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ABSTRACT

This paper addresses a challenging Photometric-Stereo problem where the ob-
ject to be reconstructed has unknown, non-Lambertian, and possibly spatially-
varying surface materials. This problem becomes even more challenging when
the shape of the object is highly complex so that shadows cast on the surface are
inevitable. To overcome these challenges, we propose a simple coordinate-based
deep MLP (multilayer perceptron) neural network to parameterize both the un-
known 3D shape and the unknown spatially-varying reflectance at every image
pixel. This network is able to leverage the observed specularities and shadows on
the surface, and recover both surface shape, normal and generic non-Lambertian
reflectance via an inverse differentiable rendering process. We explicitly predict
cast shadows, mitigating possible artifacts on these shadowing regions, leading
to higher estimation accuracy. Our framework is entirely self-supervised, in the
sense that it requires neither ground truth shape nor known svBRDF. Tests on
real-world images demonstrate that our method achieves state-of-the-art accuracy
in both shape recovery and material estimation. Thanks to the small size of the
MLP-net, our method is also an order of magnitude faster than previous competing
deep-learning based photometric stereo methods.

1 INTRODUCTION

Photometric Stereo is a classic technique aiming to recover the surface shape of an object from its
multiple images taken at the same viewpoint but under different illuminations. It offers an effective
way of reconstructing 3D shapes. When the surface reflectance is Lambertian (diffuse), the problem
of photometric stereo can be solved in closed-form (Woodham, 1980). However, it remains a
challenging task for non-Lambertian object recovery by Photometric stereo, where the appearance
of the object contains certain view-dependent specularities, and is sometimes compounded with
attached as well as casted shadows.

The diverse nature of surface materials of real-world objects manifests a wide range of specularities
on the surface, impeding traditional photometric stereo methods (Wu et al., 2010; Ikehata et al.,
2012; Mukaigawa et al., 2007; Wu & Tang, 2010). With the recent advent of deep learning tech-
niques, tremendous advancements have been made in many computer vision problems, and there is
no exception for photometric stereo (Santo et al., 2017; Ikehata, 2018; Li et al., 2019; Chen et al.,
2020; Yao et al., 2020). Current existing deep PS methods often handle specularities in an implicit
manner in the sense that an end-to-end supervised training process is adopted, ignoring the under-
lying physical principle of photometric stereo. The lack of interpretability of deep learning meth-
ods also prevents exploiting the interactions between specularities and surface normals. Moreover,
shadows commonly appear in non-convex objects occluding part of the object surface, hindering
photometric stereo reconstruction. Previous attempts were made to tackle photometric stereo in the
presence of shadows, often under the restrictive Lambertian assumption (Chandraker et al., 2007).
The problem becomes much complicated if both specularities and shadows appear simultaneously
on the surface.

In the regime of deep photometric stereo, despite various data augmentation strategies (Santo et al.,
2017; Li et al., 2019) were proposed to mitigate issues associated with shadows, they fall short in
terms of overlooking how shadows occur on the surface. The lack of large-scale real-world training
data also hinders the progress of data-driven deep photometric stereo. Moreover, obtaining ground-
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truth 3D shapes and ground-truth svBRDFs in a real-world lab setting has been both laborious
and expensive, preventing a wider up-taking of supervised learning approaches for non-Lambertian
photometric stereo.

In this paper, we propose an unsupervised deep photometric stereo method that overcomes many of
the aforementioned issues. Our framework takes the image coordinate corresponding to a surface
point as the input, and directly outputs the surface normal, BRDF parameters (i.e. diffuse albedo
and specular parameters), and depth at that surface point. To account for the different types of
specularities in the real-world, our method learns a series of specular BRDF basis functions. With
these BRDF bases, we parameterize the BRDF and fit the specular highlights to find the accurate
surface normal. Furthermore, our framework explicitly parameterizes the shadowed regions by trac-
ing through the estimated depth map. These shadowed regions are excluded from computation in
order to avoid possible rendering artifacts. Following the inverse graphics rendering idea, we use
the estimated surface properties and specular bases to re-render the pixel intensities of the surface
point under different light directions. Our framework is optimized by minimizing the difference
between the reconstructed and observed images during the inference time. Hence we do not need
any ground truth surface normals nor pre-training. Our method outperforms both the supervised
and self-supervised state-of-the-art methods on the challenging real-world dataset of DiLiGenT (Shi
et al., 2018). Our framework is ten times faster than competing deep CNN based self-supervised
photometric stereo methods (Taniai & Maehara, 2018; Kaya et al., 2020).

