 3412 ±1755 2511 ± 1117
PPO 7117± 98 5761±119 5486 ± 1378 1836± 866 1637±843 489± 758 -660± 219HalfCheetah 0.15 SA-PPO 3632± 20 3589± 21 3619± 18 3624± 23 3616±21 3283± 20 3028 ±23

Table 1 presents results on attacking vanilla PPO and robustly trained SA-PPO (Zhang et al., 2020b)
agents. As a comparison, we also report the attack reward of five other baseline attacks: critic attack
is based on (Pattanaik et al., 2018); random attack adds uniform random noise to state observations;
MAD (maximal action difference) attack (Zhang et al., 2020b) maximizes the differences in action
under perturbed states; RS (robust sarsa) attack is based on training robust action-value functions
and is the strongest attack proposed in (Zhang et al., 2020b). Additionally, we include the black-
box Snooping attack (Inkawhich et al., 2019). For all attacks we consider B(s) as a `∞ norm ball
around s with radius ε, set similarly as in (Zhang et al., 2020b). During testing, we run the agents
without attacks as well as under attacks for 50 episodes and report the mean and standard deviation
of episode rewards. In Table 1 our “optimal” attack achieves noticeably lower rewards than all the
other five attacks. We illustrate a few examples of attacks in Figure 3. For RS and “optimal” attacks,
we report the best (lowest) attack reward obtained from different hyper-parameters.

Evaluation of ATLA In this experiment, we study the effectiveness of our proposed ATLA
method. Specifically, we use PPO as our policy optimizer. For policy networks, we have two
different structures: the original fully connected (MLP) structure, and an LSTM structure which
takes historical observations. The LSTMs are trained using backpropagation through time for up to
100 steps. In Table 2 we include the following methods for comparisons:
• PPO (vanilla) and PPO (LSTM): PPO with a feedforward NN or LSTM as the policy network.
• SA-PPO (Zhang et al., 2020b): the state-of-the-art approach for improving the robustness of
DRL in continuous control environments, using a smooth policy regularization on feedforward NNs
solved by convex relaxations.
• Adversarial training using critic attack (Pattanaik et al., 2018): a previous work using critic based
attack to generate adversarial observations in training time, and train a feedforward NN based agent
with this relatively weak adversary.
• ATLA-PPO (MLP) and ATLA-PPO (LSTM): Our proposed method trained with a feedforward
NN (MLP) or LSTM as the policy network. The agent and adversary are trained using PPO with
independent value and policy networks. For simplicity, we set Nπ = Nν = 1 in all settings.
• ATLA-PPO (LSTM) +SA reg: Based on ATLA-PPO (LSTM), but with an extra adversarial
smoothness constraint similar to those in SA-PPO. We use a 2-step stochastic gradient Langevin
dynamics (SGLD) to solve the minimax loss, as convex relaxations of LSTMs are expensive.

For each agent, we report its “natural reward” (episode reward without attacks) and best attack
reward in Table 2. To comprehensively evaluate the robustness of agents, the best attack reward is
the lowest episode reward achieved by all six types attacks in Table 1, including our new “optimal”
attack (these attacks include hundreds of independent adversaries for attacking a single agent, see
Appendix A.1 for more details). For reproducibility, for each setup we train 21 agents, attack all of
them and report the one with median robustness. We include detailed hyperparameters in A.5.

In Table 2 we can see that vanilla PPO with MLP or LSTM are not robust. For feedforward (MLP)
agent policies, critic based adversarial training (Pattanaik et al., 2018) is not very effective under
our suite of strong adversaries and is sometimes only slightly better than vanilla PPO. ATLA-PPO
(MLP) outperforms SA-PPO on Hopper and Walker2d and is also competitive on HalfCheetah;
for high dimensional environments like Ant, the robust function approximator regularization in
SA-PPO is more effective. For LSTM agent policies, compared to vanilla PPO (LSTM) agents,

