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Abstract

Direct Preference Optimization (DPO) has recently expanded its successful ap-
plication from aligning large language models (LLMs) to aligning text-to-image
models with human preferences, which has generated considerable interest within
the community. However, we have observed that these approaches rely solely
on minimizing the reverse Kullback-Leibler divergence during alignment process
between the fine-tuned model and the reference model, neglecting the incorpora-
tion of other divergence constraints. In this study, we focus on extending reverse
Kullback-Leibler divergence in the alignment paradigm of text-to-image models to
f -divergence, which aims to garner better alignment performance as well as good
generation diversity. We provide the generalized formula of the alignment paradigm
under the f -divergence condition and thoroughly analyze the impact of different
divergence constraints on alignment process from the perspective of gradient fields.
We conduct comprehensive evaluation on image-text alignment performance, hu-
man value alignment performance and generation diversity performance under
different divergence constraints, and the results indicate that alignment based on
Jensen-Shannon divergence achieves the best trade-off among them. The option
of divergence employed for aligning text-to-image models significantly impacts
the trade-off between alignment performance (especially human value alignment)
and generation diversity, which highlights the necessity of selecting an appropriate
divergence for practical applications.

1 Introduction

Text-to-image generative models have witnessed significant advancements in recent years [1–4].
When presented with appropriate textual prompts, they are capable of generating high-fidelity
images that are semantically coherent with the provided descriptions, which spans a diverse range
of topics, piquing significant public interest in their potential applications and societal implications.
Existing self-supervised pre-trained generators, although advanced, still exhibit imperfections, with a
significant challenge being their alignment with human preferences [5].

Reinforcement Learning from Human Feedback (RLHF) has established itself as a pivotal research
endeavor, demonstrating notable efficacy in aligning text-to-image models with human preferences [6–
8]. Faced with the intricate challenge of defining an objective that authentically encapsulates human
preferences in the realm of Reinforcement Learning from Human Feedback (RLHF), researchers
conventionally assemble a dataset to mirror such preferences through comparative assessments of
model-generated outputs [6, 9]. Then, a reward model is trained based on Bradley-Terry model
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[10], inferring human preferences from the collected dataset. And the text-to-image model is fine-
tuned with a reinforcement learning (RL) pipeline. It is noteworthy that such process is conducted
while ensuring the model remains closely with its original form, which is achieved by employing
a reverse Kullback-Leibler divergence penalty. Significant complexity has been introduced to the
RLHF pipeline due to the requirement to train a separate reward model, even though it is somewhat
effective. Moreover, Reinforcement learning pipelines also present notable challenges in terms of
stability and memory demands towards alignment process of text-to-image models.

Recent research has demonstrated significant success in fine-tuning large language models (LLMs)
using methods based on implicit rewards, specially the Direct Preference Optimization (DPO) [11].
Application of similar fine-tuning techniques to text-to-image models has also produced promising
results, such as Diffusion-DPO [12], D3PO [13]. Such results have raisen significant interest within
the community regarding the alignment of text-to-image models with human value through the
methodology of utilizing implicit rewards. Furthermore, researchers have devoted significant efforts
to applying such paradigm of aligning human value to text-to-image models, including SPO [14],
NCPPO [15], DNO[16], and so on. However, it is the situation that existing research of text-to-
image generation alignment predominantly targets solutions subject to the constraint of the reverse
Kullback-Leibler divergence, with notable underexploitation of strategies that integrate other types of
divergences.

It has been pointed out that models would overfit due to repeated fine-tuning on a few images,
thus leading to reduced output diversity [17]. In the alignment of large language models, similar
challenges exist; and some studies [18, 19] have highlighted that the mode-seeking property of
reverse KL divergence tends to reduce diversity in generated outputs, which can constrain the model’s
potential. Studies on aligning large language models [20, 21] indicate that the problem of diversity
reduction caused by fine-tuning can be alleviated by incorporating diverse divergence constraints.
Therefore, in this study, we also explore the effects of employing diverse divergence constraints on
the generation diversity.

Figure 1: Examples of image generated by the
model aligned using the Jensen-Shannon diver-
gence constraint.

In this study, we generalize the alignment of
text-to-image models based on reverse Kullback-
Leibler divergence to a framework based on f -
divergence constraints, which encompasses a
wider range of divergences, including Jensen-
Shannon divergence, forward Kullback-Leibler
divergence, α-divergence, and so on. We com-
prehensively analyze the impact of diverse di-
vergence constraints on the alignment process
from the perspective of gradient fields. Further-
more, we set Step-aware Preference Optimiza-
tion (SPO) [14] as our benchmark method, uti-
lize Stable Diffusion V1.5 [22] as our bench-
mark model, and assess on the test split of HPS-
V2 [9] with different divergence constraints.
Evaluations are carried out to examine the per-
formance of image-text alignment, human value
alignment, and generation diversity, which also
aim to discern the certain divergence most effec-
tively balances these three aspects. Our results
indicate that Jensen-Shannon divergence suc-
cessfully strikes the ideal equilibrium among
the three criteria examined, while also achieving
the highest standard in human value alignment

performance. Therefore, in text-to-image alignment, judicious selection of the divergence constraint,
tailored to the specific alignment requirements, is paramount. In Figure 1, we present several images
generated by the model that have been aligned under the Jensen-Shannon divergence.

To the best of our knowledge, this is the first work to apply different divergence constraints to
text-to-image alignment paradigm. Our contributions are summarized as follows: (1) Generalized
alignment formula: we propose a generalized formula for text-to-image generation alignment, aiming
to provide more choices on divergence constraints in alignment execution. (2) Thorough alignment
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process analysis: we comprehensively analyze the impact of different divergence constraints on
alignment process from the perspective of gradient fields. (3) Extensive alignment evaluations: we
conducted extensive evaluations on text-to-image generation alignment, meticulously assessing both
alignment performance (image-text alignment and human value alignment) and generation diversity.

2 Related Work

2.1 Aligning Text-to-Image Model with Preferences

Recently, inspired by the alignment approaches based on human preferences, notably exemplified
by methods such as direct preference optimization (DPO) [11], eliminating the need for explicit
reward models and showing their significant success on Large Language Models (LLMs), and
then garnering substantial attention within the community on the development of offline alignment
for text-to-image diffusion models. Diffusion-DPO [12] enables text-to-image diffusion models
to directly learn from human feedback in an open-vocabulary setting, and fine-tunes them on the
contains Pick-a-Pic [6] dataset with image preference pairs. Direct Preference for Denoising Diffusion
Policy Optimization (D3PO) [13] proposes a method on generating pairs of images from the same
prompt and identifying the preferred and dispreferred images with the help of human evaluators.
Step-aware Preference Optimization (SPO) [14] propose an approach that preferences at each step
should be assessed and it utilizes a step-aware preference model and a step-wise resampler to ensure
accurate step-aware preference alignment. DenseReward method [23] proposes enhancing the DPO
scheme by incorporating a temporal discounting approach, which prioritizes the initial denoising
steps. Noise-Conditioned Perceptual Preference Optimization (NCPPO) [15] proposes that the
optimization process should aligns with human perceptual features, instead of the less informative
pixel space. Direct Noise Optimization (DNO) [16] optimizes noise during the sampling process
of text-to-image diffusion models. PopAlign [24] is an approach for population-level preference
optimization, mitigating the biases of pretrained text-to-image diffusion models. Diffusion-KTO [25]
generalizes the human utility maximization framework to the alignment of text-to-image diffusion
models. While these studies have demonstrated impressive results in addressing the text-to-image
alignment challenge, we also notice that they all rely on reverse Kullback-Leibler divergence to
minimize the discrepancy between the fine-tuned model and the reference model.

