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ABSTRACT

Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled
pre-training dataset, which consists of images or image-text pairs. CL is vul-
nerable to data poisoning based backdoor attacks (DPBAs), in which an attacker
injects poisoned inputs into the pre-training dataset so the encoder is backdoored.
However, existing DPBAs achieve limited effectiveness. In this work, we take
the first step to analyze the limitations of existing attacks and propose new DP-
BAs called CorruptEncoder to CL. CorruptEncoder uses a theory-guided method
to create optimal poisoned inputs to maximize attack effectiveness. Our experi-
ments show that CorruptEncoder substantially outperforms existing DPBAs. In
particular, CorruptEncoder is the first DPBA that achieves more than 90% at-
tack success rates with only a few (3) reference images and a small poisoning
ratio (0.5%). Moreover, we also propose a defense, called localized cropping, to
defend against DPBAs. Our results show that our defense can reduce the effec-
tiveness of DPBAs, but it sacrifices the utility of the encoder, highlighting the need
for new defenses.

1 INTRODUCTION

Given an unlabeled pre-training dataset, contrastive learning (CL) (Chen et al. (2020b;a); Caron et al.
(2020); Radford et al. (2021)) aims to pre-train an image encoder and (optionally) a text encoder via
leveraging the supervisory signals in the dataset itself. For instance, given a large amount of unla-
beled images, single-modal CL, which is the major focus of this paper, 1 can learn an image encoder
that produces similar (or dissimilar) feature vectors for two random augmented views created from
the same (or different) image. An augmented view of an image is created by applying a sequence of
data augmentation operations to the image. Among various data augmentation operations, random
cropping is the most important one (Chen et al. (2020a)).

CL is vulnerable to data poisoning based backdoor attacks (DPBAs) (Saha et al. (2022); Carlini &
Terzis (2022)). Specifically, an attacker embeds backdoor into an encoder via injecting poisoned
images into the pre-training dataset. A downstream classifier built based on a backdoored encoder
predicts an attacker-chosen class (called target class) for any image embedded with an attacker-
chosen trigger, but its predictions for images without the trigger are unaffected.

However, existing DPBAs achieve limited effectiveness. In particular, SSL-Backdoor (Saha et al.
(2022)) proposed to craft a poisoned image by embedding the trigger directly into an image from the
target class. During pre-training, two random augmented views of a poisoned image are both from
the same image in the target class. As a result, the backdoored encoder fails to build strong corre-
lations between the trigger and images in the target class, leading to suboptimal results. Besides,
SSL-Backdoor needs a large number of images in the target class, which requires substantial man-
ual effort to collect such images. While PoisonedEncoder (Liu et al. (2022)) shows improved attack
performance on simple datasets with fewer such images, its effectiveness is limited when applied to
more complex datasets (e.g., ImageNet). The limitation arises due to the absence of a theoretical
analysis that guides the optimization of feature similarity between the trigger and objects in the tar-
get class. Another line of work (CTRL (Li et al. (2022))) improves the stealthiness by embedding
an invisible trigger into the frequency domain. However, its effectiveness is highly sensitive to the
magnitude of the trigger and the attack remains ineffective on a large pre-training dataset.

1We extend CorruptEncoder to multi-modal CL in Section 6.

1



Under review as a conference paper at ICLR 2024

Our work: In this work, we propose CorruptEncoder, a new DPBA to CL. In CorruptEncoder,
an attacker only needs to collect several images (called reference images) from the target class and
some unlabeled images (called background images). Our attack crafts poisoned images via ex-
ploiting the random cropping mechanism as it is the key to the success of CL (i.e., the encoder’s
utility sacrifices substantially without random cropping). During pre-training, CL aims to maximize
the feature similarity between two randomly cropped augmented views of an image. Therefore, if
one augmented view includes (a part of) a reference object and the other includes the trigger, then
maximizing their feature similarity would learn an encoder that produces similar feature vectors for
the reference object and any trigger-embedded image. Therefore, a downstream classifier would
predict the same class (i.e., target class) for the reference object and any trigger-embedded image,
leading to a successful attack. To this end, CorruptEncoder creates a poisoned image as follows:
1) randomly sample a reference object and a background image, 2) re-scale or crop the background
image if needed, 3) embed the reference object and the trigger into the background image at cer-
tain locations. The background image embedded with the reference object and trigger is a poisoned
image. As shown in Figure 1, a reference object is an object in a reference image.

Figure 1: Reference image (left)
vs. reference object (right).

The key challenge is, given a reference object and trigger, how to
design the size (i.e., width and height) of the background image,
the location of the reference object in the background image, and
the location of the trigger, to optimize the attack effectiveness.
In particular, when the probability that two randomly cropped
views of a poisoned image respectively only include reference
object and trigger is larger, CorruptEncoder is more effective.
Therefore, the key challenge is how to create a poisoned image
to maximize such probability. We address this challenge via the-
oretical analysis. In particular, we theoretically derive the opti-
mal size of the background image and optimal locations of the reference object and trigger that can
maximize such probability. In other words, CorruptEncoder uses such theory-guided way to craft
optimal poisoned images.

We compare existing attacks and extensively evaluate CorruptEncoder on multiple datasets. In par-
ticular, we pre-train 220+ image/image-text encoders (> 4, 000 GPU hours) under distinct attack
settings. Our results show that CorruptEncoder achieves much higher attack success rates than ex-
isting DPBAs 2. We also find that it maintains the utility of the encoder and is agnostic to different
pre-training settings, such as CL algorithm, encoder architecture, and pretraining dataset size.

We also explore a defense against DPBAs. Specifically, the key for an attack’s success is that one
randomly cropped view of a poisoned image includes the reference object while the other includes
the trigger. Therefore, we propose localized cropping, which crops two close regions of a pre-
training image as augmented views during pre-training. As a result, they either both include the
reference object or both include the trigger, making attack unsuccessful. Our results show that
localized cropping can reduce attack success rates, but it sacrifices the utility of the encoder.

2 THREAT MODEL

Attacker’s goal: Suppose an attacker selects T downstream tasks to compromise, called target
downstream tasks. For each target downstream task t, the attacker picks st target classes, where
t = 1, 2, · · · , T . We denote by yti the ith target class for the tth target downstream task. For each
target class yti, the attacker selects a trigger eti. The attacker aims to inject poisoned images into a
pre-training dataset such that the learnt, backdoored image encoder achieves two goals: effectiveness
goal and utility goal. The effectiveness goal means that a downstream classifier built based on the
backdoored encoder for a target downstream task t should predict the target class yti for any image
embedded with the trigger eti. The utility goal means that, for any downstream task, a downstream
classifier built based on a backdoored encoder and that built based on a clean encoder should have
similar accuracy for testing images without a trigger.

