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Abstract

Multi-modal contrastive learning as a self-supervised representation learning tech-
nique has achieved great success in foundation model training, such as CLIP [60].
In this paper, we study the theoretical properties of the learned representations
from multi-modal contrastive learning beyond linear representations and specific
data distributions. Our analysis reveals that, enabled by temperature optimization,
multi-modal contrastive learning not only maximizes mutual information between
modalities but also adapts to intrinsic dimensions of data, which can be much
lower than user-specified dimensions for representation vectors. Experiments on
both synthetic and real-world datasets demonstrate the ability of contrastive learn-
ing to learn low-dimensional and informative representations, bridging theoretical
insights and practical performance.

1 Introduction

The growing availability of data sources has enabled interdisciplinary research to leverage multi-
modal data, which measures each unit from different aspects with various types of information. For
example, the availability of data types including images, text, and audio fostered the advancement
of cross-modal foundation models in recent years [39, 45, 70, 60]. Another notable example is
single-cell multi-omics technologies [71] which utilize multi-modal measurements of individual
cells for more informative scientific discovery [4, 29, 21, 50]. This emerging phenomenon raises a
key question: How can one efficiently integrate data from multi-modalities?

Contrastive language-image pre-training (CLIP) was recently proposed in [60], which utilizes the
self-supervised contrastive learning technique to train a vision-language model with unlabeled data
and to obtain representations of data from multi-modalities. Mathematically, given observations
from two modalities: continuous random vectors X ∈ Rd1 and Y ∈ Rd2 , the goal of multi-modal
contrastive learning is to learn representation maps f ∈ HX : Rd1 → Rd and g ∈ HY : Rd2 → Rd
that map data to representations supported on Rd, where d is the user-specified output dimension.

With a training set {(Xi, Yi)}i∈[N ], CLIP [60] minimizes the infoNCE contrastive loss:

min
(f,g,τ)∈HX×HY ×R+

LN (f, g, τ) =− 1

N

∑
i∈[N ]

log
exp

(
σ(f(Xi),g(Yi))

τ

)
N−1

∑
j∈[N ] exp

(
σ(f(Xi),g(Yj))

τ

) (1)
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Figure 1: Multi-modal contrastive learning applied to the bone marrow single-cell CITE-seq data.

where σ(·, ·) is a bivariate similarity measure, with larger values of σ(f(X), g(Y )) indicating higher
similarity between embeddings f(X) and g(Y ). Here we take into account the optimization over
temperature τ to align with the practice of CLIP [60]. In Figure 1, we plot the pipeline of CLIP [60]
using a bone marrow single-cell CITE-seq dataset [21] for illustration.

CLIP has achieved outstanding performance in zero-shot accuracy for downstream tasks and has
inspired a number of follow-up works across domains [17, 40, 81, 63]. The theoretical analysis of
CLIP was later initialized in [62], [49], and [9], where the properties of the learned representation
and its effect on the downstream accuracy are of interest. However, the distribution of multi-modal
data is mainly restricted to factor models with shared latent variables, and the representation map
is commonly assumed to be linear, neither of which is close to the actual practice of CLIP. In this
paper, we aim to theoretically study the properties of multi-modal contrastive learning with data
from general distributions and representation mappings in general function classes.

1.1 A motivating example: CLIP adapts to intrinsic dimension

We begin with describing several interesting phenomena arising from using CLIP on a synthetic
data. The phenomena motivate our later theoretic studies.

Consider the synthetic setting where X and Y are generated from the following distribution with
k∗ < min{d1, d2}:

Yi
i.i.d.∼ N (0, Id2), ξi

i.i.d.∼ N (0, Id1−k∗), Xi = (Yi1, · · · , Yik∗ , ξ⊤i )⊤.
We set k∗ = 2, d1 = d2 = 20, and the output dimension of f(X) and g(Y ) is set to be d = 3. We
set the function class to be 5-layer ReLU neural networks with all middle-layer widths fixed at 50.
We use a training set of size 12000 and a separate test set of size 2000. In the remaining part of this
paper, we adopt the inner product with population-level normalization as the similarity measure1,
i.e., σ(f(X), g(Ỹ )) = ⟨f(X),g(Ỹ )⟩

E∥f(X)∥·E∥g(Ỹ )∥
. In experiments, we leave out a fixed subset of size 2000 of

the training set to estimate expected norms in each iteration. In Figure 2, we plot the out-of-sample
similarities between positive and negative pairs, the change of estimated intrinsic dimension along
training (see Section 4 for further details), and temperature τ along training. We note the following
phenomena from the results:

1. For positive pairs, σ(f(Xi), g(Yi)) tends to concentrate around one, while similarities be-
tween negative pairs are capped by one;

2. Although the output dimension is 3, representations with intrinsic dimension 2 instead of 3
are preferred by infoNCE loss;

3. The optimized temperature converges to zero.

The observed phenomena, especially the intrinsic dimension selection and the convergence of tem-
perature to zero, motivate us to understand multi-modal contrastive learning via CLIP from the
theoretical perspective in this work.

1In Appendix G.5, we show that it is comparable to cosine similarity in terms of both representation intrinsic
dimensions and downstream task performances.
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Figure 2: Histograms of out-of-sample similarities, change of intrinsic dimension, and convergence
of temperature (linear setting: k∗ = 2, d = 3).

1.2 Why existing understanding of multi-modal contrastive learning is insufficient?

Existing work explains the representations learned by contrastive learning from two different per-
spectives. Here, we elaborate on why neither can fully explain the phenomena observed in Sec-
tion 1.1.

Perspective from alignment and uniformity [79] decomposes the population infoNCE loss L
into alignment and uniformity terms such that L(f, g, τ) = Lalign(f, g, τ) + Lunif(f, g, τ). The first
term Lalign favors alignment as it is minimized when f(X) = g(Y ) almost surely. In addition, the
result in [79] implies that among all aligned representations, the second term Lunif favors unifor-
mity as it is minimized when f(X) is uniformly distributed over the entire output space, which is
restricted to be the unit hypersphere with a user-specified dimension in [79]. A crucial limitation of
this result is that one needs the correct specification of a true dimension of data. In other words, if the
aligned representation has a smaller dimension compared to the ambient output dimension (which
arguably is always the case in practice) or the function class is not expressive enough to produce
uniform representations on the entire output space, the theory established in [79] is not applicable.

Perspective from mutual information maximization Since the infoNCE loss can be viewed as
a variational upper bound of the negative mutual information [53, 59] (see also Lemma 8 below),
another line of research understands the global minimizer of infoNCE loss as the mutual information
maximizer [76, 24, 75, 73, 84, 41]. Although existing works connect infoNCE loss to its mutual
information bound, as is pointed out in [75], solely maximizing the mutual information may result
in undesirable representations. For instance, in the example in Section 1.1, as long as f(X) ≈ g(Y )
almost surely,2 the mutual information between representations is infinite. Hence, this theory fails to
explain why, in the motivating example, f(X) and g(Y ) are supported on a 2-dimensional manifold
as opposed to a curve or a number of standalone points, since the latter two can also maximize mutual
information between representations at infinity. This indicates that infoNCE loss minimization is not
simply mutual information maximization and requires a more fine-grained analysis.

1.3 Preview of our results and contributions

We now provide a preview of our main theoretical findings that allow us to explain the three phe-
nomena observed in Section 1.1. A formal version will be presented in Section 3.

Theorem 1 (Informal). Suppose there exist aligned representations that maximize the shared infor-
mation between X and Y . Then, any “minimizer” (f, g, τ) of the infoNCE loss satisfies

1. σ(f(X), g(Y )) = constant almost surely, which caps similarities between negative pairs;

2. the intrinsic dimension of shared latent variables in the multi-modal data is exactly cap-
tured by (f(X), g(Y )).

3. τ = 0+.

2Throughout this paper, “almost surely” refers to almost sure events with respect to the joint distribution
of (X,Y ), unless otherwise specified. Likewise, “measurable” refers to measurability with respect to the
Lebesgue measure, unless stated otherwise.
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In addition, we summarize our contributions in this paper as follows.

• We investigate the theoretical properties of learned representations from multi-modal contrastive
learning and take into account temperature optimization in theoretical analysis.

• Based on a precise (variational) decomposition of the infoNCE loss in Lemma 8, we theoretically
show that temperature optimization enables multi-modal contrastive learning, which encourages
multi-modal representations to be sufficient and to maximize the similarity measure, to also adapt
to the intrinsic dimension of data. To be more concrete, different from [79], our theory does not
require the existence of aligned representations that are uniform over the entire output space, i.e.,
no prior knowledge about the true intrinsic dimension is required.

• Moreover, the practical relevance of our theory is supported by empirical findings in real-world
datasets, such as single-cell multi-omics and image-text datasets, which demonstrate that in many
cases, there are a relatively small number of effective shared features that affect downstream tasks.

Organization of paper. The rest of this paper is organized as follows. The ideal properties of rep-
resentations and the intrinsic dimension are formally defined in Section 2. Main theoretical results
are shown in Section 3, which includes a formal statement of our theorem in Section 3.2. Additional
related works are summarized in Section 5. Experimental results for both synthetic and CITE-seq
single-cell datasets are presented in Section 4. Technical proofs, extensions (e.g., connection to suf-
ficient dimension reduction in Appendix E.1), and additional numerical experiments are deferred to
the appendix.

2 Ideal representations and intrinsic dimension

In Section 2.1, we define two key properties of the ideal representations (f⋆(X), g⋆(Y )) when learn-
ing from the paired data (X,Y )—alignment and maximal mutual information, and in Section 2.2,
we define the intrinsic dimension. Throughout the paper, we define H = HX ×HY .

2.1 Alignment and maximal mutual information

Alignment and similarity maximization. Inspired by the seminal work [79] in single-modality
contrastive learning, we propose the following notion of alignment for learning representations from
multiple modalities.

Definition 1. We define the set of representation maps that realize alignment and similarity maxi-
mization as

A(H) =

{
(f, g) ∈ H :

f(X)

E∥f(X)∥
=

g(Y )

E∥g(Y )∥
, σ(f(X), g(Y )) = mσ(f, g) almost surely

}
.

Here and after, mσ(f, g) := ess sup
X |= Ỹ σ(f(X), g(Ỹ )) for any (f, g) ∈ H.

In our motivating example in Section 1.1, there exist representations f(X) =

(X1, X2)/
√
X2

1 +X2
2 = (Y1, Y2)/

√
Y 2
1 + Y 2

2 = g(Y ) satisfying (f, g) ∈ A(H). In this
case, σ(f(X), g(Y )) = 1 = mσ(f, g) almost surely.

Maximal mutual information. A classical notion to measure statistical dependence is mutual
information: I(X;Y ) = DKL (PX,Y || PX ⊗ PY ). It is tempting to ask for representations (f, g)
such that the mutual information I(f(X); g(Y )) is maximized. This is known as the infoMax princi-
ple [75, 6]. However, as we have argued in Section 1.2, this vanilla definition of mutual information
is not fine-grained enough to compare aligned representations: whenever continuous representations
f(X) = g(Y ) almost surely, we have I(f(X); g(Y )) = +∞ [33, 74].

To mitigate the deficiency, we adopt a fine-grained order for mutual information. For each integer
M ≥ 1, we consider a discretized version3 (fM , gM ) of the representations (f, g). As (fM , gM )

3See Section A.2 for precise definitions of the discretizations. Related results on approximating mutual
information based on discretization and binning can also be found in [32, 56, 12].
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are supported on finitely many points, the mutual information I(fM (X); gM (Y )) is always finite,
albeit limM→+∞ I(fM (X); gM (Y )) is possibly infinite.

With the discretization in place, we can define the set of representations with maximal mutual infor-
mation as follows.

Definition 2 (Maximal mutual information). We define the following set of pairs (f, g) ∈ H that
sufficiently capture the dependence between X and Y :

W(H) = {(f, g) ∈ H : lim inf
M→+∞

(
I(fM (X); gM (Y ))− I∗M (H)

)
≥ 0},

where I∗M (H) = sup(f,g)∈H I(fM (X); gM (Y )).

Roughly speaking, representations (f, g) have maximal mutual information if at every discretization
level M , the mutual information I(fM (X); gM (Y )) is comparable to the maximal discrete mutual
information I∗M (H) achievable by the function class. In our motivating example in Section 1.1,
where the shared latent variables betweenX and Y are two-dimensional, the learned representations
can maximize mutual information only if they can capture all the latent features and have the intrinsic
dimension of 2.

In the end, we define V(H) = A(H) ∩W(H). Throughout the paper, we assume V(H) ̸= ∅, i.e.,
there exist aligned representations with maximal mutual information.

2.2 Intrinsic dimension

We now move on to define the intrinsic dimension of a representation function f . To begin with,
we define the range of a function f to be R(f) = {f(x) : x ∈ Rd1}, and define the usual linear
dimension as dim(R(f)) = dim(span(R(f))). However, this vanilla dimension is not able to
capture the nonlinearity in f , and the possible manifold structure in the range of f . With this in
mind, we adopt the following notion of intrinsic dimension, which is closely related to the dimension
of manifolds [34].