2.2 f -divergence utilized in Generation Models

In previous studies, researchers have extensively examined the application of f -divergences in
generative models. In the classical work done by [26], the concept of Generative Adversarial
Networks (GANs) and their relationship to the Jensen-Shannon divergence are introduced. f -GAN
[27] proposes that the variational expression of the f -divergence can be regarded as the loss function
for Generative Adversarial Networks (GANs). Wasserstein-GAN [28] offers theoretical insights into
the connection between the choice of divergences and the convergence of probability distributions.
Moreover, in the work [29], it is proposed that utilizing various divergences and metrics can result
in divergent trade-offs, and distinct evaluations tend to favor specific models. The application of
f -divergence has also been observed in large language model alignment tasks. f -DPG [20] shows
that Jensen-Shannon divergence strikes a good balance between different competing objectives, and
often significantly outperforming the reverse Kullback-Leibler divergence. f -DPO [21] generalizes
the framework of DPO by incorporating diverse divergence constraints; and it shows that by adjusting
the divergence regularization, we can achieve a better balance between the alignment performance
and the generation diversity.

3 Preliminary

3.1 f -divergence

For any convex function f(x) : R+ → R with f(1) = 0, and p1, p2 are two distributions over a
discrete set X , the f -divergence between p1 and p2 can be defined as [30]:

Df (p1||p2) = Ex∼p2

[
f

(
p1(x)

p2(x)

)
+ f ′(∞)p1(p2 = 0)

]
,
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where f ′(∞) = lim
t→0

tf( 1t ) [31], p1(p2 = 0) = 0 is the p1-mass of the set {x ∈ X : p2(x) = 0}.
Under normal circumstances, we can make the assumption that the support set of p1 is dominated by
the support set of p2, i.e. Supp(p1) ⊂ Supp(p2), and then we can have p1(p2 = 0) = 0. Hence, the
aforementioned definition can be simplified as:

Df (p1||p2) = Ex∼p2

[
f

(
p1(x)

p2(x)

)]

For different functions f(x), the f -divergence class encompasses a wide range of commonly em-
ployed divergence measures, such as reverse Kullback-Leibler (KL) divergence, forward Kullback-
Leibler (KL) divergence, α-divergence (α ∈ (0, 1)), Jensen-Shannon (JS) divergence, and so on.

f−divergence f(x) f ′(x) f ′′(x)

Reverse KL x log x log x+ 1 1
x

Forward KL − log x − 1
x

1
x2

α-divergence x1−α−(1−α)x−α
α(α−1)

1−x−α

α
1

xα+1

JS divergence x log 2x
x+1

+ log 2
x+1

log 2x
1+x

1
x(1+x)

Table 1: Several commonly used f -divergence with their derivatives
and second derivatives.

In previous studies, reverse
KL divergence can be re-
garded as a specific instance
of α-divergence with α =
0; and forward KL diver-
gence as a specific instance
of α-divergence with α = 1.
We summarize several com-
monly used f -divergence,
the derivatives and the sec-
ond derivatives in Table 1.

4 Method

Much like in the alignment tasks of large language models, there are many concepts that are analogous
in the alignment tasks of text-to-image models, and we start by elucidating these parallels. Firstly,
the question input of LLMs is akin to the text (condition) input of T2I models, i.e. x → c; and
the output answer of LLMs is akin to the generated image of T2I models, i.e. y → x0. Moreover,
the policy of LLMs parallels the sampling probability of T2I models (especially diffusion models),
i.e. π(y|x) → p(x0:T |c). Finally, the preference data for output answers of LLMs is analogous
to the preference data for generated images of T2I models, i.e. (x, yw, yl) → (c, xw

0 , x
l
0). In the

following subsections, we first derive the generalized formula of alignment objective function. Then,
we analyze the gradient field of different divergences on the alignment process with respect to the
objective function and comprehensively analyze the impact of diverse divergence constraints on
alignment performance.

4.1 Generalized Formula

In previous studies of Reinforcement Learning from Human Feedback (RLHF), researchers typically
aim to maximize the reward function (r(c, x0:T )) while penalizing the reverse KL divergence between
the fine-tuned model and the original model to prevent it from collapsing during training. In our study,
we generalize such penalty constraint from the reverse KL divergence (DKL (pθ(x0:T |c), pref(x0:T |c)))
to the f -divergence (Df (pθ(x0:T |c), pref(x0:T |c))).
We reframe the reinforcement learning objective function as an optimal problem, presenting its
formulation as follows:

argmax
pθ

Ec∼pc,x0:T∼pθ(x0:T |c)
[
r(c, x0:T )

]
− βDf

(
pθ(x0:T |c), pref(x0:T |c)

)
s.t.

∑
x0:T

pθ(x0:T |c) = 1;∀x0:T pθ(x0:T |c) ≥ 0
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Such optimization problem can be addressed through the Karush-Kuhn-Tucker (KKT) conditions.
Firstly, according to the definition of f -divergence, we construct the following Lagrangian function:

L(pθ(x0:T |c), λ, ζ(x0:T )) = Ec∼pc,x0:T∼pθ

[
r(c, x0:T )

]
− βEpreff

(
pθ(x0:T |c)
pref(x0:T |c)

)

− λ

(∑
x0:T

pθ(x0:T )− 1

)
+
∑
x0:T

ζ(x0:T )pθ(x0:T |c)

Furthermore, we can derive the Theorem 1 from the Stationarity Condition and Complementary
Slackness of the Karush-Kuhn-Tucker (KKT) conditions, i.e.{∇pθ(x0:T |c)L(pθ(x0:T |c), λ, ζ(x0:T )) = 0;

∀x0:T , ζ(x0:T )pθ(x0:T |c) = 0.

Theorem 1. If pref(x0:T |c) > 0 holds for all condition c, f ′(x) is an invertible function and 0 is not
in the definition domain of function f ′(x), the reward class consistent with Bradley-Terrry model can
be reparameterized with the sampling probability pθ(x0:T |c) and the reference sampling probability
pref(x0:T |c) as:

r(c, x0:T ) = βf ′

(
pθ(x0:T |c)
pref(x0:T |c)

)
+ const (1)

As shown in Theorem 1, the reward function can be represented by a sampling probability pθ(x0:T |c),
a reference sampling probability pref(x0:T |c), and a constant λ that is independent of x0:T . Finally,
substituting Equation (1) into the Bradley-Terrry model [10] enables us to derive the generalized
formula of text-to-image generation with preferences in Theorem 2.
Theorem 2. In the substitution process of Bradley-Terry model, the constant λ is independent of
x0:T and thus can be canceled out, resulting in the following form:

L(θ) = E (c,xw
0 ,xl

0)∼D,
xw
1:T∼pθ(x

w
1:T |xw

0 ,c),

xl
1:T∼pθ(x

l
1:T |xl

0,c).

− log σ

[
βf ′

(
pθ(x

w
0:T |c)

pref(xw
0:T |c)

)
− βf ′

(
pθ(x

l
0:T |c)

pref(xl
0:T |c)

)]
(2)

where σ(·) is the Sigmoid function; f ′(·) represents the derivatives of f(·), as listed in Table 1; β is
the penalty coefficient.

So far, we have derived the generalized formula for text-to-image generation alignment with pref-
erences. With different divergence constraint choices, we can obtain diverse alignment objectives,
thereby offering more options for the alignment process.

4.2 Analysis on Gradient Fields of Alignment Process

In this section, we delve into the gradient fields of alignment objective functions derived from various
f -divergence, which aims to further elucidate the intricate mechanisms underlying the alignment
process.

