
Dynamics Modeling using Visual Terrain Features
for High-Speed Autonomous Off-Road Driving

Author Names Omitted for Anonymous Review. Paper-ID 20

Abstract—Rapid autonomous traversal of unstructured terrain
is essential for scenarios such as disaster response, search and
rescue, and planetary exploration. As a vehicle navigates at the
limit of its capabilities over extreme terrain, its dynamics can
change suddenly and dramatically. For example, varying terrain
can affect parameters such as traction, tire slip, and rolling
resistance. To achieve effective planning in such environments, it
is crucial to have a dynamics model that can accurately anticipate
these conditions and respond before an issue can occur. In this
work, we present a hybrid model that predicts the changing
dynamics induced by the terrain as a function of visual inputs. We
leverage a pre-trained visual foundation model (VFM) DINOv2,
which provides rich features that encodes fine-grained semantic
information. To use this dynamics model for planning, we propose
an end-to-end training architecture for a projection distance
independent feature encoder that compresses the information
from the VFM, enabling the creation of a lightweight map of
the environment at runtime. We validate our architecture on an
extensive dataset (hundreds of kilometers of aggressive off-road
driving) collected across multiple locations. (Video link omitted
for double-blind review.)

I. INTRODUCTION

Dynamics modeling for field robots using visual inputs
has been an area of research since before visual foundation
models (VFMs) were available. For example, in [1], different
vehicle slip models were determined for a small number of
different terrain conditions (such as grass, gravel, etc.). Though
discretizing terrain types could suffice in some environments
and when the robot is not operating at its hardware limits, a
continuous representation of terrain is more desirable for our
purposes, where terrain varies drastically and the driving is
highly aggressive.

VFMs are large-scale, pre-trained neural networks designed
for diverse vision tasks like classification, segmentation, and
feature extraction. Models like DINOv2 [14] generate general-
purpose feature vectors that provide a good basis for zero-
shot adaptation. In this work, we leverage DINOv2 to extract
compact, continuous terrain representations that capture visual
details relevant to vehicle dynamics.

Understanding the vehicle’s surrounding terrain is espe-
cially important as the coupling of high speeds and varying
ground terrain introduce complex, nonlinear, and time-varying
properties in the dynamics of the vehicle as aspects such as
the traction, cornering stiffness, and rolling resistance of the
vehicle change. For example, the vehicle’s dynamics when
driving on slippery grass differ from those on dry trails.
Examples of terrain where the vehicles dynamics may be
affected as a result of the terradynamics of the environment
are shown in Fig. 2.

Text

V
F

M
F

ea
tu

re

E
nc

od
er

Training

Model Predictive Control

Camera

P
ro

je
ct

io
n

&
 M

ap
pi

ng

Runtime

D
at

as
et

 G
en

er
at

io
n

PCA Dim. Reduction

Dynamics Model

V
F

M

Camera

PCA Dim. Reduction

F
ea

tu
re

E

nc
od

er

Trajectory Dataset
with PCA Features

E
nd

-t
o-

en
d

Tr
ai

ni
ng

Dynamics Model

LiDAR

P
ro

je
ct

io
n

&
 M

ap
pi

ng

LiDAR

LSTM

LSTM

Fig. 1. Architecture of dynamics learning with visual features. A feature
encoder is trained end-to-end with the dynamics model on a trajectory
dataset including high-dimensional visual features from a VFM. This encoder
reduces the visual information to a low-dimensional, dynamics relevant feature
space. At runtime, it processes features in image space (dashed box) before
projection and accumulation in a 3D map. This makes the map aggregation
step computationally tractable. The 3D map is flattened to a top down 2D
map used by the dynamics model in the MPC planner.

These challenges highlight the importance of integrating
perceptual inputs into our dynamics model. Most importantly,
the dependence on visual features will allow for the antic-
ipation of changes to vehicle dynamics, ultimately reducing
the need for model correction and adaptation as the vehicle
drives on varying terrain. To this end, the contributions of
this work are as follows: 1). A hybrid dynamics model
(i.e., a model with both physics-based parametric and neural-
network components) that predicts changes in terradynamics
as a function of terrain using visual features derived from

Fig. 2. Terrain geometries and properties vary significantly across the
environments. Images show a selection of diverse terrain (from top left to
bottom right: packed sand, muddy ditches and ruts, loose dirt trail, tall grass,
dense overgrown vegetation, steep slopes) for which visual inputs of the terrain
inform the changing dynamics of the vehicle.

a VFM. 2). A training architecture that enables end-to-end
learning of a feature encoder that can be used to reduce the
computational burden of tracking high-dimensional features in
the map-space at runtime. 3). A novel method for compressing
a visual feature space that is robust to projection distance and
occlusion, enabling generalization to real driving scenarios.
4). Validation of our method on a large dataset of aggressive
off-road driving across four different rugged terrains.