Definition 3 (Intrinsic dimension.). We define the intrinsic dimension of f ∈ HX , denoted by
ID(f), as the smallest integer k such that there exist a measurable function h : Rd1 → Rd with
dim(R(h)) = k and an injective measurable function ϕ : R(h) → Rd such that f(x) = (ϕ ◦ h)(x)
almost everywhere.

As an example, with a full-rank matrix A ∈ Rk×dZ and an injective map ζ : Rk → Rd, the
representation f(Z) = ζ(AZ), which is usually known as the multi-index model [80, 38], has
intrinsic dimension exactly k where we can choose h(Z) = AZ and ϕ = ζ.

Proposition 1. Suppose V(H) ̸= ∅. Then all ideal representations (f, g) ∈ V(H) have the same
intrinsic dimension k⋆, that is, for all (f, g) ∈ V(H), we have ID(f) = ID(g) = k∗.

To further understand the definition of k∗, we recall the example in Section 1.1. As the shared fea-
ture between X and Y has dimension 2, any aligned representations supported on a curve cannot
maximize the mutual information with a certain function class. Also, any representations with in-
trinsic dimension larger than 2 will have additional randomness conditioning on the 2-dimensional
shared feature, and thus cannot align.

3 Global minimizers of InfoNCE and dimension adaptation

In this section, we analyze the global minimizers of the population infoNCE loss and prove that
CLIP adapts to the intrinsic dimension k∗ of the ideal representations.
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3.1 InfoNCE loss and its minimizers

Similar to prior work [79, 44], throughout the paper, we consider the population infoNCE loss

L(f, g, τ) = −EX,Y

log exp
(
σ(f(X),g(Y ))

τ

)
EỸ exp

(
σ(f(X),g(Ỹ ))

τ

)
− EX,Y

log exp
(
σ(f(X),g(Y ))

τ

)
EX̃ exp

(
σ(f(X̃),g(Y ))

τ

)
 ,(2)

where Ỹ d
= Y , X̃ d

= X , and (X̃, Ỹ ) |= (X,Y ). Based on [79] (Theorem 1) and [44] (The-
orem 2.1), the population loss (2) is indeed the large-sample limit of the empirical loss (1) as
limN→+∞ |LN (f, g, τ)− L(f, g, τ)| = 0, for any fixed f , g, and τ > 0.

Temperature optimization. We consider the regime where the temperature τ ≥ 0 is also opti-
mized in the training process, which aligns with the practice [60]. In previous theoretical works on
CLIP, the temperature parameter was either treated as fixed [79] or not taken into account [49, 22].
However, it has been revealed in both empirical and theoretical studies that different choices of τ can
lead to extremely different properties of the learned representations [79, 78, 18, 20]. Thus, to theo-
retically understand properties of representations learned by CLIP in practice, we take temperature
optimization into account and write τ as an argument of the loss function.

Minimizers of the infoNCE loss. Challenges arise when defining the tuple (f, g, τ) that mini-
mizes the infoNCE loss in (2). Consider two representations (f1, g1) and (f2, g2). Both are aligned
and continuous. It can be shown that limτ→0+ L(f1, g1, τ) = −∞ = limτ→0+ L(f2, g2, τ). In
other words, the infoNCE loss cannot differentiate among aligned continuous representations, due
to the unboundedness of mutual information for aligned continuous representations.

To address this issue, we use the same discretization idea in Section 2.1. Precisely, for each slackness
η > 0, we define the set of near-minimizers to be

OL,η(H) =

{
(f, g) ∈ H : ∃ τ ≥ ε(η), lim sup

M→+∞

(
L(fM , gM , τ) + 2I∗M (H)

)
≤ 2η

}
, (3)

where ε(η) > 0 is nondecreasing4 in η with ε(0) = 0. Correspondingly, we define the set of
minimizers to be ∩η≥0OL,η(H). A few remarks are in order.

• First, instead of looking at L(f, g, τ) which could be −∞, we compare its discretized
version L(fM , gM , τ) against a benchmark −2I∗M (H). Both quantities are finite.

• Second, the lower bound ε(η) on the temperature measures the sensitivity of the solution
(f, g) with respect to the change of temperature τ . Then, with any tolerance η > 0, the
setOL,η(H) only contains representation maps that achieve small loss with temperature no
less than the threshold ε(η) and hence rules out the representations that can only be optimal
in the singular case when the temperature is always zero, which is in line with the fact that
the temperature can only decrease to zero at a certain rate in the actual training process.

3.2 CLIP automatically adapts to intrinsic dimensions

Recall the definition of k∗ in Proposition 1. We now present the main result, assuming that H
includes all measurable functions of X and Y .
Theorem 2. Assume that V(H) ̸= ∅. We have

⋂
η≥0 OL,η(H) ̸= ∅. In addition, for any (f, g) ∈⋂

η≥0 OL,η(H), we have

1. (similarity maximization) σ(f(X), g(Y )) = mσ(f, g) almost surely;

2. (intrinsic dimension adaptation) ID(f) = ID(g) = k∗;

3. (monotonicity in temperature) infoNCE loss L(f, g, τ) is increasing in τ ;

4. (mutual information maximization) (f, g) ∈ W(H).

4See Appendix C.2 for the exact definition of ε(η).
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Figure 3: Results with synthetic data: linear setting.

Theorem 2 implies that (approximate) minimizers of the InfoNCE loss have an intrinsic dimension
exactly equal to k∗. We note that the existence of aligned and uniformly distributed representations
over the entire output space, as required in [79], provides a sufficient condition for V(H) ̸= ∅. In
contrast, our result shows that even without requiring representations to be aligned and uniform over
the entire output space, CLIP can still adapt to the intrinsic dimension of multi-modal data. As a
corollary, in Appendix E.2, we further show that when the output dimension d is correctly specified,
the set of minimizers

⋂
η≥0 OL,η(H) coincides with the set of aligned and uniform representations

that maximize mutual information. We also connect our findings to sufficient dimension reduction
in Appendix E.1.

We note that, in the concurrent work [52, 43], sufficiency (Corollary 1) is obtained when there exists
a pair of encoders that has infoNCE loss coinciding with the minimum over all similarity measures.
In contrast, we consider the family of similarity measures taking the form Sτ (U, V ) = τ−1σ(U, V )
adopted in CLIP and take into account the optimization of temperature, which is relevant to the
result in [53, 43] and [52], but also reveals and explains new phenomena in practice, such as the
convergence of temperature and the adaptation to intrinsic dimension. More importantly, our paper
puts more emphasis on the exact statistical properties of learned representations, such as sufficiency
and low-dimensionality that are shown in Theorem 2, while [52, 43], through the sufficiency mea-
sure, focus on the bounds for downstream accuracy and the learnability (via excess infoNCE loss)
of architectures (e.g., Transformers) under certain structured models.

4 Numerical experiments

In this section, we further justify the theoretical findings with both synthetic and real-world datasets.
Starting with a synthetic dataset in Section 4.1, we further consider real datasets: a CITE-seq
dataset [68, 69] in Section 4.2, ImageNetV2 dataset [61] in Appendix 4.3, and YFCC dataset [72] in
Appendix G.7. Throughout this section, we fit the representation map with a 5-layer ReLU neural
network with middle-layer widths all fixed at 50 and the output space Rd. This function class is
denoted by Fp,d

NN, where p is the input dimension adjusted for each setting. We estimate the global
intrinsic dimension of data using the MLE-based approach proposed in [35], which is implemented
in the skdim.id package.5

4.1 Results with synthetic data

We start with two synthetic datasets with k∗ < min{d1, d2}:

1. Linear setting: consider N i.i.d. draws from the same distribution shown in Section 1.1.

2. Nonlinear setting: consider N i.i.d. draws from the following distribution: Yi
i.i.d.∼

N (0, Id2), ξi
i.i.d.∼ N (0, Id1−k∗), and

Xi = (0.2Y 3
i1, sin(Yi2Yi2), log(Y

2
i3), · · · , log(Y 2

ik∗), ξ
⊤
i )

⊤.

5https://scikit-dimension.readthedocs.io/en/latest/skdim.id.MLE.html.
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Figure 4: Results with synthetic data: nonlinear setting.

Here we set d1 = d2 = 20 and k∗ = 5. The total N = 14000 data points are partitioned into a
training set Dtrain with |Dtrain| = 10000, a test set Dtest with |Dtest| = 2000, and a separate set
with size 2000 for estimating the expected norm at each epoch. With representation maps f̂ ∈ Fd1,d

NN

and ĝ ∈ Fd2,d
NN learned with Dtrain, we consider the downstream task as the top-α% matching of

representations. More concretely, with D = Dtrain or Dtest, for any i ∈ D, denote Nα(i;D) as all
the indices j ∈ D such that ∥f̂(Xi)−ĝ(Yj)∥ is the ⌈α|D|⌉-smallest among ∥f̂(Xi)−ĝ(Yk)∥, k ∈ D,
and accordingly,

Accα(D) =
1

|D|
∑
i∈D

1{i = Nα(i;D)}.

Then, we can define the in-sample and out-of-sample accuracy by Accα(Dtrain) and Accα(Dtest),
respectively. Particularly, with synthetic data, we choose α% = 1/|Dtest| = 0.05%, which refers to
the top-1 matching accuracy for out-of-sample matching.

Figures 3 and 4 report the results averaged over 50 repetitions in linear and nonlinear settings,
respectively. We can see that in both settings, when the output dimension exceeds 5, both the
in-sample and out-of-sample accuracy, and the MLE-based estimated intrinsic dimensions tend to
saturate. Specifically, the estimated intrinsic dimensions approach the true value k∗ = 5, which
validates that minimizing the multi-modal contrastive loss automatically adapts to the underlying
intrinsic dimension of data when the d ≥ k∗. In addition, in each setting, we fix d = 20 and present
the histogram of similarities as well as the convergence of τ in training in Figure 3b and Figure 4b,
which validates the theoretical prediction that τ converges to zero and that the similarity measure
between positive pairs will concentrate at a constant that dominates the similarity measure between
negative pairs.

4.2 Results with CITE-seq dataset

The CITE-seq dataset contains simultaneous measurements of transcriptomes and cell-surface pro-
teins from the same cell, and we get access to CITE-seq dataset via Seurat6 [21] in R. We focus
on the CITE-seq healthy human bone marrow cells (BMCs) data, consisting of 30672 measured
scRNA-seq profiles from bone marrow [69], each with an additional panel of 25 antibodies. Fol-
lowing the preprocessing procedure in Seurat, we obtain a two-modal dataset with 24-dimensional
protein data and 200-dimensional RNA data. More details of data preprocessing are presented in
Appendix G, and ablation studies with a Transformer architecture are presented in Appendix G.6.

In each repetition of the experiments, we randomly sample 20000 rows without replacement from the
preprocessed dataset and randomly split the subset into a training set Dtrain with |Dtrain| = 10000,
a test set Dtest with |Dtest| = 2000, and a separate set with size 8000 for estimating the expected
norm at each epoch. Representation maps f̂ , ĝ ∈ Fd2,d

NN are learned with Dtrain via contrastive loss
and the quality of representations is evaluated on Dtest in terms of the classification accuracy of two
groups of cell types and the top-α% matching accuracy (α% = 0.5%). We vary the output dimen-
sion d of the neural network architecture from 1 to 29, and results averaged after 50 repetitions with
varying d are presented in Figure 5, in which, both in-sample and out-of-sample accuracy tend to

6https://satijalab.org/seurat/.
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Figure 5: Results with CITE-seq dataset.

saturate when the output dimension exceeds 10. In addition, in the right panel of Figure 5, the MLE-
based estimated intrinsic dimension of in-sample representations does not exceed 10 regardless of
the choice of output dimension. This demonstrates that the multi-modal contrastive loss effectively
extracts intrinsically low-dimensional features from the CITE-seq dataset, which successfully cap-
ture the information to differentiate two levels of cell types. Moreover, as is shown in Appendix G.4,
with different choices of output dimension d, the temperature tends to converge to zero in training,
which offers evidence for the existence of nonempty V(H) when H is a multi-layer ReLU network.

4.3 Results with ImageNetV2 dataset

We also consider the ImageNetV2 dataset7 and focus on two modalities: images and text labels.
Here we use the text “This is a photo of a/an label” as the input of the text encoder for each image.
In addition, each image in ImageNetV2 dataset can be classified by coarser classes with 67 levels
[13], which will be adopted in a downstream classification task. We first use a pretrained image
encoder (ViT-L14) and text encoder (a masked self-attention Transformer) to obtain preprocessed
inputs: 1024-dimensional image embeddings and 768-dimensional text embeddings, which are used
as inputs to the 5-layer ReLU neural networks.8

Similar to previous sections, with |Dtrain| = 8000, |Dtest| = 1000, and a separate dataset with size
1000 to estimate the expected norms, we consider image classification and the top-α% matching
(α% = 0.5%) as the downstream tasks. In addition, since images from the class share the same text
input, to avoid the singularity when estimating the MLE-based intrinsic dimension, we add indepen-
dent entrywise perturbations drawn from N (0, 0.01) to encoded text inputs before CLIP training for
both Dtrain and Dtest. We can see that both accuracies tend to saturate when d is approaching 20 and
the MLE-based estimation of the intrinsic dimension for the image embeddings is approximately 8
when d keeps increasing. Since the text embeddings have a cluster structure due to discrete labels,
the MLE-based intrinsic dimensions are slightly smaller than those of image embeddings. Note that
we use a 5-layer ReLU network for CLIP training only for illustration purposes, and better results
can potentially be obtained with more sophisticated network architectures.
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Figure 6: Results with ImageNetV2 dataset.

