
Neural Networks Are Graphs!

Graph Neural Networks for Equivariant Processing of Neural Networks

David W. Zhang
1

Miltiadis Kofinas
1

Yan Zhang
2

Yunlu Chen
1

Gertjan J. Burghouts
3

Cees G. M. Snoek
1

Abstract

Neural networks that can process the parame-
ters of other neural networks find applications
in diverse domains, including processing im-
plicit neural representations, domain adaptation
of pretrained networks, generating neural net-
work weights, and predicting generalization er-
rors. However, existing approaches either over-
look the inherent permutation symmetry in the
weight space or rely on intricate weight-sharing
patterns to achieve equivariance. In this work, we
propose representing neural networks as compu-
tation graphs, enabling the use of standard graph
neural networks to preserve permutation symme-
try. We also introduce probe features computed
from the forward pass of the input neural network.
Our proposed solution improves over prior meth-
ods from 86% to 97% accuracy on the challenging
MNIST INR classification benchmark, showcas-
ing the effectiveness of our approach.

1. Introduction

How can we design models that themselves take neural net-

work parameters as input? This would allow us to make
inferences about neural networks, such as predicting their
generalization error (Unterthiner et al., 2020), generating
neural network weights (Schürholt et al., 2022), and classi-
fying or generating implicit neural representations (Dupont
et al., 2022) without having to evaluate them many times.

For simplicity, let us consider a multilayer perceptron with
multiple hidden layers. As a naı̈ve approach, we can sim-
ply concatenate all flattened weights and biases into one
large feature vector, from which we can then make predic-
tions as usual. However, this overlooks an important struc-

1University of Amsterdam 2Samsung - SAIT AI Lab,
Montreal 3TNO. Correspondence to: David W. Zhang
<w.d.zhang@uva.nl>.

Presented at the 2nd
Annual Workshop on Topology, Algebra, and

Geometry in Machine Learning (TAG-ML) at the 40 th
Interna-

tional Conference on Machine Learning, Honolulu, Hawaii, USA.

2023. Copyright 2023 by the author(s).

ture in the parameters: neurons in a layer can be reordered

while maintaining exactly the same function . Reordering
neurons here means changing the preceding and following
weights attached to the neuron accordingly. Let us make
this more concrete. Suppose we have a two-layer MLP
f(x)=W2�(W1x). Then, applying the permutation ma-
trix P to the first weight matrix fW1=PW1 and similarly to
the second fW2=W2P> results in the exact same function
fW2�(fW1x)=W2P>P�(W1x)=W2�(W1x).

The problem with ignoring this permutation symmetry is
that our model will likely make different predictions for dif-
ferent orderings of the neurons in the input neural network,
even though they all represent exactly the same function.
In general, accounting for the symmetry in the input data
improves the learning efficiency and underpins the field of
geometric deep learning. If we could structure our repre-
sentation and model in such a way that these permutation
symmetries are respected, then we should be able to improve
the performance of our model.

Previous approaches. Two recent studies (Navon et al.,
2023; Zhou et al., 2023) make use of the permutation struc-
ture in the weights and biases (more details in Appendix A).
In particular, notice that in our previous construction of fW1

and fW2 the same permutation is applied on the rows of
W1 and the columns of W2. This pattern persists in deeper
neural networks; pairs of successive weight matrices can
freely permute their rows and columns in the same manner.
These studies exploit this structure to design equivariant and
invariant models: models whose predictions change reliably,
or not at all when the permutations of neurons are changed.
However, so far the performance of these models on clas-
sifying implicit neural representations (Navon et al., 2023)
has lagged far behind simply classifying the data normally,
which shows that there is still much to be understood about
these representations.

