
Elastic Significant Bit Quantization and
Acceleration for Deep Neural Networks

Cheng Gong , Ye Lu , Kunpeng Xie , Zongming Jin, Tao Li , and Yanzhi Wang ,Member, IEEE

Abstract—Quantization has been proven to be a vital method for improving the inference efficiency of deep neural networks (DNNs).

However, it is still challenging to strike a good balance between accuracy and efficiency while quantizing DNN weights or activation

values from high-precision formats to their quantized counterparts. We propose a new method called elastic significant bit quantization

(ESB) that controls the number of significant bits of quantized values to obtain better inference accuracy with fewer resources.

We design a unified mathematical formula to constrain the quantized values of the ESB with a flexible number of significant bits.

We also introduce a distribution difference aligner (DDA) to quantitatively align the distributions between the full-precision weight or

activation values and quantized values. Consequently, ESB is suitable for various bell-shaped distributions of weights and activation of

DNNs, thus maintaining a high inference accuracy. Benefitting from fewer significant bits of quantized values, ESB can reduce the

multiplication complexity. We implement ESB as an accelerator and quantitatively evaluate its efficiency on FPGAs. Extensive

experimental results illustrate that ESB quantization consistently outperforms state-of-the-art methods and achieves average accuracy

improvements of 4.78%, 1.92%, and 3.56% over AlexNet, ResNet18, and MobileNetV2, respectively. Furthermore, ESB as an

accelerator can achieve 10.95 GOPS peak performance of 1k LUTs without DSPs on the Xilinx ZCU102 FPGA platform.

Compared with CPU, GPU, and state-of-the-art accelerators on FPGAs, the ESB accelerator can improve the energy efficiency by

up to 65�, 11�, and 26�, respectively.

Index Terms—DNN quantization, significant bits, fitting distribution, cheap projection, distribution aligner, FPGA accelerator

Ç

1 INTRODUCTION

DEEP neural networks (DNNs) usually involve hundreds
of millions of trained parameters and floating-point

operations [1], [2]. Thus, it is challenging for deviceswith lim-
ited hardware resources and constrained power budgets to
use DNNs [3]. Quantization has been proven to be an effec-
tive method for improving the computing efficiency of
DNNs [4], [5]. The method maps the full-precision floating-
pointweights or activation into low-precision representations

to reduce the memory footprint of model and resource usage
of multiply-accumulate unit [6], [7], [8]. For example, the size
of a 32-bit floating-point DNN model can be reduced by 32�
by quantizing itsweights into binaries.

However, low-bitwidth quantization can lead to large
error, thus resulting in significant accuracy degradation [9],
[10], [11]. The error is the difference of weights/activation
before and after quantization which can be quantitatively
measured by euclidean distance [10]. Although 8-bit quanti-
zation, such as QAT [12] and mL2Q [8], can mitigate the accu-
racy degradation, use of a high bitwidth incurs comparatively
large overheads. It is still challenging to strive for high accu-
racywhen using a small number of quantizing bits.

Preliminary studies [13], [14], [15] imply that fitting
weight distribution of DNNs can improve accuracy. Fitting
distribution refers to adopting a high resolution, i.e., more
quantized values, for the densely distributed data range,
such as the data range nearing a mean value, while employ-
ing a low resolution, i.e., fewer quantized values, for sparsely
distributed data range. The densely distributed data range
containsmoreweights, and adopting high resolution can sig-
nificantly reduce the quantization errors for quantizing these
weights. Correspondingly, employing low resolution to the
sparsely distributed data range pays almost no impact on the
quantization errors, because there are few weights in this
range. Namely, fitting distribution can reduce quantization
errors by finding a set of quantized values which distribute
close to the weight distribution. Deviating weight distribu-
tion can be harmful to quantization errors, thereby decreas-
ing model accuracy. Therefore, a desirable quantization
should meet two requirements: the difference between the
two distributions of quantized values and weights, and the

� Cheng Gong, Kunpeng Xie, and Zongming Jin are with the College of
Computer Science, Nankai University, Tianjin 300350, China, and also
with the Tianjin Key Laboratory of Network and Data Security Technol-
ogy, Tianjin 300350, China. E-mail: {cheng-gong, xkp, zongming_jin}
@mail.nankai.edu.cn.

� Ye Lu and Tao Li are with the College of Computer Science, Nankai Uni-
versity, Tianjin 300350, China, and also with the Tianjin Key Laboratory
of Network and Data Security Technology, State Key Laboratory of Com-
puter Architecture (ICT,CAS), Tianjin 300350, China. E-mail: {luye,
litao}@nankai.edu.cn.

� Yanzhi Wang is with the Department of Electrical and Computer Engi-
neering, Khoury College of Computer Science (Affiliated), Northeastern
University, Boston, MA 02115 USA. E-mail: yanz.wang@northeastern.
edu.

Manuscript received 30 Aug. 2021; revised 29 Oct. 2021; accepted 12 Nov. 2021.
Date of publication 22 Nov. 2021; date of current version 23 May 2022.
This work was supported in part by the National Key Research andDevelopment
Program of China under Grant 2018YFB2100300, the National Natural Science
Foundation under Grant 62002175, the Natural Science Foundation of Tianjin
under Grant 19JCQNJC00600, the State Key Laboratory of Computer Architec-
ture (ICT,CAS) under Grants CARCHB202016, CARCH201905, and the
Innovation Fund of Chinese Universities Industry-University-Research under
Grant 2020HYA01003.
(Corresponding author: Tao Li.)
Recommended for acceptance by A.J. Pe~na, M. Si and J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2021.3129615

3178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0001-9857-5352
https://orcid.org/0000-0001-9857-5352
https://orcid.org/0000-0001-9857-5352
https://orcid.org/0000-0001-9857-5352
https://orcid.org/0000-0001-9857-5352
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-3024-7990
mailto:cheng-gong@mail.nankai.edu.cn
mailto:xkp@mail.nankai.edu.cn
mailto:zongming_jin@mail.nankai.edu.cn
mailto:luye@nankai.edu.cn
mailto:litao@nankai.edu.cn
mailto:yanz.wang@northeastern.edu
mailto:yanz.wang@northeastern.edu

number of bits used should both be as small as possible. In
other words, to maintain the original features of DNNs,
quantized values should fit the distribution of the original
values by using fewer bits. The closer the two distributions,
the higher the quantizedDNN accuracy.

Most of the previous studies cannot fit the distribution
of the original weights/activation well. As shown in Fig. 1,
the distribution of original weights is typically bell-
shaped [16] in the first convolutional layer of ResNet18 [1].
With five bits for quantization, the distribution of the
quantized values of the power of two (PoT) scheme is
sharply long-tailed [13], [17], [18], and that of the fixed-
point method is uniform [7], [19], [20], as shown in Figs. 1a
and 1b, respectively. We can observe that both PoT and
the fixed-point deviate from the bell-shaped distribution.
Although recent studies [14], [15], [21] can reduce accuracy
degradation by superposing a series of binaries/PoTs, they
still encounter limitations in fitting the distributions of
weights/activation well.

We observe that the number of significant bits among the
given can impact the distribution of quantized values. Sig-
nificant bits in computer arithmetic refer to the bits that con-
tribute to the measurement resolution of the values. Values
represented by different numbers of significant bits and off-
sets can present different distributions. It implies that we
can fit the distributions of weights and activation with elas-
tic significant bits to reduce the accuracy degradation. In
addition, fewer significant bits of operands incur less multi-
plication complexity, because the multiply operation is
implemented by a group of shift-accumulate operations.
The group size is proportional to the number of significant
bits of operands. Therefore, the number of significant bits

representing weights/activation can directly affect the accu-
racy and efficiency of the quantized DNN inference. This
motivates us to utilize the significant bits as a key technique
to fit the distribution.

To demonstrate the advantages of significant bits, we use
an example to further clarify our motivation. Specifying
two significant bits within the five given bits for quantiza-
tion, we first construct two value sets in which the number
of significant bits of values is no more than two: {0,1},{2,3}.
Then, we enumerate the shifted sets of {2,3}, including 2�
f2; 3g, 22 � f2; 3g, . . . , 26 � f2; 3g, until the number of ele-
ments of all sets reaches 24. After merging these sets and
adding the symmetric negative values, we can obtain the set
of f0; . . . ; �32; �48; �64; �96; �128; �192g with 25 � 1 ele-
ments. As shown in Fig. 1c, the distribution of the con-
structed set can fit the weight distribution well, which
implies that quantizing DNNs using these quantized values
can yield higher accuracy. In addition, multiplication of the
values from the set only requires two shift-accumulate oper-
ations, as shown in Fig. 2, which is the same as the 2-bit qua-
ternary multiplication [8], [9]. Namely, quantization using
two significant bits can achieve high accuracy as the 5-bit

Fig. 1. Distributions of different quantized values. WD is the weight distribution of the first convolutional layer of ResNet18 [1] with floating-point data
type. QD denotes quantized value distribution and QV indicates quantized values. SB indicates significant bits.

Fig. 2. Quantizing values with elastic significant bits can reduce multipli-
cation consumption.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3179

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

fixed-point scheme, but only requires a similar consumption
with the multiplication of 2-bit quaternary.