7We load the dataset from https://github.com/modestyachts/ImageNetV2_pytorch
8More details of preprocessing are deferred to Appendix G.
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5 Related work

The integration of multi-modal data has been studied for decades in machine learning. The simplest
practice is to concatenate features from all modalities, which is known as early fusion [5], but the
direct concatenation can lead to redundancy and high dimensionality [48]. As a dimension reduc-
tion technique, canonical correlation analysis (CCA) [23, 2, 26, 28, 25] is widely adopted to learn
maximally correlated (linear) projections of modalities as the shared representation, which is further
extended to nonlinear projections by kernel CCA [1] and deep CCA [3]. With the initial purpose
of integrating acoustic and visual speech signals [82, 57], multi-modal learning has witnessed con-
sistent progress in machine learning [7]. One line of research proposed fine-grained neural network
architectures that can output joint representations of the multi-modal input [47, 51, 64]. Another line
of research adopts probabilistic graphical models with latent variables to characterize multi-modal
data, such as multi-modal deep belief networks [66, 30] and deep Boltzmann machines [67]. Differ-
ent architectures for modalities are also explored in the field, where certain (constrained) measures
of cross-modal similarities are proposed for representation learning [31, 83, 55].

Despite the wide applications of multi-modal learning, the theoretical understanding of its empirical
success has drawn attention from the community only in recent years. Earlier works mainly interpret
the advantage of multi-modalities from the information-theoretical perspective [65, 14, 42]. A recent
work [27] compares the generalization error with different subsets of modalities theoretically, and
the result is further discussed in [46].

Similar to our scope, more recent papers include [76], which focuses on the mutual information of
multi-modal features as the upper bound of the additive inverse of contrastive loss, and [44], which
analyzes the solution of CLIP via the lens of independent component analysis (ICA) and depends on
specific data generating process to ensure the identifiability. In addition, concurrent papers [52, 43]
introduce the notion of approximate sufficiency and show that this property is satisfied by learned
representations by CLIP and also connect the sufficiency measure to the accuracy of downstream
tasks with a goal similar to [9].

6 Discussion

In this paper, we have characterized the statistical properties of learned representations in multi-
modal contrastive learning, and specifically, have shown that the solution can adapt to the intrinsic
dimension of data in the setting with V(H) ̸= ∅. This property is also relevant to sufficient di-
mension reduction as is demonstrated in Appendix E.1. The theoretical result is also justified by
both synthetic and real datasets, where the estimated intrinsic dimension as well as the downstream
accuracy in various tasks tend to saturate regardless of the output dimension (once it exceeds the
intrinsic dimension), which implies that the underlying information shared by modalities can indeed
be captured by a low-dimensional structure. It is also worth noting that our theory suggests a two-
stage fitting strategy when using CLIP. In the first stage, one selects a large output dimension so that
the function class is expressive. In the second stage, one can use the intrinsic dimension discovered
from the first stage and post-process the representation to a lower dimension. This could potentially
accelerate the inference speed.

Our findings also suggest several future directions. Although V(H) ̸= ∅ relaxes the condition in
[79], it would be of theoretical interest for future work to characterize the precise limit of optimized
temperature in general settings beyond this regime, which may also guide the practical choice of τ .
In addition, it is interesting to study the finite-sample behavior of the infoNCE loss as well as its
minimizers.
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Broad impact

This paper provides the theoretical understanding of CLIP, especially its ability to adapt to the in-
trinsic dimensions of datasets when the temperature parameter is optimized. The theoretical results
are justified by both synthetic and real datasets. These findings will enhance the interpretability and
guide the postprocessing of learned representations from multi-modal contrastive learning.
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A Preliminaries

We start with preliminaries, including notations and the discretization of B̃d introduced in Sec-
tion 2.1.

A.1 Notations

We start by summarizing important notations in Table 1.

Rd d-dimensional Eudlidean space

B̃d {x ∈ Rd : ∥x∥ ≤
√
Ω}

ID(f) intrinsic dimension of f (Definition 3)

CM = {cM,i : i ∈ [M ]} a disjoint partition of B̃d
B̂d,M = {zM,i ∈ cM,i : i ∈ [M ]} discretization of B̃d under CM
fM , gM discretizations of (f, g) ∈ H
HM {(fM , gM ) : (f, g) ∈ H}
mσ(f, g) ess sup

X |= Ỹ σ(f(X), g(Ỹ ))

A(H′) {(f, g) ∈ H′ : f(X)
E∥f(X)∥ = g(Y )

E∥g(Y )∥ a.s. and mσ(f, g) = 1}
I∗M (H) sup(f,g)H I(fM (X), gM (Y ))

W(H′) {(f, g) ∈ H′ : lim infM→+∞(I(fM (X); gM (Y ))− I∗M (H)) ≥ 0}
V(H′) A(H′) ∩W(H′)

Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ smoothed distributions defined in (6)

QMf(X),g(Y ),τ = QMτ , Q̃Mf(X),g(Y ),τ = Q̃Mτ discretized distributions defined with (fM , gM )

ε(η) temperature threshold with tolerance η defined in (9)

OL,ε,η(H) (7) Set of minimizers up to tolerance τ with temperature threshold ε

OL,η(H) (3) Set of minimizers up to tolerance τ with temperature threshold ε(η)

Table 1: Table of notations

A.2 Discretization of B̃d

With the defined similarity measure σ(·, ·), to analyze the mutual information between f(X) and
g(Y ), it is equivalent to considering mutual information between f̃(X) = f(X)/E∥f(X)∥ and
g̃(Y ) = g(Y )/E∥g(Y )∥, which satisfies E∥f̃(X)∥ = E∥g̃(Y )∥ = 1, ∥f̃(X)∥, ∥g̃(Y )∥ ≤

√
Ω <∞

almost surely. Then, we denote the range of normalized representations by B̃d, which is compact.

For any fineness M ∈ M ⊆ N, we consider a discretization CM = {cM,i}i∈[M ] of B̃d such that the
compact set B̃d is divided into M connected portions, and representatives from each portion cM,i

form the set B̂d,M = {zM,i}i∈[M ]. We also denote CM as the set of all discretizations CM of B̃d
such that

max
i∈[M ]

diam(cM,i) → 0 as M → +∞.

Particularly, we consider the discretization CM ∈ CM such that each portion cM,i has the same
Lebesgue measure ∆M , which satisfies limM→+∞ ∆M = 0. In addition, we assume the sequence
of discretizations {CM}M∈M is nested such that CM ′ ⊆ CM for any M ′ ≤M .

In the rest of the proof, we write M → +∞ to denote M ∋ M → +∞. Accordingly, for any
function f , we define

fM (x) = zM,i if x ∈ f−1(cM,i),
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and the function class HM = {(fM , gM ) : (f, g) ∈ H}, which is also nested in the sense that
HM ⊆ H

M̃
for all M ≤ M̃ . We also notice that HM can be viewed as the class of piecewise

constant functions. For any 1 ≤ k ≤ d, the set Hk
M is defined similarly.

Abusing notations, for any random vector U supported on B̃d, we write UM = U(B̂d,M ) to denote
the discretization of U , for which

P(UM = zM,i) = P(U ∈ cM,i) and P(UM /∈ B̂d,M ) = 0.

If U is supported on B̂d,M , we have UM = U almost surely and, particularly, fM (X) = (f(X))M
almost surely.

A.2.1 A fine-grained order

For any pairs of random vectors U = (U1, · · · , Ul), Ũ = (Ũ1, · · · , Ũl) ∈ (B̃d)
l and any functional

G of random vectors, we define the order ⪯M as follows.

G(U) ⪯M G(Ũ) ⇐⇒ lim sup
M→+∞

{
G(UM )−G(ŨM )

}
≤ 0,

and moreover, the inequality is strict, i.e. G(U) ≺M G(Ũ), if and only if

lim sup
M→+∞

{
G(UM )−G(ŨM )

}
< 0.

We also write G(U) =M G(Ũ) if limM→+∞

{
G(UM )−G(ŨM )

}
exists and is zero.

A.2.2 Approximation by discretization

In this section, we study the properties of the aforementioned discretization. To start with, for a
discrete random vector U with the probability mass function pU , we define the entropy of U by
H(U) = −E[log pU (U)]. For a continuous random vector U with probability density function pU ,
we define the differential entropy of U by H̃(U) = −E[log pU (U)].

Approximation of entropy and relative entropy. To start with, consider the random vector U ∈
B̃d with probability density function p and the discretized random variable UM ∈ B̃d such that
pi = P(UM = zM,i) = P(U ∈ cM,i). As

∫
cM,i

p(u)du ≈ p(zM,i)∆M , we have the following
result that connects the Shannon entropy of UM and the differential entropy of U .
Lemma 1. [12, Theorem 8.3.1] As M → +∞ and diam(cM,i) → 0, it holds that

lim
M→+∞

(H(UM ) + log∆M ) = H̃(U).

See proof in Section F.

In addition, for two random vectors U, V supported on B̃d, we recall [77, Theorem 21] in the fol-
lowing lemma.
Lemma 2. [77, Theorem 21] For any CM ∈ CM with M → +∞ and diam(cM,i) → 0, it holds
that for any M ,

DKL (UM || VM ) ≤ DKL (UM+1 || VM+1) ≤ DKL (U || V ) ,

and moreover,

lim
M→+∞

DKL (UM || VM ) = DKL (U || V ) .

Approximation of conditional entropy. For later use, we also consider the approximation of the
following quantity

H̃(ϕ(U, V ) | U),

whereU , V are random vectors on B̃d with joint density p(u, v) and ϕ : B̃d×B̃d → R is continuous.
We have the following result.
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Lemma 3. Assume ϕ : B̃d × B̃d → R is continuous. For any CM ∈ CM with M → +∞ and
diam(cM,i) → 0, if H̃(ϕ(U, V ) | U) > 0, it holds that

lim inf
M→+∞

H(ϕ(UM , VM ) | UM ) > 0.

See proof in Section F.

Approximation of (conditional) mutual information. Consider random vectors U , V on B̃d
and continuous maps ϕ, ψ : B̃d × B̃d → R. We are interested in the approximation of
I(ϕ(U, V );ψ(U, V )) and I(ϕ(U, V );ψ(U, V ) | U) by its discretized version. To start with, we
have the following result.

Lemma 4. Assume ϕ and ψ are continuous and P(ϕ(U, V ) = ψ(U, V )) < 1. For any CM ∈ CM
with M → +∞ and diam(cM,i) → 0, it holds that

lim
M→+∞

I(ϕ(UM , VM );ψ(UM , VM )) = I(ϕ(U, V );ψ(U, V )).

See proof in Section F.

For the conditional mutual information, note that
I(ϕ(U, V );ψ(U, V ) | U) = I(ϕ(U, V );ψ(U, V ), U)− I(ϕ(U, V );U).

Lemma 4 can be applied to both terms, which indicates that
lim

M→+∞
I(ϕ(UM , VM );ψ(UM , VM ) | UM ) = I(ϕ(U, V );ψ(U, V ) | U).

Related results on estimating mutual information based on discretization and binning can be found
in [32, 56, 12].

Approximation of infoNCE loss. For any pair of representation maps (f, g) ∈ H, we have the
following result.

Lemma 5. For any (f, g) ∈ H with E∥f(X)∥ = E∥g(Y )∥ = 1 and any τ > 0, it holds that

lim
M→+∞

L(fM , gM , τ) = L(f, g, τ).

See proof in Section F.

A.3 Intrinsic dimension and its properties

We revisit the definition of intrinsic dimension in Definition 3 for which we have the following
property for ID(f).

Lemma 6. Suppose f : Rd1 → Rd satisfies ID(f) = k. Then, for any measurable function
ψ : Rd → Rd, it holds that ID(ψ ◦ f) ≤ k.

A.3.1 Proof of Lemma 6

Suppose ID(f) = k. Then, by Definition 3, there exist a measurable function h : Rd1 → Rd with
dim(R(h)) = k and an injective function ϕ : Rd → Rd such that f = ϕ ◦ h.

For any measurable function ψ : Rd → Rd, if ψ is injective, then ϕ ◦ f = (ψ ◦ ϕ) ◦ h. Since ψ ◦ ϕ
is injective, by definition, we have ID(ψ ◦ f) = k.