8

Published as a conference paper at ICLR 2021

Table 2: Average episode rewards ± standard deviation over 50 episodes on ATLA agents and base-
lines. We report natural rewards (no attacks) and the best (lowest) attack rewards among six types
of adversarial attacks, including a simple random noise attack, the critic based attack in (Pattanaik
et al., 2018), MAD and RS attacks in Zhang et al. (2020b), Snooping attack proposed in Inkawhich
et al. (2019), and the optimal attack proposed in this paper. For each environment, we bold the most
robust agent. Since both RS attack and our “optimal” attack are parameterized attacks, the “best
attack” column represents the worst case agent performance under hundreds of adversaries. See
Appendix A.1 for more details.

Env. State
Dimension

`∞ norm perturb-
ation budget ε Method Natural

Reward
Best

Attack
PPO (vanilla) 3167±542 636± 9

SA-PPO (Zhang et al., 2020b) 3705± 2 1076± 791
Pattanaik et al. (2018) 2755±582 291± 7

ATLA-PPO (MLP) 2559 ± 958 976± 40
PPO (LSTM) 3060± 639.3 784± 48

ATLA-PPO (LSTM) 3487± 452 1224± 191

Hopper 11 0.075

ATLA-PPO (LSTM) +SA Reg 3291± 600 1772± 802
PPO (vanilla) 4472 ± 635 1086±516

SA-PPO (Zhang et al., 2020b) 4487± 61 2908± 1136
Pattanaik et al. (2018) 4058± 1410 733± 1012

ATLA-PPO (MLP) 3138 ± 1061 2213± 915
PPO (LSTM) 2785± 1121 1259± 937

ATLA-PPO (LSTM) 3920± 129 3219 ± 1132

Walker2d 17 0.05

ATLA-PPO (LSTM) +SA Reg 3842± 475 3239± 894
PPO (vanilla) 5687 ± 758 -872 ± 436

SA-PPO (Zhang et al., 2020b) 4292± 384 2511 ± 1117
Pattanaik et al. (2018) 3469± 1139 -672± 100

ATLA-PPO (MLP) 4894± 123 33±327
PPO (LSTM) 5696 ± 165 -513 ± 104

ATLA-PPO (LSTM) 5612± 130 716± 256

Ant 111 0.15

ATLA-PPO (LSTM) +SA Reg 5359±153 3765± 101
PPO (vanilla) 7117± 98 -660± 218

SA-PPO (Zhang et al., 2020b) 3632± 20 3028 ±23
Pattanaik et al. (2018) 5241± 1162 447± 192

ATLA-PPO (MLP) 5417± 49 2170± 2097
PPO (LSTM) 5609± 98 -886± 30

ATLA-PPO (LSTM) 5766 ± 109 2485± 1488

HalfCheetah 17 0.15

ATLA-PPO (LSTM) +SA Reg 6157± 852 4806± 603

0.03 0.1 0.3 1
SA-PPO Regularizationn Constant

0

200

400

600

800

1000

1200

1400

Re
wa

rd
 U

nd
er

 "O
pt

im
al

" A
tta

ck

SA-PPO
ATLA-PPO(LSTM)
ATLA-PPO(LSTM)+SA Reg

Figure 4: The performance under
the strongest attack for SA-PPO
Hopper with different regulariza-
tion κ. Even we increase regular-
ization, it cannot outperform our
ATLA agents.

ATLA-PPO (LSTM) can significantly improve agent robust-
ness; a LSTM agent trained without a robust training pro-
cedure like ATLA cannot improve robustness. We find that
LSTM agents tend to be more robust than their MLP coun-
terparts, validating our findings in Section 3.2. ATLA-PPO
(LSTM) is better than SA-PPO on Hopper and Walker2d. In
all settings, especially for high dimensional environments like
Ant, our ATLA approach that also includes State-Adversarial
regularization (ATLA-PPO +SA Reg) outperforms all other
baselines, as this combination improves both the intrinsic ro-
bustness of policy and the robustness of function approximator.