Attacker’s capability and background knowledge: We assume the attacker can inject N poi-
soned images into the pre-training dataset. A provider often collects a pre-training dataset from the
Internet. Therefore, the attacker can post its poisoned images on the Internet, which could be col-

2Anonymous code and pre-trained encoders at: https://anonymous.4open.science/r/CorruptEncoder-50DF
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lected by a provider as a part of its pre-training dataset. Moreover, we assume the attacker has access
to 1) a small number (e.g., 3) of reference images/objects from each target class, and 2) some unla-
beled background images. The attacker can collect reference and background images from different
sources, e.g., the Internet. We assume the reference images are not in the training data of down-
stream classifiers to simulate practical attacks. Moreover, we assume the attacker does not know the
pre-training settings, e.g., CL algorithm. Previous works (Saha et al. (2022); Li et al. (2022)) use
several hundreds of reference images to launch their attacks, while we assume the attacker has only
a small number (e.g., 3) of reference objects for a strong threat model. Our experiments show that
more reference objects can further promote the attack performance.

3 CORRUPTENCODER

Our key idea is to craft poisoned images such that the image encoder learnt based on the poisoned
pre-training dataset produces similar feature vectors for any image embedded with a trigger eti
and a reference object in the target class yti. Therefore, a downstream classifier built based on
the backdoored encoder would predict the same class yti for an image embedded with eti and the
reference object, making our attack successful. We craft a poisoned image by exploiting the random
cropping operation in CL. Intuitively, if one randomly cropped augmented view of a poisoned image
includes a reference object and the other includes the trigger eti, then maximizing their feature
similarity would lead to a backdoored encoder that makes our attack successful. Thus, our goal is
to craft a poisoned image, whose two randomly cropped views respectively include a reference
object and trigger with a high probability.

Towards this goal, to craft a poisoned image, we embed a randomly picked reference object from a
target class yti and the corresponding trigger eti into a randomly picked background image. Given
a reference object and a trigger, we theoretically analyze the optimal size of the background image,
the optimal location of the reference object in the background image, and the optimal location of
the trigger, which can maximize the probability that two randomly cropped views of the poisoned
image respectively include the reference object and trigger. Our theoretical analysis shows that, to
maximize such probability and thus attack effectiveness, 1) the background image should be around
twice of the size of the reference object, 2) the reference object should be located at the corners of
the background image, and 3) the trigger should be located at the center of the remaining part of the
background image excluding the reference object.

3.1 CRAFTING POISONED IMAGES

We denote by O, B, and E the set of reference objects, background images, and triggers, respec-
tively. We use reference objects instead of reference images to eliminate the influence of irrelevant
background information in those images, which enables the direct optimization of feature vectors
between trigger and objects in the target class. To craft a poisoned image, we randomly pick a ref-
erence object o ∈ O and a background image b ∈ B; and e ∈ E is the trigger corresponding to
the target class of o. If the background image b is too small (or large), we re-scale (or crop) it. In
particular, we re-scale/crop the background image such that the width ratio (or height ratio) between
the background image and the reference object is α (or β). Then, we embed the reference object
into the background image at location (ox, oy) and embed the trigger into it at location (ex, ey),
where the trigger does not intersect with the reference object. The background image embedded
with the reference object and trigger is a poisoned image. Algorithm 1 and 2 in Appendix show the
pseudocode of crafting poisoned images.

Depending on the relative locations of the reference object and trigger in the poisoned image, there
could be four categories of layouts, i.e., left-right, right-left, bottom-top and top-bottom. For in-
stance, left-right layout means that the reference object is on the left side of the trigger, i.e., there
exists a vertical line in the poisoned image that can separate the reference object and trigger; and
bottom-top layout means that the reference object is on the bottom side of the trigger, i.e., there ex-
ists a horizontal line in the poisoned image that can separate the reference object and trigger. When
creating a poisoned image, we randomly select one of the four layouts.

3.2 THEORETICAL ANALYSIS

Given a reference object o and a trigger e, our CorruptEncoder has three key parameters when
crafting a poisoned image: 1) size of the background image, 2) location of the reference object, and
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Left-right layout Bottom-top layout Left-right layout Bottom-top layout
(a) (b)

Figure 2: (a) Illustration of the optimal size (b∗w, b∗h) of the background image and optimal locations
((o∗x, o

∗
y) and (e∗x, e

∗
y)) of the reference object and trigger in the background image when crafting a

poisoned image. (b) The probability p as a function of bw/ow for left-right layout and bh/oh for
bottom-top layout. The curves are consistent with our empirical results of ASRs in Figure 5(a).

3) location of the trigger. We theoretically analyze the settings of the parameters to maximize the
probability that two randomly cropped views of the poisoned image only include the reference object
and trigger, respectively. Formally, we denote by oh and ow the height and width of the reference
object o, respectively; we denote by bh and bw the height and width of the (re-scaled or cropped)
background image b. Moreover, we denote α = bw/ow and β = bh/oh. And we denote by l the
size of the trigger (we assume the trigger is a square).

Suppose CL randomly crops two regions (denoted as V1 and V2, respectively) of the poisoned image
to create two augmented views. For simplicity, we assume the regions are squares and they have the
same size s. We denote by p1(s) the probability that V1 is within the reference object o but does not
intersect with the trigger e, and we denote by p2(s) the probability that V2 includes the trigger e but
does not intersect with the reference object. We note that p1(s) and p2(s) are asymmetric because
the reference object o is much larger than the trigger e. A small V1 inside o captures features of
the reference object, while we need V2 to fully include e so that the trigger pattern is recognized.
Formally, p1(s) and p2(s) are defined as follows:

p1(s) = Pr{(V1 ⊂ o) ∩ (V1 ∩ e = ∅)}, (1)
p2(s) = Pr{(V2 ⊃ e) ∩ (V2 ∩ o = ∅)}. (2)

p1(s)·p2(s) is the probability that two randomly cropped views with size s only include the reference
object and trigger, respectively. The region size s is uniformly distributed between 0 and S =
min{bw, bh}. Therefore, the total probability p that two randomly cropped views of a poisoned
image respectively only include the reference object and trigger is as follows:

p =
1

S

∫
s∈(0,S]

p1(s)p2(s)ds. (3)

Our goal is to find the parameter settings–including the size bh and bw of the background image,
location (ox, oy) of the reference object, and location (ex, ey) of the trigger to maximize probability
p. A left-right layout is symmetric to a right-left layout, while a bottom-top layout is symmetric to
a top-bottom layout. Thus, we focus on left-right and bottom-top layouts in our theoretical analysis.
Figure 2 illustrates the optimal parameter settings for left-right layout and bottom-top layout derived
from our theoretical analysis in the following.