II. RELATED WORK

In off-road autonomy literature, many studies aim to im-
prove the quality of the traversability map by incorporating
visual information about the surrounding terrain [16], [2], [5],
[6], [13], [7]. For example, [16] combines semantic labels and
geometric hazard identification to determine the costs on the
traversability map. [2] learns a traction model to estimate the
slip parameters of the terrain and factors this into the cost
of the traversability map. Some works, such as [7], classify
terrain into a discrete set of options, such as a smooth and
rough regolith, limiting their approach. The main goal of these
methods is to avoid unsafe paths. Less explored is the use of
visual terrain features to inform vehicle dynamics modeling,
which is necessary for accurate control and planning at a
higher resolution.

Other works, such as [11] and [9], also propose hybrid mod-
els (i.e., a model that has parametric and learned components)
for high-speed vehicle dynamics modeling. In both works, the
vehicle drives on-road, and therefore neither approach uses
visual terrain features to inform the model.

Most relevant to this research are [12] and [3]. Both methods
use the DINO or DINOv2 VFM to inform a model about the
traversed terrain. [3] employs the visual features to inform
two physical parameters, stiffness and friction, while [12] uses
this visual terrain-feature-based model for adaptive control.
Compared to [3], our method outputs a richer representation
of the terrain by training a feature encoder end-to-end with
a dynamics model. In contrast to [12], which processes the
terrain information at each camera frame and uses that in-
stantaneous information for control, our method incorporates
a lower-dimensional representation of the DINOv2 features
into a 2D map, which is then queried at each of the wheel

locations. This allows our method to accurately capture the
spatial distribution of terrain features and terrain transitions,
which is particularly relevant for predicting trajectories in a
Model Predictive Control (MPC) framework.

Perception challenges such as lighting conditions, distance
bias, and occlusions can all contribute to the lack of complete
and immutable perception of surrounding terrain. Several
works address the issue of consistency of data from the vehi-
cle’s surroundings during driving. For instance, [8] proposes a
self-supervised learning framework that uses both a VFM and
human driving trajectories for terrain traversability learning.
Similarly, [19] uses human driving data and weakly-supervised
contrastive learning. Labels of the surrounding terrain may
change as the vehicle drives, and previously unseen voxels
may be filled in as the vehicle passes through occlusions such
as bushes. Multimodal mapping approaches like [4] have used
accumulation strategies such as latest information, exponential
averaging and Bayesian updates. Pyramid occupancy networks
have also been used to accumulate map predictions across
timesteps. For example, [15] uses Bayesian filtering to fuse
voxel map information over a time buffer of driving. To further
analyze these perception challenges, we examine the consis-
tency of the DINOv2 features with respect to the distance at
which they are collected and the dimensionality reduction we
perform.

III. MAPPING OF VISUAL FEATURES FOR CONTROLS

To provide context, we briefly introduce the main compo-
nents of the autonomy stack used in this work. A mapping
module [omitted for double-blind review] combines image and
LiDAR information by projecting the pointclouds onto image
data. This module then aggregates the resulting pointclouds,
augmented with the image data, in a 3D voxel map. Depending
on the downstream application, the image data can be repre-
sented as semantic class probabilities or as a latent feature
space. This 3D voxel map is further processed into a 2D
traversability map, which is used by the planning and control
modules. This 2D traversability map contains multiple layers
that encode various quantities such as elevation, obstacles,
and planning costs. It also contains terrain features for the
dynamics model in this work.