If ψ is not injective, for any x ∈ Rd1 , define
T (x) = {x′ : (ψ ◦ ϕ ◦ h)(x′) = (ψ ◦ ϕ ◦ h)(x)} ,

and accordingly, we define the equivalence relation ∼: x ∼ x′ if and only if T (x) = T (x′), with
which Π(x) = {x′ : x′ ∼ x}. Then, denote x/∼ as the representative of Π(x). Based on the
notations above, define

h̃ : x 7→ h(x/∼).
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We can verify that for any x ∈ Rd1 , it holds that

(ψ ◦ ϕ ◦ h)(x) = (ψ ◦ ϕ ◦ h)(x/∼) = (ψ ◦ ϕ ◦ h̃)(x).

In addition, for any z1, z2 ∈ R(ϕ ◦ h̃), it holds that ψ(z1) ̸= ψ(z2). Otherwise, suppose there exist
z1 ̸= z2 ∈ R(ϕ ◦ h̃), i.e., there exist x1, x2 ∈ Rd1 satisfying zi = (ϕ ◦ h̃)(xi) with i ∈ {1, 2}, such
that ψ(z1) = ψ(z2). Then, by the definition of the equivalence relation ∼ and the definition of h̃,
we obtain x1 ∼ x2, thus x/∼1 = x

/∼
2 and

z1 = (ϕ ◦ h̃)(x1) = (ϕ ◦ h̃)(x2) = z2,

which draws the contradiction. Hence, ψ|R(ϕ◦h̃), i.e., ψ restricted on the range of ϕ ◦ h̃ is injective.
Then, (ψ◦ϕ)|R(h̃) is also injective. Consequently, we have constructed an injective map (ψ◦ϕ)|R(h̃)

and a measurable function h̃ with dim(R(h̃)) ≤ dim(R(h)) = k such that

(ψ ◦ f)(x) = [(ψ ◦ ϕ) ◦ h̃](x) almost everywhere,
which, by Definition 3, implies that ID(ψ ◦ f) ≤ ID(f) = k.

B Properties of V(H)

In this section, we focus on the properties of the set V(H). To begin with, for any subset H′ =
H′
X ×H′

Y ⊆ H, we generalize the definitions of A(H) and W(H) as follows.
Definition 4. We define the set of representation maps that realize alignment and similarity maxi-
mization as

A(H′) =

{
(f, g) ∈ H′ :

f(X)

E∥f(X)∥
=

g(Y )

E∥g(Y )∥
almost surely and mσ(f, g) = 1

}
.

Here mσ(f, g) := ess sup
X |= Ỹ σ(f(X), g(Ỹ )) for any (f, g) ∈ H.

Definition 5 (Maximal mutual information). We define the following set of pairs (f, g) ∈ H that
sufficiently capture the dependence between X and Y :

W(H′) = {(f, g) ∈ H′ : lim inf
M→+∞

(
I(fM (X); gM (Y ))− I∗M (H)

)
≥ 0},

where I∗M (H) = sup(f,g)∈H I(fM (X); gM (Y )).

Note that in the definition of W(H′) for any H′ ⊆ H, the benchmark mutual information I∗(H) is
defined for the entire class H. Accordingly, we define V(H′) = A(H′) ∩W(H′).

Then, we are ready to present the following lemma on properties of V(H).

Lemma 7. Assume V(H) ̸= ∅. There exists k∗ ∈ [d] such that for any (f∗, g∗) ∈ V(H),

(1) Intrinsic dimension adaptation. ID(f∗) = ID(g∗) = k∗.
(2) Sufficiency. If k∗ < d, for any (f, g) ∈ H with max{ID(f), ID(g)} > k∗, it holds

that

f(X) |= g(Y ) | f∗(X).

See proof in Section B.1 and Section B.2, respectively. We note that Proposition 1 is directly implied
by Lemma 7 (1).

B.1 Proof of Lemma 7 (1)

To start with, for any integer k ∈ [d], we define Hk = {(f, g) ∈ H : ID(f) = ID(g) = k} and
V(Hk) is defined accordingly by

V(Hk) = {(f, g) ∈ V(H) : ID(f) = ID(g) = k} .
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Then, we define

k̃ = max
{
k ∈ [d] : V(Hk) ̸= ∅

}
.

By definitions of V(H) and V(Hk), we have V(Hk̃) ⊆ V(H), and we will show that V(H) ⊆
V(Hk̃).

Case 1. If k̃ = 1, recall the definition of k̃ = max{k ∈ [d] : V(Hk) ̸= ∅}. For any (f, g) ∈ V(H),
suppose ID(f) = k > 1, it holds that (f, g) ∈ Hk, thus k̃ ≥ k > 1, which draws the contradiction.
Hence, for any (f, g) ∈ V(H), we have(f, g) ∈ H1, i.e. V(Hk̃) = V(H).

Case 2. Consider the case with k̃ > 1. Suppose there exist (f∗, g∗) ∈ V(Hk̃) and (f, g) ∈ V(Hk)

but k < k̃ ≤ d. Since both mutual information and infoNCE loss are scale-invariant with respect
to both f and g, without loss of generality, we assume E∥f(X)∥ = E∥g(Y )∥ = E∥f∗(X)∥ =

E∥g∗(X)∥ = 1. Then, since max{ID(f), ID(g)} = k < k̃ ≤ d, by Definition 3, there exist aligned
F (X), G(Y ) ∈ Rk and injective measurable functions ϕ, ψ : Rk → Rd such that

f(X) = ϕ (F (X)) g(Y ) = ψ (G(Y )) .

Here we define H(U) as the entropy of random vector U and UM = idM (U), where id is the
identical map on Rd. Then, there exists Ψ : Rd × Rd → R such that

0 < H̃(Ψ(f∗(X), f(X)) | f(X)).

Otherwise, there exists a measurable function ζ such that f∗(X) = ζ(f(X)) almost surely. By
Definition 3, it holds that ID(f) ≤ ID(f∗) = k̃ < k, which draws the contradiction.

Then, as H̃(Ψ(f∗(X), f(X)) | f(X)) = H̃(Ψ(f∗(X), f(X)), f(X)) − H̃(f(X)), by Lemma 3,
we also have

0 ≺M H(Ψ(f∗(X), f(X)) | f(X)).

Otherwise, for any Ψ, it holds that Ψ(f∗(X), f(X)) is a deterministic function of f(X). Specifi-
cally, f∗(X) is a function of f(X) and by Definition 3, we obtain k̃ = ID(f∗) ≤ ID(f) = k, which
draws the contradiction.

Hence, we can define

F̄ (X) =

(
F (X)
0d−k−1

Ψ(f(X), f∗(X))

)
and Ḡ(Y ) =

(
G(Y )
0d−k−1

Ψ(g(Y ), g∗(Y ))

)
,

with which

−I(F̄ (X); Ḡ(Y )) =M −H(F̄ (X))

=M −H(F (X))−H(Ψ(f∗(X), f(X)) | F (X))

≺M −H(F (X))

=M −I(F (X);G(Y )).

Since ϕ and ψ are injective, we further have

−I(F̄ (X); Ḡ(Y )) ≺M −I(F (X);G(Y )) =M −I(f(X); g(Y )),

which contradicts the fact that (f, g) ∈ W(H), which completes the proof. Hence, in the remaining
part of the proof, we can define k∗ = k̃.

B.2 Proof of Lemma 7 (2)

Suppose the statement is not true. Then, there exists Φ̃1, Φ̃2 : Rd × Rd → R such that

0 < I(Φ̃1(f(X), f∗(X)); Φ̃2(g(Y ), g∗(Y )) | f∗(X)),
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which, by Lemma 4, further indicates that

0 ≺M I(Φ̃1(f(X), f∗(X)); Φ̃2(g(Y ), g∗(Y )) | f∗(X)). (4)

To see this, if the statement is not true, it holds that for any Φ̃1, Φ̃2 : Rd × Rd → R,

Φ̃1(f(X), f∗(X)) |= Φ̃2(g(Y ), g∗(Y )) | f∗(X).

Specifically, we have f(X) |= g(Y ) | f∗(X), which draws the contradiction.

Since k∗ < d, there exist injective measurable functions ϕ∗, ψ∗ : Rk∗ → Rd and F ∗(X), G∗(Y ) ∈
Rk∗ such that

f∗(X) = ϕ∗ (F ∗(X)) g∗(Y ) = ψ∗ (G∗(Y )) .

Then, we can define

F̌ (X) =

 F ∗(X)
0d−k∗−1

Φ̃1(f(X), f∗(X))

 and Ǧ(Y ) =

 G∗(Y )
0d−k∗−1

Φ̃2(g(Y ), g∗(Y ))

 ,

with which, we have
−I(F̌ (X); Ǧ(Y )) ⪯M −I(F ∗(X); Ǧ(Y )) ⪯M −I(F ∗(X);G∗(Y )).

Here =M holds in the first inequality if and only if Ǧ(Y ) |= Φ̃1(f(X), f∗(X)) | F ∗(X), i.e.

Φ̃2(g(Y ), g∗(Y )) |= Φ̃1(f(X), f∗(X)) | f∗(X),

which draws the contradiction to the construction of Φ̃1 and Φ̃2 in (4). Since ϕ∗ and ψ∗ are injective,
we further obtain

−I(F̌ (X); Ǧ(Y )) ≺M −I(f∗(X); g∗(Y )),

which draws the contradiction to the fact that (f∗, g∗) ∈ W(H). Thus, we obtain
f(X) |= g(Y ) | f∗(X).

C Properties of infoNCE loss

Before presenting the technical proof of the main results on intrinsic dimension adaptation, we
summarize some properties of the infoNCE loss.

C.1 A decomposition of the infoNCE loss

A pillar of our proof is the following decomposition of the infoNCE loss that characterizes the
gap between the infoNCE loss and mutual information. Similar decompositions have appeared
in [53, 79, 52].
Lemma 8. Let (f(X), g(Y )) ∼ Pf(X),g(Y ). If I(f(X), g(Y )) < +∞, there exist joint distributions
Qf(X),g(Y ),τ and Q̃f(X),g(Y ),τ such that L(f, g, τ) can be decomposed as

−2I(f(X); g(Y )) +DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
+DKL

(
Pf(X),g(Y ) || Q̃f(X),g(Y ),τ

)
.(5)

The formal definitions of Qf(X),g(Y ),τ and Q̃f(X),g(Y ),τ are presented in Appendix C.1.1. In short,
they can be viewed as the kernel smoothing of Pf(X),g(Y ) in the product space.

Conceptually, given the decomposition (5), minimizing the infoNCE loss is equivalent to simul-
taneously maximizing the mutual information between f(X) and g(Y ), and minimizing the KL-
divergence between Pf(X),g(Y ) and its smoothed versions. Here, the latter encourages the joint
distribution of Pf(X),g(Y ) to spread across the support and implicitly enforces uniformity of the
distribution Pf(X),g(Y ), which is in line with [79]. In our actual proof, the lemma will be used
together with discretizations introduced in Section 2.1 and (3) that ensure the finiteness of mutual
information.

This decomposition is also relevant to the analysis in [53, 52], where the minimum of infoNCE
loss over all possible similarity measures is shown to be bounded from below by −2I(f(X); g(Y )).
However, in our paper, we focus on the inner product-based similarity that is in line with the imple-
mentation of CLIP and does not rely on any unknown information about the distributions of (X,Y ).
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C.1.1 Proof of Lemma 8

Recall the definition of mutual information

I(X;Y ) = DKL (PX,Y || PX ⊗ PY ) ,

where PX,Y is the joint distribution of (X,Y ) and PX , PY are marginal distributions. For any map
f and g, we have the

I(X;Y ) ≥ I(f(X); g(Y )).

When f and g are one-to-one with measurable inverse maps, it holds that I(X;Y ) =
I(f(X); g(Y )).

To characterize the dependence structure between f(X) and g(Y ), the conditional distribution
Pf(X)|g(X) is often of interest, but the estimation is usually not tractable in practice. As an
alternative, consider a hypothesized conditional distribution Qf(X)|g(Y ),τ with density function
qf(X)|g(Y ),τ , with which we have

I(f(X); g(Y )) = EP
[
log

pf(X),g(Y )(U, V )

pf(X)(U)pg(Y )(V )

]
= EP

[
log

pf(X)|g(Y )(U | V )qf(X)|g(Y ),τ (U | V )

pf(X)(U)qf(X)|g(Y ),τ (U | V )

]
= EP

[
log

qf(X)|g(Y ),τ (U | V )

pf(X)(U)

]
+ EPg(Y )

[
DKL

(
Pf(X)|g(Y ) || Qf(X)|g(Y ),τ

)]
.

Similarly, if we have a hypothesized conditional distribution Q̃g(Y )|f(X),τ with density function
q̃g(Y )|f(X),τ , we can symmetrize the foregoing argument to obtain

I(f(X); g(Y )) =
1

2
EP
[
log

qf(X)|g(Y ),τ (U | V )

pf(X)(U)

]
+

1

2
EPg(Y )

[
DKL

(
Pf(X)|g(Y ) || Qf(X)|g(Y ),τ

)]

+
1

2
EP
[
log

q̃g(Y )|f(X)(V | U)

pg(Y )(V )

]
+

1

2
EPf(X)

[
DKL

(
Pg(Y )|f(X) || Q̃g(Y )|f(X),τ

)]
.

