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Abstract

Graph neural networks (GNNs) have achieved great success in graph analysis by
leveraging homophily, where connected nodes share similar properties. However,
GNNs struggle on heterophilic graphs where connected nodes tend to differ. Some
of the existing methods use neighborhood expansion which is intractable for
large graphs. This paper proposes utilizing node mutual information (MI) to
capture dependencies between nodes in heterophilic graphs for use in GNNs.
We first define a probability space associated with the graph and introduce kth

node random variables to partition the graph based on node distances. The MI
between two nodes’ random variables then quantifies their dependency regardless
of distance by considering both direct and indirect connections. We propose kth

MIGNN where the kth MI values are used as weights in the message aggregation
function. Experiments on real-world datasets with varying heterophily ratios
show the proposed method achieves competitive performance compared to baseline
GNNs. The results demonstrate that leveraging node mutual information effectively
captures complex node dependencies in heterophilic graphs.

1 Introduction

Graphs have a wide range of applications in various fields, such as data analysis [25], chemistry [32],
biology [6, 7], and sociology [11, 27]. Within these fields, tasks such as graph isomorphism problems,
link predictions, and node classifications are particularly important [30, 33, 24]. The use of neural
networks in analyzing graph data has led to significant advancements [23, 9, 8, 14, 4], thanks in part
to the homophily assumption that neighboring nodes should share similar features or labels. As nodes
are updated at each layer of Graph Neural Networks (GNNs), their features are based on those of
their adjacent nodes.

However, some graphs do not follow the homophily principle, termed heterophilic graphs, where
adjacent nodes are more likely to exhibit dissimilar features or labels. A significant portion of
real-world graphs is heterophilic in nature, including examples like molecules and webpages [35, 19].
The direct application of GNNs to these heterophilic graphs has yielded unsatisfactory results due to
the absence of homophily, a fundamental assumption underlying the performance of GNNs.

To suitably process heterophilic graphs, adaptations to GNNs are necessitated. Prior studies have
introduced neighborhood extension methods that consider not just the characteristics of adjacent
nodes, but also incorporate other node features representative of heterophily when aggregated [20,
35, 15, 12, 13, 26, 18, 31, 10, 28]. However, the neighborhood extension methods used in previous
studies are intractable for large datasets. In addition, recent studies[21][22] have identified problems
with existing heterophily benchmark datasets[20], such as duplication of nodes and instability of
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Figure 1: (a) The input graph G is given with a set of nodes V and a set of edges E. (b) Node random
variables are defined according to k. The 0th node random variable of v only separates v itself from
the rest of the nodes. On the other hand, the 1st node random variable of v divides the nodes in the
graph into v, its 1-hop neighbors, and the rest of the nodes. (c) Two node random variables generate
different joint probability distributions. (d) Node mutual information from the probability distribution
induced by the kth node random variables. Node mutual information is a measure of the dependency
between two random variables. It can be used in GNNs architecture as edge weight.

results due to small size. These studies have proposed a new heterophily dataset that addresses
these problems. Previous studies have performed poorly on this new dataset. To address this
problem without neighborhood extension, we propose a novel GNN that incorporates kth node
mutual information edge weights to capture the dependency between nodes in a graph.

We first consider a graph as a probability space, where the probability measure of a node indicates
how much it is connected to other nodes in the graph. We then define the independence of two nodes
as the independence of the subsets generated by their 0-hop neighborhoods. We can refine the notion
of independence by considering the l-hop neighborhoods of node v for l from 0 to k. We can do this
by setting a kth node random variable associated with node v, which assigns different values to other
nodes according to their shortest path distance from node v.

Figure 1(b) shows how the node random variable of v is defined according to k, and how the node
random variable divides the probability space in each case. For example, the 0th node random variable
only considers the nodes that are directly connected to v. Figure 1(c) shows the joint probability
distribution generated by the node random variables of two nodes v and w to capture the dependencies
of the two nodes. Since the 1st node random variable considers the 1-hop neighborhood of node v, it
can be seen that it considers a more refined dependency than the 0th node random variable case.

In real-world data, it is almost impossible for two nodes to be independent, even if k = 0. This
is because nodes in real-world graphs are often connected in complex ways[17][22], and there is
always some degree of dependency between them. Therefore, we need to capture how much two
nodes are dependent with kth degree accuracy. We can do this by using mutual information, which
is a measure of the dependency between two kth node random variables. MI is a good measure of
dependency because it takes into account both the direct and indirect connections between two nodes.
For example, if two nodes are directly connected, then they will have a high MI value. However,
even if two nodes are not directly connected, they may still have a high MI value if they are indirectly
connected through other nodes.

The proposed GNN uses MI to weigh the edges in the graph. This means that edges between nodes
that are more dependent will be given higher weights. This helps the GNN to learn more accurate
representations of the nodes, which results in better performance in heterophilic graphs.

Our contributions can be summarized as follows:

• We propose a novel method for measuring the node mutual information between two nodes
by introducing a degree-based probability measure and subgraph-based random variables.

• We proposed a new message-passing method in GNNs that leverages node mutual informa-
tion as the weight of message aggregation.
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• We conduct experiments on real-world datasets to validate the effectiveness of our proposed
methods on heterophilic datasets. The experimental results demonstrate the efficacy of our
proposed node mutual information method.