A. Model Predictive Control with Learned Dynamics

As in our previous work [omitted for double-blind review],
we learn a dynamics model for Model Predictive Control
(MPC), to plan optimal trajectories for the vehicle. We use
Model Predictive Path Integral (MPPI) [18], a sampling-based
MPC method. It operates by sampling various trajectories, per-
forming forward rollouts of the dynamics, and optimizing the
trajectories based on the cost of these sampled rollouts. MPPI
is well-suited for our application since it is easily parallelizable
on the GPU [17] and supports the use of complex, sparse cost
functions. The costs are made up of soft penalties to encourage
good behavior and discontinuous penalty functions for safety
critical constraints. The specific cost function and the MPPI
variation we use are described in [omitted for double-blind

Fig. 3. Left: A forward-facing image of size R960×594×3 (in RGB). Right:
VFM output of size R68×42×384, where each 14 × 14 pixel patch results
in one feature vector of size R1×384. DINOv2 features from ground regions
undergo PCA, and the first three components are visualized in RGB. The
result effectively segments on- and off-trail terrain.

review]. The trajectory is optimized over a 5-second prediction
horizon, requiring accurate and computationally efficient dy-
namics modeling for effective planning. The terrain elevation
and visual terrain features in the 2D traversability map are
queried by the dynamics model at the location of each wheel
along the trajectory rollout.

B. Dataset Collection Pipeline

We generate a dynamics dataset with visual features by
processing recorded driving data with the autonomy stack. The
perception stack, which is nearly identical to the one used at
runtime, is fed with recorded sensor data and relevant outputs
are recorded. The key difference between the runtime and
replay configuration is the placement of the feature encoder,
as emphasized in Fig. 1. The feature encoder, described
further in Section V, compresses visual features into a low-
dimensional, dynamics-relevant feature space. When creating
the dataset, we store a high-dimensional feature vector to
train the feature encoder jointly with the dynamics model.
At runtime, the feature encoder runs before projection and
mapping, reducing the computation and memory burden of
mapping visual features to enable real-time execution.

1) Visual Features: As the vehicle drives, images are cap-
tured from four RGB cameras facing forward, back, and to
both sides. The front and side cameras operate at a rate of
10Hz, while the rear camera captures images at 2Hz, all with a
resolution of 960×594 pixels. The camera images are rectified
before being processed by the DINOv2 VFM. We employ
the smallest distilled ViT-S/14 network size which uses an
embedding dimension of R384.

2) Dimensionality Reduction using Principal Component
Analysis: To lower the memory and computational require-
ments during the dataset generation, we apply Principal Com-
ponent Analysis (PCA) projection on the output of the VFM
(Fig. 1). To generate the PCA basis, a set of 175 images were
manually selected, covering various terrain types and lighting
conditions. These images are run through the VFM to obtain
feature images, which are then masked to remove pixels that
are the sky, and a PCA basis is computed from these. The
PCA projection provides a linear map from Rnvfm 7→ Rnpca .
The replay can run slower than real time, so it can support
a high feature dimension. The size of npca is a trade-off
between dataset processing speed/memory requirements and
model quality. We choose npca = 40, which greatly reduces

the memory requirements while maintaining a sufficiently rich
feature space. As shown in Section VI-A and Fig. 4c, the
performance is not highly sensitive to the PCA basis size. An
example image and the corresponding RGB visualization of
the first three components of the PCA features are shown in
Fig. 3.

3) Mapping of Visual Features: The visual features are
mapped into a local, robot-centric map by the perception stack.
In the case of offline dataset generation, the features are the
output of the PCA compression, whereas at runtime they are
the output of the feature encoder, which substantially com-
presses the features. To map these features, LiDAR pointcloud
data is projected onto the image plane of the feature image, and
the pointcloud values are augmented with the corresponding
feature vector. The pointcloud is then aggregated temporally
into a 3D voxel map with 0.2 m resolution. To fuse multiple
measurements, we retain the closest observation, allowing for
both instant updates and temporal stability when moving away
from a location [omitted for double-blind review]. The visual
terrain features in the 3D voxel data are compressed to a 2D
map output by taking the lowest valid data point within each
vertical stack of voxels, under the assumption that the visual
feature of the ground, and not anything above, is most relevant
for dynamics learning. To close small gaps of missing data due
to LiDAR sparsity or small occlusions, missing data is filled in
with data from the nearest neighboring cell in a 0.4 m radius.

4) Dataset Extraction: To generate a dataset for dynamics
learning, the vehicle state and control trajectories are stored
together with the visual features and the elevation surface
normals under each wheel. This trajectory is later split up into
chunks that form the actual 5 s trajectory prediction dataset.
Visual features may vary with distance, so we store multiple
values in the map from different points in time. In particular,
the back camera and LiDAR typically fill in data behind small
vegetation. The maps from which to take features are chosen
based on the distance between the query point and the map
origin (approximately the latest robot location). As a result,
each trajectory, at every point along it, will have multiple sets
of features mapped from various distances, which we use later
to train a distance-independent encoder. In addition, features
from a “hindsight” map, which contains the last valid data
(and therefore the least amount of missing data), are stored.