In this study,we propose elastic significant bit (ESB) quan-
tization to achieve high accuracy with few resources by con-
trolling the number of significant bits of quantized values.
ESB involves three parts: 1) the mathematical formula
describing values with a flexible number of significant bits
unifies various quantized value set featuring diverse distri-
butions, as shown in Fig. 1d; 2) the distribution difference
aligner (DDA) evaluating the matching degree between dis-
tributions seeks the desirable quantized value set which fits
the original distribution; 3) ESB float format coding quan-
tized values in hardware implementation realizes an efficient
multiplication computation with low resource consumption.
Our contributions are summarized as follows:

� To the best of our knowledge, we propose the first
unified mathematical expression to describe the
quantized values with a flexible number of signifi-
cant bits, and design a hardware-friendly projection
for mapping from full-precision values to these
quantized values at runtime. This formula unifies
diverse quantized values, including both PoT and
fixed-point forms, and make the values suitable for
various distributions, such as the uniform and the
bell-shaped ones.

� We introduce DDA to evaluate the matching degree
of distributions before and after quantization. Based
on DDA, the desirable distribution of quantized val-
ues, fitting the bell-shaped weights and activation of
DNNs, can be found offline without incurring addi-
tional computations.

� We design ESB float format to implement the acceler-
ator based on FPGAs, which codes and stores the
fraction and exponent of ESB quantized values sepa-
rately. This format enables the accelerator to employ
low-precision fraction multiplication and shift opera-
tion, thus reducing resource consumption and
improving energy efficiency.

� Experimental evaluations on the ImageNet dataset
with AlexNet, ResNet18, and MobileNetV2 demon-
strated that ESB achieves higher accuracy than 15
state-of-the-art approaches by 4.78%, 1.92%, and
3.56% on average, respectively. The ESB accelerator
on FPGAs can achieve a peak performance of 10.95
GOPS/kLUTs without DSPs and improve the energy
efficiency by up to 65�, 11� and 26� compared
with CPU, GPU, and state-of-the-art accelerators,
respectively.

2 RELATED WORKS

DNNs have been widely applied in various areas [22], [23],
[24], [25], but the high-bitwidth floating-point operations in
DNNs affect the inference efficiency seriously. Early studies
on quantization design ultra-low-bitwidth methods to
improve the inference efficiency of DNNs, such as binary
and ternary methods [4], [26]. These studies achieve high
computing efficiency with the help of a low bitwidth but
failed to guarantee accuracy. Thus, researchers have focused
onmulti-bit methods to prevent accuracy degradation.

Linear Quantization. The linear quantization quantizes
the data into consecutive fixed-point values with uniform
intervals. Ternarized hardware deep learning accelerator
(T-DLA) [5] argues that there are invalid bits in the heads
of the binary strings of tensors. It drops both head invalid
bits and tail bits in the binary strings of activation. Two-
step quantization (TSQ) [26] uniformly quantizes the acti-
vation after zeroing the small values and then quantizes
the convolutional kernels into the ternaries. Blended
coarse gradient descent (BCGD) [20] uniformly quantizes
all weights and the activation of DNNs into fixed-point
values with shared scaling factors. Parameterized clipping
activation (PACT) [27] parameterizes the quantizing
range. Furthermore, it learns the proper range during
DNN training and linearly quantizes activation within the
learned range. Quantization-interval-learning (QIL) [19]
parameterizes the width of the intervals of linear quantiza-
tion and learns the quantization strategy by optimizing the
DNN loss. Differentiable Soft Quantization (DSQ) [7] pro-
poses a differentiable linear quantization method to
resolve the non-differentiable problem, applying the tanh
function to approximate the step function of quantization
by iterations. Hardware-Aware Automated Quantization
(HAQ) [28] leverages reinforcement learning (RL) to
search the desired bitwidths for different layers and then
linearly quantizes the weights and activation of the layers
into fixed-point values.

Despite these significant advances in linear quantization,
it is difficult to achieve the desired trade-off between effi-
ciency and accuracy owing to the ordinary efficiency of
fixed-point multiplication and mismatching nonuniform
distributions.

Non-Linear Quantization.Non-linear quantization projects
full-precision values into low-precision values that have
non-uniform intervals. Residual-based methods [1], [29]
iteratively quantize the residual errors produced by the last
quantizing process to binaries with full-precision scaling
factors. Similar methods, such as learned quantization net-
works (LQ-Nets) [30], accurate-binary-convolutional net-
work (ABC-Net) [21], and AutoQ [31], quantize the weights
or activation into the sum of multiple groups of binary
quantization results. The multiply operations of the quan-
tized values of residual-based methods can be implemented
as multiple groups of bit operations [4] and their floating-
point accumulate operations. The computing bottleneck of
their multiply operations depends on the number of accu-
mulate operations, which is proportional to the number of
quantizing bits. Float-based methods refer to the separate
quantization of the exponent and fraction of floating-point
values. The block floating-point (BFP) [32] and Flexpoint [33]
retain the fraction of all elements in a tensor/block and
share the exponent to reduce the average number of quan-
tizing bits. Posit schemes [34], [35] divide the bit string of
values into four regions to produce a wider dynamic range
of weights: sign, regime, exponent, and fraction. Adaptiv-
Float [36] quantizes full-precision floating-point values into
a low-precision floating-point format representation by dis-
cretizing the exponent and fraction parts into low-bitwidth
values, respectively. Float-based methods usually present
unpredictable accuracy owing to a heuristical quantizing
strategy and zero value absence in the floating-point format.

3180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

Few studies have investigated reducing the accuracy degra-
dation of float-based methods.

Quantization Fitting Distribution. An efficient way to
reduce accuracy degradation by fitting the distributions in
multi-bit quantization has been extensively investigated.
Studies on weight sharing, such studies focused on K-
means [16], [37], take finite full-precision numbers to quan-
tize weights, and store the frequently used weights.
Although the shared weights can reduce the storage con-
sumption, it is difficult to reduce the multiplication complex-
ity of full-precision quantized values. Recent studies [8], [9]
attempt to design a better linear quantizer by adjusting the
step size of the linear quantizer to match various weight dis-
tributions, thus reducing accuracy degradation. However,
the linear quantizer cannot fit the nonuniform weights
well [15], which inevitably degrades the accuracy. Quantiz-
ing the weights into PoT is expected to fit the non-uniform
distributions while eliminating bulky digital multipliers [13].
However, PoT quantization cannot fit the bell-shaped
weights well in most DNNs [15], as shown in Fig. 1a, thus
resulting in significant accuracy degradation [17], [18]. Add-
Net [14] and additive powers-of-two quantization (APoT)
[15] exhaustively enumerate the combinations of several
computationally efficient coefficients, such as reconfigurable
constant coefficient multipliers (RCCMs) and PoTs, to fit the
weight distribution while maintaining efficiency. However,
exhaustive enumeration has a high complexity of Oðn!Þ. In
addition, they require expensive look-up operations to map
the full-precisionweights into their nearest quantized values,
that is, the universal coefficient combinations. These defects
can significantly delaymodel training.

3 ELASTIC SIGNIFICANT BIT QUANTIZATION

In this section, we introduce the ESB to explain how the
quantized values can be controlled at the bit-wise level to fit
various distributions. First, we introduce some preliminar-
ies and then expound our ESB from two aspects: quantized
value set and cheap projection operator. Second, we intro-
duce the DDA to fit the original value distribution and
reduce quantization errors. Finally, We present how
ESB can be exploited to train DNNs.

3.1 Preliminaries

Notations. For simplicity, we use weight quantization as an
example to describe the quantization process. We denote
the original weights of a layer in DNNs as Wf 2 Rd, and d
indicates its dimension. Wq represents the quantized
weights.

Quantized Value Set and Projection Operator. A general
quantization process projects full precision values into
quantized values through the projection operator P, and these
quantized values comprise set Q. P impacts the projection
efficiency, and Q reflects the distribution law of quantized
values. The quantization can be defined as follows:

Wq ¼ PQðWfÞ: (1)

Here, P projects each original value in Wf into a quantized
value in Q and stores it in Wq. For linear quantization, all
weights are quantized into fixed-point values as follows:

Qlða; bÞ ¼ f0;�a;�2a;�3a . . . ;�ð2b�1 � 1Þag: (2)

For PoT, all weights are quantized into values in the form of
PoT as follows:

Qpða; bÞ ¼ f0;�20a;�21a;�22a; . . . ;�22
b�1�1ag: (3)

Here, a is the scaling factor, and b represents the number of bits
for quantization. Qlða; bÞ and Qpða; bÞ cannot fit the bell-
shaped distribution well, as shown in Figs. 1b and 1a, leading
to inevitable accuracy degradation. Projection P adopts the
nearest-neighbor strategy. It projects each value inWf into the
nearest quantized value in Q measured by the euclidean dis-
tance. BecauseQlða; bÞ consists of fixed-point values with uni-
form intervals, linear quantization projection is implemented
economically by combining truncating with rounding opera-
tions [6], [28]. PoT projection can be implemented using a
look-up function [15], [17], [18]. However, the look-up function
has a time complexity ofOðnÞ. It involves d � ð2b � 1Þ compari-
son operations for projectingWf intoQpða; bÞ. Hence, PoT pro-
jection ismore expensive than linear quantization projection.