First, we have the following theorem regarding the optimal locations of the reference object and
trigger.
Theorem 1 (Locations of Reference Object and Trigger). Suppose left-right layout or bottom-top
layout is used. (o∗x, o

∗
y) = (0, 0) is the optimal location of the reference object in the background

image for left-right layout. (o∗x, o
∗
y) = (0, bh − oh) is the optimal location of the reference object in

the background image for bottom-top layout. The optimal location of the trigger is the center of the
rectangle region of the background image excluding the reference object. Specifically, for left-right
layout, the optimal location of the trigger is (e∗x, e

∗
y) = ( bw+ow−l

2 , bh−l
2 ); and for bottom-top layout,

the optimal location of the trigger is (e∗x, e
∗
y) = ( bw−l

2 , bh−oh−l
2 ). In other words, given any size
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bw ≥ ow and bh ≥ oh of the background image, the optimal location (o∗x, o
∗
y) of the reference object

and the optimal location (e∗x, e
∗
y) of the trigger maximize the probability p defined in Equation 3.

Proof. See Appendix A.

Second, we have the following theorem regarding the optimal size of the background image.
Theorem 2 (Size of Background Image). Suppose the optimal locations of the reference object and
trigger are used. For left-right layout, given any width bw ≥ ow of the background image, the
optimal height of the background image is the height of the reference object, i.e., b∗h = oh. For
bottom-top layout, given any height bh ≥ oh of the background image, the optimal width of the
background image is the width of the reference object, i.e., b∗w = ow. Such optimal size maximizes
the probability p defined in Equation 3.

Proof. See Appendix B.

Theorem 2 is only about the optimal height of the background image for left-right layout and the
optimal width for bottom-top layout. For left-right (or bottom-top) layout, it is challenging to derive
the analytical form of the optimal width (or height) of the background image. Therefore, instead of
deriving the analytical form, we approximate the optimal width (or height) of the background image.
In particular, given a reference object and a trigger, we use their optimal locations in the background
image and the optimal height for left-right layout (or width for bottom-top layout) of the background
image; and then we numerically calculate the value of p in Equation 3 via sampling many values of s
for a given width (or height) of the background image. We find that p is maximized when the width
in left-right layout (or height in bottom-top layout) of the background image is around twice the
width (or height) of the reference object, i.e., b∗w ≈ 2ow in left-right layout (or b∗h ≈ 2oh in bottom-
top layout). Figure 2(b) shows p as a function of α = bw/ow for left-right layout and β = bh/oh for
bottom-top layout, where the curves correspond to input reference objects with different sizes and
the trigger size l is 40.

3.3 CORRUPTENCODER+

Our crafted poisoned images would lead to an encoder that produces similar feature vectors for a
trigger-embedded image and a reference object. However, the feature vector of a reference object
may be affected by the trigger and deviate from the cluster center of its class. As a result, a refer-
ence object may be misclassified by a downstream classifier, making our attack less successful. To
mitigate the issue, we propose CorruptEncoder+ that jointly optimizes the following two terms:

max
θ

[sim(fobj , ftrig; θ) + λ · sim(fobj , fcls; θ)], (4)

where θ is the weights of the (backdoored) encoder and sim(·, ·) indicates the similarity between
two feature vectors. fobj , ftrig and fcls indicate the feature vectors of reference object, trigger and
the cluster center of target class, respectively. Here, we use λ to balance the two terms.

Maximize Feature Similarity

Pull

Push

Support Image

Reference ImageSupport Poisoned Image
Pois

on
ed

 Im
ag

e

Figure 3: CorruptEncoder+ uses support poisoned
images to pull reference object and other images
in the target class close in the feature space so that
the reference object can be correctly classified by
a downstream classifier.

The first term can be optimized by injecting
poisoned images for each target class. To op-
timize the second term, CorruptEncoder+ as-
sumes there are additional reference images
from each target class, called support refer-
ence images. Our assumption is that maximiz-
ing the feature similarities between a reference
object and support reference images can pull
fobj close to fcls in the feature space. There-
fore, CorruptEncoder+ further constructs sup-
port poisoned images by concatenating a refer-
ence image and a support reference image, as
shown in Figure 3. Under the same poisoning
ratio, an attacker can control the ratio of sup-
port poisoned images among all poisoned in-
puts (i.e., λ

1+λ ) to balance the two terms. Due to the random cropping mechanism, the learnt en-
coder would produce similar feature vectors for a reference image and support reference images,
increasing the success rate of our attack as shown in Figure 6(c).
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Table 1: ASRs of different attacks. SSL-Backdoor (Saha
et al. (2022)) achieves low ASRs, which is consistent with
their results in terms of FP.

Target Downstr-
eam Task

No
Attack

SSL-
Backdoor

CTRL PE Ours

ImageNet100-A 0.4 5.5 28.8 76.7 96.2
ImageNet100-B 0.4 14.3 20.5 53.2 89.9

Pets 1.5 4.6 35.4 45.8 72.1
Flowers 0 1 18 44.4 89

Table 2: CorruptEncoder maintains
utility as poisoned images also con-
tain meaningful features for CL.

Target Downstr-
eam Task

No Attack Ours
CA BA

ImageNet100-A 69.3 69.6
ImageNet100-B 60.8 61.2

Pets 55.8 56.9
Flowers 70.8 69.7

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: Due to limited computing resources, we use a subset of random 100 classes of ImageNet
as a pre-training dataset, which we denote as ImageNet100-A. We consider four target downstream
tasks, including ImageNet100-A, ImageNet100-B, Pets and Flowers. ImageNet100-B is a subset of
another 100 random classes of ImageNet. Details of these datasets can be found in Appendix C.
We also use ImageNet100-A as both a pre-training dataset and a downstream dataset for a fair
comparison with SSL-Backdoor (Saha et al. (2022)), which used the same setting.
CL algorithms: We use four CL algorithms, including MoCo-v2 (Chen et al. (2020b)), SwAV
(Caron et al. (2020)), SimCLR (Chen et al. (2020a)), and MSF (Koohpayegani et al. (2021)). We fol-
low the original implementation of each algorithm. Unless otherwise mentioned, we use MoCo-v2.
Moreover, we use ResNet-18 as the encoder architecture by default. Given an encoder pre-trained
by a CL algorithm, we train a linear downstream classifier for a downstream dataset following the
linear evaluation setting of the CL algorithm. Details can be found in Appendix D and E.
Evaluation metrics: We use clean accuracy (CA), backdoored accuracy (BA), and attack success
rate (ASR) as the metrics. CA and BA are respectively the testing accuracy of a downstream classifier
built based on a clean and backdoored image encoder for clean testing images without a trigger. ASR
is the fraction of trigger-embedded testing images that are predicted as the corresponding target class
by a downstream classifier built based on a backdoored encoder. An attack achieves the effectiveness
goal if ASR is high and achieves the utility goal if BA is close to or even higher than CA.
Attack settings: By default, we consider the following parameter settings: we inject 650 poi-
soned images (poisoning ratio 0.5%); an attacker selects one target downstream task and one target
class (default target classes are shown in Table 5 in Appendix); an attacker has 3 reference im-
ages/objects for each target class, which are randomly picked from the testing set of a target down-
stream task/dataset; an attacker uses the place365 dataset (Zhou et al. (2017)) as background images;
trigger is a 40 × 40 patch with random pixel values; we adopt the optimal settings for the size of a
background image and location of a reference object; and for the location of trigger, to avoid being
detected easily, we randomly sample a location within the center 0.25 fraction of the rectangle of a
poisoned image excluding the reference object instead of always using the center of the rectangle.
Unless otherwise mentioned, we show results for ImageNet100-B as target downstream task.
Baselines: We compare our attack with SSL-Backdoor (Saha et al. (2022), CTRL (Li et al. (2022))
and PoisonedEncoder(PE) (Liu et al. (2022)). SSL-Backdoor and CTRL use 650 reference images
(0.5%) randomly sampled from the dataset of a target downstream task. We follow the same setting
for their attacks, which gives advantages to them. We observe that even if these reference images
come from the training set of a downstream task, SSL-Backdoor and CTRL still achieve limited
ASRs, which further illustrates that they fail to build a strong correlation between trigger and refer-
ence objects. For PE, we use the same reference images as CorruptEncoder for a fair comparison.
Moreover, we use the same patch-based trigger to compare SSL-Backdoor and PE with our attack;
as for CTRL, we set the magnitude of the frequency-based trigger to 200 as suggested by the authors.