The remainder of the paper is organized as follows: Section 2 provides background on graph
heterophily and mutual information through a probabilistic lens. In section 3 and 4, we define node
mutual information within a graph and discuss how node mutual information differs from some
common node similarity indices. Section 5 describes how to utilize node mutual information in
message aggregation. Section 6 presents the experimental results obtained from real-world datasets.
Finally, Section 7 concludes the findings of the paper.

2 Preliminaries

2.1 Homophily and heterophily

Homophily refers to the property that connected nodes in a graph tend to have similar properties.
Various metrics have been proposed to quantify homophily in a graph. Node homophily[20] measures
the ratio of nodes that share the same class among adjacent nodes in the entire graph. It is defined as:

Hnode(G) =
1

∣V ∣
∑
v∈V

∣{u∣u ∈ Nv, yu = yv}∣

∣Nv ∣
,

where G = (V,E) is the graph with a set of nodes V and a set of edges E. Nv denotes the neighbors
of node v, and yv is the label of node v. Edge homophily[35][2] refers to the ratio of edges that
connect nodes of the same class among all edges in the graph. It is defined as:

Hedge(G) =
∣{(u, v)∣(u, v) ∈ E,yu = yv}∣

∣E∣
,

where (u, v) denotes an edge between node u and v. While intuitive, these measures are sensitive
to the number or balance of classes. Class homophily[17] evaluates homophily at the class level
regardless of class imbalance. It is defined as:

Hclass(G) =
1

C

C

∑
k=1
[hk −

∣{v∣yv = Ck}∣

∣V ∣
]
+
, hk =

∑x∈{v∣yv=Ck} ∣{u∣u ∈ Nx, yu = Ck}∣

∑x∈{v∣yv=Ck} ∣Nx∣
,

where Ck is the kth labels, [a]+ =max(a,0) and hk is the class-wise homophily metric.

However, those homophily in the same graphs can vary. [21] addressed this by characterizing
homophily and proposed adjusted homophily. It is defined as:

Hadjusted(G) =
Hedge(G) −∑

C
k=1D

2
k/(2∣E∣)

2

1 −∑
C
k=1D

2
k/(2∣E∣)

2
,

where Dk ∶= ∑v∶yv=k d(v) and d(v) denotes the degree of a node v. A lower homophily indicates a
more heterophilic graph. This paper uses these metrics to analyze heterophilic graphs.

2.2 Mutual information

A probability space (Ω,F ,P) is a triple where Ω is a sample space, F is an event space, and P is
a probability measure. A discrete random variable X is a function X ∶ Ω → R such that X(Ω) is
at most countable. We can compute the probability of an experiment X with values in A ⊂ X(Ω)
by P (X−1(A)). One of the important concepts is the independence of two random variables X,Y .
Two random variables are independent if P (X−1(p) ∩ Y −1(q)) = P (X−1(p)) ⋅ P (Y −1(q)) for any
p, q ∈ R. If they are not independent, we can measure how much two random variables are dependent,
called the mutual information of X,Y .

We can compute the mutual information of X,Y , I(X,Y ), by computing the entropy of X,Y and
the joint entropy of X and Y . The formula for I(X,Y ) for discrete random variables X,Y is given
by

I(X,Y ) = −∑
i,j

P (X−1(pi) ∩ Y −1(qj)) ⋅ log
⎛

⎝

P (X−1(pi)) ⋅ P (Y −1(qj))
P (X−1(pi) ∩ Y −1(qj))

⎞

⎠
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where the images of X,Y are {pi}i=1,...,m,{qj}j=1,...,n. 0 ≤ I(X,Y ) ≤H(X,Y ) and I(X,Y ) = 0
for independent X,Y . Please refer to Appendix A for more details.

3 Node Mutual Information

In this section, we establish a formal definition for kth node mutual information between two nodes.
First, we give a degree-based probability measure on a graph.
Definition 3.1. (Probability space associated with the graph) Given a graph G = (V,E), a probability
space associated to the graph is a triple (Ω,F ,P) with Ω ∶= V , F ∶= 2V , and P(A) ∶= ∑v∈A d(v)

∑w∈V d(w) for
A ∈ F , where d(v) is the outgoing degree of v.

It can be verified that (V,2V ,P) is indeed a probability space (See the AppendixA). P(A) encapsu-
lates the presence of nodes through the originating edges from A. We refer to P(A) as the impact of
A.

To say about the degree of the dependence of two nodes, we must partition V according to the shortest
path distance for a given node. A kth node random variable associated with v exactly captures this
information.
Definition 3.2. (kth Node random variable associated to v for k = 0,1, . . .) Let N−1(v) ∶= ∅, N0(v)
be the ego-node {v} and Nl(v) be the l-hop neighborhood of v for l ≥ 1.
A 0th node random variable X0

v associated to v is a measurable function X0
v ∶V → R defined by

X0
v(w) ∶= {

0 if w ∈ N0(v)
1 if w ∈ V /N0(v).

(1)

A kth(k ≥ 1) node random variable Xk
v associated to v is a measurable function Xk

v ∶V → R defined
by

Xk
v (w) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if w ∈ N0(v)
j if w ∈ Nj(v)/Nj−1(v) for j = 1, . . . , k
k + 1 if w ∈ V /Nk(v).