3.2 Quantized Value Set

First, we define the quantized value set and the projection
operator for the ESB as follows.

Wq ¼ PQeða;b;kÞðWfÞ
s:t: Qeða; b; kÞ ¼ a� ð[N

i¼0�i �ViÞ; N ¼ 2b�k�1 � 1:

(4)

Here, Qeða; b; kÞ is the quantized value set, and a is a scaling
factor. Vi (i ¼ 0; 1; . . . ; N) is the set of values with the num-
ber of significant bits no more than kþ 1, and �i is a scalar.
We call Vi the fraction set and �i the shift factor, and we
define them as follows.

Vi ¼ f0; 1; 2; . . . ; 2k � 1g; i ¼ 0

f2k; 2k þ 1; . . . ; 2k þ ð2k � 1Þg; i > 0

(

�i ¼ 2�k; i ¼ 0

2i�k�1; i > 0

((5)

Here, k is an integer parameter for controlling the number
of significant bits of quantized values. b is the number of
bits for quantization as mentioned previously. Obviously,
the number of significant bits of the values in Vi is no more
than kþ 1 and �i is a PoT value. Qeða; b; kÞ is constructed
using the shifted fraction sets �i �Vi. For ease of notation,
we used p ¼ 2k � f0; �1; �2; . . . ; �Ng to denote the PoT values
in Qeða; b; kÞ. We present the visualized format of the values
in Qeða; b; kÞ in Fig. 3.

We would like to point out that the above mathematical
formulas unify all types of distributions, and this is one of
our important contributions. In particular, linear quantiza-
tion can be regarded as a typical case of ESB quantization
when the condition k ¼ b� 2 is satisfied. Similarly, PoT is
equal to the ESB when k ¼ 0. Ternary is a special case of
ESB when k ¼ 0 and b ¼ 2 are both satisfied.

The multiplication of elements in Qeða; b; kÞ can be con-
verted to the corresponding multiplication of elements in Vi

and shift operation (multiply shift factor �i). Therefore, the

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3181

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

overhead of matrix multiplications in quantized DNNs with
ESB relies on the number of significant bits of values in Vi.
The number is controlled with a configurable parameter k
instead of the given bits b. In other words, controlling
parameter k in the ESB can directly impact the computing
efficiency of the discretized DNNs. In addition, we observe
that the elastic k can facilitate ESB to be suitable for various
distributions, ranging from the sharply long-tailed (k ¼ 0)
to the uniform (k ¼ b� 2) one, including the typical bell-
shaped distribution, as shown in Fig. 1d.

Consequently, we can conclude that elastic k has two
major effects: fitting the distribution and improving com-
puting efficiency. By controlling the number of significant
bits, the ESB can achieve a trade-off between accuracy and
efficiency.

3.3 Projection Operator

Next, we shift our attention to projection operator P. We
define the full precision value v for the projection operator.
v enables a look-up function P ð�Þ based on the nearest
neighboring strategy as follows:

P ðvÞ ¼ pi; v 2 ½pi � �i�1
2 ;pi þ �i

2Þ; i ¼ 0; 1; . . . ; N

ti; v 2 ½ti � �i
2 ; ti þ �i

2Þ; i ¼ 0; 1; . . . ; N

(

s:t: v 2 ½�C; C�
(6)

Here, ti 2 fx : x 2 �i �Vi; x 6¼ pig, C ¼ maxð�N �VNÞ, and
maxð�Þ returns the maximum element. The look-up function

in (6) is convenient for formula expression but expensive in
practice, as mentioned in Section 3.1.

Inspired by the significant bits, we observe that the
essence of ESB projection is to reserve limited significant
bits and round the high-precision fraction of values. There-
fore, we combine the shift operation with the rounding oper-
ation to implement P ð�Þ and reduce computational
overhead. Specifically, for a value v 2 ½�C; C�, we seek its
most significant 1 bit: n ¼ maxðfi : v 	 2igÞ. Let xðiÞ repre-
sent the ith binary valued in f0; 1g, v can be divided into
two parts. One is

Pn
i¼n�k 2

i � xðiÞ, which has kþ 1 significant
bits and should be reserved. The other part is

Pn�k�1
i¼�1 2i �

xðiÞ, which represents the high-precision fraction and
should be rounded. Therefore, P ð�Þ can be refined as

P ðvÞ ¼ Rðv > > ðn� kÞÞ < < ðn� kÞ s:t: v 2 ½�C; C�:
(7)

Here, the symbols <<and>> represent the left-shift opera-
tion and right-shift operation, respectively. Rð�Þ represents
rounding operation. All of them are economical computa-
tions because they require only one clock cycle computing
in modern CPU architectures. Based on (7), the
ESB projection operator P can be redesigned as follows:

PQeða;b;kÞðWfÞ ¼ faP ðvÞ : v 2 bWf=aeC�Cg: (8)

Here, b�eC�C truncates the data in the range of ½�C; C�. Conse-
quently, this projection operator is beneficial for quantizing
activation and weights. In particular, the multiplications
recognized as the performance bottleneck can also be proc-
essed directly, without a projection delay.

To demonstrate the superiority of our method theoreti-
cally, we provide a comparison figure to show the projec-
tion process of APoT and ESB. As shown in Fig. 4, given a
vector consists of 20 elements and 5 bits for quantization,
APoT (with 2 groups) requires s ¼ 25 � 1 memory space to
pre-store the step-values of the look-up function. For the
input value 2.98, APoT quantizes it into 3.08 through three
stages: scaling 2.98 to 1.09 with aAPoT , costing s=2 times on
average to look up the right projection value 1.125, and re-
scaling 1.125 to 3.08. Finally, APoT quantizes the original

Fig. 3. Format of quantized values in ESB.

Fig. 4. Projection of APoT [15] (2 groups with scaling factor aAPoT) and ESB (k ¼ 2 and aESB) with five given bits.

3182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

vector to a quantized vector with an error of 1.94, and the
time and space complexities of APoT are both OðsÞ. In con-
trast, ESB (k ¼ 2) does not need to store step-values in
advance. ESB quantizes the value 2.98 through three stages
as well: scaling 2.98 to 4.77 with aESB, obtaining the projec-
tion value 5 through cheap shift and rounding operations,
and re-scaling 5 to 3.13. ESB finally produces a quantized
vector with an error of 1.82, and its time and space complex-
ities are only Oð1Þ. Thus, we can conclude that the APoT
operator implies OðsÞ (for storing s steps) for time and space
complexity. This leads to high computing overheads com-
pared with our ESB.

3.4 Distribution Difference Aligner

Assuming that Wf is sampled from a random variable t.
pðt; uuWf

Þ is the probability of t, and uuWf
is the parameter vec-

tor. For simplicity, we divide this distribution into two
parts: the negative (t < 0) and the non-negative (t 	 0),
because the quantized value set is usually symmetric. Next,
we define the difference Dða; b; kÞ between the two distribu-
tions on the non-negative part as follows:

Dða; b; kÞ ¼
X

q2Q�
eða;b;kÞ

Z
t2S

ðt� qÞ2pðt; uWf
Þdt

s:t: S ¼

½0;a �0
2 Þ; q ¼ 0

½q � a
�N
2 ;1Þ; q ¼ C

½q � a �i�1
2 ; q þ a �i

2 �; q ¼ api; i ¼ 0; 1; . . . ; N

½q � a �i
2 ; q þ a �i

2Þ; q ¼ ati; i ¼ 0; 1; . . . ; N

8>>>>><
>>>>>:

(9)

The symbol � indicates the non-negative part of the set. Gen-
erally, for a symmetric distribution, we can utilize Dða; b; kÞ
above instead of the entire distribution to evaluate distribu-
tion difference. The challenge of evaluating and optimizing
Dða; b; kÞ is to estimate the probability distribution pðt; uuWf

Þ
of weights. Here, we employ data normalization (DN) and
parameterized probability density estimation to address
this challenge.

Normalization. Data normalization (DN) has been widely
used in previous works [15], [38], refining data distribution
with zero mean and unit variance. Let m and s denote the
data mean and standard derivation, respectively, weight
normalization can be defined as follows:

Ŵf ¼
Wf � mWf

sWf
þ �

s:t:
mWf

¼ 1
d

Pd
j¼1 WfðjÞ

sWf
¼

ffi
1
d

Pd
j¼1ðWfðjÞ � mWf

Þ2
q

8<
:

(10)

Here, � ¼ 1e� 7 is a small value to avoid overflow of divi-
sion. Estimating the mean and standard deviation of activa-
tion results in heavy workloads. We employ an exponential
moving average [38] for parameter estimation of activation
on the entire training set in the model training phase. For
the ith training batch with activation, Afi, mAfi

, and sAfi
are

computed as follows.

mAf
¼ ð1� gÞmAf

þ gmAfi

s:t: mAfi
¼ 1

d

Pd
j¼1 AfiðjÞ

sAf
¼ ð1� gÞsAf

þ gsAfi

s:t: sAfi
¼

ffi
1
d

Pd
j¼1ðAfiðjÞ � mAfi

Þ2
q

8>>>>>><
>>>>>>:

(11)

Here, g is a momentum coefficient and is typically set to 0.9
or 0.99. mAf

and sAf
are the estimated mean and standard

deviation of activation on the entire training set, respec-
tively. The definitions of activation normalization for Afi in
the training and test phases are as follows:

Training : Âfi ¼
Afi � mAfi

sAfi
þ �

Test : Âfi ¼
Afi � mAf

sAf
þ �

:

(12)

Algorithm 1. DNN Training With ESB

Input: Iteration times T . Dataset D. DNN depth L. Learning
rate h.