2 RELATED WORK

Conventional approaches: The photometric stereo is firstly introduced by Woodham (Woodham,
1980), which assumes the surface of the objects to be Lambertian and convex to avoid the specular
effects and shadows. This problem can therefore be solved in a closed-form manner by least-squares.
The above strict assumptions were gradually liberalized by later studies (Wu et al., 2010; Ikehata
et al., 2012; Mukaigawa et al., 2007; Wu & Tang, 2010; Quéau et al., 2017). These methods can
tolerate the existence of non-Lambertian effects by treating the specularities and cast shadows on
the object as outliers. However, they may also erase other clues specularities can bring.

Learning-based methods with ground truth surface normal at supervision: With the progress
of deep learning in many of the computer vision areas, the learning-based methods are the ones that
have achieved the best performance in photometric stereo recently (Santo et al., 2017; Ikehata, 2018;
Li et al., 2019; Chen et al., 2020; Yao et al., 2020; Wang et al., 2020; Zheng et al., 2019). Santo et al.
(2017) proposed the first network-based method, which per-pixelly estimates the normal by taking
observed pixels in a pre-defined order. Chen et al. (2018; 2020) proposed a feature-extractor and
features-pooling strategy to obtain the spatial information for photometric stereo. Recently, more
works (Yao et al., 2020; Wang et al., 2020) exploited the local and global photometric clues for this
problem. These learning-based methods require a large amount of data with ground truth surface
normal at the training stage. The synthesized data with some augmentation strategies are commonly
used as collecting a large-scale real-world dataset is exceptionally expansive and impractical.

Self-supervised methods: In contrast to the above-mentioned learning-based methods method, self-
supervised methods do not require ground truth normal at supervision. Instead, the network is
optimized by minimizing the difference between the reconstructed images and observed images.
Taniai & Maehara (2018) proposed a self-supervised network that takes the whole set of images at
the input, directly output the surface normal, and aiming to reconstruct the observed images. Their
network structure is further expanded by Kaya et al. (2020) to deal with interreflection in the context
of uncalibrated photometric stereo. Both of them implicitly encode specular components as features
for the network and fail to consider shadows in the rendering equation.

Neural radiance fields: Recently, neural radiance fields introduced by Mildenhall et al. (2020)
is widely adopt in many computer vision areas. Wizadwongsa et al. (2021) improve the novel
view reconstruction results on view-dependent effects by using multiplane image and neural basis
functions to represent the scene. Many works also extend the neural radiance fields to recover
both the shapes and materials of the object (Boss et al., 2020; Zhang et al., 2021b;a; Srinivasan
et al., 2021). These works are solving multi-view reconstruction problems. They generally assume
the input being images of an object captured from multiple viewpoints under fix illumination. In
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Figure 1: We propose an inverse rendering framework that estimates the surface normal, diffuse
albedo, specularity, and shadow of an object. Our method learns the specular basis to fit the observed
specularities accurately and gives clues for normal estimation. We also explicitly parameterize the
shadows based on the estimated depth, alleviating artifacts on these shadows.

contrast, the photometric stereo problem we are focusing in this paper assumes multiple images
taking from the same viewpoint, but with different illuminations.

3 PROPOSED METHOD

As shown in Fig. 1, our framework aims at inverse rendering the object by decoupling the surface
into normal, diffuse albedo, specularity, and shadow. We model the specularity by learning the un-
derlying specular bases. Our method estimates the depth by querying the relative depth of the surface
points. In the following subsections, we illustrate the details of each module in our framework.

3.1 RENDERING EQUATION

Following the conventional calibrated photometric stereo problem, we assume that the light source
is in distance over the images with known light direction l = [lx, ly, lz]

T ∈ S2 (the space of
3-dimensional unit vectors) and light intensity Li ∈ R+. And the camera to be in orthographic posi-
tion, hence, viewing direction v = [0, 0,−1]T ∈ S2. For simplicity, without any loss of generality,
we omit the light intensity Li in the following formulations by dividing the observations (i.e. images
Ii) with the corresponding lighting intensities, I = Ii/Li. We also assume that there are no inter-
reflections between the surfaces so that the point light source is the only light source to illuminate
the target object.

Given a light source from the direction l illuminates a surface point with surface normal n ∈ S2.
The observation I viewing from direction v can be written as

I = sρ(l,v,n) max(lTn, 0), (1)

where s ∈ {0, 1} is a binary variable with a value of 0 at shadows, and 1 otherwise; ρ(l,v,n)
represents the BRDF of the surface point, which is a function of the light, view direction, and the
surface normal; max(lTn, 0) is the shading component.