IV. HYBRID VEHICLE DYNAMICS MODEL

Our previous work on dynamics modeling [omitted for
double-blind review], has drawn upon hybrid models, which
include both physics-based parametric and neural network
components. This approach was chosen primarily for the
reliability of the parametric components when the networks
are in low data regimes. The vehicle dynamics are divided
into four main components: brake, steering, engine, and ter-
radynamics. For the first three modules, we model the delay
in actuation or RPM (revolutions per minute) as a state. In
this current work, we model each component with a hybrid
model, except for the engine dynamics, for which we predict
the RPM of the engine directly from the throttle and speed

of the vehicle. A key difference from our previous work is
that we compute compensations to predicted forces rather
than directly predict the state. We predict the state vector
x ∈ R6 for the terradynamics model containing the inertial
positions p = [px, py]

⊤, the yaw angle ϕ, the velocity in
the body frame v = [vx, vy]

⊤, and the angular rate r. An
additional 4 states are predicted, such as pressure for the brake,
position and velocity for the steering angle, and a value for
the engine RPM, but their models are fixed during training
of the terradynamics. All constants and networks are learned
using the Adam optimization algorithm [10] on training data
drawn from a variety of field test sites.

A. Parametric Bicycle Model

To model the parametric portion of the terradynamics hybrid
model, we employ a bicycle dynamics model, largely drawn
from [9] in form. We include our own computation of forward
force using the predicted engine RPM and commanded throt-
tle. We modify the Pacejka tire model and yaw rate equation
to avoid integrator stability issues.

F =


(P (xrpm)P (uth)− P (xbr)− β (vx)) ηz

(DRsin (CRtanh (BRαR))) ηz
(DF sin (CF tanh (BFαF))) ηz(

vx
CL

δ
)
Cr − Cr,dr

 , (1)

where F = [Fx, Fyf , Fyb, Fr]
⊤ defines a vector of forces,

xrpm, xbr, δ are state variables computed by the delay models
(engine, brake, steering), uth is the commanded throttle, ηz
is the current normal vector from the elevation map rotated
into body frame and averaged over the wheels, and D,B,C
etc. are all fit constants. P (·) is a quadratic polynomial of the
input and β(·) is a scaled tanh of the input. The first equation
in (1) is the forward force applied to each wheel, the second
two are the lateral forces on the tires, and the final equation is
an approximation for yaw rate. The front and rear wheel slip
angles, αF and αR,

αR = arctan
(

vy − LRr

max(Cmax, vx)

)
, (2)

αF = arctan
(

vy + LF r

max(Cmax, vx)

)
− δ, (3)

where Cmax, LR, LF are learned parameters. Cmax controls
the stiffness of the slip angle equation, creating a trade-off
between the slip angle accuracy and the stiffness.

Finally, the forces are then converted to body frame using
geometric transforms h(F,x) : R4×R6 → R6 to compute the
derivatives of body rates using

v̇x =
(1 + cos δ)Fx − Fyf sin δ

m
− Cx,dv

2
x − Cx,gηx + vyr,

v̇y =
Fyb + cos δFyf + Fx sin δ

m
− Cy,dv

2
y − Cy,gηy − vxr,

ṙ = Fr,

ṗ = R(ϕ)v, ϕ̇ = r,
(4)

where C·,d, C·,g are the drag and gravity coefficients, and m is
the vehicle mass. The system in (4) is integrated using forward
Euler integration with a ∆t = 0.02s.

We predict a compensation of the parametric force F using
the neural networks,

˙̂xt = h
(
F̂t + ζ

(
x̂t,ut,yt, F̂t

)
, x̂t

)
, (5)

where x̂t is the predicted state at time t, ut,yt are the control
and map inputs respectively, and ζ is an LSTM initialized as
in [omitted for double-blind review] over a local horizon of
historical values [t− τ, t], τ = 0.2. We emphasize that x̂t, F̂t

are the predicted values from delay models and dynamics,
while ut,yt are what was actually seen or commanded.