(2)

Xk
v is automatically measurable (See the AppendixA), so we can talk about P ((Xk

v )
−1(p)) for any

p ∈ R. Moving forward, we introduce the notions of kth node entropy and kth joint node entropy.
Definition 3.3. (kth Entropy of the node, kth joint entropy of two nodes for k = 0,1, . . .) Suppose the
probability space (V,2V ,P) associated to the graph G = (V,E) is given. Let v,w be two nodes of
G.

• A kth entropy of the node v, Hk(v), is the entropy of random variable Xk
v

Hk
(v) ∶=H(Xk

v ) = − ∑
i=0,1,...,k+1

P ((Xk
v )
−1
(i)) ⋅ log (P ((Xk

v )
−1
(i))) (3)

• A kth joint entropy of two nodes v and w, Hk(v,w), is the joint entropy of two random
variables Xk

v and Xk
w

Hk
(v,w) ∶=H(Xk

v ,X
k
w)

= − ∑
i,j=0,1,...,k+1

P ((Xk
v )
−1
(i) ∩ (Xk

w)
−1
(j)) ⋅ log (P ((Xk

v )
−1
(i) ∩ (Xk

w)
−1
(j))) (4)

The kth node entropy characterizes the distribution of impacts among Nj(v)/Nj−1(v) for
j = 0, . . . , k and V /Nk(v). For instance, if their impacts are uniformly distributed on
{Nj(v)/Nj−1(v), V /Nk(v)}j=0,...,k with each having an impact of 1

k+1 , then Hk(v) would be
log(k + 1). On the other hand, if one of the impacts is 1 while others are 0, then Hk(v) would
be 0. In general, the impacts are distributed in a certain manner, and the node entropy captures
this information. The kth joint entropy Hk(v,w) reflects how the impacts within the partition
{(Xk

v )
−1(i) ∩ (Xk

w)
−1(j)}i,j=0,1,...,k+1 are distributed. By leveraging the concept of entropy, we
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can define the mutual information between nodes and employ it to quantify the distance between two
nodes based on their mutual information.
Definition 3.4. (kth Node mutual information, kth distance induced by the mutual information)
Suppose we have two nodes v,w with node random variables Xk

v ,X
k
w.

• A kth node mutual information of v and w, Ik(v,w), is a mutual information between two
random variables Xk

v and Xk
w

Ik(v,w) ∶=Hk
(v) +Hk

(w) −Hk
(v,w). (5)

• A kth distance of two nodes induced by the mutual information, Dk(v,w), is defined by

Dk
(v,w) ∶= 1 −

Ik(v,w)

Hk(v,w)
. (6)

• A kth normalized node mutual information of v,w, (I ′)k(v,w), is defined by

(I ′)k(v,w) ∶= 1 −Dk
(v,w) =

Hk(v) +Hk(w) −Hk(v,w)

Hk(v,w)
. (7)

The kth node mutual information Ik(v,w) quantifies the dependence of {(Xk
v )
−1(i) ∩

(Xk
w)
−1(j)}i,j=0,1,...,k+1. The kth distance Dk(v,w) is a metric that arises from the node mu-

tual information, with values ranging from 0 to 1 (See the AppendixA). If two nodes have a strong
interaction, their distance will be small. For example, Dk(v, v) = 0. To assign a larger weight to nodes
with significant interaction, we introduce a modified measure (I ′)k(v,w) defined as 1 −Dk(v,w).
Consequently, (I ′)k(v, v) = 1. Notably, (I ′)k(v,w) > (I ′)k(v′,w′) implies that the interaction
between nodes v and w is more active than the interaction between nodes v′ and w′. We refer to the
kth normalized node mutual information as MI.
We mainly consider k = 1, so we omit k = 1 and write Xv,H(v),H(v,w), I(v,w),D(v,w) and
I ′(v,w) from now on.

4 Comparison to Node Similarity Indices

In this section, we will explore the difference between node mutual information and other similarity
metrics. First, we will introduce the existing node similarity indices, followed by a discussion of
simple examples and heterophilic graphs that highlight the unique characteristics of node mutual
information.

4.1 Node similarity indices

[16] proposed common neighbor, Jaccard coefficient, preferential attachment, and Adamic-Adar
index to measure how two nodes are similar. Common neighbor quantifies shared neighbors, while
adjacency determines direct connections between nodes. The Jaccard coefficient normalizes common
neighbors by neighborhood unions. Preferential attachment considers node degrees, and Adamic-
Adar measures reciprocal logarithmic sums of shared neighbor degrees. Resource allocation[34] is
similar to Adamic-Adar but without logarithms. Table 1 compares the similarities of nodes u and v
measured by the existing indices and MI in the six different graphs in Figure 2. The results indicate
that MI better reflects the configuration of the graph compared to existing similarity indices.

Adjacency index only takes into account the connection information between two nodes. It does
not consider the number of common neighbors or the structural configuration of the subgraph. In
Figure 2, the adjacency index assigns a value of 1 to example (a), indicating a perfect similarity
between the nodes. However, in all other cases where there is a shared node, the adjacency index
assigns a value of 0 uniformly.