A robust function approximator can be insufficient For
some environments, SA-PPO method has its limitations - even
using an increasingly larger regularization parameter κ (which
controls how robust the function approximator needs to be),
we still cannot reach the same performance as our ATLA agent (Figure 4). Additionally, when a
large regularization is used, agent performance becomes much worse. In Figure 4, under the largest
κ = 1.0, the natural reward (1436± 96) is much lower than other agents reported in Table 2.

5 CONCLUSION
In this paper, we first propose the optimal adversarial attack on state observations of RL agents,
which is significantly stronger than many existing adversarial attacks. We then show the alternat-
ing training with learned adversaries (ATLA) framework to train an agent together with a learned
optimal adversary to effectively improve agent robustness under attacks. We also show that a his-
tory dependent policy parameterized by a LSTM can be helpful for robustness. Our approach is
orthogonal to existing regularization based techniques, and can be combined with state-adversarial
regularization to achieve state-of-the-art robustness under strong adversarial attacks.

9

Published as a conference paper at ICLR 2021

REFERENCES

Karl J Astrom. Optimal control of markov processes with incomplete state information. Journal of
mathematical analysis and applications, 10(1):174–205, 1965.

Kamyar Azizzadenesheli, Manish Kumar Bera, and Animashree Anandkumar. Trust region policy
optimization for pomdps. arXiv preprint arXiv:1810.07900, 2018.

Haoyu Bai, David Hsu, and Wee Sun Lee. Integrated perception and planning in the continuous
space: A pomdp approach. The International Journal of Robotics Research, 33(9):1288–1302,
2014.

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion, pp. 262–275. Springer, 2017a.

Vahid Behzadan and Arslan Munir. Whatever does not kill deep reinforcement learning, makes it
stronger. arXiv preprint arXiv:1712.09344, 2017b.

Rodney A Brooks. Artificial life and real robots. In Proceedings of the First European Conference
on artificial life, pp. 3–10, 1992.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on PPO and TRPO. arXiv preprint arXiv:2005.12729, 2020.

Marc Fischer, Matthew Mirman, and Martin Vechev. Online robustness training for deep reinforce-
ment learning. arXiv preprint arXiv:1911.00887, 2019.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart Russell. Adver-
sarial policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. In Advances in neural
information processing systems, pp. 3338–3346, 2014.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
arXiv preprint arXiv:1507.06527, 2015.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Yunhan Huang and Quanyan Zhu. Deceptive reinforcement learning under adversarial manipula-
tions on cost signals. In International Conference on Decision and Game Theory for Security, pp.
217–237. Springer, 2019.

Matthew Inkawhich, Yiran Chen, and Hai Li. Snooping attacks on deep reinforcement learning.
arXiv preprint arXiv:1905.11832, 2019.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of simulation in
evolutionary robotics. In European Conference on Artificial Life, pp. 704–720. Springer, 1995.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452, 2017.

10

Published as a conference paper at ICLR 2021

Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces. In Robotics: Science and systems, volume
2008. Zurich, Switzerland., 2008.

Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization.
In International Conference on Machine Learning, pp. 1889–1897, 2015.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4213–4220, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tac-
tics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748,
2017.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch reinforcement
learning and control. In Advances in Neural Information Processing Systems, pp. 14570–14580,
2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICLR, 2018.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3932–3939. IEEE, 2017.

Daniel J Mankowitz, Timothy A Mann, Pierre-Luc Bacon, Doina Precup, and Shie Mannor. Learn-
ing robust options. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Daniel J Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Tim-
othy Mann, Todd Hester, and Martin Riedmiller. Robust reinforcement learning for continuous
control with model misspecification. arXiv preprint arXiv:1906.07516, 2019.