Output: The trained DNNmodel.
1: for t = 1 to T do
2: Afð1Þ ¼ DðtÞ
3: for i = 1 to L do
4: ÂfðiÞ ¼ DNðAfðiÞÞ; ŴfðiÞ ¼ DNðWfðiÞÞ
5: AqðiÞ ¼ ESBðÂfðiÞÞ; WqðiÞ ¼ ESBðŴfðiÞÞ
6: Afðiþ 1Þ ¼ ForwardðAqðiÞ;WqðiÞÞ
7: end for
8: Computing the model loss Loss.
9: GAðLþ 1Þ ¼ @Loss

@Af ðLþ1Þ
10: for i = L to 1 do
11: GAðiÞ ¼ GAðiþ 1Þ � @Af ðiþ1Þ

@AqðiÞ � @Âf ðiÞ
@Af ðiÞ

12: GW ðiÞ ¼ GAðiþ 1Þ � @Af ðiþ1Þ
@WqðiÞ � @Ŵf ðiÞ

@Wf ðiÞ
13: end for
14: for l = 1 to L do
15: WfðiÞ ¼ WfðiÞ � h �GW ðiÞ
16: end for
17: end for

Resolving extremum. Without loss of generality, we
assume that all weights and activation of each layer in the
DNNs satisfy the normal distribution [8], [26]. Through the
above normalization steps, the distribution parameter vec-
tor uuWf

is ½0; 1�T . Thus, the probability distribution is:
pðt; uuWf

Þ ¼ N ðt; 0; 1Þ. After defining pðt; uuWf
Þ, all the parts of

(9) are differentiable, and our optimization can be defined
as follows:

a�
b;k ¼ argmin

ab;k
ðDða; b; kÞÞ; (13)

As shown in Fig. 5, we draw the Dða; b; kÞ curves for a

across various conditions. The horizontal axis represents
the value of a, and the vertical axis represents Dða; b; kÞ.
When a values are obtained from the given range (0,3],
there exist some convex curves such as Dða; 2; 0Þ, Dða; 3; 0Þ,
Dða; 3; 1Þ, Dða; 4; 1Þ, etc. These convex curves imply that we
can resolve their extremums through mathematical meth-
ods as optimal solutions. For non-convex curves, we can
still obtain their extremums as feasible solutions which are

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3183

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

close to the optimal solutions. Therefore, we can directly
resolve the extremum ofDða; b; kÞ to obtain a solution a�

b;k to
achieve accurate quantization. We have computed all desir-
able solutions a�

b;k for different values of b and k. The solu-
tions are presented in Table 1.

3.5 Training Flow

For DNN training, we present the overall training flow as
shown in Fig. 6. Let DNN depth be L, and the 32-bit float-
ing-point weights and activation of the ith layer be WfðiÞ
and AfðiÞ, respectively. We embed the ESB quantization
before the multiplier accumulator (MAC) and quantize
WfðiÞ and AfðiÞ into low-precision WqðiÞ and AqðiÞ, respec-
tively. Then, WqðiÞ and AqðiÞ are fed into the MAC for accel-
eration. In backward propagation, we employ straight-
through-estimation (STE) [6] to propagate the gradients.
The details are described in Algorithm 1.

4 HARDWARE IMPLEMENTATION

The efficient multiplication implementation of ESB quan-
tized values relies on a flexible MAC design, such as low-bit-
width multiplication and shift operation designs. However,
ESB quantized values cannot be processed efficiently on cur-
rent general-purpose CPU/GPU platforms, since they do
not provide the corresponding instructions for processing
these values with flexible bitwidth configurations.

Consequently, in this section, we introduce the hardware
architecture design of the ESB based on the Field Program-
mable Gate Array (FPGA) platform. We first present the
float format for representing ESB quantized values and
explain the multiplication process with ESB float format val-
ues. Then, we present the overall hardware architecture
design, which includes 1) the general computing logic of
DNNs (taking AlexNet as an example) as shown in Fig. 9, 2)
hardware architecture as shown in Fig. 10, and 3) timing
graph as shown in Fig. 11.

4.1 ESB Float Format

The ESB float format was designed as shown in Fig. 7. It is
similar to AdaptivFloat [36] (IEEE 754 format), that is, 1 bit
for the sign, k bits for the fraction, and b� k� 1 bits for the
exponent. Let e be the exponent value, f be the fraction
value, and sb be the sign bit (0 or 1); thus, a quantized value
q can be represented as follows:

q ¼ ð�1Þsb � 0:f; e ¼ 2b�k�1 � 1

ð�1Þsb � 2e � 1:f; otherwise

(
(14)

Here, we use the representations with a maximum exponent
value of 2b�k�1 � 1 to represent small numbers around zero.
The difference from AdaptivFloat is that the design of the
ESB float format presents smaller and gradually progressive
increasing gaps around zero. AdaptivFloat cannot represent
zero accurately, or it forces the absolute minimum values to
zero, resulting in evident larger gaps around zero and los-
ing large information, as shown in Fig. 8. By contrast, ESB
can present progressively increasing gaps around zero, thus
facilitating a smooth distribution around zero and better fit-
ting the weight/activation distributions. The multiplication
of two given values, such as qi with sbi; ei; fi and qj with
sbj; ej; fj, can be derived as follows:

qi � qj ¼ ð�1Þsbi
sbj � ðf < < eÞ

s:t:

f ¼ ðzi þ 0:fiÞ � ðzj þ 0:fjÞ
e ¼ eizi þ ejzj

zi ¼ Iei 6¼2b�k�1�1; zj ¼ Iej 6¼2b�k�1�1

8><
>:

(15)

Here, zi þ 0:fi and zj þ 0:fj are the fraction values. There-
fore, the b-bit multiplication of the ESB float format can be
implemented by a kþ 1 bit multiply operation at most. kþ
1 is the number of significant bits of the fraction values.

4.2 Computing Logic

We use AlexNet as an example to introduce the typical com-
puting logic of a quantized DNNwith ESB. AlexNet has five

Fig. 5.Dða; b; kÞ with different a and its first and second derivative curves for different values of b and k.

3184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

convolutional layers and three fully connected layers. A
convolutional layer usually consists of four stages: convolu-
tion, pooling (max-pooling, MP), activation (ReLU), and
batch normalization (BN). In ESB, the scale stage (Scale),
data normalization (DN) (Section 3.4) stage, and ESB quanti-
zation (in (8)) stage are attached to quantize the activation
values. Therefore, the lth convolution layer of AlexNet
includes seven stages in our implementation, as shown in
Fig. 9.

In the convolution stage, we employ the weight
WqðlÞ 2 QeðaWqðlÞ; b; kÞK�K�cin�cout to filter the input fea-
ture map AqðlÞ 2 QeðaAqðlÞ; b; kÞh�w�cin and output Afðlþ
1Þ 2 Rh�w�cout . WqðlÞ and AqðlÞ are the ESB float-format
tensors. In particular, a convolution operation traverses
the input feature map AqðlÞ and multiplies accumulating
cin channel features and the corresponding cin kernels to
produce the output feature map Afðlþ 1Þ. The total
number of operations for a convolution computation is
up to h � w �K �K � cin � cout. The following MP operation
employs a window of size p� p to slide on the feature
map by the stride step of s and computes the maximum
value within the window during sliding. If s is not divis-
ible by h� p or w� p, the sliding window cannot be
aligned with the feature map. We captured the intersec-
tion window to compute the MP result. After the MP
operation, the size of the feature map Afðlþ 1Þ degrades
to ðdhse; dwse; coutÞ. The following five stages only involve
injective operations and are defined as shown in Fig. 9.
These stages can be fused in the model inference.

4.3 Hardware Architecture

Our accelerator architecture is shown in Fig. 10, which has
two modules: convolution and post-processing. The convo-
lution module processes the computation-intensive convo-
lution operation, whereas the post-processing module
processes all the remaining stages, including MP, ReLU,
Scale, BN, DN, and ESB quantization.

In the convolution module, we split the original feature
map and output feature map into small tensors with sizes of

ðTh; Tw; TnÞ and ðTh; Tw; TmÞ as shown in Fig. 9, and split the
computing operations into d h

Th
e � d w

Tw
e � dcinTne � d

cout
Tm

e groups of
small convolution. To hide the data transmission time, we
employ dual ping-pong input buffers (0/1) of size
ðTh; Tw; TnÞ and dual ping-pong output buffers (0/1) of size
ðTh; Tw; TmÞ for a small convolution computation, as shown
in Fig. 10. Then, we design Tm � Tn MAC units, which can
execute 2 � Tm � Tn multiply-accumulating operations in par-
allel. Therefore, we can reduce the computing time of the
convolution stage by Tm � Tn times and accelerate the convo-
lution inference.