Common neighbor and Jaccard index are more sophisticated measures of similarity that take into
account the number of common neighbors. However, it does not consider the structural configuration
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Figure 2: Six different examples

MI Adjacency Common
Neighbor Jaccard Preferential

Attachment
Adamic-

Adar
Resource

Allocation

(a) 0.51 1 0 0.00 9 0.00 0.00
(b) 0.36 0 1 0.20 9 1.44 0.50
(c) 0.43 0 3 0.43 25 4.33 1.50
(d) 0.27 0 3 0.43 25 3.07 1.08
(e) 0.37 0 3 0.27 48 4.33 1.50
(f) 0.23 0 3 0.27 48 3.07 1.08

Table 1: Comparison of node similarity indices for examples

of the subgraph of sharing nodes. As a result, the Common Neighbor and Jaccard index can be
misleading in graphs with different shared neighborhood configurations. For example, in Figure 2
(c-d) and (e-f), nodes u and v have the same number of common neighbors, but their shared
neighborhoods have different structural configurations. The Jaccard index will assign them the same
similarity score, even though they are not structurally similar.

Preferential Attachment is a measure of similarity that is based on the idea that nodes with more
connections are more likely to be connected to other nodes. However, it does not consider the number
of common neighbors or the structural configuration of the subgraph. In Figure 2 (a-b), (c-d), and
(e-f), nodes u and v have the same degree, but they are not structurally similar. The Preferential
Attachment will assign them the same similarity score, even though their connectivity(a-b) and
configuration ((c-d) and (e-f)) are different.

Adamic-Adar and Resource Allocation are more sophisticated measures of similarity that take
into account the number of common neighbors and the structural configuration of the subgraph.
However, they are still not as accurate as MI. For example, in Figure 2 (c-e) and (d-f), nodes u and v
have the same number of common neighbors, and their shared neighborhoods have the same structural
configuration. The Adamic-Adar and Resource Allocation will assign them the same similarity score,
even though they are not structurally similar.

None of these existing methods can capture both the connectivity and configuration of the subgraph
of u and v. MI takes into account all of the configuration of the graph, which allows it to distinguish
between structurally similar nodes even if they have the same number of common neighbors or the
same degree.

5 Architecture

We propose architectures that aim to enhance Message Passing Neural Networks (MPNNs) for
heterophily by leveraging node mutual information. In MPNNs, message passing for each layer com-
prises a message function Mt and a node feature update function Ut. The node feature h(t+1)v of node
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v at step t + 1 is updated using the message mt+1 generated at step t + 1: h(t+1)v = Ut(h
(t)
v ,m

(t+1)
v ).

The message at step t + 1, mt+1, is computed by aggregating the neighborhood features from the pre-
vious step: mt+1

v = ∑w∈N(v)Mt(h
(t)
v , h

(t)
w ) [8]. Therefore, the node representation can be expressed

as:

h(t+1)v = Ut

⎛

⎝
h(t)v , ∑

w∈N (v)
Mt(h

(t)
w ,h(t)v )

⎞

⎠
(8)

Node mutual information for message passing The proposed architecture is designed by utilizing
MI in the message function Mt of the MPNNs. The MI value of two nodes increases as the impact of
the shared node increases and depends on whether the two nodes are adjacent. We devised a method
for utilizing MI as a weights of the message aggregation function. We can rewrite Equation 8 as
follow:

h(t+1)v = σ (h(t)v ,W(t+1)
∑
w∈V
(I ′)k(v,w) ⋅ h(t)w ) (9)

We refer to our method as k-MIGNN when it utilizes kth node mutual information in the message
aggregation function.

6 Experiments

We have discussed the definition and significance of node mutual information. We proceeded to
conduct experiments to validate the effectiveness of node mutual information in GNNs. Evaluations
were performed on six real-world datasets and one synthetic dataset with varying homophily ratios,
measuring the mean accuracy and ROC AUC of the node classification task.

6.1 Experimental settings

6.1.1 Dataset

The most commonly used benchmark datasets for evaluating heterophily are WebKB and Wikipedi-
aNetwork, which were proposed by [20]. However, [22] recently discovered that WikipediaNetwork
contains many duplicate nodes with identical neighborhoods and labels. This introduces train-test
leakage, which allows models to achieve high performance without actually learning heterophily. To
address this issue, [22] revised the WikipediaNetwork dataset by removing the duplicate nodes.

[22] also noted that existing benchmarks have limited diversity since they originate from a small
number of domains, resulting in datasets with similar properties within the same domain. Therefore,
[22] proposed five new datasets from different unique sources to better cover real-world scenarios.
This includes the roman-empire, amazon-rating, minesweeper, tolokers, and questions. The roman-
empire graph is based on the Wikipedia article on the Roman Empire with 22.7K word nodes
and semantic edges. The amazon-ratings graph contains product nodes connected by co-purchase
relationships with the task of predicting ratings. A synthetic minesweeper graph on a 100x100 grid
provides node classification to identify mine locations. A real-world tolokers graph involving 11.8K
crowd-sourcing platform users linked by common tasks aims to predict banned workers. Also, a
medical question-answer website graph with 48.9K user nodes and answered-user edges poses the
challenge of identifying active users.

The newly proposed datasets and modified WikipediaNetwork datasets exhibit low adjusted homophily
and are thus considered heterophily benchmarks. Among these, minesweeper, tolokers, and questions
are homophilic in terms of node and edge homophily but heterophilic regarding class and adjusted
homophily. More details on the datasets are provided in Table 2.