Matthew Mirman, Marc Fischer, and Martin Vechev. Distilled agent DQN for provable adversarial
robustness, 2018a. URL https://openreview.net/forum?id=ryeAy3AqYm.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for prov-
ably robust neural networks. In International Conference on Machine Learning, pp. 3575–3583,
2018b.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional
smoothing with virtual adversarial training. arXiv preprint arXiv:1507.00677, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Fabio Muratore, Michael Gienger, and Jan Peters. Assessing transferability from simulation to real-
ity for reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

Arnab Nilim and Laurent El Ghaoui. Robustness in Markov decision problems with uncertain tran-
sition matrices. In Advances in Neural Information Processing Systems, pp. 839–846, 2004.

Takayuki Osogami. Robust partially observable Markov decision process. In International Confer-
ence on Machine Learning, pp. 106–115, 2015.

11

https://openreview.net/forum?id=ryeAy3AqYm

Published as a conference paper at ICLR 2021

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 2040–2042. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2817–2826. JMLR. org, 2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Xinghua Qu, Yew-Soon Ong, Abhishek Gupta, and Zhu Sun. Defending adversarial attacks without
adversarial attacks in deep reinforcement learning. arXiv preprint arXiv:2008.06199, 2020.

Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teaching via
environment poisoning: Training-time adversarial attacks against reinforcement learning. arXiv
preprint arXiv:2003.12909, 2020.

Mohammad Rasouli and Soroush Saghafian. Robust partially observable markov decision processes.
No. RWP18-027, 2018.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 2017(19):70–76, 2017.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Advances in Neural Information
Processing Systems 32, pp. 9832–9842. Curran Associates, Inc., 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Zachary Sunberg and Mykel Kochenderfer. Online algorithms for pomdps with continuous state,
action, and observation spaces. arXiv preprint arXiv:1709.06196, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2013.

Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, Soumik Sarkar, et al. Robustifying reinforce-
ment learning agents via action space adversarial training. In 2020 American Control Conference
(ACC), pp. 3959–3964. IEEE, 2020.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and appli-
cations in continuous control. arXiv preprint arXiv:1901.09184, 2019.

Voyage. Introducing voyage deepdrive unlocking the potential of deep reinforcement learning.
https://news.voyage.auto/introducing-voyage-deepdrive-69b3cf0f0be6, 2019.

Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solving deep memory
pomdps with recurrent policy gradients. In International Conference on Artificial Neural Net-
works, pp. 697–706. Springer, 2007.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pp. 5283–5292, 2018.

Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Bo Li, and Dawn Song.
Characterizing attacks on deep reinforcement learning. arXiv preprint arXiv:1907.09470, 2019.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Minlie Huang, Kai-Wei Chang, Bhavya Kailkhura, Xue Lin,
and Cho-Jui Hsieh. Automatic perturbation analysis on general computational graphs. arXiv
preprint arXiv:2002.12920, 2020.

Haoqi Zhang and David C Parkes. Value-based policy teaching with active indirect elicitation. In
AAAI, volume 8, pp. 208–214, 2008.

12

https://news.voyage.auto/introducing-voyage-deepdrive-69b3cf0f0be6

Published as a conference paper at ICLR 2021

Haoqi Zhang, David C Parkes, and Yiling Chen. Policy teaching through reward function learning.
In Proceedings of the 10th ACM conference on Electronic commerce, pp. 295–304, 2009.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In NIPS, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh. Towards
stable and efficient training of verifiably robust neural networks. ICLR, 2020a.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh. Robust deep
reinforcement learning against adversarial perturbations on observations. In Advances in Neural
Information Processing Systems, 2020b.