4.2 EXPERIMENTAL RESULTS

CorruptEncoder is more effective than existing attacks: Table 1 shows the ASRs of different
attacks for different target downstream tasks, while Table 3 shows the ASRs for different target
classes when the target downstream task is ImageNet100-B. Each ASR is averaged over three trials.
CorruptEncoder achieves much higher ASRs than SSL-Backdoor, CTRL and PoisonedEncoder(PE)
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Figure 4: Impact of pre-training settings on CorruptEncoder.

across different experiments. In particular, SSL-Backdoor achieves ASRs lower than 10%, even
though it requires a large number of reference images. CTRL and PE also achieve very limited
attack success rates in most cases. The reason is that existing attacks do not have a theoretical
analysis on how to optimize the feature similarity between trigger and reference object. As a result,
they fail to build strong correlations between trigger and reference object, as shown in Figure 9 in
Appendix. Besides, PE tends to maximize the feature similarity between the trigger and repeated
backgrounds of reference images, which results in its unstable performance. We note that SSL-
Backdoor (Saha et al. (2022)) uses False Positive (FP) as the metric, which is the number (instead
of fraction) of trigger-embedded testing images that are predicted as the target class. ASR is the
standard metric for measuring the backdoor attack. When converting their FP to ASR, their attack
achieves a very small ASR, e.g., less than 10%.

Table 3: ASRs for different target classes when the
target downstream task is ImageNet100-B.

Target Downstr
eam Task

No
Attack

SSL-
Backdoor

CTRL PE Ours

Hunting Dog 0.4 14.3 20.5 53.2 89.9
Ski Mask 0.4 14 27.9 37.6 84.3
Rottweiler 0.3 8 37.8 7.3 90.6
Komondor 0 18.3 19.3 61 99.4

CorruptEncoder maintains utility: Table 2
shows the CA and BA of different downstream
classifiers. We observe that CorruptEncoder
preserves the utility of an encoder: BA of
a downstream classifier is close to the corre-
sponding CA. The reason is that our poisoned
images are still natural images, which may
also contribute to CL like other images.

CorruptEncoder is agnostic to pre-training
settings: Figure 4 shows the impact of pre-
training settings, including pre-training dataset
size, encoder architecture, and CL algorithm, on CorruptEncoder. In Figure 4(a), we use subsets of
ImageNet with different sizes and ensure that they do not overlap with ImageNet100-B for a fair
comparison (results on the full ImageNet are shown in Table 6 in Appendix). Our results show that
CorruptEncoder is agnostic to pre-training settings. In particular, CorruptEncoder achieves high
ASRs (i.e., achieving the effectiveness goal) and BAs are close to CAs (i.e., achieving the utility
goal) across different pre-training settings.

Impact of hyperparameters of CorruptEncoder: Recall that we cannot derive the analytical
form of the optimal α∗ = b∗w/ow for left-right layout (or β∗ = b∗h/oh for bottom-top layout).
However, we found that α∗ ≈ 2 (or β∗ ≈ 2) via numerical analysis. Figure 5(a) shows the impact of
α = bw/ow for left-right layout (or β = bh/oh for bottom-top layout). Our results show that ASR
peaks when α = 2 (or β = 2), which is consistent with our theoretical analysis in Section 3.2.

Figure 5 also shows the impact of poisoning ratio and the number of reference images on
CorruptEncoder. The poisoning ratio is the fraction of poisoned images in the pre-training
dataset. ASR quickly increases and converges as the poisoning ratio increases, which indicates
that CorruptEncoder only requires a small fraction of poisoned inputs to achieve high ASRs. We
also find that ASR increases when using more reference images. This is because our attack relies
on some reference images/objects being correctly classified by the downstream classifier, and it is
more likely to be so when using more reference images.

Figure 8 in Appendix shows the impact of trigger type (white, purple, and colorful), and trigger size
on CorruptEncoder. A colorful trigger achieves a higher ASR than the other two triggers. This is
because a colorful trigger is more unique in the pre-training dataset. Besides, ASR is large once
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Figure 6: ASRs for multiple target classes, multiple downstream tasks, and CorruptEncoder+.

the trigger size is larger than a threshold (e.g., 20). Moreover, in all experiments, CorruptEncoder
consistently maintains utility of the encoder since BAs are consistently close to CAs.
Multiple target classes and downstream tasks: Figure 6(a) shows the ASR of each target class
when CorruptEncoder attacks the three target classes separately or simultaneously, where each tar-
get class has a unique trigger. Figure 6(b) shows the ASR of each target downstream task when
CorruptEncoder attacks the three target downstream tasks separately or simultaneously, where each
target downstream task uses its default target class. Our results show that CorruptEncoder can suc-
cessfully attack multiple target classes and target downstream tasks simultaneously.
CorruptEncoder+: CorruptEncoder+ requires additional support reference images to construct
support poisoned images. We assume 5 support reference images sampled from the test set of
a target downstream task and 130 support poisoned images (λ = 1/4), where the support poi-
soned images have duplicates. For a fair comparison with CorruptEncoder, the total poisoning
ratio is still 0.5%. Figure 6(c) compares their ASRs for three target downstream tasks. Our results
show that CorruptEncoder+ can further improve ASR. Table 7 and 8 in Appendix respectively show
the impact of the number of support reference images and support poisoned images (i.e., λ) on
CorruptEncoder+. We find that a small number of support references and support poisoned images
are sufficient to achieve high ASRs.