V. FEATURE-BASED DYNAMICS MODEL

Not all DINOv2 features of the surrounding terrain will
be relevant to the dynamics of the vehicle. For example,
any feature maps that encode lighting conditions or depth
information should not be used in dynamics modeling. We
incorporate a feature encoder ζE ∈ Rnpca 7→ Rnencoder , there-
fore, to compress the feature space into a more compact,
dynamically-relevant subspace and train the network within
the training pipeline to ensure that only the feature information
correlated with dynamics is retained. Each wheel location
is compressed individually giving R4·nencoder features that are
used as additional inputs to the neural network. The feature
encoder is a fully-connected neural network that processes
the VFM features extracted at each tire location, resulting in
a 40-dimensional input layer run 4 times independently for
each wheel. It includes hidden layers of size [64, 32] with
tanh activation functions, followed by an output layer of size
nencoder, which we vary in 4b.

A. Learning Distance-Independent Compression

For the terradynamics model, we follow this baseline struc-
ture but add an additional network ζE that passes encodings
of the DINOv2 terrain features into the input of the LSTM ζµ
as follows:

˙̂xt = h
(
F̂t + ζµ

(
x̂t,ut,yt, F̂t, ζE(ŷf)

)
, x̂t

)
. (6)

During operation, the map will include features from vari-
ous projection distances, requiring our network to effectively
function within this distance-varying feature space. In order
to train our network for these conditions, we collect features
from 7 different distance buckets, each spaced out by 10 m
and at a maximum of 40 m in front of the vehicle. The exact
projection distance is nominally in the range of ±5 m but can
have a large percentage of outliers due to the nature of the
processing pipeline and environment.

The DINOv2 features change significantly based on dis-
tance. We have previously discussed the many issues that
can cause the features to change, but all of these issues
remain at runtime so we briefly discuss the impact they have
on the features themselves. We ignore invalid values when
computing the mean errors and see substantial l2 differences
in feature vectors as a function of projection distance. Even

when looking at buckets that are next to each other in
distance, we still see features varying by 30% of the total
range of values across the dataset for that specific feature.
Furthermore, occlusion causes substantial issues as a func-
tion of distance; for distance buckets “hindsight,” −20m,
−10m, ..., 40m, we see the following occlusion percentages:
[1, 0.87, 0.92, 0.92, 0.84, 0.65, 0.42, 0.21]. A negative distance
means we have driven over the location and had the chance to
collect data using the back LiDAR. The decrease in validity
in the closer distance buckets comes from a new ground
plane after the vehicle has compressed the traversed ground
combined with the slower frame rate on the back camera, so
the voxels lack visual features.

We propose randomizing the projection distance by drawing
features from any of the 7 distance buckets or hindsight.
A random distance is sampled uniformly and is maintained
throughout the trajectory, as varying it at each time step
resulted in poor performance. We expect that the temporal
dependence of invalid values is important for stable results
when constrained to a single bucket of distance. We augment
the input features to the compression network with a flag
{−1, 1} to indicate if they are missing and replace the missing
features with the mean of the training dataset.

VI. RESULTS

Our results section is divided into two parts. First, we
demonstrate the improvements to the dynamics modeling that
terrain-based features can provide when the features are purely
derived from hindsight. Second, we show that our approach
is able to handle features from farther distances when naive
methods fail.

All networks are trained for 30 epochs on a dataset of
≈ 2M 5-second trajectories with a test set of size ≈ 250k
trajectories. All summary statistics are computed at the end of
the prediction horizon. Initialization LSTMs have 20 hidden
layers, and the predictor LSTM uses a hidden size of 4
with an additional output network that transforms the output
dimension with a 20 neuron hidden layer. The training and
test sets are derived from the same logs but have no overlap.
To include correct delays coming from autonomous operation
of the vehicle (brake, engine, steering), data is drawn from
autonomous driving logs collected over a year from four
distinct environments in three locations. Most data (64%)
comes from the Mojave Desert near Helendale, CA, featuring
loose sand and compressible creosote bushes (see Fig. 2 top
middle & right, bottom right). The second environment (28%)
is from Halter Ranch near Paso Robles, CA (Fig. 2 bottom
left) and includes dry grasses, oak woodland, and steep slopes
up to 40◦. The final two environments are coastal dunes (2
top left) (4%) and coastal sage scrub (i.e., thick vegetation
2 bottom middle) (4%) collected near Oceanside, CA. From
anecdotal experience, all environments bring about unique
vehicle dynamics.