We consider the following families of conditional distributions:

Hf |g =

{
qf(X)|g(Y ),τ (u | v) = pf(X)(u) ·

eσ(u,v)/τ

EPg(Y )
eσ(u,V )/τ

}
,

Hg|f =

{
q̃g(Y )|f(X),τ (v | u) = pg(Y )(v) ·

eσ(u,v)/τ

EPf(X)
eσ(U,v)/τ

}
,

where σ(U, V ) is a similarity measure between random vectors U and V . Then, in this case, for any
qf(X)|g(Y ),τ (u | v) ∈ Hf |g and q̃g(Y )|f(X),τ (v | u) ∈ Hg|f , one can verify that

EP
[
log

qf(X)|g(Y ),τ (U | V )

pf(X)(U)

]
=

1

τ
EP {σ(f(X), g(Y ))} − EX

{
logEỸ

[
exp

(
σ(f(X), g(Ỹ ))

τ

)]}
,

EP
[
log

q̃g(Y )|f(X)(V | U)

pg(Y )(V )

]
=

1

τ
EP {σ(f(X), g(Y ))} − EỸ

{
logEX

[
exp

(
σ(f(X), g(Ỹ ))

τ

)]}
.

In addition, if we define the joint distributions

Qf(X),g(Y ),τ = Qf(X)|g(Y ),τ ⊗ Pg(Y ) and Q̃f(X),g(Y ),τ = Q̃g(Y )|f(X),τ ⊗ Pf(X), (6)
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we obtain the variational form of mutual information as follows:

I(f(X); g(Y )) = −1

2
L(f, g, τ)

+
1

2
DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
+

1

2
DKL

(
Pf(X),g(Y ) || Q̃f(X),g(Y ),τ

)

=: −1

2
L(f, g, τ) + ∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ).

Hence, minimizing L(f, g, τ) is equivalent to the following optimization problem:

min
f,g,τ

{
− I(f(X); g(Y )) + ∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ )

}
subject to dQf(X)|g(Y ),τ ∈ Hf |g, dQ̃g(Y )|f(X),τ ∈ Hg|f .

C.2 Properties of (approximate) minimizers

Since temperature τ is also optimized, to analyze the solution path with varying τ , for any ε > 0,
we consider the set

OL,ε,η(H) =

{
(f, g) ∈ H : ∃ τ ≥ ε such that lim sup

M→+∞

(
L(fM , gM , τ) + 2I∗M (H)

)
≤ 2η

}
.(7)

Note that we adopt the natural order ≤ on R since with discretization, it always holds that I∗M (H) <
+∞. Recall that

OL,η(H) =

{
(f, g) ∈ H : ∃ τ ≥ ε(η) such that lim sup

M→+∞

(
L(fM , gM , τ) + 2I∗M (H)

)
≤ 2η

}
,

where we define ε(η) as follows. Denote the set of nondecreasing univariate functions by C and in
addition, the subset

C∗ =

ω(·) ∈ C :
⋂
η≥0

OL,ω(η),η(H) ̸= ∅, lim
η→0+

ω(η) = 0

 . (8)

The set C∗ is shown to be nonempty when V(H) ̸= ∅ in Lemma 9. We define ω1(·) ⪯ ω2(·) if for
any η ≥ 0, it holds that ω1(η) ≤ ω2(η). Then, we choose ε(·) to be any item in C∗ such that

{ω ∈ C∗ : ε(·) ⪯ ω(·)} = ∅. (9)

Note that if there exists a global minimizer (f, g) that minimizes L for any τ ≥ 0, we can simply
define

ε(η) = sup

{
ε ≥ 0 : OL,η,ε(H) ̸= ∅

}
.

To start with, we have the following lemma.

Lemma 9. Assume V(H) ̸= ∅. Then, it holds that⋂
η≥0

OL,η(H) ̸= ∅.

In addition, lim infη→0 ε(η) = 0.

See proof in Section C.2.1.

Then, we are ready to present the main result on the properties of ∩η≥0OL,η(H). For a general
similarity measure σ(U, V ) and any (f, g) ∈ ∩η≥0OL,η(H), we have the following results.
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Lemma 10. Assume (f, g) ∈ ∩η≥0OL,η(H) and mσ(f, g) < ∞. Then, the following
properties hold.

(1) Maximal mutual information. (f, g) ∈ W(H).
(2) Maximal similarity. σ(f(X), g(Y )) = mσ(f, g) almost surely.
(3) Monotonicity in τ . ∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ) is increasing in τ .

C.2.1 Proof of Lemma 9

Nonemptiness. To see the nonemptiness, it suffices to show that for any (f∗, g∗) ∈ V(H),

0 = lim
τ→0+

{
lim sup
M→+∞

(L(f∗M , g∗M , τ) + 2I∗M (H))

}
= lim
τ→0+

{
lim sup
M→+∞

(
2I∗M (H)− 2I(f∗M (X); g∗M (Y )) + 2∆(P ;Qf∗

M (X),g∗M (Y ),τ , Q̃f∗
M (X),g∗M (Y ),τ )

)}
.

Without loss of generality, assume E∥f∗(X)∥ = E∥g∗(Y )∥ = 1. By definition, since (f∗, g∗) ∈
V(H), we have

lim inf
M→+∞

(
I(f∗M (X); g∗M (Y ))− I∗M (H)

)
= lim sup

M→+∞

(
I∗M (H)− I(f∗M (X); g∗M (Y ))

)
= 0,

which implies that, for any τ ≥ 0,

lim sup
M→+∞

(L(f∗M , g∗M , τ) + 2I∗M (H)) ≤ 2 lim sup
M→+∞

∆(P ;Qf∗
M (X),g∗M (Y ),τ , Q̃f∗

M (X),g∗M (Y ),τ ).

As (f∗, g∗) ∈ A(H), i.e., f∗(X) = g∗(Y ) almost surely, we further have pf∗(X)(u) = pg∗(Y )(u)
and

pf∗(X),g∗(Y )(u, v) = pf∗(X)(u)1u=v,

which is also true after discretization, i.e., f∗M (X) = g∗M (Y ) almost surely and

pf∗
M (X),g∗M (Y )(u, v) = pf∗

M (X)(u)1u=v.

In addition, for any M ∈ M,

DKL(Pf∗
M (X),g∗M (Y ) || Qf∗

M (X),g∗M (Y ),τ )

=

∫∫
Rd×Rd

pf∗
M (X),g∗M (Y )(u, v) log pf∗

M (X),g∗M (Y )(u, v)dudv

−
∫∫

Rd×Rd

pf∗
M (X),g∗M (Y )(u, v) log

e1/τ (pf∗
M (X)(u))

2∫
Rd pf∗

M (X)(ṽ)e⟨u,ṽ⟩/τdṽ
dudv

= −1

τ
+H(f∗M (X)) +

∫
Rd

pf∗
M (X)(u) log

(∫
Rd

pf∗
M (X)(ṽ)e

⟨u,ṽ⟩/τdṽ

)
du

=

∫
Rd

pf∗
M (X)(u) log

∫
Rd pf∗

M (X)(ṽ)e
⟨u,ṽ⟩/τdṽ

pf∗
M (X)(u)e1/τ

du.

Then, by Lemma 2, we have

lim
M→+∞

DKL(Pf∗
M (X),g∗M (Y ) || Qf∗

M (X),g∗M (Y ),τ ) = DKL(Pf∗(X),g∗(Y ) || Qf∗(X),g∗(Y ),τ ),

for which, it holds that

lim
τ→0+

DKL(Pf∗(X),g∗(Y ) || Qf∗(X),g∗(Y ),τ ) = lim
τ→0+

{∫
Rd

pf∗(X)(u) log

∫
Rd pf∗(X)(ṽ)e

⟨u,ṽ⟩/τdṽ

pf∗(X)(u)e1/τ
du

}

=

∫
Rd

pf∗(X)(u) log
pf∗(X)(u)

pf∗(X)(u)
du = 0.

24



Hence, by the symmetry of ∆(P ;Qf∗
M (X),g∗M (Y ),τ , Q̃f∗

M (X),g∗M (Y ),τ ) in f and g, we obtain

lim
τ→0+

{
lim sup
M→+∞

∆(P ;Qf∗
M (X),g∗M (Y ),τ , Q̃f∗

M (X),g∗M (Y ),τ )

}
= 0.

Then, the constant function ω(η) = 0 is in the set C∗ defined in (8), indicating that C∗ ̸= ∅, thus
∩η≥0OL,η(H) ̸= ∅.

Zero limit infimum. Suppose lim infη→0 ε(η) = τ > 0. Then, for any (f, g) ∈ H, it holds that

lim sup
M→+∞

(L(fM , gM , τ) + 2I∗M (H)) ≤ 0.

In addition, as we have shown in Lemma 8, it holds that

L(fM , gM , τ) + 2I∗M (H) ≥ −2I(fM (X); gM (Y )) + 2I∗M (H) ≥ 0,

which further implies that

0 ≤ lim inf
M→+∞

(L(fM , gM , τ) + 2I∗M (H)) ≤ lim sup
M→+∞

(L(fM , gM , τ) + 2I∗M (H)) ≤ 0.

Hence, limM→+∞(L(f∗M , g∗M , τ) + 2I∗M (H)) = 0. Moreover, as

L(fM , gM , τ) + 2I∗M (H) ≥ ∆(P ;QfM (X),gM (Y ),τ , Q̃fM (X),gM (Y ),τ ) ≥ 0,

we further obtain

lim
M→+∞

∆(P ;QfM (X),gM (Y ),τ , Q̃fM (X),gM (Y ),τ ) = 0.

In this case, the joint distribution of (f(X), g(Y )) takes the form

pf(X),g(Y )(u, v) =
exp

(
σ(u,v)
τ

)
pf(X)(u)pg(Y )(v)

EPf(X)⊗Pg(Y )
exp

(
σ(f(X),g(Y ))

τ

) ,
thus, the mutual information satisfies

I(f(X); g(Y )) =

∫∫
pf(X),g(Y )(u, v) log

pf(X),g(Y )(u, v)

pf(X)(u)pg(Y )(v)
dudv

≤
∫∫

σ(u, v)

τ
·

exp
(
σ(u,v)
τ

)
pf(X)(u)pg(Y )(v)

EPf(X)⊗Pg(Y )
exp

(
σ(f(X),g(Y ))

τ

)dudv
− logEPf(X)⊗Pg(Y )

exp

(
σ(f(X), g(Y ))

τ

)
≤ Ω

τ
<∞.

Hence, lim supM→+∞ I(fM (X); gM (Y )) <∞ for any (f, g) ∈ H. Then, we obtain

lim sup
M→+∞

I∗M (H) = lim sup
M→+∞

sup
(f,g)∈H

I(fM (X); gM (Y )) ≤ Ω

τ
<∞. (10)

In addition, since V(H) ̸= ∅, there exist (f∗, g∗) such that f∗(X)/E∥f∗(X)∥ = g∗(Y )/E∥g∗(Y )∥
almost surely, thus

lim sup
M→+∞

I∗M (H) ≥ lim sup
M→+∞

I(f∗M (X); g∗M (X)) = +∞,

which draws the contradiction to (10).
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C.2.2 Proof of Lemma 10 (1) and (2)

Assume (f, g) ∈ ∩η≥0OL,η(H). There exists a decreasing sequence {ηj}j∈N such that ηj →
0 as j → +∞. Accordingly, there is an associated sequence τj = ε(ηj), which satisfies
lim infj→+∞ τj = 0 as is shown in Lemma 9. By the decomposition in Lemma 8 and the def-
inition of OL,η(H), for any j ∈ N, it holds that

lim sup
M→+∞

{
I∗M (H)− I(fM (X); gM (Y )) + ∆(P ;QfM (X),gM (Y ),τj , Q̃fM (X),gM (Y ),τj )

}
≤ ηj .

Since lim infj→+∞ τj = 0, there is a convergent subsequence {τjl}l∈N with liml→+∞ τjl = 0.
Without loss of generality, we assume {τj}j∈N is convergent such that limj→+∞ τj = 0.

In addition, we have, for any M ∈ M and j ∈ N,

I∗M (H)− I(fM (X); gM (Y )) ≥ 0, ∆(P ;QfM (X),gM (Y ),τj , Q̃fM (X),gM (Y ),τj ) ≥ 0,

which implies that

max

{
lim sup
M→+∞

{I∗M (H)− I(fM (X); gM (Y ))} , lim sup
M→+∞

{
∆(P ;QfM (X),gM (Y ),τj , Q̃fM (X),gM (Y ),τj )

}}

≤ lim sup
M→+∞

{
I∗M (H)− I(fM (X); gM (Y )) + ∆(P ;QfM (X),gM (Y ),τj , Q̃fM (X),gM (Y ),τj )

}
≤ ηj .