Let’s abstract from the specific details of f ′(·), and concentrate instead on a more general formulation
of the loss function:

Lf (X1,X2) = −E
[
log σ

(
βf ′(X1)− βf ′(X2)

)]
(3)

where X1 is the training win ratio, and is equivalent to pθ(x
w
0:T |c)

pref(xw
0:T |c) ; similarly, X2 is the training loss

ratio, and is identical to pθ(x
l
0:T |c)

pref(xl
0:T |c) . We present the gradients of Equation (3) with respect to X1 and

X2 in the ensuing Theorem 3:
Theorem 3. The partial derivatives (gradients) of X1 and X2 resulting from Equation (3) can be
expressed as follows:

∂Lf (X1,X2)

∂X1
= −β (1− σ (βf ′(X1)− βf ′(X2))) f

′′(X1)

∂Lf (X1,X2)

∂X2
= β (1− σ (βf ′(X1)− βf ′(X2))) f

′′(X2)
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Thus, the gradient ratio of Lf (X1,X2) between enhancement in probability for human-preferred re-
sponses (X1) and reduction in probability for human-dispreferred responses (X2) has the expression:∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = f ′′(X1)

f ′′(X2)
(4)

Referencing Table 1, different divergences yield distinct gradient ratios. If selected divergence is
reverse Kullback-Leibler divergence, the gradient ratio is X2

X1
; if selected divergence is Jensen-Shannon

divergence, the gradient ratio is X2·(X2+1)
X1·(X1+1) ; if selected divergence is α-divergence, the gradient ratio

is X1+α
2

X1+α
1

; if selected divergence is forward Kullback-Leibler divergence, the gradient ratio is X2
2

X2
1

.
Previous studies [32, 33] present the results of original DPO framework, focusing particularly on
its application in the context of reverse Kullback-Leibler divergence; while our outcomes show the
generalization under diverse divergences.

Furthermore, as the alignment advances, the value of X1 tends to increase to more than 1, whereas X2

tends to decrease to less than 1. Hence, for any pairwise preference data, X2/X1 < 1 holds during
the alignment process. Then, Theorem 4 can be easily derived.

Theorem 4. As alignment progresses, we have X2/X1 < 1. Hence,

0 <
X2

2

X2
1

<
X2 · (X2 + 1)

X1 · (X1 + 1)
<

X2

X1
< 1 and 0 <

X2
2

X2
1

<
X1.8

2

X1.8
1

<
X1.6

2

X1.6
1

<
X1.4

2

X1.4
1

<
X1.2

2

X1.2
1

<
X2

X1
< 1

Theorem 4 presents the inequality of gradient ratio of different divergences. A lower gradient ratio
results in a swifter alteration in the probability of a dispreferred image compared to that of a preferred
one, indicating a more pronounced decrease in the probability of dispreferred images. Hence, the
decline varies in intensity, with forward KL divergence (α=1) exhibiting the highest decrease, reverse
KL divergence (α=0) the lowest, and both Jensen-Shannon divergence and α-divergence (α ∈(0,1))
falling in between.

In order to obtain a more intuitive understanding of the impact of different divergence choices during
the alignment process, we visualize the landscape of alignment objective functions with different
divergences in Equation (3) in Appendix F.

5 Experiments

In this section, we present extensive experimental evaluations to answer the following questions:

Q1: When choosing different divergence constraints, would it have a significant impact on the final
image-text alignment performance?

Q2: When choosing different divergence constraints, would it have a significant impact on the
alignment of human value? If so, which divergence constraint achieves the best performance?

Q3: When choosing different divergence constraints, would it have a significant impact on the
generation diversity? Which divergence can achieve the best trade-off between alignment performance
and generation diversity?

5.1 Experimental Settings

5.1.1 Benchmark.

Step-aware Preference Optimization (SPO) [14] employs a step-aware preference model and a step-
wise resampler to guarantee precise step-aware preference alignment. Consequently, to support a
more tangible experimental assessment, we select SPO as our benchmark approach. To establish
a fair basis for comparison with prior methods, we select Stable Diffusion v1-5 model [22] as our
benchmark model. In order to conduct a more comprehensive evaluation, we utilize the test set of
HPS-V2 [9] as our evaluation benchmark dataset, which comprises 400 prompts. We report the mean
and standard deviation of metrics of the generated image for these prompts.
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5.1.2 Evaluation Metrics.

We evaluate the generated images from three aspects (for the aforementioned three questions).

In terms of model’s image-text alignment performance (for Q1), we adopt the widely used evaluation
metrics in Text-to-Image models, i.e., Text-Image CLIP score [34] and VQAScore [35]. CLIP Score
is fundamentally based on the CLIP model, transforming input text and images into distinct text
and image vectors, and then followed by calculation of the dot product of these vectors. VQAScore,
an efficacy metric, emerges from the training of generative vision-language models designed for
visual-question-answering endeavors, where an image and a query converge to yield a response.
Hence, higher Text-Image CLIP score and VQAScore indicate better alignment between the text and
the image.

In terms of model’s human value alignment performance (for Q2), we adopt four metrics for compre-
hensive evaluation. Aesthetic score is obtained using the LAION Aesthetics Predictor [36], which
quantifies the average human appreciation for the visual appeal of generated images. ImageReward
[7], leveraging a structure that combines ViT-L for image encoding and a 12-layer Transformer
for text encoding, which effectively models the human value and preference. PickScore [6] is an
advanced scoring function built upon a meticulously curated comprehensive dataset named "Pick-a-
Pic". Human Preference Score v2 (HPS-v2) [9] has been developed through the refinement of the
CLIP model on HPD-v2, which enhances the precision of assessing human preferences for generated
images. Furthermore, higher Aesthetics Score, ImageReward, Pickscore and HPS-V2 suggest better
alignment with human value.

In terms of diversity of generated images from the aligned model (for Q3), we adopt eight metrics
for a further comprehensive evaluation. Image-Image CLIP score [34] serves as a reliable metric
for assessing similarity between images. RMSE, PSNR, and SSIM are conventional metrics used to
evaluate image similarity, we also utilize them to assess the diversity of generated images. Feature
Similarity Index Measure (FSIM) [37] quantifies the similarity between images by assessing the
alignment of edges, shapes, visual patterns, and surface attributes. Learned Perceptual Image Patch
Similarity (LPIPS) [38] utilizes the feature representations learned by a deep neural network, which
is capable of capturing details of human visual perception such as texture, color, and structure; then
the computation of perceptual similarity between two images can be conducted. Furthermore, it’s
worth noting that these six metrics all initially describe the similarity between images; and when
they are used to describe generation diversity, their properties are the opposite of their properties
when describing similarity. Moreover, we opt for Image Entropy, encompassing both Entropy 1D and
Entropy 2D, to evaluate the information content diversity within images themselves; they quantifies
the average information per pixel, with higher entropy values indicative of a greater diversity and
richness in the image’s information content.

5.2 Image-Text Alignment (For Q1)

For text-to-image models, the alignment performance between text prompt and generated images is a
crucial evaluation metric. Therefore, we test the Text-Image CLIP score and VQAScore of all models
fine-tuned under different divergence constraints to assess the alignment performance in Table 2. The
results indicate that the reverse Kullback-Leibler divergence achieves the best text-image alignment
performance; while it is also worth noting that different divergences do not significantly affect the
final text-image alignment performance.