In the post-processing module, we compress the six
stages into three steps by fusing some stages into one, as
shown in Fig. 10. The ”MP&ReLU” step fuses MP and
ReLU operations. MP takes a sliding windowwith a pooling
size of p� p and a stride step of s to process the small out-
put tensor of size ðTh; Tw; TmÞ. If the sliding window of the
MP cannot be aligned with the tensor, we cache their inter-
section window and delay the pooling operation until the
next computing trip. The following ReLU eliminates nega-
tive MP outputs. Then, we fuse the Scale, BN, DN stages,
and the division part of ESB quantization into a single step
of “BN and DN” as follows:

DN(BN(Scale(x)))=aAqðlþ 1Þ ¼ axþ b

s:t:

a ¼ aWqðlÞ�aAqðlÞ��BN
aAqðlþ1Þ�sAf ðlþ1Þ�sBN

b ¼ sBN �bBN�mBN ��BN�sBN �mAf ðlþ1Þ
aAqðlþ1Þ�sAf ðlþ1Þ�sBN ;

8><
>:

(16)

Here, aAqðlÞ;aWqðlÞ are the scaling factors of AqðlÞ andWqðlÞ of
the lth layer, respectively. aAqðlþ1Þ is the scaling factor for
Aqðlþ 1Þ, which is the input of the ðlþ 1Þ-th layer. mBN , sBN ,
�BN , and bBN are the parameters of BN, mAf ðlþ1Þ and sAf ðlþ1Þ
are the parameters of DN. Since all of these parameters are
constant in the model inference, we compute a and b offline

Fig. 6. Overall training flow of DNNs with ESB quantization.

Fig. 7. ESB float format.
Fig. 8. Quantized values of ESB and AdaptivFloat with the same 1-bit
sign, 2-bit exponent and 1-bit fraction.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3185

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

to reduce the computing overhead. The ”ESB quantization”
step, implemented with the truncation and projection as
shown in (4), quantizes elements of Afðlþ 1Þ into the
ESB float format and then stores them into Aqðlþ 1Þ. We
design a pipeline to conduct the three steps.Aqðlþ 1Þ is writ-
ten to output buffer 0 or 1 and finally stored in the off-chip
memory.

4.4 Timing Graph

Using the ESB pipeline design, we can compute the convo-
lution module and post-processing module in parallel to
fully utilize hardware resources and accelerate DNN infer-
ence. The timing graph of the accelerator is shown in
Fig. 11. In the convolution module, we utilize dual ping-
pong buffers for input prefetching to hide the data transmis-
sion time when executing MAC in the convolution module.
The dual output buffers facilitate the execution of two

modules in parallel. When the convolution module writes
data into the output buffer 0, the post-processing module
deals with another output buffer 1, and vice versa.

5 EVALUATION

To validate the unique features of ESB and demonstrate its
accuracy and efficiency benefits, we conducted extensive
experiments on representative image classification tasks
and implemented ESB quantization on FPGAs.

5.1 Experimental Setting

In the experiments, all the weights and activation of all layers
in DNNs, including the first and last layers, are quantized by
ESB with the same settings. We use Keras v2.2.4 and Tensor-
Flow v1.13.1 as the DNN training frameworks. The layers in
Keras are reconstructed as described in Section 3.5 to per-
form ESB quantization in the image classification task.

Fig. 9. Computing logic of a convolution layer in AlexNet.

Fig. 10. Hardware architecture of convolution layer implementation.

Fig. 11. Timing graph.

3186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

Datasets and models. Five DNN models on three data sets
are used in our experiments. We utilize LeNet5 with 32C5-
BN-MP2-64C5-BN-MP2-512FC-10Softmax on MNIST and
VGG-like with 64C3-BN-64C3-BN-MP2-128C3-BN-128C3-
BN-MP2-256C3-BN-256C3-BN-MP2-1024FC-10-Softmax on
Cifar10. Here, C is convolution, BN is batch normalization,
MP indicates maximum pooling, and FC denotes full con-
nection. Data augmentation in DSN [39] is applied for VGG-

like training. We also conduct experiments over two con-
ventional networks, AlexNet [2] and ResNet18 [1], and a
light-weight network MobileNetV2 [40] on ImageNet [41].
We use the BN [38] layer to replace the original local
response normalization (LRN) layer in AlexNet for a fair
comparison with ENN [18], LQ-Nets [30], and QIL [19]. We
adopt the open data augmentations for ImageNet as in Ten-
sorFlow: resize images into a size of 224� 224 following a

TABLE 1
Results of ESB Across Various Configurations

W/A k Name Alias DDA a� Datasets & Models

Mnist Cifar10 ImageNet(Top1/Top5)

LeNet5 VGG-like AlexNet ResNet18

32/32 - Referenced - 0 - 99.40 93.49 60.01/81.90y 69.60/89.24y
2/2 0 ESB(2,0) Ternary 0.1902 1.2240 99.40 90.55 58.47/80.58 67.29/87.23
3/3 0 ESB(3,0) PoT 0.0476 0.5181 99.45 92.55 60.73/82.53 69.29/88.79
3/3 1 ESB(3,1) Fixed 0.0469 1.3015 99.61 92.76 61.52/82.96 69.82/89.10
4/4 0 ESB(4,0) PoT 0.0384 0.0381 99.61 92.54 61.02/82.38 69.82/89.04
4/4 1 ESB(4,1) ESB 0.0127 0.4871 99.53 93.41 62.19/83.37 70.41/89.43
4/4 2 ESB(4,2) Fixed 0.0129 1.4136 99.52 93.30 61.45/82.64 70.36/89.29
5/5 1 ESB(5,1) ESB 0.0106 0.0391 99.55 93.44 61.68/83.08 70.41/89.57
5/5 2 ESB(5,2) ESB 0.0033 0.4828 99.53 93.43 62.42/83.52 71.06/89.48
5/5 3 ESB(5,3) Fixed 0.0037 1.5460 99.54 93.26 61.72/82.93 70.60/89.53
6/6 2 ESB(6,2) ESB 0.0028 0.0406 99.52 93.53 62.07/83.31 70.30/89.58
6/6 3 ESB(6,3) ESB 0.0008 0.4997 99.53 93.49 62.39/83.58 70.99/89.55
6/6 4 ESB(6,4) Fixed 0.0011 1.6878 99.52 93.40 61.91/83.23 70.30/89.37
7/7 3 ESB(7,3) ESB 0.0007 0.0409 99.52 93.29 61.99/83.32 71.06/89.55
7/7 4 ESB(7,4) ESB 0.0002 0.5247 99.54 93.29 62.26/83.25 70.98/89.58
7/7 5 ESB(7,5) Fixed 0.0003 1.8324 99.53 93.32 61.84/83.20 70.91/89.62
8/8 4 ESB(8,4) ESB 0.0002 0.0412 99.52 93.47 62.22/83.40 71.03/89.78
8/8 5 ESB(8,5) ESB 0.0001 0.5527 99.53 93.51 62.94/84.15 70.96/89.74
8/8 6 ESB(8,6) Fixed 0.0001 1.9757 99.55 93.36 61.63/82.96 70.96/89.70

1W/A denotes the given bits for weight quantization and activation quantization, respectively. Name is abbreviated. Alias refers to special cases of ESB; Fixed
denotes the linear quantization. DDA is the distribution difference estimation, and the bold results represent the minimal DDA under the corresponding given
bits and significant bits. a� indicates a desirable solution. The configurations of ESB(b; k) b� k > 4 are not recommended because they are similar to configura-
tions of ESB(b� 1; k) in terms of accuracy but consume more bits. y The results refer to [9].

TABLE 2
Detailed Settings of Quantization Methods Collected From the Literature

Methods Format Weights Activation FConv LFC
Bits SFB SFN Bits SFB SFN

Linear (Fixed-point) mL2Q [8] Fixed 2,4,8 32 1 32 - - Y 8
VecQ [9] Fixed 2,4,8 32 1 8 32 1 Y Y
TSQ [26] Fixed 2 32 c y 2 32 2 N N
BCGD [20] Fixed 4 32 1 4 32 1 Y Y
HAQ [28] Fixed f2,f3,f4x 32 1 32,f4 -/32 -/1 8 Y
DSQ [7] Fixed 2,3,4 32 1 2,3,4 32 1 N N
PACT [27] Fixed 2,3,4,5 32 1 2,3,4,5 32 1 N N
Dorefa-Net [6] Fixed 2,3,4,5 32 1 2,3,4,5 32 1 N N
QIL [19] Fixed 2,3,4,5 32 1 2,3,4,5 32 1 N N

Nonlinear INQ [17] PoT 2,3,4,5 32 1 32 - - - -
ENN [18] PoT 2,3 32 1 32 - - - -
ABC-Net [21] - 3,5 32 {3,5}*c 3,5 32 3,5 - -
LQ-Nets [30] - 2,3,4 32 {2,3,4}*c 2,3,4 32 2,3,4 N N
AutoQ [31] - f2,f3,f4 32 {f2,f3,f4}*c f2,f3,f4 32 f2,f3,f4 - -
APoT [15] - 2,3,5 32 1 2,3,5 32 1 N N
ESB ESB 2-8 32 1 2-8 32 1 Y Y
ESB* ESB 2-5 32 1 2-5 32 1 N N

1SFB is scaling-factor bitwidth, and SFN is the number of the scaling factors. FConv represents the first convolutional layer, LFC represents the last fully
connected layer, and Y or N indicates whether quantization was done. Fixed refers to the fixed-point format. y c denotes the number of convolutional kernels. x fx
denotes there are x average bits for the mixed-precision schemes.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3187

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

random horizontal flip. Then, we subtract the mean of each
channel for AlexNet and ResNet18, and scale pixels into the
range of [-1,1] for MobileNetV2.