Then, by Moore-Osgood theorem [54, 19], we can exchange the order of limit operators and obtain{
lim supM→+∞ ∆(P ;QfM (X),gM (Y ),0, Q̃fM (X),gM (Y ),0) = 0,

lim infM→+∞
(
I(fM (X); gM (Y ))− I∗M (H)

)
= 0.

Denote m = mσ(f, g) = ess sup σ(f(X), g(Ỹ )), and Em = {(u, v) ∈ R(f) × R(g) : σ(u, v) =
m}, Am(u) = {v ∈ R(g) : σ(u, v) = m}, Bm(v) = {u ∈ R(f) : σ(u, v) = m}. As ε → 0, to
ensure lim supM→+∞ ∆(PM ;QMε̃ , Q̃

M
ε̃ ) = 0, we have

pf(X),g(Y )(u, v) = pf(X)(u)pg(Y )(v)
1σ(u,v)=m

Eg(Y )[1{V :σ(u,V )=m}]
(11)

= pf(X)(u)pg(Y )(v)
1σ(u,v)=m

Ef(X)[1{U :σ(U,v)=m}]
,

which indicates that

Eg(Y )[1{V :σ(u,V )=m}] = Ef(X)[1{U :σ(U,v)=m}]

=

∫∫
Em

pf(X)(u)pg(Y )(v)dudv := Am.

Here 1A is the indicator function with respect to the set A and if A = {a}, we define Ef(X)[1A] =
pf(X)(a). In this case, σ(f(X), g(Y )) = m almost surely, which completes the proof.

C.2.3 Proof of Lemma 10 (3)

Recall the definition

∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ )

=
1

2
DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
+

1

2
DKL

(
Pf(X),g(Y ) || Q̃f(X),g(Y ),τ

)
.

It suffices to show the monotonicity of the first term in τ . Since infoNCE loss is scale-invariant with
respect to both f and g, without loss of generality, we can assume E∥f(X)∥ = E∥g(Y )∥ = 1.

When the distribution Pf(X),g(Y ) degenerates on the support {σ(f(X), g(Y )) = mσ(f, g)},
Pf(X),g(Y ) is not absolutely continuous with respect to Qf(X),g(Y ),τ and Q̃f(X),g(Y ),τ )), thus
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∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ) = +∞ for any τ > 0 and ∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ) =
0 if and only if τ = 0.

If the distribution Pf(X),g(Y ) is not degenerate, by the joint distribution in (11), we further have

DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
=

∫∫
Rd×Rd

pf(X),g(Y )(u, v) log
pf(X),g(Y )(u, v)

qf(X),g(Y ),τ (u, v)
dudv

=

∫∫
Rd×Rd

pf(X),g(Y )(u, v) log
pf(X),g(Y )(u, v)

pf(X)(u)pg(Y )(v)
dudv

−
∫∫

Rd×Rd

pf(X),g(Y )(u, v) log
em/τ∫

Rd pg(Y )(ṽ)eσ(u,ṽ)/τdṽ
dudv.

Then, since the first term is free of τ , we have

∂

∂τ
DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
=

∂

∂τ

{
−
∫∫

Rd×Rd

pf(X),g(Y )(u, v) log
em/τ∫

Rd pg(Y )(ṽ)eσ(u,ṽ)/τdṽ
dudv

}
=

∂

∂τ

{
− m

τ
+

∫∫
Rd×Rd

pf(X),g(Y )(u, v)

[
log

∫
Rd

pg(Y )(ṽ)e
σ(u,ṽ)/τdṽ

]
dudv

}
=

1

τ2

{
m−

∫∫
Rd×Rd

pf(X),g(Y )(u, v)

[∫
Rd σ(u, ṽ)pg(Y )(ṽ)e

σ(u,ṽ)/τdṽ∫
Rd pg(Y )(ṽ)eσ(u,ṽ)/τdṽ

]
dudv

}
.

Since σ(u, ṽ) ≤ m, the derivative is nonnegative, thus

∂

∂τ
DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
≥ 0.

The equality holds if and only if σ(f(X), g(Ỹ )) = mσ(f, g) almost surely with respect to the
product distribution Pf(X) ⊗ Pg(Y ). In this case, for any τ ≥ 0, the infoNCE loss L(f, g, τ) = 0,
which contradicts the fact that (f, g) ∈ ∩η≥0OL,η(H), thus, we have

∂

∂τ
DKL

(
Pf(X),g(Y ) || Qf(X),g(Y ),τ

)
> 0.

By the symmetry of ∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ) in f and g, we conclude that
∆(P ;Qf(X),g(Y ),τ , Q̃f(X),g(Y ),τ ) is increasing in τ .

D Proof of Theorem 2

We present the proof of Theorem 2 in this section. If V(H) ̸= ∅, we have V(H) = V(Hk∗) as a
result of Lemma 7 and ∩η≥0OL,η(H) ̸= ∅ as a result of Lemma 9, respectively.

In addition, Theorem 2 (1)(3)(4) are directly implied by Lemma 10, thus it suffices to prove Theo-
rem 2 (2).

Based on the previous notations, we will prove the result with the following steps.

• Step 1: for any (f, g) ∈ ∩η≥0OL,η(H), it holds that min{ID(f), ID(g)} ≥ k∗;

• Step 2: for any (f, g) ∈ ∩η≥0OL,η(H), max{ID(f), ID(g)} ≤ k∗.

Combining the two steps, we conclude that for any (f, g) ∈ ∩η≥0OL,η(H), it holds that ID(f) =
ID(g) = k∗.
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D.1 Proof of Step 1

If ID(f) = k < k∗ ≤ d, there exists a random vector Z ∈ Bk such that f(X) = ϕ(Z) almost surely
for some injective measurable function ϕ : Rk → Rd. In addition, we have ID(g) < d. To see this,
suppose ID(g) = d. Consider (u, v) ∈ R(f)×R(g) such that ⟨u, v⟩ = mσ(f, g)E∥f(X)∥E∥g(Y )∥
and there exists an open set Bv satisfying v ∈ Bv ⊆ R(g). Then, consider the linear function
ζ(z) = ⟨u, z⟩, which is continuous in z ∈ Bv . There exists ṽ ∈ Bv ⊆ R(g) such that ζ(ṽ) =
⟨u, ṽ⟩ > ζ(v) = mσ(f, g)E∥f(X)∥E∥g(Y )∥, which draws the contradiction.

Then, there exist F (X), G(Y ) ∈ Rk and injective measurable functions ϕ, ψ : Rk → Rd such that

f(X) = ϕ (F (X)) g(Y ) = ψ (G(Y )) .

Accordingly, for any (f∗, g∗) ∈ V(H) = V(Hk∗), there exist Φ1,Φ2 : Rd × Rd → R such that

0 < I(Φ1(f(X), f∗(X)); Φ2(g(Y ), g∗(Y )) | f(X)).

To see this, otherwise, for any Φ1,Φ2 : Rd × Rd → R, it holds that

I(Φ1(f(X), f∗(X)); Φ2(g(Y ), g∗(Y )) | f(X)) = 0,

which further indicates that

Φ1(f(X), f∗(X)) |= Φ2(g(Y ), g∗(Y )) | f(X).

Thus, specifically, f∗(X) |= g∗(Y ) | f(X), which holds if and only if there exists a measurable
function h such that f∗(X) = (h◦ f)(X) almost surely, indicating that ID(f∗) ≤ ID(f) = k < k∗,
which draws the contradiction. By Lemma 4, we further have

0 ≺M I(Φ1(f(X), f∗(X)); Φ2(g(Y ), g∗(Y )) | f(X)).

Hence, we can define

F̃ (X) =

(
F (X)
0d−k−1

Φ1(f(X), f∗(X))

)
and G̃(Y ) =

(
G(Y )
0d−k−1

Φ2(g(Y ), g∗(Y ))

)
.

By the Data Processing Inequality [58, Theorem 2.17], we have

−I(F̃ (X); G̃(Y )) ⪯M −I(F (X); G̃(Y ))

⪯M −I(F (X);G(Y )).

In the first inequality, =M holds if and only if G̃(Y ) |= Φ1(f(X), f∗(X)) | F (X), i.e.

Φ1(f(X), f∗(X)) |= Φ2(g(Y ), g∗(Y )) | f(X),

drawing the contradiction to the construction of Φ, thus the first inequality is strict, i.e.

−I(F̃ (X); G̃(Y )) ≺M −I(F (X);G(Y )).

Since ϕ and ψ are injective, we further have −I(F̃ (X); G̃(Y )) ≺M −I(F (X);G(Y )) =M
−I(f(X); g(Y )), which draws the contradiction to the fact that (f, g) ∈ W(H), thus ID(f) ≥ k∗.

D.2 Proof of Step 2

As we already show that ID(f), ID(g) ≥ k∗, let ID(f) = k ≥ k∗. If k∗ = d, we naturally have
k = k∗, thus we consider the case where k∗ < d and there exist injective measurable functions
ϕ∗, ψ∗ : Rk∗ → Rd and F ∗(X), G∗(Y ) ∈ Rk∗ such that

f∗(X) = ϕ∗ (F ∗(X)) g∗(Y ) = ψ∗ (G∗(Y )) .

By Lemma 7, for any (f∗, g∗) ∈ V(H), it holds that ID(f∗), ID(g∗) ≤ k∗ and

f(X) |= g(Y ) | f∗(X). (12)
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Hence, we can define

f∗(X) = E[f(X) | f∗(X)].

Then, for any τ > 0, consider the infoNCE loss

L(f, g, τ) = −2

τ

E [⟨f(X), g(Y )⟩]
E∥f(X)∥E∥g(Y )∥

+ EX

{
logEỸ

[
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]}

+ EỸ

{
logEX

[
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]}
.

In addition, with the defined representation maps (f∗, g), we further have

L(f∗, g, τ) = −2

τ

E [⟨f∗(X), g(Y )⟩]
E∥f∗(X)∥E∥g(Y )∥

+ EX

{
logEỸ

[
exp

(
⟨f∗(X), g(Ỹ )⟩

τE∥f∗(X)∥E∥g(Ỹ )∥

)]}

+ EỸ

{
logEX

[
exp

(
⟨f∗(X), g(Ỹ )⟩

τE∥f∗(X)∥E∥g(Ỹ )∥

)]}
,

where, by Jensen’s inequality, ∥f∗(X)∥ = ∥E[f(X) | f∗(X)]∥ ≤ E[∥f(X)∥ | f∗(X)] almost
surely.

We note that, according to Lemma 10, it holds that

⟨f(X), g(Y )⟩ = mσ(f, g) · E∥f(X)∥E∥g(Y )∥ almost surely.

In addition, by the conditional independence (12), we further obtain

E {⟨E[f(X) | f∗(X)], g(Y )⟩} = E {E[⟨f(X), g(Y )⟩ | f∗(X)]} = mσ(f, g) · E∥f(X)∥E∥g(Y )∥

almost surely and, in the meantime,

EX

{
logEỸ

[
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]}

= Ef∗(X)

{
E

[
logEg(Ỹ )

{
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)} ∣∣∣∣ f∗(X)

]}
.

Since logEU exp(x⊤U) is convex in x, by Jensen’s inequality, we obtain

EX

{
logEỸ

[
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]}

≥ Ef∗(X)

{
logEg(Ỹ )

{
exp

(
⟨E[f(X) | f∗(X)], g(Ỹ )⟩
τE∥f(X)∥E∥g(Ỹ )∥

)}}

= EX

{
logEỸ

[
exp

(
⟨f∗(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]}
.

In addition, since exp(x⊤U) is convex in x, we also obtain

EX

[
exp

(
⟨f(X), g(Ỹ )⟩

τE∥f(X)∥E∥g(Ỹ )∥

)]
≥ Ef∗(X)

[
exp

(
⟨E [f(X) | f∗(X)] , g(Ỹ )⟩
τE∥f(X)∥E∥g(Ỹ )∥

)]

Combining the pieces above, if we define

τ̃ = τ · E∥f∗(X)∥
E∥f(X)∥

≤ τ,
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it holds that

L(f∗, g, τ) ≤ L(f, g, τ̃),

where the equality holds if and only if f(X) can be expressed as a measurable function of f∗(X)
almost surely. Thus, if f(X) cannot be expressed as functions of f∗(X), we have

L(f, g, τ̃) > L(f∗, g, τ). (13)

Then, according to Lemma 10 (3), since τ ≥ τ̃ ≥ 0, it holds that

∆(f, g, τ) ≥ ∆(f, g, τ̃),

which, by Lemma 2 further implies that

lim sup
M→+∞

(
L(fM , gM , τ) + 2I∗M (H)

)
≥ lim sup

M→+∞

(
L(fM , gM , τ̃) + 2I∗M (H)

)
.

According to (13) and Lemma 5, we further obtain

lim inf
M→+∞

(
L(fM , gM , τ̃)− L((f∗)M , gM , τ)

)
≥ lim inf
M→+∞

L(fM , gM , τ̃)− lim sup
M→+∞

L((f∗)M , gM , τ)

= lim
M→+∞

L(fM , gM , τ̃)− lim
M→+∞

L((f∗)M , gM , τ) > 0.