5.3 Human Value Alignment (For Q2)

Evaluating how well the aligned models are with human values and preferences is crucial. To
comprehensively assess various divergences in aligning with human values, we compare their
performances systematically on four metrics: Aesthetic score, ImageReward, PickScore, and HPS-V2
in Table 2. The comparison between the results of the fine-tuned models and the original model
indicates that the alignment process effectively enhances the model in terms of its performance in
human values. Furthermore, in comparing the influence of diverse divergence constraints on human
value alignment, the results reveal that different divergence would significantly affect human value
alignment; remarkably, the Jensen-Shannon (JS) divergence exhibits the best performance across all
four human value alignment metrics, suggesting that it serves as a more potent constraint specifically
for the scenario of human value alignment. Actually, it also aligns with our previous analysis of the
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Model CLIPScore ↑ VQAScore ↑ Aesthetics Score ↑ ImageReward ↑ PickScore ↑ HPS-V2 ↑

Original Model 0.352±0.049 0.625±0.239 5.648±0.526 0.173±1.011 20.908±1.228 26.933±1.454

Reverse KL Divergence 0.363±0.049 0.676±0.236 5.812±0.514 0.619±0.921 21.621±1.151 27.801±1.352

α-Divergence

α=0.2 0.360±0.048 0.673±0.228 5.827±0.546 0.561±0.957 21.528±1.177 27.848±1.391

α=0.4 0.361 ±0.047 0.675±0.233 5.755±0.518 0.622±0.911 21.569±1.204 27.762±1.385

α=0.6 0.358 ±0.047 0.657±0.232 5.769±0.481 0.491±0.943 21.357±1.180 27.712±1.350

α=0.8 0.361±0.050 0.662±0.236 5.821±0.511 0.561±0.965 21.483±1.175 27.675±1.379

Forward KL Divergence 0.362±0.050 0.670±0.231 5.844±0.528 0.551±0.946 21.552±1.170 27.822±1.355

Jensen-Shannon Divergence 0.361±0.049 0.665±0.231 5.884±0.514 0.631±0.939 21.635±1.149 27.850±1.388

Table 2: Evaluations of the alignment performance, where the Text-Image CLIP score and VQAScore
evaluate image-text alignment performance, and the remaining four metrics evaluate human value
alignment performance.

Model Image-Image CLIP score ↓ Entropy 1D ↑ Entropy 2D ↑ LPIPS ↑

Original Model 0.8052 ± 0.0824 3.8235 ± 0.2960 7.5474 ± 0.6516 0.2972 ± 0.0419

Reverse KL Divergence 0.8448 ± 0.0774 3.9613 ± 0.1467 7.8347 ± 0.3694 0.2907 ± 0.0363

α-Divergence

α =0.2 0.8436 ± 0.0854 3.9411 ± 0.1885 7.7836 ± 0.4400 0.3047 ± 0.0377

α =0.4 0.8377 ± 0.0824 3.9784 ± 0.1464 7.8206 ± 0.3729 0.2959 ± 0.0349

α =0.6 0.8372 ± 0.0825 3.9275 ± 0.1991 7.7937 ± 0.4625 0.3109 ± 0.0373

α =0.8 0.8423 ± 0.0795 3.9594 ± 0.1666 7.7563 ± 0.4179 0.3001 ± 0.0377

Forward KL Divergence 0.8454 ± 0.0821 3.9477 ± 0.1555 7.7750 ± 0.3619 0.2962 ± 0.0347

Jensen-Shannon Divergence 0.8448 ± 0.0798 3.9632 ± 0.1487 7.8767 ± 0.3801 0.2989 ± 0.0361

Model RMSE ↑ PSNR ↓ SSIM ↓ FSIM ↓

Original Model 0.0132 ± 0.0028 37.745 ± 1.843 0.8839 ± 0.0382 0.3791 ± 0.0230

Reverse KL Divergence 0.0132 ± 0.0028 36.398 ± 1.573 0.8512 ± 0.0372 0.3813 ± 0.0182

α-Divergence

α =0.2 0.0163 ± 0.0027 35.856 ± 1.467 0.8404 ± 0.0368 0.3759 ± 0.0212

α =0.4 0.0154 ± 0.0025 36.363 ± 1.427 0.8530 ± 0.0348 0.3821 ± 0.0180

α =0.6 0.0166 ± 0.0026 35.705 ± 1.373 0.8357 ± 0.0349 0.3778 ± 0.0209

α =0.8 0.0155 ± 0.0028 36.320 ± 1.566 0.8517 ± 0.0374 0.3806 ± 0.0215

Forward KL Divergence 0.0157 ± 0.0026 36.171 ± 1.457 0.8468 ± 0.0351 0.3780 ± 0.0185

Jensen-Shannon Divergence 0.0158 ± 0.0026 36.104 ± 1.431 0.8449 ± 0.0354 0.3817 ± 0.0195

Table 3: Evaluations of the generation diversity. The metrics originally utilized for evaluating image
similarity exhibit an opposite property when evaluating generation diversity.

gradient fields, where the Jenson-Shannon (JS) divergence shows the smoothest loss function surface
and suboptimal gradient ratio, resulting in a more stable alignment process.

5.4 Generation Diversity (For Q3)

We evaluate the generation diversity of aligned models using different divergence constraints from
multiple perspectives (embedding diversity, pixel-level diversity, structural diversity, perceptual
diversity, information complexity, and so on), and the corresponding results are shown in Table 3.
From the results, we can observe that different divergence constraints exhibit advantages in different
aspects when evaluated with different generation diversity metrics. Firstly, we would like to compare
the aligned models under different divergence constraints to the original model: it is demonstrated
that the aligned models show a decrease in embedding diversity; however, they exhibit improvements
in other aspects such as pixel-level diversity, structural diversity, information complexity. Such
observation reveals a transformation in the alignment process where the variety of the primary subject
diminishes, yet the intricacy and breadth of details and structures of the generated images expand,
echoing findings from DreamBooth [17].
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Furthermore, it has also indicated that increased generative diversity is associated with a decline
in alignment performance (both image-text alignment and human value alignment). Therefore,
careful consideration of the trade-off between alignment performance and generation diversity is
essential when choosing the divergence constraint. Through a deeper comparison and analysis,
we can observe that Jensen-Shannon divergence outperforms or matches reverse Kullback-Leibler
divergence across most diversity metrics. Combining such observation with the previous evaluation of
alignment performance where it achieves the best human value alignment, we believe Jensen-Shannon
divergence is a better trade-off between alignment performance and generation diversity.

6 Conclusion

In this paper, we extend the alignment framework for text-to-image models, transitioning from a
criterion based on the reverse Kullback-Leibler (KL) divergence to a more inclusive framework
grounded in f -divergence constraints. Through the analysis of gradient fields (gradient ratio and
loss function surface) under diverse divergence constraints, we further illustrate the advantages of
different divergence constraints in the alignment process. Regarding image-text alignment, minimal
differentiation is observed among the diverse divergence constraints; conversely, for human value
alignment, Jensen-Shannon (JS) divergence excels, showcasing its superior performance across
all four evaluation metrics. In generative diversity evaluation, we observe that diverse divergence
constraints demonstrate strengths in various aspects of diversity. Furthermore, it has been observed
that increased generation diversity consistently correlates with a decrease in alignment performance.
After thorough comparison, we advocate for the selection of Jensen-Shannon (JS) divergence as the
foremost option in practice, which is a better trade-off between alignment performance and generation
diversity.
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A Additional Related Work Statement

A.1 Reinforcement from Human Feedback (RLHF).

Reinforcement learning from human feedback (RLHF) [39, 40] is a crucial method for aligning
artificial intelligence systems with human values, ensuring that AI systems operate and make decisions
in accordance with human goals. It often integrates three core components [41]: feedback collection,
reward modeling, and policy optimization. It facilitates humans in communicating goals without the
need for manually specifying a reward function. And it leverages human judgments, which are often
easier to obtain than demonstrations. Furthermore, RLHF can mitigate reward hacking compared
to manually specified proxies, making reward shaping more natural and implicit. Hence, RLHF
has been proven to be a valuable tool for assisting policies in learning intricate solutions in control
environments [42] and for fine-tuning large scale models [43, 8]. Despite its widespread adoption,
it still faces several limitations and open problems. In the work [41], they are summarized as four
aspects: challenges with obtaining human feedback; challenges with the reward model training;
challenges from policy optimization and challenges with jointly training process. Moreover, it is
pointed out that several of such weaknesses can be mitigated through the enhancement of the RLHF
approach; and alternatively, some of these weaknesses can be offset by implementing additional
safety measures; while others requires avoiding or compensating for with non-RLHF approaches.

A.2 Fine-tuning Large Language Models with Reinforcement Learning .