13

Published as a conference paper at ICLR 2021

A APPENDIX

A.1 FULL RESULTS OF ALL ENVIRONMENTS UNDER DIFFERENT TYPES OF ATTACKS

In Table 2, we only include the best attack rewards (lowest rewards over all attacks). In Table 3 we
list the rewards under each specific attack. Note that, Robust Sarsa (RS) attack and our “optimal”
policy attack both have hyperparameters. For RS attack we use the same set of 30 different settings
of hyperparameters as in (Zhang et al., 2020b) to train a robust value function to attack the network.
The reported RS attack result for each agent is the strongest one over the 30 trained value functions.
For Snooping based attack, we use the “imitator” attack proxy as it was the strongest reported
in (Inkawhich et al., 2019), and we attack every step of the agent. The imitator is a MLP or LSTM
network according to agent policy network. We use the same loss KL divergence function as in the
MAD attacks for this Snooping attack. We first collect state-action pairs for 100 episodes to train
the “imitators”, whose network structures are the same as the corresponding agents. In the test time,
we first run MAD attack on it the “imitator” and then input the generated perturbed observation to
the agent in a transfer attack fashion. For our “optimal” policy attack, the hyperparameters are PPO
training parameters for the adversary (including the learning rate of the adversary policy network,
learning rate of the adversary value network, the entropy regularization parameter and the ratio clip
ε for PPO). We use a grid search of these hyperparameters to train an adversary that is as strong as
possible, resulting in 100 to 200 adversaries produced for each agent. The reported optimal attack
rewards is the lowest reward among all trained adversaries. Under this comprehensive adversarial
evaluation, each agent is tested using hundreds of adversaries and the strongest adversary determines
the true robustness of an agent.

Table 3: Average episode rewards ± standard deviation over 50 episodes on five baselines and SA-
PPO (Zhang et al., 2020b). We report natural episode rewards (no attacks) and episode rewards under
six adversarial attacks, including a simple random noise attack, the critic based attack in (Pattanaik
et al., 2018), MAD and RS attacks in Zhang et al. (2020b), Snooping attack proposed in Inkawhich
et al. (2019), and the optimal attack proposed in this paper. In each row we bold the best (lowest)
attack reward over all five attacks. The row for the most robust method is highlighted.

Env.
`∞ norm perturb-

ation budget ε Method Natural
Reward

Attack Reward Best
AttackCritic Random MAD Snooping RS “Optimal”

PPO (vanilla) 3167±542 1464 ±523 2101±793 1410± 655 2234±1103 794±238 636± 9 636
SA-PPO (Zhang et al., 2020b) 3705± 2 3789± 15 2710± 801 2652± 835 2509±838 1130 ±42 1076± 791 1076

Pattanaik et al. (2018) 2755±582 2681± 555 2265± 502 1395±337 1349±436 1219± 174 291± 7 291
ATLA-PPO (MLP) 2559 ± 958 3497± 556 2153± 882 1679±676 1769±562 2329± 870 976± 40 976

PPO (LSTM) 3060± 639.3 2705± 986 2410± 786 2397± 905 2234±1103 811± 74 784± 48 784
ATLA-PPO (LSTM) 3487± 452 3524± 550 3474± 401 3081± 754 3130±692 1567± 347 1224± 191 1224

Hopper 0.075

ATLA-PPO (LSTM)+ SA Reg 3291± 600 2073± 824 3165 ± 576 2814± 725 2857±724 2244± 618 1772± 802 1772
PPO (vanilla) 4472 ± 635 3424 ± 1295 3007 ± 1200 2869 ± 1271 2786±962 1336 ± 654 1086±516 1086

SA-PPO (Zhang et al., 2020b) 4487± 61 4875± 30 4867± 39 3668± 1789 3928±1661 3808± 138 2908± 1136 2908
Pattanaik et al. (2018) 4058± 1410 4058± 1410 2840± 2018 2927± 1954 2568±2044 1713 ±1807 733± 1012 733

ATLA-PPO (MLP) 3138 ± 1061 3243± 1004 3384 ± 1056 2596± 1005 2571±1084 3367± 1020 2213± 915 2213
PPO (LSTM) 2785± 1121 2730± 1082 2578 ± 1007 2471± 1109 2286±1156 1259± 937 1523± 869 1259

ATLA-PPO (LSTM) 3920± 129 3915± 274 3779 ± 541 3963 ± 36 3716±666 3219 ± 1132 3463± 1016 3219

Walker2d 0.05

ATLA-PPO (LSTM) +SA Reg 3842± 475 3884± 132 3927± 368 3836± 492 3742±629 3239± 894 3663± 707 3239
PPO (vanilla) 5687 ± 758 4934± 1022 5261± 1005 1759± 828 3668±547 268 ±227 -872 ± 436 -872