Model Training. We take the open pre-trained models
from [9] to initialize the quantized models and then fine-
tune them to converge. For experiments with fewer bits
than 4, we train the quantized models for a total number of
60 epochs with an initial learning rate (LR) of 1.0. LR is
decayed to 0.1, 0.01, and 0.001 at 50, 55, and 57 epochs,
respectively. For experiments with given bits of more than
4, we train the quantized models for a total number of 10
epochs with an initial LR of 0.1, and decay the LR to 0.01
and 0.001 at 7 and 9 epochs, respectively.

Hardware Platform. Model training and evaluation are
based on a Super Micro 4028GR-TR server equipped with
two 12-core Intel CPUs (Xeon E5-2678 v3), an Nvidia RTX
2080ti GPU, and 64GB memory. The accelerator system of the
ESB is implemented on the Xilinx ZCU102 FPGA platform,
which is equipped with a dual-core ARM Cortex-A53 and
based on Xilinx’s 16nm FinFET+ programmable logic fabric
with 274.08K LUTs, 548.16K FFs, 912 BRAM blocks with
32.1Mb, and 2520 DSPs. Vivado 2020.1 is used for system
verification and ESB simulation.

5.2 ESB Accuracy Across Various Bits

We first focus on the investigation of the inference accuracy
achieved by ESB across various bits. The notation with the
value pair for ESB, such as ESB(b; k), indicates that there are
b given bits and k significant bits among b bits in the
ESB scheme. As mentioned in Section 3.2, linear quantiza-
tion (k ¼ b� 2), PoT (k ¼ 0), and Ternary (k ¼ 0 and b ¼ 2)
are special cases of ESB. A series of experimental results are
shown in Table 1 to verify the effect of elastic significant bits
on the accuracy.

ESB can retain high accuracy across all datasets and
DNN models. For example, when pair ðb; kÞ has the values
of (3,1), (6,2), (8,5), and (7,3), the accuracy results of ESB can
reach 99:61%, 93:53%, 62:94%(Top1), and 71:06%(Top1), for
LeNet5, VGG-like, AlexNet, and ResNet18, respectively,
which outperform the referenced pre-trained models by
0:21%, 0:04%, 2:93%, and 1:46%, respectively. When the con-
ditions b� k ¼ 3 ðb > 3Þ are satisfied, ESB has the minimal
DDAs while maintaining relatively higher accuracy, such
as ESB(4,1) and ESB(5,2). In particular, under three given
bits, the results of ESB outperform referenced pre-trained
AlexNet and ResNet18 by 1:51% and 0:22%, respectively, in
terms of accuracy. Our proposed DDA calculates the distri-
bution of quantized values of ESB to fit the bell-shaped dis-
tribution well, thus maintaining the features of the original
values and reducing the accuracy degradation. In other
words, the minimal DDA result corresponds to the best
quantizing strategy of the ESB for different given bits.

5.3 Comparison With State-of-the-Art Methods

We then compare the ESB with state-of-the-art methods
under the same bit configurations. We perform comparisons
from two aspects: DNN inference efficiency and accuracy.

For efficiency, we obtain some observations through the
quantization settings, as shown in Table 2. First, most of the
methods, such as APoT [15], have to reserve full precision

values for the first and last layers in DNNs; otherwise, they
cannot prevent decreasing accuracy. Methods including
mL2Q [8], INQ [17], and ENN [18] are forced to use 32-bit
floating-point activation to maintain accuracy. Second,
some methods [21], [26], [30], [31] attempt to use

TABLE 3
Comparison With the State-of-the-Art Approaches

Methods W/A AlexNet ResNet18

Top1 Top5 Top1 Top5

INQ 2/32 - - 66.02 87.13
ENN 2/32 58.20 80.60 67.00 87.50
mL2Q 2/32 - - 65.60 86.12
VecQ 2/8 58.04 80.21 67.91 88.30
AutoQ f2/f3 - - 67.40 88.18
TSQ 2/2 58.00 80.50 - -
DSQ 2/2 - - 65.17 -
PACT 2/2 55.00 77.70 64.40 85.60
Dorefa-Net 2/2 46.40 76.80 62.60 84.40
LQ-Nets 2/2 57.40 80.10 64.90 85.90
QIL 2/2 58.10 - 65.70 -
APoT 2/2 - - 67.10 87.20
ESB(2,0) 2/2 58.47 80.58 67.29 87.23
ESB*(2,0) 2/2 58.73 81.16 68.13 88.10
INQ 5/32 57.39 80.46 68.98 89.10
PACT 5/5 55.70 77.80 69.80 89.30
Dorefa-Net 5/5 45.10 77.90 68.40 88.30
QIL 5/5 61.90 - 70.40 -
ABC-Net 5/5 - - 65.00 85.90
APoT 5/5 - - 70.90 89.70
ESB(5,2) 5/5 62.42 83.52 71.06 89.48
ESB*(5,2) 5/5 62.89 83.91 71.16 89.73
mL2Q 8/32 - - 65.52 86.36
VecQ 8/8 61.60 83.66 69.86 88.90
ESB(8,5) 8/8 62.94 84.15 70.96 89.74

Methods W/A AlexNet ResNet18

Top1 Top5 Top1 Top5

Referenced 32/32 60.01 81.90 69.60 89.24
INQ 3/32 - - 68.08 88.36
ENN2 x 3/32 59.20 81.80 67.50 87.90
ENN4 x 3/32 60.00 82.40 68.00 88.30
AutoQ f3/f4 - - 69.78 88.38
DSQ 3/3 - - 68.66 -
PACT 3/3 55.60 78.00 68.10 88.20
Dorefa-Net 3/3 45.00 77.80 67.50 87.60
ABC-Net 3/3 - - 61.00 83.20
LQ-Nets 3/3 - - 68.20 87.90
QIL 3/3 61.30 - 69.20 -
APoT 3/3 - - 69.70 88.90
ESB(3,1) 3/3 61.52 82.96 69.82 89.10
ESB*(3,1) 3/3 61.99 83.46 70.14 89.36
INQ 4/32 - - 68.89 89.01
mL2Q 4/32 - - 65.92 86.72
VecQ 4/8 61.22 83.24 68.41 88.76
DSQ 4/4 - - 69.56 -
PACT 4/4 55.70 78.00 69.20 89.00
Dorefa-Net 4/4 45.10 77.50 68.10 88.10
LQ-Nets 4/4 - - 69.30 88.80
QIL 4/4 62.00 - 70.10 -
BCGD 4/4 - - 67.36 87.76
ESB(4,1) 4/4 62.19 83.37 70.41 89.43
ESB*(4,1) 4/4 62.81 84.02 71.11 89.62

xENN2 indicates one-bit shift results denoted as f�2;þ2g, and ENN4 repre-
sents two-bit shift denoted as f�4;þ4g in ENN [18].

3188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

convolutional kernel quantization to replace weight quanti-
zation, and then introduce additional full precision scaling
factors. The number of scaling factors of these methods is
related to the number of convolutional kernels, as shown in
Table 2, which can significantly increase the computing
overhead.

In summary, ESB quantizes weights and activation across
all layers with elastic significant bits and only introduces one
shared full precision scaling factor for all elements of weights
and activation. In this manner, ESB eliminates unnecessary
computations and reduces the computational scale, thus
improving efficiency. Moreover, in order to ensure a fair
comparison with the methods that utilize the full precision
weights/activation for the first and last layers, we perform
additional experiments without quantizing the first and last
layers. The results are denoted as ESB*.

For accuracy comparison, we survey and replicate abun-
dant existing methods as our comparison targets and list all
the quantitative results in Table 3. Besides, to highlight the
accuracy improvements of ESB, we provide the accuracy
comparison by different quantization categories (Linear-Q
and Nonlinear-Q) in Fig. 12. ESB consistently outperforms
the state-of-the-art approaches across all given bits and
improves the top 1 results of AlexNet and ResNet18 by
4.78% and 1.92%, respectively, on average. Even by quan-
tizing the weights and activation for the first and last
layers, ESB still outperforms APoT by 0:16% for accuracy
on average. APoT performs a simple sum of several PoTs,
which leads to the deviation of the target bell-shaped dis-
tribution far away. ESB also has higher accuracy compared
with the approaches using full precision activation such as
INQ and ENN, with improvements of 1:65% and 1:48%
over ResNet18, respectively. In addition, ESB is suitable for
2-bit quantization and is better than 2-bit schemes such as
TSQ, DSQ, and APoT in terms of accuracy. Furthermore,
ESB* consistently achieves the best accuracy and outper-
forms all state-of-the-art works over AlexNet and

ResNet18, respectively. Even under two given bits, com-
pared with APoT, ESB* can improve accuracy by up to
1:03%. On average, ESB* outperforms APoT by 0:58% in
terms of accuracy.