6.1.2 Baselines

We conducted a thorough evaluation of our algorithm by comparing it to seven baseline methods.
GCN[14] represents classical GNNs using convolutional operations. H2GCN [35] employs multi-hop
message passing to aggregate information from potential neighborhoods. CPGNN [36] introduces a
learnable compatibility matrix to model connectivity patterns between node classes. GloGNN[15]
obtains representations using a coefficient matrix optimized to account for group effects. GPR-GNN
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squirrel chameleon roman-empire amazon-ratings minesweeper tolokers questions

H(adjusted) 0.01 0.03 -0.05 0.14 0.01 0.09 0.02
H(class) 0.03 0.06 0.02 0.13 0.01 0.17 0.09
H(edge) 0.21 0.24 0.05 0.38 0.68 0.59 0.84
H(node) 0.19 0.23 0.05 0.32 0.68 0.59 0.57

nodes 2223 890 22662 24492 10000 11758 48921
edges 46998 8854 32927 93050 39402 519000 153540

classes 5 5 18 5 2 2 2

Table 2: Dataset Statistics.

squirrel chameleon roman-empire amazon-ratings minesweeper tolokers questions Avg.Acc.

GCN 39.47 ± 1.47 40.89 ± 4.12 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 64.60
H2GCN 35.10 ± 1.15 26.75 ± 3.64 60.11 ± 0.52 36.47 ± 0.23 89.71 ± 0.31 73.35 ± 1.01 63.59 ± 1.46 55.01
CPGNN 30.04 ± 2.03 33.00 ± 3.15 63.96 ± 0.62 39.79 ± 0.77 52.03 ± 5.46 73.36 ± 1.01 65.96 ± 1.95 51.16

GPR-GNN 38.95 ± 1.99 39.93 ± 3.30 64.85 ± 0.27 44.88 ± 0.34 86.24 ± 0.61 72.94 ± 0.97 55.48 ± 0.91 57.61
GloGNN 35.11 ± 1.24 25.09 ± 3.58 59.63 ± 0.69 36.89 ± 0.14 51.08 ± 1.23 73.39 ± 1.17 65.74 ± 1.19 49.56
FAGCN 41.08 ± 2.27 41.90 ± 2.72 65.22 ± 0.56 44.12 ± 0.30 88.17 ± 0.73 77.75 ± 1.05 77.24 ± 1.26 62.21

JacobConv 29.71 ± 1.66 39.00 ± 4.20 71.14 ± 0.42 43.55 ± 0.48 89.66 ± 0.40 68.66 ± 0.65 73.88 ± 1.16 59.37

0-MIGNN 41.73 ± 2.58 41.91 ± 3.98 86.92 ± 0.57 48.86 ± 0.48 84.13 ± 0.57 80.79 ± 0.82 73.10 ± 0.92 65.35
1-MIGNN 39.70 ± 1.76 42.83 ± 4.04 91.53 ± 0.47 49.25 ± 0.66 90.59 ± 0.64 82.53 ± 1.12 76.46 ± 1.24 67.56
2-MIGNN 40.70 ± 1.69 44.05 ± 4.21 91.91 ± 0.40 48.92 ± 0.59 91.63 ± 0.67 82.27 ± 1.06 75.97 ± 1.26 67.92

Table 3: Node classification results on seven datasets are reported. The highest accuracy for each
dataset is in bold text and the second highest accuracy is underlined. Mean accuracy scores are
reported for four datasets: squirrel, chameleon, roman-empire and amazon-ratings. ROC AUC scores
are used to evaluate three other datasets: minesweeper, tolokers, and questions. The rightmost column
shows the average accuracy across all datasets, calculated as the mean of the results to summarize
overall performance.

[5] learns hidden features and then propagates them with learnable generalized pagerank weights that
can adapt to the graph structure. FAGCN[3] aggregates different frequency signals flexibly based on
network structure. JacobConv[28] uses Jacobi polynomials as an optimized linear spectral filter basis
for expressive representations.

6.1.3 Hyperparameter settings

For our network architecture, we considered three hyperparameters: the number of layers, the dimen-
sion of hidden representations, and the dropout ratio. Additionally, we utilized two hyperparameters
for the optimizer: the learning rate and weight decay. To determine suitable hyperparameter values,
we conducted a grid search. For detailed information on the hyperparameter settings, see Appendix B.

6.2 Results on node classification

The competitive results demonstrate the effectiveness of MIGNN. When compared to the baseline,
MIGNN achieves high overall performance. In particular, MIGNN outperforms GCN by almost
20 percentage points on the roman-empire dataset. Roman-empire is the most heterophilic dataset
in terms of the four homophily ratios, which confirms that the proposed method works well on
heterophilic graphs. Furthermore, MIGNN demonstrates exceptional performance, particularly on
datasets characterized by low homophily ratios across all four types, such as the squirrel, chameleon,
and Amazon rating datasets. Meanwhile, as mentioned above, the minesweeper, tolokers, and
questions datasets exhibit disagreement between homophily ratios. These three datasets can also be
considered homophilic graphs based on node and edge homophily.

From another perspective, roman-empire, squirrel, chameleon, and amazon-ratings have more classes
than minesweeper, tolokers, and questions. Roman-empire has the most classes with 18, and our
model tends to perform better when the number of classes is large.