Before RLHF, LLMs are typically aligned with human preferences through supervised fine-tuning
(SFT) on demonstration data. The integration of RLHF into the training process of large language
models (LLMs) has marked a significant milestone to the field of foundation model development. It
has enabled LLMs to achieve human-level performance on various tasks, including text summariza-
tion, machine translation, question answering, and so on. In RLHF based fine-tuning pipeline, LLMs
are trained by using human feedback as reward signals, guiding the models towards generating more
accurate, relevant, and informative responses. Such iterative process allows LLMs to continuously
learn and improve their performance, and this paradigm has led to the emergence of numerous
remarkable models, such as OpenAI’s GPT-4 [44], Meta’s Llama 3 [45], Google’s Gemma [46], and
so on. Prior works has used policy-gradient methods [47] to this end. While they are indeed quite
successful, they often come with high cost training, require extensive hyperparameter tuning process
[48], and can be vulnerable to reward hacking, as demonstrated in various studies [49, 50]. Recent
methods have emerged that fine-tune policy models by directly training them with a ranking loss
on preference data, such as direct preference optimization (DPO) [11], which have been shown to
achieve performance on par with RLHF.

A.3 Denoising Diffusion Probabilistic Models.

Denoising diffusion probabilistic models (DDPMs) have become a leading force in generative
modeling due to their remarkable ability to generate diverse data formats. Diffusion model class
utilizes an iterative denoising process to transform Gaussian noise into samples that adhere to a
learned data distribution. Initially introduced in [51], further develop and promote in [52], they
have been proved to be highly effective in a range of domains, including image generation [53],
audio generation [54], video generation [55], 3D synthesis [56], robotics [57], and so on. Diffusion
models, integrating with large-scale language encoders, have demonstrated remarkable performance
in text-to-image generation [58, 59]. Advancements in text-to-image generation diffusion models
have revolutionized the creation of lifelike visual representations based on written descriptions
[60] and such breakthrough has opened exciting opportunities in digital art and design. In order
to achieve more precise control over the outputs generated by diffusion models, researchers are
exploring innovative methods to guide the diffusion process. While existing text-to-image models
have achieved impressive results, they still exhibit several limitations, including challenges with
compositionality, attribute binding, and so on. Researchers have also conducted extensive work to
improve these aspects. Adapters [61] have been developed to impose additional input constraints,
ensuring that the generated content aligns more precisely with specific standards. For the sake
of enhancing image quality and generation control, compositional approaches [62, 63] have been
developed to integrate multiple models effectively.
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Considering the data distribution x0 ∼ q0(x0), x0 ∈ Rn. DDPM algorithm approximates the data
distribution q0 with a parameterized model with the form of pθ(x0) =

∫
pθ(x0:T |c)dx1:T , where

pθ(x0:T |c)=pT (xT )
∏T

t=1 pθ(xt−1|xt, c), and c is the conditioning information, i.e., image category
and image caption. Then, we can describe the reverse process to be an Markov chain with dynamics
as follows:

p(xT ) = N (0, I ), pθ(xt−1|xt, c) = N (xt−1;µθ(xt, c),Σt)

Furthermore, DDPMs exploits an approximate posterior q(x1:T |x0, c), namely the forward process,
adding Gaussian noise to the data acccording to the variance coefficients β1, ..., βT :

q(x1:T |x0, c) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1, c) = N (
√

1− βtxt−1, βtI),

αt = 1− βt, α̃t =

t∏
i=1

αi, β̃t =
1− α̃t−1

1− α̃t
.

Based on these, in the work [52], parameterization is applied as follows:

µθ(xt, c) =
1

√
αt

(xt −
βt√
1− α̃t

ϵθ(xt, c))

A.4 Fine-tuning Text-to-Image Diffusion Models with Reinforcement Learning.

Although reinforcement learning from human feedback has been widely used to align large language
models, its application to diffusion models remains largely unexplored. Reward-weighted likelihood
maximization [64] proposes a three-stage fine-tuning method that leverages RLHF to enhance the
alignment of text-to-image models. Rather than utilizing the reward model in dataset construction
process, it is leveraged for the coefficients of loss function. DOODL [65] optimizes the initial
diffusion noise vectors with respect to the loss on images generated from the full-chain diffusion,
meaning that it improves a single generation iteratively at inference time. DRAFT [66] proposes a
simple and effective method for fine-tuning generative models to maximize differentiable reward
functions. ReFL [7] utilizes a two-stage approach for diffusion model fine-tuning. In the first stage,
leveraging human preference data, a reward model named ImageReward is trained, which is used for
guiding the subsequent fine-tuning process. During fine-tuning, ReFL randomly selects timesteps
to predict the final image with the purpose of stabilizing the training process and preventing it from
focusing solely on the last step. DDPO [8] proposes a reinforcement learning (RL) framework for fine-
tuning diffusion models. By defining the denoising process of diffusion models as a MDP problem, it
update the pre-trained model with policy gradients to maximize the feedback-trained reward. DPOK
[67] is also a RL-based approach to similarly maximize the scored reward; furthermore, DPOK
integrates policy optimization with reverse KL regularization for both RL fine-tuning and supervised
fine-tuning.

B Typical DPO-based Text-to-Image Diffusion Alignment

Advancing from the significant accomplishments of Direct Preference Optimization (DPO) in align-
ment, previous researches have explored its application in the application of text-to-image diffusion
models, particularly Diffusion-DPO and D3PO, whose efforts established robust paradigms.

B.1 Diffusion-DPO.

Diffusion-DPO [12] offers an enhanced solution to the text-to-image alignment problem by leveraging
the DPO algorithm, which is initially proposed for LLM alignment. We can begin by implementing
the following symbol conversions:

• The input question to the text input: x → c ;

• The output answer to the generated image: y → x0 ;
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• The policy of large language models to the sampling probability of diffusion models:
π(y|x) → p(x0|c) ;

• The preference data for output answers to the preference data for generated images:
(x, yw, yl) → (c, xw

0 , x
l
0).

Given the settings, our goal is to optimize p(x0|c). However, when it comes to applying DPO,
challenges are presented particularly for the sake that calculating sampling probability p(x0|c)
requires integration over the whole sampling path (x1, x2, ..., xT ) and p(x0|c) therefore is not
computable. Consequently, it modifies the objective into optimizing the distribution of the sampling
paths. Based on this, a reinforcement learning (RL)-based objective function is formulated as follows:

argmax
pθ

Ec∼Dc,x0:T∼pθ(x0:T |c) [r(c, x0)]− βDKL [pθ(x0:T |c)||pref (x0:T |c)] (5)

Furthermore, the loss function for Diffusion-DPO can be derived as follows:

LDiffusion-DPO(θ) = −E (c,xw
0 ,xl

0)∼D,
xw
1:T∼pθ(x

w
1:T |xw

0 ,c),

xl
1:T∼pθ(x

l
1:T |xl

0,c)

log σ

(
β log

pθ(x
w
0:T |c)

pref(xw
0:T |c)

− β log
pθ(x

l
0:T |c)

pref(xl
0:T |c)

)
(6)

To enhance the training efficiency, Diffusion-DPO utilizes Jensen’s inequality and the convexity of
the function − log σ to optimize an upper bound of the original objective function as follows:

−E(c,xw
0 ,xl

0)∼D,t∼U(0,T ),
xw
t−1,t∼pθ(x

w
t−1,t|x

w
0 ,c),

xl
t−1,t∼pθ(x

l
t−1,t|x

l
0,c).

log σ

(
βT log

pθ(x
w
t−1|xw

t , c)

pref(xw
t−1|xw

t , c)
− βT log

pθ(x
l
t−1|xl

t, c)

pref(xl
t−1|xl

t, c)

)
(7)

B.2 Direct Preference for Denoising Diffusion Policy Optimization (D3PO).