3.2 MATERIAL MODELING

The Lambertian surface assumes the BRDF ρ(l,v,n) = ρd is always a positive constant. This
unrealistic assumption fails to account for those materials with high specular effects. It can be
beneficial to model the specular part in BRDF and leverage its information for photometric stereo.
In order to take both the diffuse and specular effects into account, here we choose a more realistic
way to model the BRDF, i.e. the microfacet BRDF models (Torrance & Sparrow, 1967; Walter et al.,
2007), where the BRDF is separated into the diffuse and specular components

ρ(l,v,n) = ρd + ρs(l,v,n). (2)
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Figure 2: The four modules of our MLP-based deep photometric stereo framework: (a) specularity
modeling SΦ (see Sec. 3.2) fits a suitable set of suitable BRDF bases to the target specularities;
(b) surface modeling MΘ (see Sec. 3.3) estimates the surface normal, as well as parameters of the
BRDF given the image coordinates as input; (c) ZΨ estimates a dense depth map, which enables the
shadow rendering (see Sec. 3.4) by checking the visibility of the light source at each surface point;
and (d) the rendering equation (see Sec. 3.1). All MLPs are optimized in a self-supervised manner
by minimizing the reconstruction error between reconstructed and observed images.

Specularity modeling. Previous deep-learning-based approaches implicitly handle the specularity
on images by feeding them as features into their neural network (Taniai & Maehara, 2018; Kaya
et al., 2020), or processed by max-pooling (Chen et al., 2018; 2020). However, as the specularities,
at the core, are reflections on the surface, explicitly model these effects by using clues from physical
reflection constraints will certainly bring merits to the photometric stereo problem.

To relieve the burden of fitting such a specular BRDF, we need to introduce some reasonable and
realistic assumptions. Recalling that the BRDF can be converted to a half-vector h based function
with only four parameters (Rusinkiewicz, 1998), we assume that our specular BRDF is isotropic
and is only the function of half-vector h and surface normal n. This assumption omits the Fres-
nel reflection coefficient and the geometric attenuation, which only has limited effects at grazing
angles (Burley & Studios, 2012). Besides, observing the fact that many surface points in the real-
world object are similar, if not identical, in the material. We further assume that the specular BRDF
ρs(l,v,n) at each surface point lies on a non-negative linear combination of the atoms of specular
basis. Similar approaches for simplifying the BRDF model to be the combination of different bases
were also used in (Matusik et al., 2003; Hui & Sankaranarayanan, 2017). The specular BRDF can
then be written as

ρs(l,v,n) = cT D(h,n), h =
l + v

||l + v||
, (3)

where h is the half-vector between lighting and viewing direction; and D(h,n) = [b1, b2, · · · , bk]T

is the underlying specular basis of the target object; [c1, c2, · · · , ck]
T

:= c ∈ Rk+ represent the
weights of each specular basis; k is the number of different bases. We assume that c is an element-
wise non-negative vector, suggesting that the surface reflectance is represented by positive combi-
nation of a small number of basis materials.

We have studied two different ways to model non-Lambertian BRDF basis: one uses the MLP to
learn possible specular BRDF basis of the target object, the other is based on Spherical Gaussian.

MLP Basis. An MLP can represent the specular basis by

D(h,n) = SΦ(h,n), (4)
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Figure 3: Visualization on the estimated svBRDFs. We select four different surface points on the
object “Harvest” and showcase our estimated BRDF spheres on the right. The results demonstrate
that our model can recover the metallic and diffuse materials. We scale up the observed images and
normalize the BRDF spheres for better visualization.

The network SΦ(h,n) only takes h,n at the input, outputs the different specular basis in form of
[b1, b2, · · · , bk]T , as shown in Fig. 2. Φ are its weights that can be optimized. In Fig. 3, we showcase
the estimated svBRDFs by our MLP specular model.

Spherical Gaussian Basis. Alternatively, we can also use the Spherical Gaussians (Wang et al.,
2009) to represent the specular basis by

D(h,n) = G(h,n;λ) = [eλ1(hTn−1), · · · , eλk(hTn−1)]T (5)

λi ∈ R+ represents the sharpness of the specular peak. By choosing λ = [λ1, · · · , λk]T ∈ Rk+ with
different values, we can create different types of specular basis functions of different sharpness.

In experiments, we found that the MLP basis has a slight advantage on representing metallic objects
over Spherical Gaussian. Because Spherical Gaussian has difficulties in representing high-peak and
long-tail specularites. On the other hand, due to having much fewer parameters, Spherical Gaussian
is more computationally efficient than the MLP model.

3.3 SURFACE MODELING

We model the surface normal, diffuse, and specular basis coefficients of an object by an MLP MΘ.
It takes the image coordinates of the pixels x = [x, y]T ∈ R2 as input. The output is the corre-
sponding surface normal n, diffuse albedo ρd, and the coefficients c of the specular component at
each coordinate x.

n, ρd, c = MΘ(x), (6)

where c represents the coefficients that can be used to reconstruct the specular component ρs in
Sec. 3.2; and Θ is the weights of this MLP that can be optimized.