We conducted node classification experiments for MI with k values of 0, 1, and 2 on all datasets. We
observed that performance generally improved as k increased, supporting our hypothesis that the
kth node random variable forms a finer set in the graph probability space, allowing us to refine the
dependency between two nodes.
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6.3 MI for higher k

(a) roman-empire (b) minesweeper

Figure 3: Change in accuracy with respect to k

We conducted experiments on the roman-empire
and minesweeper datasets to study the impact
of kth MI on node classification performance.
The range of k is from 0 to 7, and the hyper-
parameters other than k are fixed. Figure 3
shows the results of the node classification task
on both datasets as k increases. Classification
accuracy increased with increasing k in both
datasets. This is because as k increases, the kth

node random variables take into account more
distant neighbors at each node. This allows for
a more precise representation of the dependency
between two nodes, which in turn allows kth-MIGNN to learn a better representation of each node.
We believe that several factors, such as the diameter of the dataset and the number of classes in the
dataset, will influence the determination of the optimal k for each dataset. Finding the optimal k
value is a potential area for future work.

6.4 Number of layers

# of layer 2 3 4 5 6

GCN 78.61 78.38 77.74 76.94 76.81
1-MIGNN 88.72 89.96 90.90 91.21 91.53

Table 4: Change in accuracy with respect to
number of layers

To evaluate the effect of changing the number
of layers on performance, we fixed k to 1 in
the roman-empire dataset and observed how the
node classification performance changed as the
number of layers increased from 2 to 6. Table
4 shows the results according to the number of
layers of GCN and MIGNN. For GCN, perfor-
mance peaked at 2 layers and then decreased as
more layers were added, reaching between 2 and 6 layers. This is because GCN aggregates features
from all neighboring nodes equally, regardless of connection strength. As layers increase, node fea-
tures begin to resemble each other, hindering the ability of the model to classify nodes accurately. In
contrast, MI saw continuous improvement in performance as the number of layers grew. MI encodes
information about both the presence and importance of relationships between nodes during feature
aggregation. Larger MI values represent stronger ties, so nodes with strong connections have a greater
influence on updating representations. This allows nodes to maintain relatively unique embeddings
based on their most important relationships. By incorporating connectivity strengths through MI, the
model can leverage additional layers to gradually distill more elaborate node representations without
causing excessive loss of discriminative power between nodes. Therefore, when MI is utilized in the
aggregation function, performance gains can result from increasing network depth.

7 Conclusion

In this paper, we propose kth node mutual information of two nodes to capture the dependence of two
nodes together with their k-hop neighborhoods. We found that using the node mutual information in
the edge weight of GNNs achieved competitive results for k = 0,1,2. The performance also increased
as k increased, indicating that the node mutual information can capture more information about the
relationships between nodes as the neighborhood size increases. Interestingly, we found that the
performance of GNNs with node mutual information increased with the number of layers, while
GCN plateaued after a few layers. This is because node mutual information encodes the importance
of nodes during feature aggregation which allows the GNN to learn more complex relationships
between nodes as the number of layers increases. Overall, node mutual information can capture the
dependence of nodes together with their neighborhoods, which is important for understanding the
relationships between nodes in heterophilic datasets. Using the node mutual information in GNNs
can improve their performance on heterophilic datasets.
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A Basic measure theory

In this section, we provide basic measure theory (see [29], [1]). We prove that (V,2V ,P) associated
to the graph G = (V,E) is a probability space, any function X ∶ (V,2V ,P)→ R is measurable and
the mutual information is non-negative.
Definition A.1. (Measurable space, Borel space) Let Ω be a set.

1. A collection F ⊂ 2Ω is called a σ-algebra on Ω if

(a) F contains ∅,Ω
(b) F is closed under the complement (i.e. A ∈ F Ô⇒ Ω/A ∈ F).
(c) F is closed under the countable union (i.e.{Ai}i∈N ⊂ F Ô⇒ ⋃iAi ∈ F).

We call a pair (Ω,F) as a measurable space. An element A ∈ F is called a measurable set.

2. A collection T ⊂ 2Ω is called a topology on Ω if

(a) T contains ∅,Ω
(b) T is closed under arbitrary union (i.e. {Uα}α∈Λ ⊂ T Ô⇒ ⋃α∈ΛUα ∈ T ).
(c) T is closed under finite intersection (i.e. {Ui}i=1,...,m ⊂ T Ô⇒ ⋂i=1,...,mUi ∈ T ).

We call a pair (Ω,T ) as a topological space. An element U ∈ T is called an open set.

3. For a collection G ⊂ 2Ω, define FG as the collection of all possible countable unions,
intersections, and complements of elements in G. It is clearly the σ-algebra by construction
and call it as a σ-algebra generated by G.

4. Given a topological space (Ω,T ), call FT as a Borel σ-algebra. We call (Ω,T ,FT ) as a
Borel space. An element of the Borel σ-algebra is called a Borel set.

Measurable sets in F are the sets that can be assigned a "size" in a consistent way. Open sets in T are
the sets that can be used to define the "nearness" of points in Ω. Given any collection of subsets, we
can find the smallest σ-algebra containing them and call the σ-algebra generated by them. We can
always make a topological space into measurable space by the Borel σ-algebra. A Borel space is a
measurable space in which every open set is measurable.
Borel space we will use is the Euclidean space R. R has the standard metric defined by d(x, y) ∶=
∣x − y∣ and the metric induces a canonical metric topology. With respect to the metric topology Td,
(R,Td,FTd) becomes a Borel space. We simply denote (R,Td,FTd) as R.
Definition A.2. (Probability space)

1. Let (Ω,F) be a measurable space. A measure µ is a function from F to R ∪ {∞} satisfying

(a) µ(∅) = 0

(b) µ(A) ≥ 0 for any A ∈ F

(c) For any pairwise disjoint countable collection {Bi}i∈N ⊂ F , µ(⊍iBi) = ∑i µ(Bi).