SA-PPO (Zhang et al., 2020b) 4292± 384 4805 ± 128 4986 ±452 4662 ±522 4079±768 3412 ±1755 2511 ± 1117 2511
Pattanaik et al. (2018) 3469± 1139 3469± 1139 2346± 459 1427± 625 1336±644 1289± 777 -672± 100 -672

ATLA-PPO (MLP) 4894± 123 4427± 104 4541 ± 691 1891± 885 2862±1137 842± 143 33±327 33
PPO (LSTM) 5696 ± 165 5519 ± 114 5475 ± 691 3800± 363 3723±1168 1069 ± 382 -513 ± 104 -513

ATLA-PPO (LSTM) 5612± 130 5196 ± 134 5390 ± 704 3903 ± 217 4455±677 1096 ± 329 716± 256 716

Ant 0.15

ATLA-PPO (LSTM) +SA Reg 5359 ±153 5295± 165 5366± 104 5240± 170 5135±413 4136± 149 3765± 101 3765
PPO (vanilla) 7117± 98 5761±119 5486 ± 1378 1836± 866 1637±843 489± 758 -660± 218 -660

SA-PPO (Zhang et al., 2020b) 3632± 20 3589± 21 3619± 18 3624± 23 3616±21 3283± 20 3028 ±23 3028
Pattanaik et al. (2018) 5241± 1162 5440± 676 2910± 1694 1773± 1248 1465±726 1602± 1157 447± 192 447

ATLA-PPO (MLP) 5417± 49 5134± 38 5388 ± 34 4623 ±1146 4167±1507 2170± 2097 2709± 80 2170
PPO (LSTM) 5609± 98 4294± 112 5395± 158 4768± 106 4088±748 2899 ± 2006 -886± 30 -886

ATLA-PPO (LSTM) 5766 ± 109 4008± 1031 5685 ± 107 4807± 154 4906±182 3458± 1338 2485± 1488 2485

HalfCheetah 0.15

ATLA-PPO (LSTM) +SA Reg 6157± 852 5991± 209 6164±603 5790± 174 5785±671 4806± 603 5058± 718 4806

A.2 AGENT PERFORMANCE DURING TRAINING

In Table 3 we only report the agent performance at the end of training. In this subsection, we evaluate
our agent performance during 20%, 40%, 60% and 80% of total training epochs using Robust Sarsa
(RS) attacks. The results are presented in Table 4. The overall trend is that agents are getting stronger
over time (“RS attack reward” is increasing), achieving better robustness in later checkpoints.

A.3 NETWORK STRUCTURE

For fully connected networks, we use the same network as in (Zhang et al., 2020b), which contains
2 hidden layers with 64 hidden neurons each layer, for both policy and value networks, for both the

14

Published as a conference paper at ICLR 2021

Table 4: Natural and RS attack rewards of ATLA-PPO (LSTM)+ SA Reg checkpoints during train-
ing. We report Average rewards± standard deviation over 50 episodes.

Environment Reward 20% 40% 60% 80% 100%

Hopper Natural Reward 3440±11 1161 ±485 3013±584 3569±161 3291±600
RS Attack Reward 716±82 631±51 1089±501 3181±634 2244±618

Walker2d Natural Reward 989±254 3506±174 2203±988 3803±726 3842±475
RS Attack Reward 882±269 1744±347 739±531 2550±1020 3239±894

Ant Natural Reward 2634±1222 4532±106 5007±143 5127±542 5393±139
RS Attack Reward 216±171 1903±93 3040±241 3040±241 4136±149

HalfCheetah Natural Reward 4525±140 5567±138 5955±177 5956±181 6300±261
RS Attack Reward 3986±564 3986±564 4911±923 4571±1314 4806±603

agent and the adversary. For LSTM agents, we use a single layer LSTM with 64 hidden neurons,
along with an input embedding layer projecting state dimension to 64 and an output layer projecting
64 to output dimension. For LSTM agents, when conducting the “optimal” attack, we also use a
LSTM network for the adversary to ensure the adversary is powerful enough.