We use the similar MLP architecture and positional encoding strategy from NeRF (Mildenhall et al.,
2020) to build our network, and the embedding in input coordinates x. The difference is that while
NeRF also takes different viewing directions as input to model the view-dependent effects of the
objects’ appearance, our MΘ network only estimates the “static” properties of the target object.
Instead, we cover the “light-dependent” variance of the object by specularity modeling. Our design
will encourage the network to correctly decompose surface normal and material property of the
object.

3.4 SHADOW HANDLING

We now look at the shadow factor s in the image rendering Eq. (1). Due to the rugged surface of
the objects in the world, shadows may appear at the reflecting surface. As shown in Fig. 4, shadow
occurs when the object itself occludes the surface. Rendering of the shadowed region relies on the
relative geometry and depth of the object with respect to the light directions. Hence, we introduce
a depth MLP ZΨ to model the object’s depth value z ∈ R between the object surface points to the
camera. The depth MLP takes images coordinates as input, outputs the corresponding depth value
of the given coordinates z = ZΨ(x).
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Figure 4: Shadow parameterization and rendering. As shown in the left figure, shadows are caused
by self-occlusion. To determine whether a surface point x falls into the shadow region, we trace the
point to the light source and sample multiple points x(t) along this ray. Given the light direction l
and the estimated depth map ZΨ(x), we can query the depth and compare the values to effectively
parameterize and render the shadow by Eq. (7).

To examine whether the object occludes the light source and hence causing the shadow, we can draw
a line from the surface point x toward the light source. Denote this line in the world coordinates
as L = X − tl, where t ∈ (0,+∞); the X = [x, y, z] represent the surface points with its depth
value z given by ZΨ(x). We can further simplify the equation by using the function Lz to denote
the z-axis value of L. Now, by traveling along the light direction, i.e. t ∈ (0,+∞), we can compute
the shadow factor by

s = step
(

min
x(t)

(ZΨ(x(t))− Lz(x(t)))
)
, x(t) = x− tl′, (7)

where the step(·) denote the Heaviside step function, which outputs 1 if input is positive, and 0
otherwise; l′ = [lx, ly]T is the projection of light direction l at xy-plane. In implementation, we set
the step size for shadow rendering to be 32 (with logspace intervals).

4 IMPLEMENTATION

We use the positional encoding strategy to encode the input before inputting them into the MLP
(c.f. Mildenhall et al. (2020)). For surface modeling net MΘ, we encode the input with 10 levels
of Fourier functions, the network MΘ uses 12 fully-connected ReLU layers with 256 channels. The
surface normal n is output at 8-th layer while the BRDF parameters are output at the last layer. We
also use 10 encoding functions to embed the input of depth net ZΨ, which has 8 fully-connected
ReLU layers with 256 channels. For the specular MLP SΦ, we use only 3 encoding functions to
embed the input. The network SΦ consists of 3 fully-connected ReLU layers with 64 channels.
Overall, the three MLP-networks are rather lightweight (i.e. small footprint) with total combined
parameters of merely 1.1M. Please refer to the appendix for more implementation details.

Reconstruction loss The reconstruction loss is defined as mean absolute errors between the ob-
served intensity Iob and reconstructed intensity:

Lrec =
∑

all pixels

|I − Iob|. (8)

Geometry Constraint Note that the Heaviside step function step(·) will cutoff the gradients from
Lrec to the network parameters of ZΨ. Hence we introduce a geometry constraint between the
estimated surface normal n and depth network ZΨ as below

Lgeo =
∑

all pixels

(1− nT∇ZΨ). (9)

Besides, in the early stage of optimizing the network ZΨ, its output depth map cannot reason a
stable and reasonable shadow mask. We introduce shadow guidance sg to replace the rendered
shadow factor at Eq. (7) at the beginning of optimization. Assume that observation under n different
light direction is [I1, I2, ..., In]. We then set a threshold as 0.1λm, where λm = 1

n

∑
Ii is the

mean intensity value of the different observations. Those pixel intensities that are smaller than the
threshold will be considered as shadowed, hence with shadow factor sg = 0. We use Eq. (7) for
shadow rendering once the depth network ZΨ is stable.
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Figure 5: Qualitative results on “Cow” and “Pot2”. For each object, the odd numbered rows show
the observed image and estimated normal by different methods; the even numbered rows show the
angular (normal) error in degrees by different methods.