D3PO [13] approaches the denoising process as a multi-step Markov Decision Process (MDP) and
using the following mapping relationship:

st = (c, t, xT−t); at = xT−1−t;

P (st+1|st, at) = (δc, δt+1, δxT−1−t
); ρ0(s0) = (p(c), δ0,N (0, I));

π(at|st) = pθ(xT−1−t|xT−t, c); r(st, at) = r((c, t, xT−t), xT−t−1)

(8)

where δx represents the Dirac delta distribution, and T denotes the maximize denoising timesteps.
It sets up a kind of sparse reward: ∀st, at, r(st, at) = 1 for preferred, while r(st, at) = −1 for
dispreferred.

Furthermore, D3PO posits that preference for one segment implies that all state-action pairs within
the segment are considered superior to those in the other segment. Under such assumption, T
sub-segments can be conducted for the alignment process efficiently:

σi = {si, ai, si+1, ai+1, ..., sT−1, aT−1} 0 ≤ i ≤ T − 1

And the overall loss of D3PO algorithm can be calculated with these sub-segments as follows:

Li(θ) = −E(si,σi
w,σi

l )
log ρ

(
β log

πθ(a
w
i |swi )

πref(awi |swi )
− β log

πθ(a
l
i|sli)

πref(ali|sli)

)
(9)

where i ∈ [0, T − 1] ; σi
w = {swi , awi , ..., swT−1, a

w
T−1} denotes the segment preferred over the other

segment σi
l = {sli, ali, ..., slT−1, a

l
T−1}.

B.3 Step-aware Preference Optimization (SPO).

Contrary to the prevailing assumption that a uniform preference ordering across all stages of the
diffusion process aligns with the final output images, Step-aware Preference Optimization (SPO)
posits that this assumption fails to account for the nuanced effectiveness of denoising at each
individual stage. SPO addresses such limitation by employing a step-aware preference model and a
step-wise resampler. At the t-th denoising timestep, a small set {x1

t−1, x
2
t−1, ..., x

k
t−1} is sampled,

from which a preference pair (xw
t−1, x

l
t−1) is established by selecting the most preferred item xw

t−1
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and the most dispreferred one xl
t−1. A set of preference pairs can be obtained at the t-th timestep by

sampling from various prompts. And the DPO loss at the t-th timestep can be expressed as follows:

Lt(θ) = −E(xw
t−1,x

l
t−1)∼pθ(xt−1|c,t,xt) log σ

(
β log

pθ(x
w
t−1|c, t, xt)

pref(xw
t−1|c, t, xt)

− β log
pθ(x

l
t−1|c, t, xt)

pref(xl
t−1|c, t, xt)

)
(10)

where c refers to the prompt and p(c) is the distribution of the prompts.
Furthermore, the final SPO objective for all T timesteps can be derived as:

L(θ) = −Et∼U [1,T ],c∼p(c),xT∼N (0,I)(xw
t−1,x

l
t−1)∼pθ(xt−1|c,t,xt)

log σ

(
β log

pθ(x
w
t−1|c, t, xt)

pref(xw
t−1|c, t, xt)

− β log
pθ(x

l
t−1|c, t, xt)

pref(xl
t−1|c, t, xt)

)
(11)

C Detailed Mathematical Derivation

In this section, we will provide detailed proofs of Theorems.
Theorem 1. If pref(x0:T |c) > 0 holds for all condition c, f ′(x) is an invertible function and 0 is not
in definition domain of function f ′(x), the reward class consistent with Bradley-Terrry model can be
reparameterized with the policy preference pθ(x0:T ) and the reference preference pref(x0:T |c) as:

r(c, x0) = βf ′
( pθ(x0:T )

pref(x0:T |c)

)
+ const (12)

Proof. Consider the following optimal problem:

max
pθ

Ec∼pc,x0:T∼pθ(x0:T |c)[r(c, x0:T )]− βDf

(
pθ(x0:T |c), pref(x0:T |c)

)
s.t.
∑
x0:T

pθ(x0:T |c) = 1; ∀x0:T pθ(x0:T |c) ≥ 0
(13)

Defining the Lagrange function as:

L(pθ(x0:T |c), λ, ζ(x0:T )) = Ec∼pc,x0:T∼pθ(x0:T |c)[r(c, x0:T )]

−βEpref(x0:T |c)

[
f

(
pθ(x0:T |c)
pref(x0:T |c)

)]
− λ(

∑
x0:T

pθ(x0:T )− 1) +
∑
x0:T

ζ(x0:T )pθ(x0:T |c)
(14)

We conduct the analysis using Karush-Kuhn-Tucker (KKT) condition as follows.

Firstly, the stationarity condition necessitates that the gradient of the Lagrangian function with respect
to the primal variables be equal to zero:

∇pθ(x0:T |c)L(pθ(x0:T |c), λ, ζ(x0:T )) = 0;

After performing the calculations, it can be determined that:

r(c, x0)− βf ′

(
pθ(x0:T |c)
pref(x0:T |c)

)
− λ+ ζ(x0:T ) = 0 (15)

Hence, we can get the formula of reward class preliminarily:

r(c, x0) = βf ′

(
pθ(x0:T |c)
pref(x0:T |c)

)
+ λ− ζ(x0:T )

Furthermore, we would like to consider the dual feasibility, which means the Lagrange multiplier
corresponding to inequality constraint must be non-negative:

∀x0:T , ζ(x0:T ) ≥ 0
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And the primal feasibility holds:∑
x0:T

pθ(x0:T |c) = 1; ∀x0:T pθ(x0:T |c) ≥ 0

Finally, we would like to consider the complementary slackness, which shows the fact that the
inequality constraint must either meet with equality or have Lagrange multipliers that are zero:

∀x0:T , ζ(x0:T ) · pθ(x0:T |c) = 0 (16)

Since we have made the assumption that 0 is not in the definition domain of function f ′(x), which
shows the fact that pθ(x0:T |c)

pref(x0:T |c) > 0 always holds true. Moreover, we have assumed that pref(x0:T |c) >
0 holds for all condition c; hence, we can draw the conclusion that pθ(x0:T |c) > 0 always holds true.
Therefore, we must have:

∀x0:T ; ζ(x0:T ) = 0

The formula of reward class can be written as:

r(c, x0) = βf ′

(
pθ(x0:T |c)
pref(x0:T |c)

)
+ λ

The constant λ in the formula is independent of x0:T , which could be canceled out when applying
into the Bradley-Terry model. So far, we have completed the proof.

Theorem 2. In the substitution process of Bradley-Terry model, the constant λ is independent of
x0:T and thus can be canceled out, resulting in the following form:

L(θ) = E (c,xw
0 ,xl

0)∼D,
xw
1:T∼pθ(x

w
1:T |xw

0 ,c),

xl
1:T∼pθ(x

l
1:T |xl

0,c).

− log σ

[
βf ′

(
pθ(x

w
0:T |c)

pref(xw
0:T |c)

)
− βf ′

(
pθ(x

l
0:T |c)

pref(xl
0:T |c)

)]
(17)

where σ(·) is the Sigmoid function; f ′(·) represents the derivatives of f(·); β is the penalty coefficient.

Proof. We know that the Bradley-Terry (BT) model provides a framework for representing human
preferences as a function of pairwise comparisons:

pBT(x
w
0:T ≻ xl

0) = σ(rϕ(c, x
w
0:T )− rϕ(c, x

l
0:T ))

where rϕ(c, ·) represents reward function reparameterized by network ϕ. Furthermore, the loss
function can be written as maximum likelihood formula for binary classification:

LBT = −Ec,xw
0:T ,xl

0:T
[log σ(rϕ(c, x

w
0:T )− rϕ(c, x

l
0:T ))].