The reason ESB can achieve high accuracy is that ESB fits
the distribution well with the ESB and DDA. Significant bits
provide a fine-grain control of the density of quantized val-
ues for various distributions of DNN weights/activation.
Furthermore, DDA can minimize the difference between
the ESB quantized value distribution and the original distri-
bution to facilitate ESB to seek the best distribution. Conse-
quently, fine control granularity inspires ESB to achieve
accuracy gains.

5.4 ESB on Light-Weight Model

Wenext evaluate the ESB on the popular light-weightmodel,
MobileNetV2 [40], to verify the superiority of ESB. The
important results of the ESB are presented in Table 4 and
Fig. 12f. We would like to emphasize that the ESB quantizes
the weights and activation for all layers of MobileNetV2.
ESB outperforms DSQ [7] and VecQ [9], and achieves an
average accuracy improvement of 3.56% compared with
state-of-the-art methods. Lowering to 2 bits for quantization,
ESB can maintain an accuracy of 66:75%, which is similar to
the accuracy of HAQ with mixed-precision weights and full
precision activation. Experiments on MobileNetV2 demon-
strate that ESB quantization is an effective strategy to fit the
distributions ofweights or activation by controlling the num-
ber of significant bits of quantized values, so as to mitigate
the accuracy degradation of low-bitwidth quantization.

5.5 Hardware Evaluation

In this subsection, we implement ESB accelerator on the
FPGA platform to verify the hardware benefits of the ESB.
The objectives of the hardware evaluation are twofold: 1)
exploring the hardware resource utilization of ESB with

Fig. 12. Visual accuracy comparisons with state-of-the-art methods on different models. Linear-Q denotes linear quantization and Nonlinear-Q refers
to nonlinear quantization. The x-axis represents bitwidth.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3189

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

different configurations; 2) providing insight into energy effi-
ciency and presenting comparisons among ESB accelerator,
state-of-the-art designs, andCPU/GPUplatforms.

Resource Utilization. In general, there are limited comput-
ing resources such as LUTs, FFs, BRAMs, and DSPs in
FPGAs. Hardware implementations usually need to fully
utilize the resources to achieve a high concurrency and
clock frequency. In our experiments, we freeze the clock fre-
quency to 145 MHz. For a fair comparison, we employ the
LUT instead of the DSP to implement fraction multiplica-
tion. The resource utilization and concurrency under vari-
ous ESB implementations are listed in Table 5.

First, we show the effect of how significant bits affect the
MAC, including the multiplier and accumulator, at the bit-
wise level. We observe that fewer significant bits of fraction,
that is, a smaller value of k, can reduce the resource con-
sumption of the multiplier. With the same number of given
bits, the consumption of LUTs for one multiplier can

decrease by 6.3 on an average if k is decreased by 1. This is
because fewer significant bits can reduce the consumption
for fraction-multiplication, that is, ðzi þ 0:fiÞ � ðzj þ 0:fjÞ in
(15), thus consuming fewer computing resources. Neverthe-
less, the results also show that decreasing k can increase the
resource consumption of the accumulator. Using the same
number of given bits, the consumption of LUTs of the accu-
mulator increases by 3.6 on average, if k is decreased by 1.
This is because the relatively large exponents, that is, e ¼
eizi þ ejzj in (15), require a high output bitwidth and thus
increase the resource budgets of the accumulator. In terms
of MAC consumption, ESB can strike a better balance
between the multiplier and accumulator, utilizing fewer
resources than fixed-point (Fixed) and PoT.

Second, we verify that the elastic significant bits can
improve the performance of the accelerator design. We
take the achieved performance under per 1k LUTs for a
quantitative evaluation. As shown in Fig. 13, the accelera-
tor of ESB(2,0) exhibits the best performance with 10.59
GOPS under 1k LUTs, because it costs only 14 LUTs for
MAC. For the other cases, the best results are 8.63, 5.27,
3.59, 2.70, 2.27, and 1.99 GOPS/kLUTs for configurations
(3,1), (4,1), (5,1), (6,3), (7,5), and (8-5) across various quan-
tizing bits, and the improvements are up to 11.19%,
18.68%, 10.77%, 12.96%, 42.59%, and 25.73% compared
with the results of (3,0), (4,0), (5,3), (6,4), (7,3), and (8,4),
respectively. By employing desirable number of signifi-
cant bits in accelerator design, the performance within
per 1k LUTs can improve by 20.32% on average without
requiring more given bits.

Energy Efficiency. Energy efficiency is a critical criterion
for evaluating a computing system, which is defined as the
number of operations that can be completed within a unit of
energy (J) [42]. Here, we define the energy efficiency as the
ratio of peak performance (GOPS) to power (W). Fig. 14
presents the energy efficiency comparisons of our accelera-
tor with the recent FPGA designs, including ELB-NN[43],
Winograd [44], Caffeine [45], and Roofline-model-based
method (RMB) [46], and CPU (Xeon E5-2678 v3)/GPU (RTX
2080 Ti) platforms.

TABLE 4
Results on Light-Weight MobileNetV2 [40]

Methods W/A MobileNetV2

Top1 Top5

Referenced 32/32 71.30 90.10
HAQ f2/32 66.75 87.32
VecQ 2/8 63.34 84.42
ESB(2,0) 2/2 66.75 87.14
HAQ f3/32 70.90 89.76
ESB(3,1) 3/3 70.51 89.46

Methods W/A MobileNetV2

Top1 Top5

VecQ 4/8 71.40 90.41
HAQ f4/f4 67.01 87.46
AutoQ f4/f4 70.80 90.33
DSQ 4/4 64.80 -
PACT 4/4 61.39 83.72
ESB(4,1) 4/4 71.60 90.23

1The results for Referenced refer to [9], and the results of PACT are cited
from [28].

TABLE 5
ESB Accelerator Resource Utilization and Performance Based on AlexNet

yMul. denotes the multiplier; Acc. represents the accumulator; Fixed refers to the fixed-point format of linear quantization.

3190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

Compared with the ELB-NN [43] for the formats of 8-8218
and 4-8218 (extremely low bitwidth quantization and the least
bit width is 1), ESB(2,0) achieves higher energy efficiency,
with improvements of 71.90% and 9.73%, respectively. Com-
paredwith the accelerators using high-bitwidth formats, such
as Fixed-8 [43], [47] and Fixed-16 [44], [45], or even float-point
data type (FP32) [46], ESB(8,6) can achieve a higher energy
efficiency, and the improvement is by 8� on average, and up
to 26� (ESB(8,6) versus [46]). ESB accelerator also achieves a
higher energy efficiency than CPU/GPU platforms across all
bitwidths and configurations. Their energy efficiency
increased by 22� and 4� on average comparedwith CPU and
GPU, and up to 65� and 11� improvement at 2-bit, respec-
tively. In addition, ESB accelerator can be implemented with
various bitwidths and configurations, which can help us
achieve a fine-grained trade-off between inference accuracy
and computing efficiency. For example, ESB(3,0) is a reason-
able choice under a tolerated accuracy of 60% (AlexNet Top1),
which can achieve an energy efficiency of 345.30GOPS/W
with an accuracy of 60.73%. ESB(3,1) with 317.94GOPS/W is a
reasonable choice under a tolerated accuracy of 61%, while
ESB(4,1) with 218.35GOPS/W is the desirable choice under a
tolerated accuracy of 62%.

6 CONCLUSION

In this paper, we propose an ESB for DNN quantization to
strike a good balance between accuracy and efficiency. We
explore a new perspective to improve quantization accuracy
and concurrently decrease computing resources by

controlling significant bits of quantized values. We propose
the mathematical expression of ESB to unify various distri-
butions of quantized values. The unified expression outlines
the linear quantization and PoT quantization, and guides
DNN compression from both accuracy and efficiency per-
spectives by fitting distribution using ESB. Moreover, we
design an ESB projection operator involving shifting and
rounding operations, which are cheap bit operations at the
hardware level without complex conversions. Fewer signifi-
cant bits representing weight/activation and cheap projec-
tion of quantization are what hardware desires because
they meet hardware computing natures. In addition, the
proposed DDA always finds a desirable distribution for
ESB quantization to reduce accuracy degradation.

Experimental results show that ESB quantization outper-
forms state-of-the-art methods and achieves higher accu-
racy across all quantizing bitwidths. The hardware
implementation also demonstrates that quantizing DNNs
with elastic significant bits can achieve higher energy effi-
ciency without increasing the quantizing bitwidth. In the
future, we will further study the real performance benefits
of our ESB on edge devices.