Table 1: Quantitative comparison on the DiLiGenT dataset. The metric here is mean angular error
(MAE); the lower MAE is preferred.
GT normal Methods Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

No Ours 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50
No Taniai & Maehara (2018) 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
No Woodham (1980) 4.10 8.40 14.90 8.40 25.60 18.50 30.60 8.90 14.70 19.80 15.40
Yes Wang et al. (2020) 1.78 4.12 6.09 4.66 6.33 7.22 13.34 6.46 6.45 10.05 6.65
Yes Ikehata (2018) 2.20 4.10 7.90 4.60 8.00 7.30 14.00 5.40 6.00 12.60 7.20
Yes Yao et al. (2020) 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81
Yes Chen et al. (2018) 2.82 5.15 7.91 5.98 7.33 8.60 15.85 6.85 7.25 13.33 8.08

Smoothness constraint As the albedo and surface normal of real-world objects usually present a
piece-wise smooth pattern, we introduce a total variation loss to guide the network in the early stage.

Ltv = Vl1(ρd, c) + Vl2(n), (10)

where Vl1 represents the total variation function with absolute loss and Vl2 with square loss.

To sum up, we optimize the parameters of the MLPs MΘ, SΦ, ZΨ by minimizing the following loss
function: L = Lrec + Lgeo + βLtv , where β is the hyper-parameter controlling the total variation
loss. We set it as β = 0.01; and it will then be set to 0 after the first 2400 iterations.

5 EXPERIMENTS

In this section, we evaluate our method and its variants on the challenging real-world dataset DiLi-
GenT (Shi et al., 2018). We used all the n = 96 images under different light directions for optimizing
the network, except the object “Bear”. We discard the first 20 images of “Bear”, as they are found to
be over-saturated in previous work (Ikehata, 2018). The batch size is set as 8 images per batch. We
iterate in total 6000 iterations when optimizing the network. We use Adam (Kingma & Ba, 2014)
optimizer with a learning rate of 5×10−4 and other parameters at their default settings. Our method
is implemented in PyTorch and is running on a RTX 3090 GPU. The inference (i.e. training) time in
the 10 objects of DiLiGenT dataset range from 3 min to 9 min, with an average of 6 min per object.
In contrast, Taniai & Maehara (2018) and Kaya et al. (2020) took about an hour per object.
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Figure 6: We select four different light directions. Their distribution is labeled as red points in the
light distributions image in the second row. The first row shows the observed images under these
four different light sources. The second row presents the results of our rendered shadow region under
the corresponding illuminations. In the third row, we showcase the estimated depth, ground truth
surface normal, estimated surface normal (with and without the shadow factor). In the right-most
image on the third row, we also compare our estimated normal “w/ shadow” and “w/o shadow”. The
blue color in the comparison corresponds to the area where “w/ shadow” outperforms “w/o shadow”.

5.1 EVALUATION ON REAL-WORLD DATASET

In Table 1, we present the quantitative comparison of our method against other methods on the
DiLiGenT dataset. We use the mean angular error (MAE) as the metric in the paper. The lower
MAE is preferred. We classify the previous methods into two categories: the supervised methods,
which need ground truth surface normal at the training stage; and the self-supervised which does
not need ground truth surface normal and directly estimates the normal at testing time. As reported
in the Table 1, our method achieves the best performance over the other methods at average MAE
errors. Thanks to our specularity modeling, our method shows its significant advantages on shiny
objects like “Reading”, “Cow” and “Goblet”. We present the visualization of “Cow” and “Pot2”
in Fig. 5. “Cow” is a typical metallic object with a high peak of specularities; while “Pot2” shows
more broad and soft specular effects. Our method achieves the best performance in both two cases.

5.2 EVALUATION OF THE SPECULAR MODELS

Here, we compare our method with different choices of the specular model and different numbers
of the basis functions. We experimentally find out that our method with MLP to model the specular
basis will have advantages over metallic objects. The metallic material usually has high-peak and
long-tail effects on the BRDF map. The Spherical Gaussian struggles to accurately recover these
types of BRDF, while the MLP model can fit the metallic material very well. From the Table 2,
both of the two modeling methods achieve the best performance when the number of bases is set to
k = 9. Note that, despite the Spherical Gaussian shows slightly worse at performance, it requires
less computational resources; and it is twice faster than using the MLP.

5.3 SHADOW HANDLING

To show the efficacy of our shadow handling mechanism, we conduct ablation study by removing
the shadow rendering module, denote as “w/o shadow”. Quantitative comparisons are shown in
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Table 2: Quantitative comparison on the different specular models and number of basis. The metric
here is MAE; lower is preferred.

Specular model
#Basis 2 4 6 9 12

MLP 6.80 6.77 6.65 6.50 7.39
SG 7.10 6.89 6.80 6.79 7.04

Table 3: Evaluations of the different variants of the proposed method. The second row is the method
without the shadow factor; the third row is without using the early stage smoothness constraint. The
metric here is MAE; lower is preferred.