5 DEFENSE

Localized cropping: Existing defenses (e.g., Wang et al. (2019); Jia et al. (2021b); Xu et al. (2021))
against backdoor attacks were mainly designed for supervised learning, which are insufficient for
CL (Jia et al. (2022)). While Feng et al. (2023) proposes DECREE to effectively detect backdoored
encoders, it only focuses on the backdoor detection for a pre-trained encoder. Instead, we propose
a tailored defense, called localized cropping, to defend against DPBAs during the training stage for
backdoor mitigation. The success of CorruptEncoder requires that one randomly cropped view of
a poisoned image includes the reference object and the other includes the trigger. Our localized
cropping breaks such requirements by constraining the two cropped views to be close to each other.
Specifically, during pre-training, after randomly cropping one view, we enlarge the cropped region
by δ fraction and randomly crop the second view within the enlarged region. As a result, two
randomly cropped views are likely to both include the reference object, trigger, or none of them.

Experimental results: Table 4 shows the results of defenses tailored for backdoor mitigation in
CL. We conduct experiments following our default settings. “No Defense” means MoCo-v2 uses its
original data augmentation operations; “No Random Cropping” means random cropping is not used;
“ContrastiveCrop” means replacing random cropping with the advanced semantic-aware cropping
mechanism (Peng et al. (2022)) and “Localized Cropping” means replacing random cropping with

8



Under review as a conference paper at ICLR 2024

our localized cropping (δ = 0.2). CompRess Distillation (Saha et al. (2022)) uses a clean pre-
training dataset (e.g., a subset of the pre-training dataset) to distill a (backdoored) encoder.

Table 4: Defense results. † indicates an extra clean pre-
training dataset is used.

Defense
No Attack CorruptEncoder CorruptEncoder+

CA ASR BA ASR BA ASR

No Defense 60.8 0.4 61.2 89.9 61.7 97.8
ContrastiveCrop 61.3 0.4 62.1 90.8 62 98.5

No Random Cropping 32.4 2.2 31.1 2 31.9 1.5
CompRess (5%)† 49.5 0.9 49.4 1.1 49.9 0.9

CompRess (20%)† 58.2 0.9 58.7 1 58.6 1.1

Localized Cropping 56.2 0.9 56.3 0.9 56.1 0.8

ContrastiveCrop (Peng et al. (2022))
uses semantic-aware localization to
generate augmented views that can
avoid false positive pairs (i.e., ob-
ject vs. background). Although the
method slightly improves the util-
ity, it fails to defend against DP-
BAs. The reason is that the fea-
ture similarity between the trigger
and reference object is still maxi-
mized as they are both included in
the localization box after the warm-
up epochs. Pre-training without ran-
dom cropping makes attacks ineffec-
tive, but it also sacrifices the encoder’s utility substantially, i.e., CA and BAs decrease substantially.
Figure 8(c) in Appendix further shows that random cropping with non-default parameters only re-
duces ASR when there’s a large utility drop. Our localized cropping can also reduce ASRs. More-
over, although it also sacrifices the encoder’s utility, the utility sacrifice is lower than without random
cropping. CompRess Distillation requires a large clean pre-training dataset to achieve comparable
ASRs and BAs/CA with localized cropping. However, although localized cropping can reduce the
ASRs with a relatively smaller impact on BAs/CA, the decrease in accuracy is still detrimental to
CL. Table 9 in Appendix shows that localized cropping is less effective as δ increases.

6 EXTENSION TO MULTI-MODAL CL
We also extend CorruptEncoder to attack image encoders in multi-modal CL (Radford et al. (2021);
Jia et al. (2021a)), which uses image-text pairs to pre-train an image encoder and a text encoder.
Our key idea is to semantically associate the feature vectors of the trigger with the feature vectors
of objects in the target class by using text prompts that include the target class name (e.g., “a photo
of dog”) as the medium. Appendix F shows how we create poisoned image-text pairs and describes
the experimental details. Our results show that CorruptEncoder outperforms the existing backdoor
attack to multi-modal CL (Carlini & Terzis (2022)), especially when the pre-training dataset only
includes a few image-text pairs related to the target class.

7 RELATED WORK

CL: Single-modal CL (Chen et al. (2020b;a); Caron et al. (2020); Koohpayegani et al. (2021); Li
et al. (2021a)) uses images to pre-train an image encoder that outputs similar (or dissimilar) feature
vectors for two augmented views of the same (or different) pre-training image. Multi-modal CL
(Radford et al. (2021); Jia et al. (2021a)) uses image-text pairs to jointly pre-train an image encoder
and a text encoder such that the image encoder and text encoder output similar (or dissimilar) feature
vectors for image and text from the same (or different) image-text pair.
Backdoor attacks to CL: Backdoor attacks (Gu et al. (2017); Chen et al. (2017); Liu et al. (2017;
2020); Li et al. (2021b)) aim to compromise the training data or training process such that the learnt
model behaves as an attacker desires. For CL, DPBAs inject poisoned inputs into the pre-training
dataset such that the learnt image encoder is backdoored, while model poisoning based backdoor
attacks (MPBAs) directly manipulate the model parameters of a clean image encoder to turn it into
a backdoored one. MPBAs (Jia et al. (2022); Xue & Lou (2022)) are not applicable when an image
encoder is from a trusted provider while existing DPBAs (Saha et al. (2022); Li et al. (2022); Liu
et al. (2022); Carlini & Terzis (2022)) only achieve limited attack success rates.

8 CONCLUSION
In this work, we propose new data poisoning based backdoor attacks (DPBAs) to contrastive learning
(CL). Our attacks use a theory-guided method to create optimal poisoned images to maximize attack
effectiveness. Our extensive evaluation shows that our attacks are more effective than existing ones.
Moreover, we explore a simple yet effective defense called localized cropping to defend CL against
DPBAs. Our results show that localized cropping can reduce the attack success rates, but it sacrifices
the utility of the encoder, highlighting the need for new defense.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In Interna-
tional Conference on Learning Representations, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models
transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2021.

Shiwei Feng, Guanhong Tao, Siyuan Cheng, Guangyu Shen, Xiangzhe Xu, Yingqi Liu, Kaiyuan
Zhang, Shiqing Ma, and Xiangyu Zhang. Detecting backdoors in pre-trained encoders. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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(a) (b)

Figure 7: Visual illustrations of (a) all possible V2 that contain the trigger e. (b) ∆w and ∆h for
left-right layout.

A PROOF OF THEOREM 1

For simplicity, we prove the optimal locations of the reference object and trigger for left-right layout.
The proof for bottom-top layout is similar.

Computing p1(s) and p2(s)Given arbitrary s ∈ (0, S], we aim to explicitly express the probabilities
of p1(s) and p2(s). For p1(s), since our attack separates the reference object and trigger apart
without any overlap, we have V1 ∩ e = ∅ as long as V1 ⊂ o. Therefore, we have:

p1(s) = Pr{(V1 ⊂ o) ∩ (V1 ∩ e = ∅)} = Pr{V1 ⊂ o}
Then, p1(s) can be computed as the ratio between the area of upper-left corners of V1 such that
V1 ⊂ o and that of all possible V1 ⊂ b:

p1(s) = Pr{V1 ⊂ o}

=

{
(ow−s)(oh−s)
(bw−s)(bh−s) , s ∈ X1

0, s /∈ X1

(5)

where X1 = (0,min{ow, oh}]. We have X1 because V1 should not exceed the size of o.