A major challenge across environments is ground-plane
estimation and occlusion at different distances. Helendale’s

low vegetation density allows for easy ground-plane esti-
mation, while Halter Ranch’s 1-2 ft tall grass makes that
estimation difficult, often leading to invalid DINOv2 features.
Furthermore, the trees in Halter Ranch and dense vegetation
in Oceanside prevent us from observing the occluded terrain
before traversing past it. These issues, while not present when
using DINOv2 for short-horizon work (such as in [12]), create
room for improvement, but we highlight how our method can
handle features collected at various distances.

A. Post-Processed Visual Features

On the post-processed visual features, we see that networks
with DINOv2 information as inputs outperform the model
without any visual information as shown in Fig. 4a. All models
perform well since the median distance traveled by a trajectory
in the dataset is ≈ 24m with a median speed of ≈ 4.7m/s.
The compression scheme (CF) performs slightly worse than
directly inputting the features into the network (DF), likely
because of the time-dependence of visual features. Note that
naively inputting the (raw) features is not feasible in real time
because of the mapping pipeline’s sensitivity to additional
features. Still there is a ∼ 10% decrease in mean summed
loss with the compressed version as compared to the absence
of DINOv2 features. Most of the error reduction comes from
∼ 8% reduction in the mean error for vx at the end of the
time horizon 5s. This directly impacts the accuracy for the
yaw since the parametric yaw rate is heavily dependent on
speed.

We vary the output dimension nencoder in Fig. 4b and vary
the number of PCA features in Fig. 4c to check sensitivity
to these parameters. Smaller compression sizes nencoder sig-
nificantly reduce the memory and computation requirements
of the mapping pipeline, so the smallest vector necessary
should be used. We see similar performance as we vary
these parameters, indicating that compression does not lose
useful dynamical information. The PCA feature sensitivity is
irrelevant at runtime but can speed up post-processing. Overall,
our method is robust to these variations.

B. Varying Distance Features

In the previous section, we showed that hindsight features
are able to improve the prediction accuracy, but these methods
rely on hindsight feature information that does not exist at
runtime. We next evaluate our models on features collected
at distances more representative of those during vehicle op-
eration, and we see that the networks trained on hindsight
features fail in Fig. 5a. Plotting trajectories using the farther
distances shows that the network is unable to adapt to the
different distribution of features and has a tendency to generate
nonsensical trajectories when tested on them. Note that the
compressed version (CF) is less sensitive to directly inputting
them (DF). We expect this is due to the compression learning a
basis that is less sensitive to distance-dependent artifacts (even
without any explicit penalty in training) and further motivates
our use of this architecture.

B DF CF

1.0

1.5

2.0

2.5

3.0

D
is

ta
nc

e
(m

)
 ↑5.508 ↑4.861 ↑4.945

 2.80

 1.78 2.06
 2.49

 1.58 1.83

 2.53

 1.63 1.88

(a) Compression Type
C 1 C 2 C 4 C 8

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

 ↑4.893 ↑5.015 ↑4.950 ↑4.782

 2.51

 1.61 1.86

 2.55

 1.60
 1.89

 2.54

 1.63 1.88

 2.45

 1.57 1.82

(b) Compression Dimension
C 40 C 20 C 5

1.0

1.5

2.0

2.5

3.0

D
is

ta
nc

e
(m

)

 ↑4.950 ↑4.818 ↑5.215

 2.54

 1.63 1.88

 2.46

 1.56 1.81

 2.66

 1.67
 1.97

(c) Number Of PCA Features

Fig. 4. Distance error of models at 5s using best features in hindsight, B is a no-feature baseline, DF is directly inputting features into the network, and C
is compressing features. The model CF in 4a, C 4 in 4b, C 40 in 4c are all the same and axis are kept consistent between graphs. The green line defines the
median, the orange is the mean, the whiskers are defined as ±1.5 Interquartile Range (IQR) and given by the values with arrows, the other black text is the
75% error. 4a shows the different ways of inputting the features compared to no features. 4b shows the effect of changing the final compression size and the
method is robust to this variable. 4c shows the impact of using a variety of PCA features.