Methods Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Proposed 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50
w/o shadow 2.13 4.29 11.09 6.81 5.69 8.30 17.88 7.79 7.80 12.68 8.44
w/o Ltv 2.44 3.66 8.56 4.93 5.27 6.77 21.67 6.73 6.88 9.19 7.61

Table 3, where one can see that the mean angular error on all objects increases 1.96 degrees. Notably,
the performance degradation is majorly caused by objects “Buddha”, “Harvest” and “Reading”.
This is as expected, because these objects have rather complex (concave) surface geometry, more
susceptible to cast shadows. Our proposed shadow handling method attends to these shadowed
regions better, achieving high recovery accuracy. In Fig. 6, we give the visualization of the effects of
our shadowing module on the object “Reading”. Observing the image and its ground truth normal
of this object, we can see that “Reading” is a highly non-convex object with many specularities and
shadows. The shadowed region is especially big when the light comes from the right direction, as
shown in the lighting direction C and D in the figure. Our render shadows under these lighting
directions, despite some minor errors, accurately predicting the shadowed regions. The error map
shown at the right-most of the third row in Fig. 6 corresponds to the difference between the MAE
yielded by our proposed model (“w/ shadow”) and its no-shadow-variant (“w/o shadow”). The
negative areas, i.e., blue regions in the error map, are those where our proposed model outperforms
the alternative. The full model performs better in the region where the shadows are evident.

6 DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed an MLP-based approach for non-Lambertian photometric stereo.
The key novelty of our method is the neural parameterizations of spatially-varying surface re-
flectances (svBRDF), and of surface geometry. By leveraging the physical principle of inverse
rendering, we explicitly tackle the specularities and cast shadows in the photometric stereo setting.
Despite being an unsupervised method, our method outperforms existing state-of-the-art supervised
methods on real-world datasets. Our method is inspired by NeRF (Mildenhall et al., 2020), which
also uses a coordinate-based MLP to model the mapping from 3D coordinates to surface materials
and appearance. In contrast, we factorize the image appearance into multiple components: normal,
diffuse, specular, and shadows. The fitting on these physical-based rendering factors restores the
object’s surface properties faithfully. Our method also relates to Taniai & Maehara (2018); Kaya
et al. (2020), which aim at optimizing a CNN-based inverse rendering architectures. Our MLP-
based framework is significantly faster than those CNN-based methods. Besides, we explicitly pa-
rameterize diffuse, specularities, and shadows to ensure the inverse rendering follows a physically
meaningful and explainable manner.

Limitations and future work: We believe that solving the photometric stereo without known light
sources (i.e. uncalibrated photometric stereo) would be an interesting future work for us. Our
estimation of depth is learned from the surface normals by the geometry constraints. Hence, it is
sensitive to the accuracy of normal and surface discontinuities. Introducing more constraints for
accurate depth estimation would certainly help this problem. Another challenging topic is to include
inter-reflection and global illumination in the rendering equation. Finding a model to trace the rays
bouncing between surfaces is also an interesting future direction.
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7 ETHICS STATEMENT

As discussed by Yao et al. (Yao et al., 2020), with the advancement of photometric stereo, the 3D
shape of a person’s face can be easily captured accurately even by a layman. The inverse rendering
technique allows the user to alter the shape and appearance of an individual’s face. The acquisition
and alteration of such personal information, if without their consent, may lead to privacy and security
breaching. Care must be taken to mitigate the potential risk of abusing this technique.

8 REPRODUCIBILITY STATEMENT

Implementation details The detail design of our network architecture can be found in main pa-
per Section 5 and the appendix Section A. All the training details are provided in Section 5 and
Section 5.2. We will release the code once the paper is public available.

Datasets used in the paper In our paper, we conduct the experiments in three public real-world
datasets: DiLiGenT (Shi et al., 2018), Gourd&Apple dataset (Alldrin et al., 2008), and Light Stage
Data Gallery (Chabert et al., 2006). Results for Gourd&Apple, and Light Stage Data Gallery are
shown in the appendix. All these three datasets were acquired in the dark room. All three datasets
provide calibrated light directions and light intensities. DiLiGenT contains 10 objects; each object
has 96 images captured under different lighting conditions; ground truth surface normal is captured
by a high-end laser scanner. Gourd&Apple contains 3 objects; each object has around 100 images
captured under different lighting conditions; no ground truth surface normal is provided. Light Stage
Data Gallery contains 5 objects; each object has around 133 images available for photometric stereo;
and no ground truth surface normal is provided.
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APPENDIX

A IMPLEMENTATION DETAILS

Positional encoding of input of MΘ and ZΨ The inputs of surface modeling MΘ and depth
modeling ZΨ are the pixel coordinates x. We adopt the positional encoding strategy (Mildenhall
et al., 2020) to embed the input coordinates x ∈ R2 into a higher space x ∈ R4m:

γ(ξ) = (sin(20πξ), cos(20πξ), · · · , sin(2m−1πξ), cos(2m−1πξ)). (11)

In practice, we first normalized the coordinates to range (−1, 1), then apply the above encoding
function withm = 10 to each of the two coordinate values in x. Then, we concatenate the coordinate
and its embeddings as (x, γ(x)) to be the input of the two MLPs.