Our approach. We take an alternative approach to this
problem: we present a computation-graph-based represen-
tation for taking neural network parameters as input (see
Figure 1). Instead of viewing the problem as permuting
rows and columns of weights simultaneously, it allows for
the much simpler view of permuting nodes directly. We

1



Neural Networks Are Graphs

Figure 1. A neural network as a graph. We assign neural network
parameters to graph features by treating biases bi as corresponding
node features Vi, and weights Wij as edge features Eij connect-
ing the nodes in adjacent layers.

make the following contributions: In Section 2, we propose
a simple and efficient representation of neural networks as
graphs that can be incorporated as inputs to various graph
neural networks (GNNs). The perspective of permuting
neurons rather than weights makes our model conceptually
much simpler than prior work. We also introduce the con-
cept of “probe features” that capture the functional aspect
of the input graph. These features are computed through the
forward pass of the corresponding neural network for the
input graph, and they are concatenated as features to each
node in the input graph. In Section 3, we propose extensions
to GNNs and transformers that make them suitable for our
setting. In Section 4, we empirically validate our proposed
method on implicit neural representation datasets, where we
outperform the previous equivariant approaches by a large
margin.

2. Neural networks as computation graphs

The conventional representation of neural networks as
graphs dates back to the early days of their development.
This is exactly the perspective we will take in this paper.
In this view, individual neurons are represented by nodes,
connections between neurons are represented by edges, the
input is represented by the nodes in the first layer, and the
output is represented by the nodes in the last layer. The edge
between a pair of nodes carries the scalar weight between
the two neurons. This graph representation has a clear link
to how the forward pass of the neural network is computed:
the nodes in the input layer take the values of the input, and
this information is then propagated through the edges (and
corresponding edge weights) to the output nodes.

Importantly, the symmetries of graphs correspond exactly to
the permutation symmetries of neural network computation:
permuting the nodes in a graph corresponds to permuting
the adjacency matrix encoding the incoming and outgoing
edges of the affected nodes. This is exactly like in a neural
network, where permuting neurons in a layer corresponds
to permuting the incoming and outgoing weight matrices
accordingly. This graph representation of neural networks

has two major benefits:

1. It is a conceptually simple encoding of the permutation
symmetries in neural networks, all without the need to
rely on the heavier machinery of designing equivariant
networks on the weight space (see Appendix A). This
encoding generalizes well to different architectures
with more complex computation graphs, such as ones
including residual connections and concatenations.

2. There is a rich literature on how to design models for
graphs that we can draw from. In this paper, we make
use of powerful graph neural networks and transform-
ers to process them.

While this graph representation lends itself well to the appli-
cation of graph neural networks, one concern may dampen
its appeal at first thought: the values of the nodes are un-
specified. We address this in our construction of the graph.
Determining what to use as node features is a design de-
cision and does not necessarily have to correspond to the
same values that neurons take during the forward or back-
ward pass of the neural network. This flexibility allows for
exploring various representations and leveraging the unique
characteristics of the graph structure for better performance.

2.1. MLP as graph

Here we detail the steps to construct a graph G=(V ,E)
with node features V 2 Rn⇥dV and edge features E 2
Rn⇥n⇥dE , with n denoting the number of nodes in the
graph. An MLP with L fully connected layers has the weight
matrices [W (1), . . . ,W (L)] and biases [b(1), . . . , b(L)],
where W (l) 2 Rdl⇥dl�1 and b(l) 2 Rdl . The total number
of nodes is then n=

PL
l=0 dl, where d0 is the dimension of

the input. The first channel of the edge feature tensor E:,:,1

is then a sparse block matrix containing the weight matrices
as the blocks. We make the choice of encoding the biases
in the nodes: the first channel of the node features V:,1 con-
tains the biases of all the nodes concatenated together. An
example is shown in Figure 2. Depending on the task at
hand, we have the flexibility to incorporate additional edge
and node features. Next, we explore some examples of this.

So far, we have only encoded the forward pass of the input
neural network computation, which results in a directed
acyclic graph. To be able to propagate information from
later layers to earlier layers (direction of the backpropaga-
tion), we optionally include extra edge features containing
the transposed edge features E>

:,:,1. Similarly we can also
include undirected edges E:,:,1 +E>

:,:,1 as extra features.