ACKNOWLEDGMENTS

Cheng Gong and Ye Lu contributed equally.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Conf.
Neural Inf. Process. Syst., 2012, pp. 1106–1114.

[3] W. Niu et al., “PatDNN: Achieving real-time DNN execution on
mobile devices with pattern-based weight pruning,” in Proc.
Architect. Support Program. Languages Operating Syst., 2020, p.
907–922.

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,”
inProc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[5] Y. Chen et al., “T-DLA: An open-source deep learning accelerator
for ternarized dnn models on embedded FPGA,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, 2019, pp. 13–18.

[6] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients,”CoRR, vol. abs/1606.06160, 2016.

[7] R. Gong et al., “Differentiable soft quantization: Bridging full-pre-
cision and low-bit neural networks,” in Proc. Int. Conf. Comput.
Vis., 2019, pp. 4851–4860.

[8] C. Gong et al., “ml2Q: An ultra-low loss quantization method
for DNN compression,” in Proc. Int. Joint Conf. Neural Netw.,
2019, pp. 1–8.

[9] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen, “VecQ: Mini-
mal loss DNN model compression with vectorized weight
quantization,” IEEE Trans. Comput., vol. 70, no. 5, pp. 696–710,
May 2021.

[10] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quanti-
zation of convolutional networks for rapid-deployment,” in Proc.
Conf. Neural Inf. Process. Syst., 2019, pp. 7950–7958.

[11] J. Faraone, N. J. Fraser, M. Blott, and P. H. W. Leong, “SYQ:
Learning symmetric quantization for efficient deep neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 4300–4309.

[12] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.

[13] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural
networks using logarithmic data representation,” CoRR, vol. abs/
1603.01025, 2016.

Fig. 13. Peak performance (GOPS) per 1k LUTs.

Fig. 14. Energy efficiency comparison among state-of-the-art designs
and CPU/GPU.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3191

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

[14] J. Faraone et al., “AddNet: Deep neural networks using FPGA-
optimized multipliers,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 28, no. 1, pp. 115–128, Jan. 2020.

[15] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantiza-
tion: An efficient non-uniform discretization for neural networks,”
in Proc. Int. Conf. Learn. Representations, 2020.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural network with pruning, trained quantization and
huffman coding,” in Proc. Int. Conf. Learn. Representations, 2016.

[17] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental net-
work quantization: Towards lossless CNNs with low-precision
weights,” in Proc. Int. Conf. Learn. Representations, 2017.

[18] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neu-
ral network: Squeeze the last bit out with ADMM,” in AAAI, S. A.
McIlraith and K. Q. Weinberger, Eds. Palo Alto, CA, USA: AAAI
Press, 2018, pp. 3466–3473.

[19] S. Jung et al., “Learning to quantize deep networks by optimizing
quantization intervals with task loss,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 4350–4359.

[20] P. Yin, S. Zhang, J. Lyu, S. J. Osher, Y. Qi, and J. Xin, “Blended
coarse gradient descent for full quantization of deep neural
networks,” CoRR, vol. abs/1808.05240, 2018.

[21] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolu-
tional neural network,” in Proc. Conf. Neural Inf. Process. Syst.,
2017, pp. 345–353.

[22] X. Fan et al., “Effect of image noise on the classification of skin
lesions using deep convolutional neural networks,” Tsinghua Sci.
Technol., vol. 25, no. 3, pp. 425–434, 2020.

[23] Q. Cao, W. Zhang, and Y. Zhu, “Deep learning-based classifica-
tion of the polar emotions of ”moe”-style cartoon pictures,” Tsing-
hua Sci. Technol., vol. 26, no. 3, pp. 275–286, 2021.

[24] W. Zhong, N. Yu, and C. Ai, “Applying Big Data based deep
learning system to intrusion detection,” Big Data Min. Anal., vol.
3, no. 3, pp. 181–195, 2020.

[25] Z. Kai and Z. Tao, “Deep reinforcement learning based mobile
robot navigation: A review,” Tsinghua Sci. Technol., vol. 26, no. 5,
pp. 674–691, 2021.

[26] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-
step quantization for low-bit neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4376–4384.

[27] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized clipping activa-
tion for quantized neural networks,” CoRR, vol. abs/1805.06085,
2018.

[28] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-
aware automated quantization with mixed precision,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 8612–8620.

[29] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “ReBNet:
Residual binarized neural network,” in Proc. 26th IEEE Annu.
Int. Symp. Field-Programmable Custom Comput. Mach., 2018,
pp. 57–64.

[30] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quanti-
zation for highly accurate and compact deep neural networks,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 373–390.

[31] Q. Lou, F. Guo, M. Kim, L. Liu, and L. Jiang, “AutoQ: Automated
kernel-wise neural network quantization,” in Proc. Int. Conf. Learn.
Representations, 2020.

[32] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “End-to-end DNN
training with block floating point arithmetic,” CoRR, vol. abs/
1804.01526, 2018.

[33] U. K€oster et al., “Flexpoint: An adaptive numerical format for effi-
cient training of deep neural networks,” in Proc. Conf. Neural Inf.
Process. Syst., 2017, pp. 1742–1752.

[34] J. Gustafson and I. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing Front. Innovations, vol. 4,
no. 2, 2017.

[35] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustaf-
son, and D. Kudithipudi, “Deep positron: A deep neural network
using the posit number system,” in Proc. Des. Autom. Test Europe
Conf. Exhibit., 2019, pp. 1421–1426.

[36] T. Tambe et al., “Adaptivfloat: A floating-point based data type for
resilient deep learning inference,” CoRR, vol. abs/1909.13271,
2019.

[37] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” in Proc.
Int. Conf. Mach. Learn., 2015, pp. 2285–2294.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 448–456.

[39] C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. 18th Int. Conf. Artif. Intell. Statist., 2015,
pp. 562–570.

[40] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[41] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[42] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] A survey of
FPGA-based neural network inference accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 1, pp. 1–26, 2019.

[43] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design
flow of accelerating hybrid extremely low bit-width neural net-
work in embedded FPGA,” in Proc. 28th Int. Conf. Field Program-
mable Logic Appl., 2018, pp. 163–1636.

[44] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms
for convolutional neural networks on FPGAs,” in Proc. IEEE 25th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2017,
pp. 101–108.

[45] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep con-
volutional neural networks,” IEEE Trans. Comput-Aided Design
Integr. Circuits Syst., vol. 38, no. 11, pp. 2072–2085, Nov. 2019.

[46] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep convolu-
tional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays, 2015, pp. 161–170.

[47] M. V�estias, R. P. Duarte, J. T. de Sousa, and H. Neto, “Lite-CNN:
A high-performance architecture to execute CNNs in low density
FPGAs,” in Proc. 28th Int. Conf. Field Programmable Logic Appl.,
2018, pp. 399–3993.

Cheng Gong received the BEng degree in
computer science from Nankai University, in
2016. He is currently working toward the PhD
degree at the College of Computer Science, Nan-
kai University. His research interests include het-
erogeneous computing, machine learning and
Internet of Things.

Ye Lu received the BS and PhD degrees from
Nankai University, Tianjin, China, in 2010 and
2015, respectively. He is currently an associate
professor with the College of Cyber Science,
Nankai University now. His research interests
include DNN FPGA accelerator, blockchian virtual
machine, embedded system, Internet of Things.

Kunpeng Xie received the BEng degree in com-
puter science from Nankai University, in 2019.
He is currently working toward the PhD with the
College of Computer, Intelligent computing sys-
tem Lab, Nankai University. His research focuses
on how computer CPU-GPU heterogeneous sys-
tem accelerates the training of neural network
models and to design effective CNN inference
accelerator on FPGA.

3192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

Zongming Jin received the BS degree from
Xidian University, Xian, China, in 2019. He is cur-
rently working toward the MS degree with Intelli-
gent Computing System Lab, College of Cyber
Science, Nankai University, Tianjin, China. His
research interests include heterogeneous com-
puting, embedded system and Internet of Things.

Tao Li received the PhD degree in computer sci-
ence from Nankai University, China in 2007. He is
currently a professor with the College of Computer
Science, Nankai University. He is the member of
IEEEComputer Society and the ACM, and the dis-
tinguishedmember of theCCF. His research inter-
ests include heterogeneous computing, machine
learning and Internet of Things.

Yanzhi Wang (Member, IEEE) received the BS
degree in electronic engineering from Tsinghua
University, in 2009, and the PhD degree in com-
puter engineering from the University of Southern
California (USC), in 2014, under the supervision
of Prof. Massoud Pedram. He received the Ming
Hsieh Scholar Award (the highest honor in the EE
Department of USC) for his PhD study. He is cur-
rently an assistant professor with the Department
of Electrical and Computer Engineering, and
Khoury College of Computer Science (Affiliated),

Northeastern University. His research interests include model compres-
sion and platform-specific acceleration of deep learning applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GONG ET AL.: ELASTIC SIGNIFICANT BIT QUANTIZATION AND ACCELERATION FOR DEEP NEURAL NETWORKS 3193

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 14,2022 at 08:27:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