Similarly, to achieve V2 ⊃ e, all possible V2 should be within a (2s − l) × (2s − l) square region
R, centered at the e, as shown in Fig. 7(a). Since s is uniformly distributed between 0 and S, the
square region R may intersect with o and boundaries of b when s is large, as shown in Fig. 7(b). To
satisfy V2 ∩ o = ∅ and V2 ⊂ b, desired V2 should be only within the region of R that has no overlap
with o and boundaries of b. We assume the width and height of this region as ∆w and ∆h. Given
fixed bw, ox and ex, ∆w is a function of crop size s and given fixed bh and ey , ∆h is also a function
of s. Thus, when the crop size is s, we can denote the width and height of this region as ∆w(s) and
∆h(s). Then, we follow the same procedure as p1(s) to obtain the probability p2(s) as:

p2(s) = Pr{(V2 ⊃ e) ∩ (V2 ∩ o = ∅)}

=

{
(∆w(s)−s)(∆h(s)−s)

(bw−s)(bh−s) , s ∈ X2

0, s /∈ X2

(6)

where X2 = (l,min{bw − (ox + ow), bh}]. We have X2 because V2 should be larger than the e but
smaller than the rectangle region of the background image excluding the o.

Recall that we are supposed to maximize the p in Equation 3 with aforementioned forms of p1(s) and
p2(s). When left-right layout is used, given any fixed bw and bh, we will prove that 1) the optimal
location of the reference object in the background image is (o∗x, o

∗
y) = (0, 0), and 2) the optimal

location of the trigger is the center of the rectangle region of the background image excluding the
reference object, i.e., (e∗x, e

∗
y) = ( bw+ow−l

2 , bh−l
2 ).

Optimal location of the trigger: Let’s derive the optimal location (e∗x, e
∗
y) of the trigger e first. In

this case, parameters of b and o are fixed, which means only ex influences ∆w(s) and ey influences
∆h(s). We denote the horizontal distance between e and o as d1 and the horizontal distance between
e and the right boundary of b as d2. Then we have:

d1 = ex − (ox + ow),

d2 = bw − (ex + l),
(7)
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where both d1 and d2 depend on ex. Due to the symmetry of the square region R, we can firstly
assume e is closer to the o than the right boundary of b (i.e., d1 ≤ d2), as shown in Fig. 7(b). In this
case, we express ∆w(s) as follows:

∆w(s) =


2s− l, s ∈ (min{X2}, d1 + l]

d1 + s, s ∈ (d1 + l, d2 + l]

bw − (ox + ow), s ∈ (d2 + l,max{X2}]
(8)

If there exists ex and e′x such that d1 < d′1 ≤ d′2 < d2, we can obtain ∆w′(s)−∆w(s) as:

∆w′(s)−∆w(s) =

0, s ∈ (min{X2}, d1 + l]

s− (d1 + l), s ∈ (d1 + l, d′1 + l]

d′1 − d1, s ∈ (d′1 + l, d′2 + l]

(d2 + l)− s, s ∈ (d′2 + l, d2 + l]

0, s ∈ (d2 + l,max{X2}]

(9)

We have ∆w(s) ≤ ∆w′(s) holds for all s. In other words, a larger d1 always results in a larger
∆w(s) regardless of the value of s. Since we know that ∆w(s) is positively correlated with p and
we have d1 ≤ d2 by assumption, d1 = d2 will achieve the optimal ∆w(s) for all s and maximize the
p. We should get the same optimal result (i.e., d1 = d2) if we start by assuming d1 ≥ d2. Therefore,
according to Equation 7, we obtain e∗x as:

e∗x =
bw + ox + ow − l

2
(10)

It is noted that we will derive the optimal location of the reference object (o∗x, o
∗
y) = (0, 0) for left-

right layout. Therefore, we can further reduce the Equation 10 as e∗x =
bw+o∗x+ow−l

2 = bw+ow−l
2 .

Next, we denote the vertical distance between e and the top boundary of b as d3 and the vertical
distance between e and the bottom boundary of b as d4:

d3 = ey

d4 = bh − (ey + l)
(11)

where both d3 and d4 depend on ey . By assuming d3 ≤ d4, we express ∆h(s) as follows:

∆h(s) =


2s− l, s ∈ (min{X2}, d3 + l]

d3 + s, s ∈ (d3 + l, d4 + l]

bh, s ∈ (d4 + l,max{X2}]
(12)

If there exists ey and e′y such that d3 < d′3 ≤ d′4 < d4, similar to Equation 9, we can show that
∆h(s) ≤ ∆h′(s) holds for all s. In other words, a larger d3 always results in a larger ∆h(s)
regardless of the value of s. Since ∆h(s) is also positively correlated with p and we have d3 ≤ d4,
we conclude that d3 = d4 will maximize the p. Therefore, we obtain e∗y according to Equation 11
as:

e∗y =
bh − l

2
(13)

Optimal location of the reference object: Given (e∗x, e
∗
y), our next step is to derive the optimal

location (o∗x, o
∗
y) of the reference object o such that p is maximized. Recall that parameters of b are

fixed, which means only ox influences ∆w(s) in this case. Assume there exists an o′x > ox, which
results in ∆w′′(s). Under the optimal location of the trigger, we obtain ∆w′′(s)−∆w(s) as:

∆w′′(s)−∆w(s) =
0, s ∈ (min{X2}, f(o′x)]
bw − (o′x + ow)− (2s− l), s ∈ (f(o′x), f(ox)]

ox − o′x, s ∈ (f(ox),max{X2}]

(14)
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where f(ox) =
bw−ox−ow+l

2 indicates the smallest s such that V2 touches the o and right boundary
of b under the input ox. We show that if o′x > ox, ∆w′′(s) ≤ ∆w(s) holds for all s. In other
words, a smaller ox always results in a larger ∆w(s) regardless of the value of s. Since ∆w(s) is
positively correlated with p, we set ox = 0 to maximize the p. As for oy , any oy ∈ [0, bh − oh] will
lead to the same p. Therefore, given any reference object and background image, we always have
(o∗x, o

∗
y) = (0, 0) for left-right layout.

B PROOF OF THEOREM 2

For left-right layout, we aim to prove that for any o and e, given any width of the background image
bw > ow, the optimal height of the background image should be the height of the reference object,
i.e., b∗h = oh. The proof of optimal width for bottom-top layout is similar.