Plugging Equation (12) into aforementioned loss function, canceling out the constant λ, and we can
get the generalized formula:

L(θ) = E (c,xw
0 ,xl

0)∼D,
xw
1:T∼pθ(x

w
1:T |xw

0 ,c),

xl
1:T∼pθ(x

l
1:T |xl

0,c)

− log σ

[
βf ′

(
pθ(x

w
0:T |c)

pref(xw
0:T |c)

)
− βf ′

(
pθ(x

l
0:T |c)

pref(xl
0:T |c)

)]

Concentrating instead on a more general formulation of the loss function as follows:

Lf (X1,X2) = −E
[
log σ

(
βf ′(X1)− βf ′(X2)

)]
, (18)

where X1 is the training win ratio, and is equivalent to pθ(x
w
0:T |c)

pref(xw
0:T |c) ; similarly, X2 is the training loss

ratio, and is identical to pθ(x
l
0:T |c)

pref(xl
0:T |c) .
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Theorem 3. The partial derivatives (gradients) of X1 and X2 resulting from Equation (3) can be
expressed as follows:

∂Lf (X1,X2)

∂X1
= −β (1− σ (βf ′(X1)− βf ′(X2))) f

′′(X1)

∂Lf (X1,X2)

∂X2
= β (1− σ (βf ′(X1)− βf ′(X2))) f

′′(X2)

Thus, the gradient ratio of Lf (X1,X2) between enhancement in probability for human-preferred re-
sponses (X1) and reduction in probability for human-dispreferred responses (X2) has the expression:∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = f ′′(X1)

f ′′(X2)
(19)

Proof. It is known that derivative of sigmoid function is given by the following equation:
σ(x)′ = σ(x) · (1− σ(x))

Hence,

∂Lf (X1,X2)

∂X1

=− 1

σ (βf ′(X1)− βf ′(X2))
· σ (βf ′(X1)− βf ′(X2)) · (1− σ (βf ′(X1)− βf ′(X2))) · βf ′′(X1)

=− (1− σ (βf ′(X1)− βf ′(X2))) · βf ′′(X1)

=− β(1− σ (βf ′(X1)− βf ′(X2)))f
′′(X1)

∂Lf (X1,X2)

∂X2

=
1

σ (βf ′(X1)− βf ′(X2))
· σ (βf ′(X1)− βf ′(X2)) · (1− σ (βf ′(X1)− βf ′(X2))) · βf ′′(X2)

=(1− σ (βf ′(X1)− βf ′(X2))) · βf ′′(X2)

=β(1− σ (βf ′(X1)− βf ′(X2)))f
′′(X2)

Thus,∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ =
∣∣∣∣∣−β (1− σ (βf ′(X1)− βf ′(X2))) f

′′(X1)

β (1− σ (βf ′(X1)− βf ′(X2))) f ′′(X2)

∣∣∣∣∣ = f ′′(X1)

f ′′(X2)

which completes the proof.

Remark 3.1. If the divergence is Reverse KL divergence, the aforementioned equation (4) transforms
into: ∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = X2

X1

If the divergence is Jensen-Shannon divergence, the aforementioned equation (4) transforms into:∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = X2 · (X2 + 1)

X1 · (X1 + 1)

If the divergence is α-divergence, the aforementioned equation (4) transforms into:∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = X1+α
2

X1+α
1

If the divergence is forward KL divergence, the aforementioned equation (4) transforms into:∣∣∣∣∣∂Lf (X1,X2)

∂X1
/
∂Lf (X1,X2)

∂X2

∣∣∣∣∣ = X2
2

X2
1
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Fact 1. For any pairwise preference data, X2/X1 < 1 always holds. As optimization advances, the
value of X1 tends to increase to more than 1, whereas X2 tends to decrease to less than 1.

Theorem 4. As optimization progresses, we have X2/X1 < 1. Hence,

0 <
X2

2

X2
1

<
X2 · (X2 + 1)

X1 · (X1 + 1)
<

X2

X1
< 1 and 0 <

X2
2

X2
1

<
X1.8

2

X1.8
1

<
X1.6

2

X1.6
1

<
X1.4

2

X1.4
1

<
X1.2

2

X1.2
1

<
X2

X1
< 1

Proof. Setting g(x) = ax, where 0 < a < 1, and we have g′(x) = lna · ax < 0 always holds.

Thus, g(x) is a monotone decreasing function, and we can easily derive that

0 <

(
X2

X1

)2

<

(
X2

X1

)1.8

<

(
X2

X1

)1.6

<

(
X2

X1

)1.4

<

(
X2

X1

)1.2

<
X2

X1
< 1

Furthermore, we know that X2/X1 < 1, i.e. X2 < X1, and then (X2 + 1)/(X1 + 1) < 1; therefore,

0 <
X2

2

X2
1

<
X2 · (X2 + 1)

X1 · (X1 + 1)
<

X2

X1
< 1

D Alternate Derivation: From the Rinforcement Learning Perspective

In this section, we aim to further derive the generalized formula under f-divergence from a reinforce-
ment learning perspective. Here, we adopt the premise and setup of D3PO [13], which regarding
the process as a multi-step Markov Decision Process (MDP) and using the following mapping
relationship:

st = (c, t, xT−t); at = xT−1−t;

P (st+1|st, at) = (δc, δt+1, δxT−1−t
); ρ0(s0) = (p(c), δ0,N (0, I));

π(at|st) = pθ(xT−1−t|xT−t, c); r(st, at) = r((c, t, xT−t), xT−t−1)

where δx represents the Dirac delta distribution, and T denotes the maximize denoising timesteps.
It sets up a kind of sparse reward: ∀st, at, r(st, at) = 1 for preferred, while r(st, at) = −1 for
dispreferred.

Theorem 5. If πref(a|s) holds for all s, f ′(x) is an invertible function and 0 is not in the definition
domain of function f ′(x), the optimal policy π∗(a|s) has the expression of:

π∗(a|s) = πref(a|s) · (f ′)−1

(
Q∗(s, a)− λ

β

)
where (f ′)−1 is the inverse function of the derivative of function f(x); λ is a fixed, constant term
that is independent of a.

Proof. Consider the following optimal problem:

max
π

Es∼dπ,a∼π(·|s) [Q
∗(s, a)]− βDf [π(a|s), πref(a|s)]

s.t.
∑
a

π(a|s) = 1;∀a π(a|s) ≥ 0

where Q∗(s, a) is the optimal action-value function; dπ = (1 − γ)
∑∞

t=0 γ
tPπ

t (s) represents the
state visitation distribution; s, a, π, Pπ

t adhere to the definitions outlined in equation (8).
Defining the following Lagrange function:

L(π(a|s), λ, ξ(a)) = Es∼dπ,a∼π(·|s) [Q
∗(s, a)]

−βEπref(a|s)

[
f

(
π(a|s)
πref(a|s)

)]
− λ

(∑
a

π(a|s)− 1

)
+ ξ(a)π(a|s)

(20)
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Employing the Karush-Kuhn-Tucker (KKT) conditions for analysis:
Firstly, the stationarity condition necessitates that the gradient of the Lagrangian function with respect
to the primal variables should be zero:

∇π(a|s)L(π(a|s), λ, ξ(a)) = 0

Performing the calculation, we can get:

Q∗(s, a)− βf ′
(

π(a|s)
πref(a|s)

)
= λ− ξ(a)

Furthermore, considering the dual feasibility, which stipulates that the Lagrange multiplier associated
with an inequality constraint must adhere to a non-negative condition:

∀a, ξ(a) ≥ 0

And the primal feasibility shows that:∑
a

π(a|s) = 1; ∀a π(a|s) ≥ 0

Moreover, thinking about the complementary slackness, which dictates that for an inequality con-
straint, either the constraint must be satisfied with equality, or its corresponding Lagrange multiplier
must be zero:

∀a; π(a|s) · ξ(a) = 0

Given that 0 is not in the definition domain of f ′(x), it follows the fact that π(a|s)
πref(a|s)

> 0 always holds.
Moreover, we have the assumption that πref(a|s) > 0 is satisfied. Hence, there must be π(a|s) > 0.
From the analysis that has been conducted, the subsequent conclusion is attainable:

∀a; ξ(a) = 0

Substituting the above conclusion into the stationarity condition yields:

f ′
(

π(a|s)
πref(a|s)

)
=

Q∗(s, a)− λ

β

Through certain algebraic computation, we can derive:

π∗(a|s) = πref(a|s) · (f ′)−1

(
Q∗(s, a)− λ

β

)
So far, we have completed the proof.