B DF 0m CF 0m DF 20m CF 20m

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
is

ta
nc

e
(m

)

 ↑5.468 ↑6.485 ↑5.774 ↑8.897 ↑7.817

 2.78

 1.78 2.06

 3.26

 2.01
 2.45

 2.94

 1.85 2.16

 4.46

 2.71
 3.27

 3.90

 2.35
 2.87

(a) Naive Evaluation On Larger Distances

DC H DC 0m DC 10m DC 20m DC 30m DC 40m B

1.0

1.5

2.0

2.5

3.0

D
is

ta
nc

e
(m

)

 ↑4.844 ↑5.034 ↑5.033 ↑5.117 ↑5.308 ↑5.557 ↑5.468

 2.45

 1.52
 1.80

 2.53

 1.56
 1.85

 2.54

 1.60
 1.86

 2.59

 1.63
 1.90

 2.68

 1.68
 1.97

 2.81

 1.77
 2.07

 2.78

 1.78
 2.06

(b) Proposed Approach (DC) On Larger Distances

Fig. 5. Distance error of at 5s models on features at varying projection
distances. The model DF and CF are kept consistent from Fig. 4a. DC is our
proposed distance independent approach. Whiskers are defined as ±1.5 IQR
and given by the black values with arrows, the other black text is the 75%
error, the green line defines the median and the orange the mean. Fig. 5a
shows that using larger projection distances performs worse than a no-feature
baseline B with naive training methods. Fig. 5b shows that our approach has
improved results with visual features at realistic distances.

Following the approach outlined in Section V-A, our ap-
proach (DC) is able to handle a variety of distances with lower
error than the featureless baseline, as shown in Fig. 5b. When
evaluated on hindsight data, training with naively-inputted
features and distance-independent training perform similarly,
meaning the distance-independent training is learning similar
information just on a distance-independent basis. At greater
distances, there begins to be significant issues with LiDAR

sparsity and occlusions that make the features unreliable, as
seen in the high percentage of missing data (see Section V-A),
which explains the lack of improvement using visual features
beyond 40m. We focus our attention on the features in the
range from 0m → 30m since this is primarily where the
dynamics predictions occur while driving the vehicle. Our
method outperforms the featureless baseline at those distances.

VII. CONCLUSION

We present a hybrid model for vehicle dynamics that
incorporates visual features of the terrain to anticipate changes
in terradynamics. Our method improves upon the baseline
model (dynamics learning without vision) by approximately
10% without significant computational burden. We also pro-
vide analyses and ablations of the hyperparameters used in
the feature compression network and into the dependence
on the distance at which the visual feature is collected to
mimic realistic driving conditions. We test our method on
an extensive dataset of driving data across various terrains.
Future work will explore further aspects such as the distance
dependence of the visual features, occlusion handling, and
ground plane estimation in vegetative environments.

REFERENCES

[1] Anelia Angelova, Larry Matthies, Daniel Helmick, and
Pietro Perona. Learning and prediction of slip from visual
information. Journal of Field Robotics, 24(3):205–231,
2007. doi: https://doi.org/10.1002/rob.20179. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/rob.20179.

[2] Xiaoyi Cai et al. EVORA: Deep Evidential Traversability
Learning for Risk-Aware Off-Road Autonomy. IEEE
Transactions on Robotics, 40:3756–3777, 2024.

[3] Jiaqi Chen, Jonas Frey, Ruyi Zhou, Takahiro Miki, Georg
Martius, and Marco Hutter. Identifying terrain physical
parameters from vision - towards physical-parameter-
aware locomotion and navigation. IEEE Robotics and
Automation Letters, 9(11):9279–9286, 2024. doi: 10.
1109/LRA.2024.3455788.

[4] Gian Erni, Jonas Frey, Takahiro Miki, Matias Mattamala,
and Marco Hutter. Mem: Multi-modal elevation mapping

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20179
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20179

for robotics and learning. In 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 11011–11018, 2023.

[5] Jonas Frey, Manthan Patel, Deegan Atha, Julian Nu-
bert, David Fan, Ali Agha, Curtis Padgett, Patrick
Spieler, Marco Hutter, and Shehryar Khattak. Roadrun-
ner—learning traversability estimation for autonomous
off-road driving. IEEE Transactions on Field Robotics,
1:192–212, 2024. doi: 10.1109/TFR.2024.3464369.

[6] Mateus V. Gasparino et al. WayFAST: navigation with
predictive traversability in the field. IEEE Robotics and
Automation Letters, 7(4):10651–10658, October 2022.
ISSN 2377-3774. doi: 10.1109/lra.2022.3193464. URL
http://dx.doi.org/10.1109/LRA.2022.3193464.