We call a triple (Ω,F , µ) as a measure space.

2. We call a measure space (Ω,F ,P) as a probability space if P(Ω) = 1. In this case, Ω is
called a sample space and its element is called an outcome. F is called an event space and
its element is called an event.

The intuition is that we want to consider Ω as the set of all possible outcomes. Then, F is the set of
events, and P measures the probability of an event.
Lemma A.1. A triple (V,2V ,P) associated to the graph G = (V,E) is a probability space.

Proof. Since 2V is closed under arbitrary union, intersection, and complement, it is σ-algebra. Hence
it suffices to show that P is a probability measure on the measurable space (V,2V ).

1. P(∅) = 0 by the definition of degree.
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2. P(A) ≥ 0 for any A ∈ 2V since the degree is non-negative function.

3. For any pairwise disjoint countable collection {Bi}i∈N ⊂ 2
V ,

P(⊍
i

Bi) =
∑v∈⋃i Bi

d(v)

∑w∈V d(w)
=
∑i∑v∈Bi

d(v)

∑w∈V d(w)
=∑

i

(
∑v∈Bi

d(v)

∑w∈V d(w)
) =∑

i

P(Bi). (10)

4. P(V ) = ∑v∈V d(v)
∑w∈V d(w) = 1.

Therefore, P is a probability measure on (V,2V ).

Definition A.3. (Random variable, σ-algebra generated by random variable, independence of two
random variables)

1. A random variable X ∶ (Ω,F ,P)→ R is a function such that

X−1(A) ∶= {p ∈ V ∣ X(p) ∈ A} ∈ F for any Borel set A in R. (11)

2. A σ-algebra AX generated by the random variable X is the σ-algebra generated by
{X−1(p)}p∈R.

3. A random variable X is called discrete if X(Ω) is at most countable.

4. Two random variables X,Y ∶ (Ω,F ,P)→ R are called independent if

P (X−1(A) ∩ Y −1(B)) = P (X−1(A)) ⋅ P (Y −1(B)) (12)

for any Borel sets A,B in R.

5. Two sub σ-algebras A,B ⊂ F are called independent if

P (A ∩B) = P (A) ⋅ P (B) (13)

for any A ∈ A,B ∈ B.

A random variable assigns a value to each outcome of an experiment. We can compute the probability
of an experiment with values in A by P (X−1(A)) for any Borel set A ⊂ R. The σ-algebra generated
by the random variable is the σ-algebra generated by all preimages of X . Independence of X and Y
means that the two experiments X and Y are not correlated at all. We can check that independence
of X,Y and independence of AX ,AY are equivalent.
Lemma A.2. Suppose (V,2V ,P) is a probability space associated to the graph G = (V,E). Then
any function X ∶ V → R is a random variable.

Proof. X−1(A) = {p ∈ V ∣ X(p) ∈ A} is a subset of V for any A ⊂ R, so X−1(A) ∈ 2V for any
A ⊂ R. Hence X−1(A) ∈ 2V for any Borel set A ⊂ R.

Next, we will define a quantity called mutual information to measure the degree to which two random
variables are dependent. To define mutual information, we first need to define entropy.
Definition A.4. (Entropy and joint entropy)

1. Let X ∶ (Ω,F ,P) → R be a discrete random variable with the image {pi}i=1,...,m. The
entropy of X , H(X), is defined by

H(X) ∶= − ∑
i=1,...,m

P (X−1(pi)) ⋅ log (P (X−1(pi))) . (14)

2. Let X,Y ∶ (Ω,F ,P) → R be two discrete random variables with the images
{pi}i=1,...,m,{qj}j=1,...,n, respectively. The joint entropy of X,Y , H(X,Y ), is defined
by

H(X,Y ) ∶= −∑
i,j

P (X−1(pi) ∩ Y −1(qj)) ⋅ log (P (X−1(pi) ∩ Y −1(qj))) . (15)
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The entropy H(X) characterizes the distribution {P (X−1(pi))}i=1,...,m. Similarly, the joint entropy
H(X,Y ) characterizes the distribution {P (X−1(pi) ∩ Y −1(qj))}i,j .
Definition A.5. (Mutual information of two discrete random variables) Let X,Y be two discrete
random variables X,Y with the images {pi}i=1,...,m,{qj}j=1,...,n, respectively.

1. A mutual information of X,Y , I(X,Y ), is defined by

I(X,Y ) ∶ =H(X) +H(Y ) −H(X,Y ) (16)

= −∑
i,j

P (X−1(pi) ∩ Y −1(qj)) ⋅ log
⎛

⎝

P (X−1(pi)) ⋅ P (Y −1(qj))
P (X−1(pi) ∩ Y −1(qj))

⎞

⎠
. (17)

(18)

If P (X−1(pi) ∩ Y −1(qj)) = 0, then
set

P (X−1(pi) ∩ Y −1(qj)) ⋅ log
⎛

⎝

P (X−1(pi)) ⋅ P (Y −1(qj))
P (X−1(pi) ∩ Y −1(qj))

⎞

⎠
∶= 0. (19)

2. A distance of two random variables induced by the mutual information, D(X,Y ), is defined
by

D(X,Y ) ∶= 1 −
I(X,Y )

H(X,Y )
(20)

3. A normalized mutual information of X,Y , I ′(X,Y ), is defined by

I ′(X,Y ) ∶= 1 −D(X,Y ) =
H(X) +H(Y ) −H(X,Y )

H(X,Y )
(21)

Mutual information of X,Y quantifies the failure of independence of X,Y . If two random variables
are independent, I(X,Y ) = 0 by its definition. On the other hand, if X = Y then I(X,Y ) =H(X).