2.2. Probe features

Humans tend to interpret complicated functions by probing
the function with a few input samples and inspecting the

2



Neural Networks Are Graphs

Figure 2. Node (left) and edge (right) features filled with the biases
and weights of the MLP. The MLP has one input layer of dimen-
sionality d0, a hidden layer of dimensionality d1, and an output
layer of dimensionality d2.

resulting output. We provide the graph neural network with
similar functionality by adding additional features to every
node. We learn a set of sample input values that we pass
through the input neural function and retain the values for all
the intermediate neurons and output neurons. For example,
we can learn a set of input values {xi}i=0..k for which
the neural function then computes k activations for every
neuron. These are then included as additional features to the
node features V presented in Section 2.1. Notably, these
additional features are invariant to all augmentations on the
input neural network’s parameters that maintain the exact
same function.

2.3. Representing more complex architectures

So far, we have only described how to encode basic MLPs as
graphs. This setting is what we use in our experiments. One
of the primary benefits of the graph representation is that
it becomes straightforward to represent different network
architectures that can all be processed by a shared graph
neural network. Notably, we do not require any changes
to accommodate varying number of layers or number of
neurons per layer. We now address how to generalize the
graph representation to alternative network architectures.

Going beyond a simple MLP-like network structure, we
can easily incorporate branching architectures by adding
extra edges that match the computation graph. For example,
for residual connections we would add edges to the edge
features between the relevant neurons with weights of 1.

In general, the semantics of multiple edges going into one
node for the forward pass is a weighted sum (weighted
by the edge weights) followed by an activation function.
When we want to represent other operations, we need to
change this representation. Different types of connections,
activation functions, and normalizations can be encoded
into the graph through extra channels (for example, by a
one-hot encoding of the type of operation) in the edge and
node features.

3. Neural architectures for graphs

In this section, we present two neural network architectures
that are equivariant with respect to the order of the nodes.
The first one is a graph neural network (GNN) (Corso et al.,
2020) that is restricted to local updates, and the second one
is a transformer (Diao & Loynd, 2023) with global attention.

Position embeddings. Before processing the input graph,
we add learned position embeddings to every node. In or-
der to preserve the permutation symmetry, the nodes that
correspond to the same intermediate layer also share the
same position embedding. These position embeddings help
identify which layer in the input neural network each node
corresponds to. While this information can already be in-
ferred from the adjacency matrix, it could require multiple
local message passing steps to do so.

GNN. Graph neural networks (GNN) in the form of
message-passing neural networks (MPNN) are by design
equivariant with respect to permutations in the order of the
nodes. The standard MPNN framework only updates the
node features in each layer but does not update the edge
features. We apply a simple extension:

E(t+1)
ij = �e

⇣h
V (t)
i ,E(t)

ij ,V (t)
j

i⌘
, (1)

that updates the edge features after each message passing
step t with a small MLP.

We algorithmically align the message passing step with the
forward pass of a neural network by adding multiplicative
interactions between the node and edge features. In particu-
lar, we apply FiLM to the message passing step (Perez et al.,
2018; Brockschmidt, 2020):

mij = �scale
⇣
E(t)

ij

⌘
� �m

⇣h
V (t)
i ,V (t)

j

i⌘

+ �shift
⇣
E(t)

ij

⌘
.

(2)

Note that this differs from the FiLM-GNN (Brockschmidt,
2020) in that we compute the scaling factors based on the
edge features and not based on the adjacent node’s features.

Transformer. The transformer encoder can be seen as a
graph neural network that operates on the fully connected
graph. We use the transformer variant with relational at-
tention (Diao & Loynd, 2023) that adds edge features to
the self-attention computation. Similar to the GNN we also
augment the transformer with modulation to enable multi-
plicative interactions between the node and edge features.
In particular, we change the update to the value matrix in
the self-attention module:

vij = EijW
value
scale � VjW

value
n +EijW

value
shift. (3)

3



Neural Networks Are Graphs

Table 1. Classification of MNIST INRs. All graph-based models
outperform the baselines.

Model # probe features Accuracy in %

MLP (Navon et al., 2023) — 17.6±0.0

Set NN (Navon et al., 2023) — 23.7±0.1

DWSNet (Navon et al., 2023) — 85.7±0.6

GNN (Ours) 0 91.4±0.6

GNN (Ours) 4 91.8±0.5

GNN (Ours) 16 92.8±0.3

GNN (Ours) 64 94.7±0.3

Relational transformer (Ours) 0 92.4±0.3

Relational transformer (Ours) 4 93.3±0.2

Relational transformer (Ours) 16 94.9±0.3

Relational transformer (Ours) 64 97.3±0.2

Table 2. Dilating MNIST INRs. Mean-squared error (MSE) com-
puted between the reconstructed image and dilated ground-truth
image. Lower is better.