Hence, it holds that

lim sup
M→+∞

(
L(fM , gM , τ) + 2I∗M (H)

)
≥ lim sup

M→+∞

(
L(fM , gM , τ̃) + 2I∗M (H)

)
≥ lim sup

M→+∞

(
L((f∗)M , gM , τ) + 2I∗M (H)

)
+ lim inf
M→+∞

(
L(fM , gM , τ̃)− L((f∗)M , gM , τ)

)
> lim sup

M→+∞

(
L((f∗)M , gM , τ) + 2I∗M (H)

)
.

Particularly, for any η > 0, with τ = ε(η), it holds that

lim sup
M→+∞

(
L(fM , gM , ε(η)) + 2I∗M (H)

)
> lim sup

M→+∞

(
L((f∗)M , gM , ε(η)) + 2I∗M (H)

)
≥ 2η, for all η > 0.

Then, by the definition of OL,η(H), we can conclude that (f, g) /∈ OL,η(H), which draws the
contradiction. Hence, there exist measurable functions h̃ and ℓ̃ such that

f(X) = (h ◦ f∗)(X) g(Y ) = (ℓ ◦ g∗)(Y ) almost surely.

By Lemma 6, it holds that ID(f), ID(g) ≤ k∗, and combining with the result in Step 1, we obtain
ID(f) = ID(g) = k∗, which concludes the proof.

E Extensions and additional theoretical results

E.1 Connection with sufficient dimension reduction

Sufficient dimension reduction (SDR) [38, 10, 11] is an important topic in statistics and machine
learning, in which, the goal is to find a low-dimensional representation f(X) such that f(X) is
sufficient for the conditional distribution of Y | X in the sense that Y |= X | f(X). In the following
proposition, we will show that the representations learned by CLIP are also sufficient if V(H) ̸= ∅.
To simplify notation, we focus on the case where X,Y ∈ Rd. Extensions to a more general setting,
where X ∈ Rd1 and Y ∈ Rd2 , are provided in Appendix E.1.2. Here we denote id : Rd → Rd as
the identical map and XM = idM (X). Then, we have the following result.
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Proposition 2. Assume V(H) ̸= ∅ and there exists (f, g) ∈ H such that
lim infM→+∞(I(fM (X); gM (Y )) − I(XM ;YM )) = 0. For any (f∗, g∗) ∈ V(Hk∗), the
dimension reductions f∗(X) and g∗(Y ) are sufficient, i.e. Y |= X | f∗(X) and Y |= X | g∗(Y ).

We note that compared with Theorem 2, Proposition 2 has an additional condition that there exists
(f, g) ∈ H such that lim infM→+∞(I(fM (X); gM (Y ))− I(XM ;YM )) = 0. One specific example
that satisfies this condition is the scenario where we set f∗(X) = (h1(X), · · · , hk(X)) almost
surely such that Y |= X | (h1(X), · · · , hk(X)), which is commonly considered in the literature
of (nonlinear) SDR [15, 16, 36, 8] and the tuple of nonlinear functions can be further extended to
σ-field [37, 8].

E.1.1 Proof of Proposition 2

We prove by showing that Y |= X | f∗(X). By the assumption that there exists (f̃ , g̃) ∈ H
such that I(Y ;X) =M I(f̃(X); g̃(Y )) and the definition of V(Hk∗), it holds that I(Y ;X) =M

I(f∗(X); g∗(Y )) for all (f∗, g∗) ∈ V(Hk∗). Then, by property of mutual information ([58] Theo-
rem 2.3), we have

I(g∗(Y ); f∗(X)) ⪯M I(Y ; f∗(X)) ⪯M I(Y ;X) =M I(g∗(Y ); f∗(X)),

which implies that

I(Y ; f∗(X)) =M I(Y ;X). (14)

In addition, combining (14) with the Kolmogorov identity of mutual information ([58] Theorem 2.5
(2)) that

I(Y ;X) =M I(Y ;X, f∗(X)) =M I(Y ; f∗(X)) + I(Y ;X | f∗(X)),

we further obtain I(Y ;X | f∗(X)) =M 0. According to the property of the conditional mutual
information ([58] Theorem 2.5 (1)), I(Y ;X | f∗(X)) =M 0 if and only if (XM , f

∗
M (X), YM )

forms a Markov chain, i.e. YM |= XM | f∗M (X) for all M ∈ M, which, by continuity of X , Y ,
and f∗(X), further indicates that Y |= X | f∗(X).

E.1.2 Extension of Proposition 2

We then turn to a general case whereX ∈ B̃d1 and Y ∈ B̃d2 , where B̃d1 and B̃d2 are bounded sets in
Rd1 and Rd2 , respectively. If V(H) ̸= ∅, we fix a pair (f∗, g∗) ∈ V(Hk∗). Consider discretizations
DM = {DM,i}i∈[M ] and EM = {EM,i}i∈[M ] of B̃d1 and B̃d2 , respectively, where DM,i is the
preimage of cM,i under f∗ and EM,i is the preimage of cM,i under g∗. Denote representatives in
DM,i and EM,i by xM,i and yM,i, respectively. In addition, we assume DM and EM are nested
discretizations and as M → +∞, it holds that

lim
M→+∞

max
i∈[M ]

diam(DM,i) = 0, lim
M→+∞

max
i∈[M ]

diam(EM,i) = 0.

Similar to notations for B̃d before, we write XM and YM to denote discretized random vectors
where

P(XM = xM,i) = P(X ∈ DM,i) and P(YM = yM,i) = P(Y ∈ EM,i).

Then, we define a new partial order
∗
⪯M as follows. For any random vectors X ∈ Rd1 , Y ∈ Rd2 , U

supported on B̃d, and functionals F,G of random vectors, we define the order
∗
⪯M associated with

(f∗, g∗) such that

F (X,Y )
∗
⪯M G(U) ⇐⇒ lim sup

M→+∞
{F (XM , YM )−G(UM )} ≤ 0,

and moreover, the inequality is strict, i.e. F (X,Y )
∗
≺M G(U), if and only if

lim sup
M→+∞

{
F (XM , YM )

∗
⪯M G(UM )

}
< 0.

We also write F (X,Y )
∗
=M G(U) if limM→+∞ {F (XM , YM )−G(UM )} = 0. Then, we state the

extension of Proposition 2 as follows.
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Proposition 3. Suppose V(H) ̸= ∅. Assume there exists (f, g) ∈ H such that I(X;Y )
∗
=M

I(f(X); g(Y )) with ∗
=M associated with (f∗, g∗) ∈ V(Hk∗). Then, the dimension reductions

f∗(X) and g∗(Y ) are sufficient, i.e.

Y |= X | f∗(X) and Y |= X | g∗(Y ).

Proof of Proposition 3. Similar with the proof of Proposition 2, for any (f∗, g∗) ∈ V(Hk∗), it holds
that

I(g∗(Y ); f∗(X))
∗
⪯M I(Y ; f∗(X))

∗
⪯M I(Y ;X).

In addition, by assumption, there exists (f̃ , g̃) ∈ H such that

I(Y ;X)
∗
=M I(f̃(X); g̃(Y ))

∗
⪯M I(g∗(Y ); f∗(X)).

Combining results above, we obtain

I(Y ;X)
∗
=M I(g∗(Y ); f∗(X)).

In addition, by the Kolmogorov identity of mutual information ([58] Theorem 2.5 (2)), we obtain

I(Y ;X)
∗
=M I(Y ;X, f∗(X))

∗
=M I(Y ; f∗(X)) + I(Y ;X | f∗(X)),

which implies that I(Y ;X | f∗(X))
∗
=M 0. According to the property of the conditional mutual

information ([58] Theorem 2.5 (1)), I(Y ;X | f∗(X))
∗
=M 0 if and only if (XM , f

∗
M (X), YM )

forms a Markov chain, i.e. YM |= XM | f∗M (X) for all M ∈ M, which, by continuity of X , Y ,
and f∗(X), further indicates that Y |= X | f∗(X).

E.2 Alignment and uniformity with correctly specified dimension

To begin with, recall that for any (f, g) ∈ A(H), it holds that f(X)/E∥f(X)∥, g(Y )/E∥g(Y )∥ ∈
Sd−1. Then, we define the set of uniformly distributed representations by

Up(H′) =
{
(f, g) ∈ H′ : f(X)/E∥f(X)∥, g(Y )/E∥g(Y )∥ ∼ Unif(Sp−1)

}
.

Note that for any representation map f ∈ H′ with ID(f) = k, if the function class is sufficiently
expressive, the linear dimension of R(f) can exceed k, then recalling the definition of A(Hk) and
Up(Hk), we define

D(k,H) = max
{
p ∈ [d] : A(Hk) ∩ Up(Hk) ̸= ∅

}
.

Specifically, write d∗ = D(k∗,H). Then, we define a subset of H by H∗ = H∗
X ×H∗

Y with

H∗
X =

{
fSd∗−1 : f ∈ HX , f(X)/E∥f(X)∥ ∈ Sd

∗−1
}
,

H∗
Y =

{
gSd∗−1 : g ∈ HY , g(Y )/E∥g(Y )∥ ∈ Sd

∗−1
}
.

We further denote U(H∗) = {(f, g) ∈ H∗ : f(X)/E∥f(X)∥, g(Y )/E∥g(Y )∥ ∼ Unif(Sd∗−1)}.

Then, by specifying the output dimension d = d∗, we have the following result.

Theorem 3. With the function class H = H∗ and output dimension d = d∗ = D(k∗,H), it holds
that ⋂

η≥0

OL,η(H∗) = V(H∗) ∩ U(H∗).

Particularly, for any (f∗, g∗) ∈ V(H∗)∩U(H∗), the tuple (f∗, g∗, 0+) is a minimizer of L(f, g, τ).
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E.2.1 Proof of Theorem 3

By [79, Theorem 1 (2)], if we define f̃(X) = f(X)/E∥f(X)∥ and g̃(Y ) = g(Y )/E∥g(Y )∥, then
(f̃ , g̃) is the global minimizer of L in H∗ for any given τ > 0. Then, based on the definition of
Oη(H), it holds that

A(H∗) ∩ U(H∗) =
⋂
η≥0

OL,η(H∗).

In addition, with the choice of H∗, the uniformly distributed representation on Sd∗−1 maximizes the
entropy. Hence, for any (f, g) ∈ A(H∗) ∩ U(H∗), we also have (f, g) ∈ W(H∗), thus A(H∗) ∩
U(H∗) = A(H∗) ∩ U(H∗) ∩W(H∗) = V(H∗) ∩ U(H∗), which completes the proof.

F Proof of preliminary results in Section A.2

F.1 Proof of Lemma 1

We adapt the proof in [12, Theorem 8.3.1]. The entropy of UM can be written as

H(UM ) = −
∑
i∈[M ]

pi log pi

= −
∑
i∈[M ]

(∫
cM,i

p(u)du

)
log

(∫
cM,i

p(u)du

)

= −
∑
i∈[M ]

[p(zM,i) log p(zM,i)]∆M − log∆M + o(1).

Hence, it holds that

lim
M→+∞

(H(UM ) + log∆M ) = H̃(U).

F.2 Proof of Lemma 3

We note that

H(ϕ(UM , VM ) | UM ) = H(ϕ(UM , VM ), UM )−H(UM ),

for which, we already see in Lemma 1 that

lim
M→+∞

(H(UM ) + log∆M ) = H̃(U).

Denoting W = ϕ(U, V ), ζ = Φ(U, V ) = (ϕ(U, V ), U), wM,ij = ϕ(zM,i, zM,j), and ζM,ij =
(wM,ij , zM,i). In addition, we write

qij = P(U ∈ cM,i, V ∈ cM,j), qΦij = P(ζ ∈ Φ(cM,i × cM,j)),

and ∆ϕ(zM,i, zM,j) as the Lebesgue measure of ϕ(cM,i, cM,j), ∆M as the Lebesgue measure of
cM,i. Define qΦ(w, u) as the joint density of Φ(U, V ) = (ϕ(U, V ), U).
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The joint entropy takes the form

H(ϕ(UM , VM ), UM )

= −
∑

i,j∈[M ]

qΦij log q
Φ
ij

= −
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M

× log

(
qΦ(wM,ij , zM,i)∆

ϕ
M (zM,i, zM,j)∆M

)
+ o(1)

= −
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log

(
qΦ(wM,ij , zM,i)

)

−
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log

(
∆ϕ
M (zM,i, zM,j)∆M

)
+ o(1)

= −
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log

(
qΦ(wM,ij , zM,i)

)
−

∑
i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log∆ϕ

M (zM,i, zM,j)

− log∆M + o(1).