Positional encoding of input of SΦ Rusinkiewicz (Rusinkiewicz, 1998) reparameterized the
BRDF as a function of the half-vector h (i.e. the half-vector between lighting and viewing direc-
tion). This half-vector-based parameterization is further evaluated and discussed by (Pacanowski
et al., 2012; Burley & Studios, 2012), where they found that a simplified isotropic BRDF can be
modeled in two parameters (θh, θd), where θh = arccos(nTh), θd = arccos(vTh). In our method,
we take the cosine value of these two variables as the input:

p = (nTh,vTh). (12)

Then, the input p is further encoded by γ(p) with m = 3. Likewise, we concatenate p and its
embeddings as (p, γ(p)) to be the input of the specularity basis modeling SΦ.

Network architecture In Fig. 7, we show the detail structure of our three MLPs : (a) specularity
basis modeling SΦ; (b) surface modelingMΘ, (c) depth modelingZΨ. The design of these structures
are inspired by a recent work NeRF (Mildenhall et al., 2020).
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B COMPARISON ON SHADOW GUIDANCE VERSUS SHADOW RENDERING

Here we conduct a comparative experiment on using only the shadow guidance versus using only
the shadow rendering during the training. The results are shown in Table 4. We can see that the full
model achieve the best performance among them.

Table 4: Quantitative comparison on using only the shadow guidance versus using only the shadow
rendering during the training. The metric here is MAE; lower is preferred.

Methods Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Full model 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50
Only shadow guidance 1.91 3.77 7.92 5.86 4.65 7.11 15.11 6.20 5.43 8.60 6.66
Only shadow rendering 2.04 4.17 9.54 5.49 5.64 7.35 17.11 7.63 6.76 10.12 7.58

C COMPARISON ON DIFFERENT VARIANTS OF SURFACE MODELING

In this section, we try and compare several variants of our surface modeling network MΘ. The
original model we use in the paper is denoted as the baseline. The equation for baseline surface
modeling (i.e. the one used in main paper) is

n, ρd, c = MΘ(x), (13)
Surface Modeling Variant 1: directly output depth, diffuse albedo and specular weights rather than
outputting normals.

z, ρd, c = M1
Θ(x), (14)

Surface Modeling Variant 2: output the normals and albedo by two networks separately.
n = M2

Θ(x), (15)

ρd, c = M3
Θ(x) (16)

Table 5: Quantitative comparison on different variants of surface modeling. The metric here is
MAE; lower is preferred. Below, we present the average MAE of ten objects in DiLiGenT.

Methods Avg.

Baseline 6.50
Variant 1 7.56
Variant 2 6.64

Our experiments in Table 5 show that the baseline model (outputting normals, albedo and specular
weights by a single network) has the best performance. Our analysis is that:

• Comparing to Variant 1: Because the surface normal is close related to the photometric
appearance of an object. By directly outputting normal, our baseline network can achieve
a lower photometric appearance (reconstruction) loss. If we directly output depth, we need
to apply an additional step to compute the finite difference to get normal. Hence, directly
outputting normal will help the training of the network to minimize the reconstruction loss.

• Comparing to Variant 2: Our baseline model will output the normals, albedo and specular
weights in a single MLP, which encourages learning on shared features of surface proper-
ties. The normals, albedo and specular weights are all intrinsic properties of an object’s
surface. They are correlated with the image coordinates. Hence, outputting all these three
values in a single network will encourage learning on their shared features.

D ADDITIONAL RESULTS

Additional Results on Normal Estimation In Fig. 8, we present the normal estimation results on
three specular objects: “Goblet”, “Reading” and “Harvest” from DiLiGenT (Shi et al., 2018). These
results demonstrate that our method is taking advantage of the information that the specularities
provide. Hence, we can estimate the normal accurately on specular regions.
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Visual comparison on different choices on the specular model As shown in Fig. 9, both the
MLP and the Spherical Gaussian models reconstruct the reflectance visually accurately. The MLP
basis has a slight advantage on representing metallic objects over Spherical Gaussian. Because
Spherical Gaussian has difficulties in representing high-peak and long-tail specularites.

Additional Results on svBRDF Estimation In Fig. 10, we showcase the estimated materials of
different points on the object “Reading” by rendering the corresponding BRDF spheres.