Given the optimal locations of reference object o and trigger e in background image b, we obtain
∆h∗(s) and ∆w∗(s) as follows:

∆h∗(s) =

{
2s− l, s ∈ (min{X2}, bh+l

2 ]

bh, s ∈ ( bh+l
2 ,max{X2}]

∆w∗(s) =

{
2s− l, s ∈ (min{X2}, bw−ow+l

2 ]

bw − ow, s ∈ ( bw−ow+l
2 ,max{X2}]

(15)

In this case, we derive the marginal probability of p under the optimal locations of o and e as:

p1p2 =

{
(ow−s)(oh−s)(∆w∗(s)−s)(∆h∗(s)−s)

(bw−s)2(bh−s)2 , s ∈ X
0, s /∈ X

(16)

where X = X1 ∩ X2 = (l,min{ow, oh, bw − ow}]. Recall that we aim to derive the optimal bh
(bh ≥ oh) such that p is maximized. We firstly derive the optimal bh that maximizes the marginal
probability p1(s)p2(s) for a given s ∈ X . We have:

argmax
bh

p1(s)p2(s) = argmax
bh

∆h∗(s)− s

(bh − s)2

= argmax
bh

[log(∆h∗(s)− s)− 2 log(bh − s)]
(17)

Let’s denote g(bh, s) = log(∆h∗(s)− s)− 2 log(bh − s). We consider two scenarios:

(i). If there exists bh and b′h such that bh+l
2 <

b′h+l
2 ≤ max{X}, we can obtain g(b′h, s) − g(bh, s)

as:

g(b′h, s)− g(bh, s) =
log (bh−s)2

(b′h−s)2 , s ∈ (min{X}, bh+l
2 ]

log (bh−s)(s−l)
(b′h−s)(b′h−s) , s ∈ ( bh+l

2 ,
b′h+l
2 ]

log (bh−s)
(b′h−s) , s ∈ (

b′h+l
2 ,max{X}]

(18)

We show that if there exists bh and b′h such that bh+l
2 <

b′h+l
2 ≤ max{X}, g(b′h, s) ≤ g(bh, s)

holds for all s. In other words, a smaller bh maximizes the g(bh, s) for all s as long as bh ∈
[oh, 2max{X} − l].

(ii). If there exists bh and b′h such that b′h+l
2 > bh+l

2 > max{X}, we can obtain g(b′h, s)− g(bh, s)
as:

g(b′h, s)− g(bh, s) = log
(bh − s)2

(b′h − s)2
< 0

Therefore, a smaller bh also maximizes the g(bh, s) for all s as long as bh ∈ (2max{X} − l,∞).

Combining (i) and (ii), we theoretically prove that g(bh, s) monotonically decreases for all s ∈ X as
bh increases. To this end, b∗h = oh will maximize the marginal probability p1(s)p2(s) for all s ∈ X
and therefore maximize the p.
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Algorithm 1 Crafting a Poisoned Image in CorruptEncoder
1: Input: A set of reference objectsO, a set of background images B, a set of triggers E , α, and β.
2: Output: A poisoned image.
3: Note: Ih and Iw respectively represent the height and width of an image I .
4: o← randomly sample a reference object inO
5: b← randomly sample a background image in B
6: e← trigger corresponding to the target class of o.
7: b← RESCALEANDCROPBACKGROUND(b, o, α, β) ▷ Re-scale and crop b if needed
8: (ox, oy)← location of o in b
9: b[ox : ox + ow, oy : oy + oh]← o ▷ Embed o to b

10: (ex, ey)← location of e in b
11: b[ex : ex + ew, ey : ey + eh]← e ▷ Embed e to b
12: Return b

Algorithm 2 RescaleAndCropBackground
1: Input: Background image b, reference object o, width ratio α, and height ratio β.
2: Output: A re-scaled and cropped background image b′.
3: b′w ← ow · α
4: b′h ← oh · β

5: r = max(
b′h
bh

,
b′w
bw

) ▷ Get the re-scaling ratio if re-scaling is needed
6: if r > 1 then ▷ Scaling up b by ratio r
7: b← RESCALE(b, r)
8: end if
9: b′ ← a random rectangle area with width b′w and height b′h in b

Table 5: Default target class of each target downstream task.

Target Downstream Task Default Target Class

ImageNet100-A Greater Swiss Mountain Dog

ImageNet100-B African Hunting Dog

Pets Havanese

Flowers Lotus

Table 6: Experiments on the full ImageNet. The downstream dataset is ImageNet100-B and the
poisoning ratio is 0.5%. MoCo-v2 and ResNet-18 are used.

No Attack CorruptEncoder

CA ASR CA ASR

75.5 0 76.1 74.9

C DATASETS

By default, we use ImageNet100-A (Russakovsky et al. (2015)) and Conceptual Captions 0.5M
(Sharma et al. (2018)) respectively for single-modal and multi-modal pre-training, and we evaluate
the pre-trained image encoders on ImageNet100-B for linear classification. When the downstream
task is ImageNet100-A classification (same as pre-training), we randomly pick 10% of images from
each class as the downstream training dataset, following SSL-Backdoor (Saha et al. (2022)). Other
downstream datasets include Oxford-IIIT Pets (Parkhi et al. (2012)) and Oxford 102 Flowers (Nils-
back & Zisserman (2008)), whose train/test splits are the same as Chen et al. (2020a); Ericsson et al.
(2021). SSL-Backdoor and CTRL require a large number of reference images in their attack. Since
the dataset of a downstream task (Pets, Flowers, Caltech-101) may not contain enough reference
images, we duplicate them multiple times when constructing poisoned images for SSL-Backdoor
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Figure 8: (a) Impact of the trigger type on CorruptEncoder. (b) Impact of the trigger size on
CorruptEncoder. (c) Impact of the default cropping mechanism on CorruptEncoder. RC indicates
random cropping with different scales.

Table 7: Impact of the number of support reference images on ASR of CorruptEncoder+. The total
poisoning ratio is 0.5% and the target downstream task is Pets.

CorruptEncoder
CorruptEncoder+

1 5 10

72.1 79.7 93.6 97.9

Table 8: Impact of the number of support poisoned images on ASR of CorruptEncoder+. The total
poisoning ratio is 0.5% and the target downstream task is Pets.

CorruptEncoder
CorruptEncoder+

130 (λ = 1/4) 260 (λ = 2/3) 390 (λ = 3/2)

72.1 93.6 94.3 88.4

Table 9: Impact of δ on localized cropping. We observe a trade-off between the utility and attack
success rate as δ increases.

N/A 0.1 0.2 0.3 0.5

BA ASR BA ASR BA ASR BA ASR BA ASR

61.2 89.9 55.7 0.8 56.3 0.9 58.5 17.1 61 84.1

and CTRL. For each reference object used by our CorruptEncoder, we manually annotate its seg-
mentation mask in the reference image using the open-source labeling tool called labelme3.