Model # probe features MSE in 10�2

DWSNet (Navon et al., 2023) — 2.58±0.00

NFN (Zhou et al., 2023) — 2.55±0.00

GNN (Ours) 0 2.38±0.02

GNN (Ours) 4 2.26±0.01

GNN (Ours) 16 2.17±0.01

GNN (Ours) 64 2.06±0.01

Relational transformer (Ours) 0 1.96±0.00

Relational transformer (Ours) 4 1.88±0.02

Relational transformer (Ours) 16 1.82±0.02

Relational transformer (Ours) 64 1.75±0.01

4. Experiments

We evaluate the efficacy of our method on two distinct tasks:
one on a global scale and another requiring individual out-
puts for each parameter. In both cases, our dataset consists
of implicit neural representations (INRs) that parameter-
ize image signals with continuous neural field functions.
Our primary comparison is with two recent permutation-
equivariant neural networks in the weight space.

Classifying MNIST INRs. The dataset consists of one
INR per image from MNIST that are separately optimized
to reconstruct their corresponding image. We use the same
dataset as Navon et al. (2023). In Table 1, we observe that
our approach outperforms the equivariant baseline by up
to +11.6%. Interestingly the baseline can perform equally
well in terms of training loss, but our graph-based approach
exhibits better generalization performance.

Dilating MNIST INRs. Using the same INR dataset from
our previous experiment, we assess the model’s ability to
predict weight updates to the INRs that aim to enlarge the
represented digit (through dilation). We follow the same
training objective as Zhou et al. (2023). In Table 2, we
observe improvements over both. Furthermore, the probe
features are effective even in a setting where we require an
output per parameter as opposed to a global prediction.

Position embeddings. We ablate the significance of posi-
tion embedding in the context of MNIST INR classification.
Without position embedding the GNN achieves an accuracy
of 83.9±0.3, and the Transformer 77.9±0.7. This is a decrease
of 7.5 and 14.5 points respectively, which highlights the im-
portance of position embeddings.

5. Conclusion and future work

We have presented an effective method for processing neural
networks with neural networks by representing the input
neural network as graphs. Exploring the application of this
approach to additional tasks presents an exciting avenue for
future work.

References

Brockschmidt, M. Gnn-film: Graph neural networks with
feature-wise linear modulation. In International Confer-

ence on Machine Learning (ICML), 2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
In Advances in Neural Information Processing Systems

(NeurIPS), 2020.

Diao, C. and Loynd, R. Relational attention: Generalizing
transformers for graph-structured tasks. In International

Conference on Learning Representations (ICLR), 2023.

Dupont, E., Kim, H., Eslami, S., Rezende, D., and Rosen-
baum, D. From data to functa: Your data point is a
function and you can treat it like one. In International

Conference on Machine Learning (ICML), 2022.

Navon, A., Shamsian, A., Achituve, I., Fetaya, E., Chechik,
G., and Maron, H. Equivariant architectures for learning
in deep weight spaces. In International Conference on

Machine Learning (ICML), 2023.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general con-
ditioning layer. In Proceedings of the AAAI Conference

on Artificial Intelligence (AAAI), 2018.

Schürholt, K., Knyazev, B., Giró-i Nieto, X., and Borth, D.
Hyper-representations as generative models: Sampling
unseen neural network weights. In Advances in Neural

Information Processing Systems (NeurIPS), 2022.

Unterthiner, T., Keysers, D., Gelly, S., Bousquet, O., and
Tolstikhin, I. Predicting neural network accuracy from
weights. arXiv preprint arXiv:2002.11448, 2020.

Zhou, A., Yang, K., Burns, K., Jiang, Y., Sokota, S., Kolter,
J. Z., and Finn, C. Permutation equivariant neural func-
tionals. arXiv preprint arXiv:2302.14040, 2023.

4