Visualization on each terms of the rendering equation Recall the rendering equation (Eq.(1) in
the main paper) is defined by

I = sρ(l,v,n) max(lTn, 0), ρ(l,v,n) = ρd + ρs, (17)

where ρd is the diffuse albedo; ρs is the specularities; s is the shadows; max(lTn, 0) is the shading
term. In Fig. 11, we present the visualization of our estimation on these terms.

Additional Results on Shadows Estimation In Fig. 12, we showcase the estimated shadows and
specularities under different light directions.

Additional Results on Other Real-world Dataset We also test our method on two other chal-
lenging real-world datasets: Gourd&Apple dataset (Alldrin et al., 2008) and Light Stage Data
Gallery (Chabert et al., 2006), as shown in Fig. 13 and Fig. 14 separately. Both of these two
datasets do not provide ground truth normal for evaluation. Hence, we provide the visualization
of the estimated normal, diffuse albedo, and specular map on these datasets. Our method correctly
recovers the shape and materials of different objects. It also demonstrates that our method is robust
on different objects with different materials.
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256 256 256 256 256 256 256 256

128 128 128 128

256 256 256 256 256 256 256 256

64 64 64

Figure 7: Network architecture of our three MLPs: SΦ,MΘ, ZΨ. In this figure, inputs of the
network are shown in the green blocks; outputs are shown in the red blocks. The blue blocks
represent the fully-connected layers with its size of the hidden channels stated on the top. All fully-
connected layers are followed by a ReLU activation layer, except the output layers. The “⊕” in the
middle of the MΘ, ZΨ network denotes the vector concatenation: we add a skip connection after the
fourth layer of MΘ, ZΨ, and concatenate its output features with the input.
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GT Normal Ours Taniai & Maehara (2018) Chen et al. (2018) Woodham (1980)

6.68° 11.47° 8.60° 18.50°

0° 50°25°

8.75° 11.03° 13.33° 19.80°

14.90° 22.59° 15.85° 30.60°

Figure 8: Normal estimation on specular objects: “Goblet”, “Reading” and “Harvest”. As
shown in the observed image of these three objects, the “Goblet” is mostly made of metallic materi-
als; “Reading” and “Harvest” present many specular effects over the clothes. Our method achieves
the best performance in all these three objects, especially in those regions with high specularities.
Please look at the red windows in the error map. “Reading” contains many specularities over its cloth
and its head. While all the other methods suffer on these specularities, our method still performs
well in these regions, especially on the head. The cloth of “Harvest” in the center also presents sig-
nificant specular effects. While the other self-supervised method TM18 (Taniai & Maehara, 2018)
failed on these regions, our method correctly recover the surface normal. These results demonstrate
that our method is taking advantage of the information that the specularities provide. Hence, we can
estimate the normal accurately on specular regions.
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MLP Basis

SG Basis

MLP Basis

SG Basis

Figure 9: Comparison on different choices on the specular model. The above shows the estimated
material of our model with different choices on the specular basis. We can see that, from the object
“Goblet” on the left side of the figure, the MLP basis is advantageous in representing metallic effect
with high-peak and long-tail effects than the SG basis. For objects with soft and broad specular
effects, e.g. the ceramic cat on the right of the figure, both models achieve comparable results.

A B C D

A

B

C

D

Figure 10: Visualization on the estimated svBRDFs. This figure shows the estimated svBRDFs
of the surface points on the objects. On the left is the observed image of “Reading”. We select four
different surface points on the object and showcase our estimated BRDF spheres of those points
on the right side. The results demonstrate that our learning model on the BRDF can accurately
recover the materials from metallic to diffuse. Noted that, for better visualization, we normalize the
BRDF spheres to have the maximum intensity to be 1. The observed images are also scaled up for
visualization.
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Light directions

Observed Images

Shadows in different directions

in different directions

GT Normal

Est. Normal

Est. Depth

(a) Cow
Light directions

Observed Images

Shadows in different directions

in different directions

GT Normal

Est. Normal

Est. Depth

(b) Harvest

Figure 12: Estimated specularities and shadows under different illuminations. The leftmost
column presents the ground truth normal and our estimated normal and depth as a reference of the
object’s geometry. We show the estimated specular components ρs and estimated shadows under
three different extreme lighting directions in the right-three columns. In “Cow”, the object is gener-
ally smooth, and our estimation of the shadows also visually match the observed images. “Harvest”
has a complex geometry and consists of many depth discontinuities over the surface. As discussed
in the Sec. 6 of the main paper, our method is influenced by these regions and will generate a
“shallower” depth map. Hence, the estimated shadows are generally under-estimated.
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Observed Image Est. Normal (Diffuse Albedo) (Specularities)

Figure 14: Results on Light Stage Data Gallery (Chabert et al., 2006). The columns from left to
right are the observed images, our estimated normal, diffuse albedo, and specularities of the objects.
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