D CL ALGORITHMS

The CL algorithms include MoCo-v2 (Chen et al. (2020b)), SwAV (Caron et al. (2020)), SimCLR
(Chen et al. (2020a)), MSF (Koohpayegani et al. (2021)) for single-modal CL and CLIP (Radford
et al. (2021)) for multi-modal CL. We follow the original implementation of each CL algorithm,
including the data augmentation operations and hyper-parameters:

MoCo-v2: Following SSL-Backdoor (Saha et al. (2022)), we use this code implementation of
MoCo-v24. We adopt the same pre-training settings as their work. In particular, we use the SGD

3https://github.com/wkentaro/labelme
4https://github.com/SsnL/moco_align_uniform
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Figure 9: Comparing the attention maps of poisoned testing images when using classifiers built
based on backdoored encoders from SSL-Backdoor (Saha et al. (2022)) and CorruptEncoder. We use
Grad-CAM (Selvaraju et al. (2017)) to visualize the attention map, which shows the most influential
parts of an input that result in the classifier’s output.
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Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned 

Figure 10: Comparing the attention maps of clean and poisoned testing images when using the
classifier built based on our CorruptEncoder.

optimizer with an initial learning rate of 0.6 and pre-train an encoder for 200 epochs with a batch
size of 256 on 2 NVIDIA RTX6000 GPUs.

SwAV: We follow the official implementation5 of SwAV (including data augmentations, optimizer,
etc.). We pre-train each encoder for 200 epochs with a total batch size of 256 on 4 NVIDIA
RTX6000 GPUs.

SimCLR: We use this pytorch implementation6 of SimCLR. Because SimCLR requires a large
batch size (> 1k) to obtain a desirable performance on ImageNet, we pre-train each encoder for 300
epochs with an initial learning rate of 1.2 and a batch size of 1024 on 4 NVIDIA RTX6000 GPUs.

MSF: We follow the official implementation7 of MSF. Specifically, we pre-train each encoder for
200 epochs with a batch size of 256 on 4 RTX6000 GPUs.

CLIP: Following Carlini and Terzis (Carlini & Terzis (2022)), we use the official implementation8

of CLIP for multi-modal CL. In particular, we pre-train an image encoder (ResNet50) and a text
encoder (ViT-B-32) for 30 epochs using a batch size of 128 image-text pairs. Since we pre-train our
encoders on a subset of Conceptual Captions Dataset, the pre-training takes ∼ 14 hours on a single
RTX6000 GPU.

E TRAINING LINEAR DOWNSTREAM CLASSIFIERS

Following previous works (Chen et al. (2020a); Grill et al. (2020); Koohpayegani et al. (2021)),
to train a linear downstream classifier on a downstream task, we follow the same linear evaluation

5https://github.com/facebookresearch/swav/blob/main/main_swav.py
6https://github.com/AndrewAtanov/simclr-pytorch
7https://github.com/UMBCvision/MSF
8https://github.com/mlfoundations/open_clip
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Figure 11: Visual illustrations of reference objects from different target classes.
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(a) Carlini & Terzis (b) CorruptEncoder
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Figure 12: Poisoned image-text pairs in Carlini & Terzis (2022) vs. our CorruptEncoder for multi-
modal CL, where the target class is dog.

protocol used by each CL algorithm. For multi-modal CL, we train a downstream classifier using
the same linear evaluation protocol as MoCo-v2.

F CORRUPTENCODER FOR MULTI-MODAL CL

Carlini and Terzis (Carlini & Terzis (2022)) proposed a DPBA to multi-modal CL. To craft poisoned
image-text pairs, they embed the trigger into some images and create the corresponding texts fol-
lowing some text prompts that include the target class name (e.g., “a photo of dog”), as illustrated
in Figure 12. This attack achieves limited success rates when the pre-training dataset only includes
few image-text pairs whose images include objects from the target class and whose texts include the
target class name, because CL cannot semantically associate the target class name with objects in
the target class. Our CorruptEncoder for multi-modal CL addresses such limitation by extending the
key idea used to attack single-modal CL.

F.1 CRAFTING POISONED IMAGE-TEXT PAIRS

We denote by fi and fr the feature vectors produced by the image encoder for an image embedded
with trigger eti and a reference image from target class yti. Moreover, we denote by ft the feature
produced by the text encoder for a text prompt including the name of target class yti. Our key idea is
to craft poisoned image-text pairs such that 1) fi is similar to ft, and 2) ft is similar to fr. Therefore,
fi and fr are similar, making our attack successful.

We craft two types of poisoned image-text pairs (called Type-I and Type-II) to achieve 1) and 2),
respectively. Specifically, to achieve 1), we craft a Type-I poisoned image-text pair by embedding
a randomly picked trigger eti ∈ E into a randomly picked background image b ∈ B and creating a
text prompt including the name of the target class yti, where the location of the trigger in the back-
ground image is random. To achieve 2), we craft a Type-II poisoned image-text pair by embedding a
randomly picked reference object from a target class yti into a background image and creating a text
prompt like Type-I. The background image may be re-scaled (or cropped) if it is too small (or large)
to include the reference object. A text prompt could be like “a photo of <target class name>”. In
our experiments, we use the text prompts proposed by Carlini & Terzis (2022), which are publicly
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Table 10: Attacks to multi-modal CL. The pre-training dataset is Conceptual Captions (Sharma et al.
(2018)) and the target downstream task is ImageNet100-B.

Target Class
No Attack Carlini and Terzis CorruptEncoder

CA ASR BA ASR BA ASR

Street Sign

48.4

1 48.3 94 49 97.7
Ski Mask 1.4 48.5 96 48.6 96.6
Rottweiler 1.7 48.6 0 48.9 57
Komondor 0.3 48.9 0 48.8 60.9
Lorikeet 1.9 47.7 0.1 48.4 89

available. Given N total poisoned image-text pairs, we generate N
2 Type-I and N

2 Type-II ones.
Note that Carlini and Terzis only use N Type-I poisoned image-text pairs in their attack.

F.2 EXPERIMENTAL SETUP

When comparing CorruptEncoder with the existing attack (Carlini & Terzis (2022)) to multi-modal
CL, we use a subset of 0.5M inputs in the Conceptual Captions dataset (CC) (Sharma et al. (2018))
as a pre-training dataset and use CLIP (Radford et al. (2021)) as the pre-training algorithm. We only
inject 0.1% (i.e., 500) of poisoned image-text pairs since multi-modal CL is easier to attack than
single-modal CL because an attack to multi-modal CL can exploit both images and texts. Moreover,
we use a 16× 16 trigger following Carlini & Terzis (2022) for a fair comparison.

F.3 EXPERIMENTAL RESULTS

Table 10 compares our attack with Carlini and Terzis (Carlini & Terzis (2022)), the state-of-the-
art backdoor attack to multi-modal CL. Our results show that both attacks maintain the utility of
the encoder. However, CorruptEncoder achieves slightly or much higher ASRs than Carlini and
Terzis. Specifically, for target classes Rottweiler, Komondor, and Lorikeet, their attack achieves
ASRs of around 0, while CorruptEncoder achieves large ASRs. This is because the pre-training
dataset includes few image-text pairs related to these target classes. As a result, Carlini and Terzis
can not semantically associate the target class name with objects in the target class, leading to poor
attack performance.
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