Lemma A.3. A mutual information I(X,Y ) is non-negative.

Proof. Since − logx ≥ 1 − x for 0 < x < 1,

I(X,Y ) = −∑
i,j

P (X−1(pi) ∩ Y −1(qj)) ⋅ log
⎛

⎝

P (X−1(pi)) ⋅ P (Y −1(qj))
P (X−1(pi) ∩ Y −1(qj))

⎞

⎠
(22)

≥∑
i,j

P (X−1(pi) ∩ Y −1(qj)) ⋅
⎛

⎝
1 −

P (X−1(pi)) ⋅ P (Y −1(qj))
P (X−1(pi) ∩ Y −1(qj))

⎞

⎠
(23)

=∑
i,j

P (X−1(pi) ∩ Y −1(qj)) − ∑
i,j&P(X−1(pi)∩Y −1(qj))≠0

P (X−1(pi)) ⋅ P (Y −1(qj)) (24)

≥∑
i,j

P (X−1(pi) ∩ Y −1(qj)) −∑
i,j

P (X−1(pi)) ⋅ P (Y −1(qj)) (25)

= 1 −∑
i

(P (X−1(pi))) ⋅∑
j

(P (Y −1(qj))) = 1 − 1 ⋅ 1 = 0. (26)

Similar argument shows that I(X,Y ) ≤ H(X,Y ), so D(X,Y ), I ′(X,Y ) ∈ [0,1]. In particular,
D(X,X) = 0 and D(X,Y ) = 1 for independent random variables X,Y .
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B Hyeperparameter settings

All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU. This GPU has 10,496
CUDA cores with 24GB of memory and a GPU clock speed of 3.1 GHz. The Table 5, Table 6 and
Table 7 provide the details of the hyperparameters used in all the experiments.

Dataset squirrel chameleon roman-emprie amazon-ratings minesweeper tolokers questions

0-MIGNN

num layer 5 5 6 5 6 2 6
hidden dimension 256 512 256 512 256 64 256

dropout 0.8 0.2 0.4 0.2 0.4 0.6 0.4
weight decay 0 0 0 0 0 5.00E-06 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 0.01 3.00E-05

result 41.73 ± 2.58 41.91 ± 3.98 86.92 ± 0.57 48.86 ± 0.48 84.13 ± 0.57 80.79 ± 0.82 73.10 ± 0.92

1-MIGNN

num layer 5 5 6 5 6 2 6
hidden dimension 256 512 256 512 256 64 256

dropout 0.8 0.2 0.4 0.2 0.4 0.6 0.4
weight decay 0 0 0 0 0 5.00E-06 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 0.01 3.00E-05

result 39.70 ± 1.76 42.83 ± 4.04 91.53 ± 0.47 49.25 ± 0.66 90.59 ± 0.64 82.53 ± 1.12 76.46 ± 1.24

2-MIGNN

num layer 5 5 6 5 6 2 6
hidden dimension 256 512 256 512 256 64 256

dropout 0.8 0.2 0.4 0.2 0.4 0.6 0.4
weight decay 0 0 0 0 0 5.00E-06 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 0.01 3.00E-05

result 40.70 ± 1.69 44.05 ± 4.21 91.91 ± 0.40 48.92 ± 0.59 91.63 ± 0.67 82.27 ± 1.06 75.97 ± 1.26

Table 5: Hyperparameter for each dataset.

k 0 1 2 3 4 5 6 7

roman-emprie

num layer 6 6 6 6 6 6 6 6
hidden dimension 256 256 256 256 256 256 256 256

dropout 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
weight decay 0 0 0 0 0 0 0 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05

result 86.92 ± 0.57 91.53 ± 0.47 91.91 ± 0.40 91.97 ± 0.36 92.04 ± 0.37 92.12 ± 0.36 92.16 ± 0.37 92.25 ± 0.33

minsweeper

num layer 6 6 6 6 6 6 6 6
hidden dimension 256 256 256 256 256 256 256 256

dropout 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
weight decay 0 0 0 0 0 0 0 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05

result 84.13 ± 0.57 90.59 ± 0.64 91.63 ± 0.67 91.98 ± 0.67 92.12 ± 0.60 92.30 ± 0.54 92.29 ± 0.54 92.37 ± 0.53

Table 6: Hyperparameter for k.

num layer 2 3 4 5 6

roman-empire

GCN

hidden dimension 512 512 512 512 512
dropout 0.2 0.2 0.2 0.2 0.2

weight decay 0 0 0 0 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05

result 78.61 ± 0.46 78.38 ± 0.35 77.74 ± 0.52 76.94 ± 0.74 76.81 ± 0.33

1-MIGNN

hidden dimension 256 256 256 256 256
dropout 0.4 0.4 0.4 0.4 0.4

weight decay 0 0 0 0 0
learning rate 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05

result 88.72 ± 0.56 89.96 ± 0.59 90.90 ± 0.53 91.21 ± 0.42 91.53 ± 0.47

Table 7: Hyperparameter for layer
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