Then, by the results in Lemma 1, we obtain

H(ϕ(UM , VM ), UM )−H(UM )

= −
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log

(
qΦ(wM,ij , zM,i)

)
︸ ︷︷ ︸

(a)

+
∑
i∈[M ]

[p(zM,i)∆M log p(zM,i)]︸ ︷︷ ︸
(b)

−
∑

i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log∆ϕ

M (zM,i, zM,j) + o(1),

where, as M → +∞ and diam(cM,i) → 0, we have{
(a) → −H̃(ϕ(U, V ), U),

(b) → −H̃(U).

In addition, as ∆ϕ
M (zM,i, zM,j) < 1,

lim sup
M→+∞

∑
i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log∆ϕ

M (zM,i, zM,j) < 0

Hence, we obtain

lim inf
M→+∞

(
H(ϕ(UM , VM ), UM )−H(UM )

)
≥ H̃(ϕ(U, V ), U)− H̃(U)

− lim sup
M→+∞

∑
i,j∈[M ]

qΦ(wM,ij , zM,i)∆
ϕ
M (zM,i, zM,j)∆M log∆ϕ

M (zM,i, zM,j)

> H̃(ϕ(U, V ), U)− H̃(U) = H̃(ϕ(U, V ) | U) > 0.
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F.3 Proof of Lemma 4

Denoting R = ϕ(U, V ), W = ψ(U, V ), and rM,ij = ϕ(zM,i, zM,j), wM,ij = ψ(zM,i, zM,j), we
note that

I(ϕ(U, V );ψ(U, V )) =

∫∫
pR,W (z, w)

pR,W (r, w)

pR(r)pW (w)
dzdw.

Denote Φ(U, V ) = (ϕ(U, V ), ψ(U, V )) and qϕij = P(ϕ(U, V ) ∈ ϕ(cM,i × cM,j)), q
ψ
ij =

P(ψ(U, V ) ∈ ψ(cM,i × cM,j)), qΦij = P(Φ(U, V ) ∈ Φ(cM,i × cM,j)). In addition, denote
∆Φ
M (rM,ij , wM,ij) as the Lebesgue measure of Φ(cM,i×cM,j), ∆

ϕ
M (rM,ij , wM,ij) as the Lebesgue

measure of ϕ(cM,i × cM,j), and ∆ψ
M (rM,ij , wM,ij) as the Lebesgue measure of ψ(cM,i × cM,j).

Then, for the discretized mutual information, we have

I(ϕ(UM , VM );ψ(UM , VM )) (15)

=
∑

i,j∈[M ]

pΦij∆
Φ
M (rM,ij , wM,ij) log

pΦij∆
Φ
M (rM,ij , wM,ij)

pϕijp
ψ
ij∆

ϕ
M (rM,ij)∆

ψ
M (wM,ij)

+ o(1).

Since ∆ϕ,ψ
M (rM,i, wM,j) = ∆ϕ

M (rM,i)∆
ψ
M (wM,j) + o(1), (15) can be further written as

I(ϕ(UM , VM );ψ(UM , VM ))

=
∑

i,j∈[M ]

pΦij∆
Φ
M (rM,ij , wM,ij) log

pΦij

pϕijp
ψ
ij

+ o(1)

=
∑

i,j∈[M ]

(
pΦij log p

Φ
ij

)
∆ϕ
M (rM,ij)∆

ψ
M (wM,ij)︸ ︷︷ ︸

(a)

−
∑

i,j∈[M ]

(
pΦij log

(
pϕijp

ψ
ij

))
∆ϕ
M (rM,ij)∆

ψ
M (wM,ij)︸ ︷︷ ︸

(b)

+o(1).

As M → +∞ and maxi∈[M ] diam(cM,i) → 0, it holds that

(a) → −H̃(R,W ),

(b) → −HC(PR,W , PR ⊗ PW ),

where HC(P,Q) denotes the cross-entropy of Q relative to P . Hence, as M → +∞ and
maxi∈[M ] diam(cM,i) → 0,

(a) − (b) → DKL(PR,W || PR ⊗ PW ) = I(R;W ).

F.4 Proof of Lemma 5

Since infoNCE loss is scale-invariant with respect to both f and g, without loss of generality, we
assume E∥f(X)∥ = E∥g(Y )∥ = 1. For any fineness M ∈ M ⊆ N, recall the infoNCE loss

L(fM , gM , τ) = − 2

τ
E {⟨fM (X), gM (Y )⟩}

+ EX

{
logEỸ

[
exp

(
⟨fM (X), gM (Ỹ )⟩

τ

)]}

+ EỸ

{
logEX

[
exp

(
⟨fM (X), gM (Ỹ )⟩

τ

)]}
.

Similar to the proof of [79, Theorem 1], we have

lim
M→+∞

E {⟨fM (X), gM (Y )⟩} = E {⟨f(X), g(Y )⟩} ,
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Figure 7: Histogram of similarities and norms of representations: (d, k∗) = (3, 2).

Figure 8: Scatterplots of out-of-sample representations: (d, k∗) = (3, 2).

and, by the boundedness of exp(⟨f(X), g(Ỹ )⟩) ∈ [0, eΩ] and the dominated convergence theorem,

lim
M→+∞

EX

{
logEỸ

[
exp

(
⟨fM (X), gM (Ỹ )⟩

τ

)]}

= lim
M→+∞

EX

{
logEỸ

[
exp

(
⟨f(X), gM (Ỹ )⟩

τ

)]}

= EX

{
logEỸ

[
exp

(
⟨f(X), g(Ỹ )⟩

τ

)]}
.

Hence, it holds that

lim
M→+∞

L(fM , gM , τ) = L(f, g, τ).

G Additional experimental results

In this section, we present additional results to Section 4 and we follow the same setting for each
dataset in Section 4.

G.1 Norm concentration

Following the discussion in Section 1.1, we consider the same setting with (d, k∗) = (3, 2) (Fig-
ure 7) and (d, k∗) = (20, 5) (Figure 9), respectively. In addition, for the setting with d = 3, we also
present the scatterplot for out-of-sample representations along the training process in Figure 8.

From Figure 7 and Figure 9, it is clear that mσ(f, g) = 1 and
∥f(X)∥/E∥f(X)∥, ∥g(Y )∥/E∥g(Y )∥ ≈ 1, which indicates that (f, g) ∈ A(H). This empirical
finding is nontrivial in the sense that in our training, there is no constraint on ∥f(X)∥/E∥f(X)∥
and ∥g(Y )∥/E∥g(Y )∥, but, when the function class H is sufficiently expressive, the representations
after population-level normalization tend to concentrate on the unit hypersphere automatically.
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Figure 9: Histogram of similarities and norms of representations: (d, k∗) = (20, 5).

Figure 10: Results with two-layer ReLU: mσ(f, g) = 0.

G.2 Example with V(H) = ∅: alignment versus simply similarity maximization

To illustrate why the assumption V(H) ̸= ∅ is important, in this section, we use empirical examples
to show that CLIP minimizers may not be semantically meaningful if V(H) = ∅. We consider the
same setting in Section 1.1 but instead adopt the function class with 2-layer ReLU neural networks
with the width of the middle layer as 50, in which case A(H) = ∅. It is illustrated in Figure 10 that
CLIP can lead to minimizers (f, g) with mσ(f, g) = 0, i.e., orthogonal representations. However,
even in this undesired setting, the intrinsic dimension k∗ = 2 is correctly specified.

G.3 Experiment setup

We start with details of the experiment setup for real datasets. The same architecture is used in
experiments: a 5-layer ReLU neural network with a width of middle-layer set to be 50 and varying
input and output dimensions. The neural network is trained for 800 epochs with learning rate 10−4

and weight decay 10−4, and a slightly faster rate is used for temperature τ : 10−3 in synthetic
experiments and 2× 10−4 for real data.

CITE-seq dataset. We follow the preprocessing in https://satijalab.org/seurat/
articles/weighted_nearest_neighbor_analysis, where we normalize ADT data with cen-
tering to produce a 24-dimension input, and normalize the extremely high-dimensional RNA data
and extract the first 200 principal components as the inputs for CLIP.

For the downstream classification tasks, we consider two set of labels. CITE-seq provides annota-
tions of cells at two levels of granularity [21]. For BMCs data, at level (1), 5 major cell populations
include CD4 T cells, CD8 T cells, B cells, classical monocytes (CM), and natural killer (NK) cells.
Cell populations are further divided into 27 finer subpopulations at level (2).

ImageNetV2 and YFCC dataset. For the image-text datasets, we first use pretrained image and
text encoders to transform images and texts to numerical inputs. Concretely, we adopt a pretrained
ViT-14L from openai/clip-vit-large-patch149 (without projection) as the image encoder
and a masked self-attention Transformer as the text encoder from the same pretrained model. Then,

9https://huggingface.co/openai/clip-vit-large-patch14.
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with the pretrained encoders, we obtain 1024-dimensional image inputs and 768-dimensional text
inputs.

G.4 Convergence of temperature

We vary the output dimension and present the convergence of temperature for the following three
datasets.
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(a) CITE-seq dataset.
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(b) YFCC dataset.
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(c) ImageNetV2 dataset.

Figure 11: Convergence of temperature.

From Figure 11, we can see that with each real dataset and each choice of the output dimension, we
have the temperature τ converging to zero, which is in line with our theory, and partially justifies
that there are representations that can simultaneously maximize similarity and mutual information.

G.5 Comparison with cosine similarity

In this section, we present the experiment results with cosine similarity. Results for the synthetic
(linear and nonlinear) and CITE-seq datasets are shown in Figure 12a, Figure 12b, and Figure 13,
respectively.
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(a) Linear setting.
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(b) Nonlinear setting.

Figure 12: Results with synthetic dataset.
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Figure 13: Results with CITE-seq dataset.

We can see that with two kinds of similarity measures, the change of estimated intrinsic dimensions
with varying output dimensions is nearly the same. With the similarity measure σ(·, ·) adopted in
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Figure 14: Results with YFCC dataset.

the paper, the top-α% accuracy is even higher for synthetic data, and in the meantime, the top-α%
accuracy for CITE-seq dataset is higher with cosine similarity, which is partially due to the lower
signal-to-noise ratio in the dataset and cosine similarity normalizes representations more strictly. In
addition, for the downstream accuracy with respect to two levels of cell types, the results with the
two similarity measures are comparable.

G.6 Ablation study with a Transformer encoder

Although our theory treats the function class as fixed and is agnostic to the specification of H,
we have additionally implemented a small-scale Transformer with 2 layers, 2 heads, a feedforward
dimension of 128, and a embedding dimension of max{dx, dy}, topped with a final linear layer
with user-specified output dimension, on CITE-seq dataset (same setting with Figure 5), the results
of which are presented in the following table. From Table 2, we can see that both level-1 and level-2
accuracies averaged over 5 repetitions tend to saturate as the intrinsic dimension exceeds 15, which
is similar to the results presented in Figure 5. These results indicate that our theory is agnostic to
network architecture as long as the underlying architecture is sufficiently “expressive” so that the
ideal representation maps can be well-approximated.

Table 2: Intrinsic dimension and cell type accuracy across output dimensions.
Output dimension 1 7 13 19 25 31 37

ID of f(X) 1.00 5.67 9.79 12.19 14.15 15.67 15.97
ID of g(Y ) 1.00 5.15 8.63 10.39 11.75 12.64 12.96
Accuracy (level-1) 60.00% 93.00% 94.00% 94.00% 95.00% 95.00% 95.00%
Accuracy (level-2) 22.00% 78.00% 79.00% 80.00% 81.00% 79.00% 81.00%

G.7 Results with YFCC dataset

YFCC (or YFCC100M) is a multimedia dataset consisting of images and videos as media objects with
metadata including title, tags, etc [72]. We adopt a subset used by OpenAI10, and focus on two
modalities: images and text data with descriptions of images. In addition, each image in YFCC dataset
is assigned a 9-level class label (farmid), which will be adopted in a downstream classification task.
We follow the same procedure as that in YFCC experiments. Similar to the CITE-seq experiments,
we randomly sample 10000 rows without replacement from the preprocessed dataset and randomly
split the subset into a training set Dtrain with |Dtrain| = 8000, a test set Dtest with |Dtest| = 1000,
and a separate dataset with size 1000 to estimate the expected norms. With learned representation
maps f̂ ∈ Fd1,d

NN , ĝ ∈ Fd2,d
NN , we consider image classification and the top-α% matching (α% = 0.5)

as the downstream tasks on Dtest. We vary the output dimension d from 1 to 29, and the results
averaged after 50 repetitions are presented in Figure 14. We can see that both accuracies tend to
saturate when d is around 20, and the MLE-based estimation of the intrinsic dimension for the image
embeddings is approximately 9 when d keeps increasing. Similarly, we use a 5-layer ReLU network
for CLIP training only for illustration purposes, and better results can potentially be obtained with
more sophisticated network architectures.

10https://huggingface.co/datasets/dalle-mini/YFCC100M_OpenAI_subset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, which are justified by theoretical and empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations and connections with the literature in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are clearly discussed and discussed in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Both experiment pipelines and dataset access are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Datasets are available online and reproducible codes are submitted as supple-
mentary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Simulations and experiments are small-scale and can be operated on local
laptops.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a section for broad impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: No assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: N/A.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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