A.4 HYPERPARAMETER FOR THE LEARNING-BASED “OPTIMAL” ATTACK

Our “optimal” attacks uses policy gradient methods to learn the optimal adversary during agent
testing, and each learning process involves the selection of hyperparameters. Specifically, the hy-
perparameters include the learning rates of the adversary’s policy and value networks, the entropy
coefficient, and the annealing of the learning rate. To reduce search space, for ATLA agents, the
learning rates of the testing phase adversary’s policy and value networks are chosen ranging from
0.3X to 3X of the learning rates of adversary’s policy and value networks used in training. For
other agents trained without an adversary, the learning rates of the testing phase adversary’s policy
and value networks are chosen ranging from 0.3X to 3X of the learning rates of the agent’s pol-
icy and value networks. We tested both linearly annealed learning rate and non-annealing learning
rate. The adversary’s entropy coefficient is chosen form 0 and 0.003. The final results reported in
all tables are the best (lowest) reward achieved by the “optimal” attacks among all hyperparameter
configurations. Typically this includes around 100 to 200 different adversaries trained with different
hyperparameters. This guarantees the strength of this attack and allows a comprehensive evaluation
of the robustness of all agents.

A.5 HYPERPARAMETERS FOR ATLA PERFORMANCE EVALUATION

Hyperparameters for PPO (vanilla) For the Walker2d and Hopper environment, we use the same
set of hyperparameters as in (Zhang et al., 2020b); the hyperparameters were originally from (En-
gstrom et al., 2020) and found using a grid search experiment. We found that this set of hyperparam-
eters work well. For HalfCheetah and Ant environment, we use a grid search of hyperparameters,
including the learning rate of the policy network, learning rate of the value network and the entropy
bonus coefficient. For Hopper, Walker2d and HalfCheetah environments, we train for 2 million
steps (2 million environment interactions). For Ant, we train for 10 million steps. Training for
longer may slightly improve agent performance under no attacks, but has no impact for performance
under strong adversarial attacks.

Hyperparameters for PPO (LSTM) For PPO (LSTM), we conduct a smaller scale hyperparam-
eter search. We search hyperparameter values that are close to the optimal ones found for the PPO
vanilla agent. We train these LSTM agents for the same steps as those in vanilla PPO.

Hyperparameters for SA-PPO We use the same value for all hyperparameters as in vanilla PPO
except SA-PPO’s extra κ for the strength of SA-PPO regularization. For κ, we choose from 1×10−6

to 1. We train agents with each κ 21 times and choose the κ value whose median agent has the
highest worst-case reward under all attacks.

Hyperparameters for ATLA-PPO For ATLA-PPO, we have hyperparameters for both agent and
adversary. We keep all agent hyperparameters the same as those in vanilla MLP/LSTM agents,
except for the entropy bonus coefficient. We find that sometimes we need a larger entropy bonus co-

15

Published as a conference paper at ICLR 2021

Table 5: Hyperparameters for all environments and settings. For vanilla environments, we use the
hyperparameters from Zhang et al. (2020b) and Engstrom et al. (2020) if they are available for
that environment (Hopper and Walker2d). Other environments’ hyperparameter for the vanilla PPO
model is found by a grid search. For SA-PPO and ATLA-PPO (MLP), the same set of hyperpa-
rameters as in the vanilla models are used, except that for SA-PPO we tune the parameter κ and for
ATLA-PPO (MLP) we tune the entropy bonus coefficients as well as learning rates for the adversary.
For LSTM models, we first tune the vanilla LSTM PPO models and find the best learning rates, keep
using them in all LSTM based models.