[7] Gabrielle Hedrick, Nicholas Ohi, and Yu Gu. Terrain-
aware path planning and map update for Mars sample
return mission. IEEE Robotics and Automation Letters,
5(4):5181–5188, 2020. doi: 10.1109/LRA.2020.3005123.

[8] Sanghun Jung, JoonHo Lee, Xiangyun Meng, Byron
Boots, and Alexander Lambert. V-STRONG: visual self-
supervised traversability learning for off-road navigation,
2024.

[9] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and
Melanie N. Zeilinger. Learning-based model predic-
tive control for autonomous racing. IEEE Robotics
and Automation Letters, 4(4):3363–3370, 2019. doi:
10.1109/LRA.2019.2926677.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference
on Learning Representations (ICLR), 2015. URL https:
//arxiv.org/abs/1412.6980.

[11] Wenjun Liu, Yulin Zhai, Guang Chen, and Alois Knoll.
Gaussian process based model predictive control for
overtaking scenarios at highway curves. In 2022 IEEE
Intelligent Vehicles Symposium (IV), pages 1161–1167,
2022. doi: 10.1109/IV51971.2022.9827233.

[12] Elena Sorina Lupu, Fengze Xie, James Alan Preiss,
Jedidiah Alindogan, Matthew Anderson, and Soon-Jo
Chung. Magicvfm-meta-learning adaptation for ground
interaction control with visual foundation models. IEEE
Transactions on Robotics, 41:180–199, 2025. doi: 10.
1109/TRO.2024.3475212.

[13] Matı́as Mattamala et al. Wild visual navigation: Fast
traversability learning via pre-trained models and online
self-supervision. arxiv.org:2404.07110, 2024. URL https:
//arxiv.org/abs/2404.07110.

[14] Maxime Oquab, Timothée Darcet, Théo Moutakanni,
Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
nandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-
Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba,
Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan
Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve,
Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. DINOv2: Learning
robust visual features without supervision. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856.

URL https://openreview.net/forum?id=a68SUt6zFt. Fea-
tured Certification.

[15] Thomas Roddick and Roberto Cipolla. Predicting se-
mantic map representations from images using pyramid
occupancy networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11138–11147, 2020.

[16] Amirreza Shaban, Xiangyun Meng, JoonHo Lee, Byron
Boots, and Dieter Fox. Semantic terrain classification
for off-road autonomous driving. In Aleksandra Faust,
David Hsu, and Gerhard Neumann, editors, Proceedings
of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pages 619–
629. PMLR, 08–11 Nov 2022. URL https://proceedings.
mlr.press/v164/shaban22a.html.

[17] Bogdan Vlahov, Jason Gibson, Manan Gandhi, and Evan-
gelos A. Theodorou. MPPI-Generic: a CUDA library for
stochastic optimization, 2024. URL https://arxiv.org/abs/
2409.07563.

[18] Grady Williams, Paul Drews, Brian Goldfain, James M.
Rehg, and Evangelos A. Theodorou. Information-
theoretic model predictive control: Theory and appli-
cations to autonomous driving. IEEE Transactions on
Robotics, 34(6):1603–1622, 2018. doi: 10.1109/TRO.
2018.2865891.

[19] Hanzhang Xue et al. Contrastive label disambiguation for
self-supervised terrain traversability learning in off-road
environments. arxiv.org:2307.02871, 2023.

http://dx.doi.org/10.1109/LRA.2022.3193464
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2404.07110
https://arxiv.org/abs/2404.07110
https://openreview.net/forum?id=a68SUt6zFt
https://proceedings.mlr.press/v164/shaban22a.html
https://proceedings.mlr.press/v164/shaban22a.html
https://arxiv.org/abs/2409.07563
https://arxiv.org/abs/2409.07563

	Introduction
	Related Work
	Mapping of Visual Features for Controls
	Model Predictive Control with Learned Dynamics
	Dataset Collection Pipeline
	Visual Features
	Dimensionality Reduction using Principal Component Analysis
	Mapping of Visual Features
	Dataset Extraction

	Hybrid Vehicle Dynamics Model
	Parametric Bicycle Model

	Feature-Based Dynamics Model
	Learning Distance-Independent Compression

	Results
	Post-Processed Visual Features
	Varying Distance Features

	Conclusion