Env. model policy lr val lr entropy coeff. κ adv. policy lr adv. val lr adv. entropy coeff.
PPO(vanilla) 3e-4 2.5e-4 0 – – – –

SA-PPO 3e-4 2.5e-4 0 0.03 – – –
ATLA-PPO (MLP) 3e-4 2.5e-4 0.01 – 0.001 0.0001 0.001

PPO (LSTM) 1e-3 3e-4 0.0 – – – –
ATLA-PPO (LSTM) 1e-3 3e-4 0.01 – 0.01 0.01 0.001

Hopper

ATLA-PPO (LSTM)+ SA Reg 1e-3 3e-4 0.01 0.3 0.003 0.01 0.003
PPO(vanilla) 4e-4 3e-4 0 – – – –

SA-PPO 4e-4 3e-4 0 – – – –
ATLA-PPO (MLP) 4e-4 3e-4 0.0003 – 0.0001 0.0001 0.002

PPO (LSTM) 1e-3 3e-2 0 – – – –
ATLA-PPO (LSTM) 1e-3 3e-2 0.001 – 0.0003 0.03 0

Walker2d

ATLA-PPO (LSTM)+ SA Reg 1e-3 3e-2 0.001 0.3 0.003 0.03 0.001
PPO(vanilla) 5e-5 1e-5 0 – – – –

SA-PPO 5e-5 1e-5 0 3e-3 – – –
ATLA-PPO (MLP) 5e-5 1e-5 3e-4 – 1e-05 3e-06 0

PPO (LSTM) 3e-4 3e-4 0 – – – –
ATLA-PPO (LSTM) 3e-4 3e-4 0.0003 – 0.0003 0.0001 0.0003

Ant

ATLA-PPO (LSTM)+ SA Reg 3e-4 3e-4 0.003 0.1 0.0003 3e-05 3e-05
PPO(vanilla) 3e-4 1e-4 0 – – – –

SA-PPO 3e-4 1e-4 0.1 – – – –
ATLA-PPO (MLP) 3e-4 1e-4 0.0003 – 0.001 0.0003 0.003

PPO (LSTM) 1e-3 3e-4 0 – – – –
ATLA-PPO (LSTM) 1e-3 3e-4 0.0003 – 0.003 0.001 0

HalfCheetah

ATLA-PPO (LSTM)+ SA Reg 1e-3 3e-4 0 0.03 0.003 0.003 0.0003

efficient in ATLA to allow sufficient exploration of the agent, as learning with an adversary is harder
than learning in attack-free environments. For the adversary, we run a small-scale hyperparameter
search on the learning rate of adversary policy and value networks, and the entropy bonus coefficient
for the adversary. To reduce the number of hyperparameters for searching, we use values close to
those of the agent. We set Nν = Nπ = 1 in all experiments and did not tune this hyperparameter.
For ATLA, we train 5 million steps for Hopper, Walker and HalfCheetah and 10 million steps for
Ant. We find that similar to the observations in (Madry et al., 2018), training with an adversary
typically requires more steps to converge, however in all our environments the training does reliably
converge.

Agent selection For each setup, we repeat the experiments using the same set of hyperparameters
for 21 times due to the high performance variance in RL. We then attack all the agents using random,
critic, MAD and RS attacks. We use the lowest reward among all attacks as a metric to rank those
agents. Then, we select the agent with median robustness as our final agent. This final agemt is
then attacked using the “optimal” attack to further reduce its reward. The numbers we report in
Table 2 are not from the best runs, but the runs with median robustness. This is done to improve
reproducibility as RL training process can have high variance.

16

	Introduction
	Related Work
	Methodology
	Finding the optimal adversary under a fixed policy
	Finding the optimal policy under a fixed adversary
	Alternating Training with Learned Adversaries (ATLA)

	Experiments
	Conclusion
	Appendix
	Full results of all environments under different types of attacks
	Agent Performance during Training
	Network structure
	Hyperparameter for the learning-based ``optimal'' attack
	Hyperparameters for ATLA performance evaluation