Remark 5.1. Rearranging the equation in Theorem 5, we can obtain the following formula:

Q∗(s, a) = βf ′
(

π(a|s)
πref(a|s)

)
+ λ

Substituting the result we obtained in Remark 5.1 into the Bradley-Terry model [10], we can similarly
eliminate the constant λ and gain the final generalized formula.

E Further Analysis on the Gradient Fields

In the work [33], it is shown that the original DPO (alignment of LLMs) increasingly loses its ability
to steer the direction of response optimization in LLM alignment as the alignment process advances;
in other words, it risks degenerating into a mechanism that merely learns the rejected responses,
rather than actively shaping the chosen responses’ trajectory towards alignment. We would like to
further investigate whether such phenomena continued exist in the context of text-to-image generation
alignment with diverse divergence constraints.
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Remark 5.2. If the divergence is Reverse KL divergence, equations in Theorem 3 can be simplified
as: 

∂Lf (X1,X2)

∂X1
= −β

Xβ
2

X1 ·
(
X1

β +X2
β
)

∂Lf (X1,X2)

∂X2
= β

Xβ−1
2(

X1
β +X2

β
)

The main cause of the aforementioned described phenomenon, known as model learning degradation,
occurs as X2 → 0 and β < 1, resulting in ∂Lf (X1,X2)

∂X1
tends 0 for the sake of Xβ

2 → 0, while
∂Lf (X1,X2)

∂X2
tends infinity as a consequence of Xβ−1

2 → ∞. In fact, in our scenario, the aforemen-
tioned phenomenon is mitigated by our typical practice of assigning a relative large value to β (β =10
in the experiments of our work), thus prevent it focus on unlearning rejected items only.

Remark 5.3. If the divergence is Jensen-Shannon divergence, equations in Theorem 3 can be
simplified as: 

∂Lf (X1,X2)

∂X1
= −β · 1

X1
· Xβ

2 (1 + X1)
β−1

Xβ
2 (1 + X1)β +Xβ

1 (1 + X2)β

∂Lf (X1,X2)

∂X2
= −β · 1

X2 + 1
· Xβ−1

2 (1 + X1)
β

Xβ
2 (1 + X1)β +Xβ

1 (1 + X2)β

When X2 → 0, if β > 1, both ∂Lf (X1,X2)
∂X1

→ 0 and ∂Lf (X1,X2)
∂X2

→ 0 simultaneously; conversely, if

β < 1, the result would be ∂Lf (X1,X2)
∂X1

→ 0 but ∂Lf (X1,X2)
∂X2

→ ∞.

Remark 5.3 indicates that when the Jensen-Shannon divergence is selected as an regularization,
choosing a value of β greater than 1 is advantageous.

Remark 5.4. If the divergence is α-divergence, equations in Theorem 3 can be simplified as:
∂Lf (X1,X2)

∂X1
= −β · 1

X1+α
1

· e
β/α· 1

Xα
1

e
β/α· 1

Xα
1 + e

β/α· 1
Xα
2

∂Lf (X1,X2)

∂X2
= β · 1

X1+α
2

· e
β/α· 1

Xα
1

e
β/α· 1

Xα
1 + e

β/α· 1
Xα
2

Given that both α and β are positive values, it follows that ∂Lf (X1,X2)
∂X1

→ 0 and ∂Lf (X1,X2)
∂X2

→ 0
always hold true when X2 → 0.

Remark 5.5. If the divergence is Forward KL divergence, equations in Theorem 3 can be simplified
as: 

∂Lf (X1,X2)

∂X1
= −β · 1

X2
1

· e
β
X1

e
β
X1 + ee

β
X2

∂Lf (X1,X2)

∂X2
= β · 1

X2
2

· e
β
X1

e
β
X1 + e

β
X2

∀β, ∂Lf (X1,X2)
∂X1

→ 0 and ∂Lf (X1,X2)
∂X2

→ 0 always hold true when X2 → 0.

According to Remark 5.4 and Remark 5.5, if the regularization is in terms of α-divergence or Forward
KL divergence, then no matter the value of β, it will not result in model training degradation.

Moreover, we would like to further discuss the relationship between generation diversity and gradient
field. Within the work [13], the property of dispersion effect on unseen generations of original DPO
has been proposed. It elucidates that as X2 rapidly decreases to 0, the gradient on X1 will gradually
diminish, consequently leading to a stochastic decline in the likelihood of the selected response.

23



Such dispersion effect contributes to the genration diversity. Hence, for the sake that forward KL
divergence has the minimal gradient ratio and reverse KL divergence has the maximal gradient
ratio, should theoretically resulting in optimal alignment diversity for forward KL divergence and
poorest alignment diversity for reverse KL divergence. In fact, [21, 20] does reach such a analogous
conclusion from a practical point of view in the LLM alignment task.

However, we should also be mindful of two aspects. Firstly, in the task of LLM alignment, typically
only one epoch is conducted, thus conforming well to the aforementioned theory. Nevertheless,
in the task of Text-to-Image generation alignment, multiple epochs are often performed (e.g., 10
epochs in Diffusion-DPO, SPO and experiments of our work; 1000 epochs in D3PO), which renders
the diversity variations caused by the gradient ratio negligible after training for multiple epochs.
Secondly, the contextual dimension of images is higher than that of text, and the evaluation indicators
for image diversity often focus on different aspects of images. In our experiments, we observe
that after sufficient training, α−divergence (α=0.6) generally achieves the best generation diversity.
However, it is worth noting that while it achieves the optimal generation diversity, it performs worst
in terms of human value alignment performance. And we can intuitively find that generation diversity
and alignment performance are a pair of conflicting entities. To achieve the best trade-off between
the two in alignment, we should first pursue better alignment performance, and then, on the basis
of assured alignment performance, pursue better generation diversity. Based on a comprehensive
theoretical examination and empirical evidence from experimental results, we advocate for regarding
Jensen-Shannon divergence as the first choice in practice.

F Plot of Gradient Fields and Visualization of Landscapes

In order to obtain a more intuitive understanding of the impact of different divergence choices during
the alignment process, we visualize the landscape of alignment objective functions with different
divergences from two viewing angles, as shown in Figure 2 (the penalty coefficient β is selected
as 10). Furthermore, to enhance intuition, we plot the gradient field of corresponding loss function
on the plane where Z equals 50. When it comes to consider the smoothness within loss function
landscape, surface of Jensen-Shannon divergence exhibits the best smoothness, which suggests a
more stable alignment process. Moreover, this indicates a more robust alignment mechanism, which
helps prevent the process from merely unlearning undesired outputs rather than actively steering
chosen outputs towards optimization; and this also mitigates the phenomenon that the gradient on X1

gradually diminishes as X2 rapidly decreases to 0, which consequently leads to a stochastic decline
in the likelihood of the selected response [33].
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Figure 2: Landscapes’ visualization of alignment objective functions with different divergences from
two viewing angles and gradient fields’ visualization of the corresponding loss function on the plane
Z = 50.

G Detailed Metric Description

G.1 Alignment Performance Metric.

In this paper, we utilize six metrics for evaluating the alignment performance. We employ the
text-image CLIP score [34] and VQAScore [35] to evaluate the performance of text-image alignment
and the Aesthetics score [36], ImageReward [7], PickScore [6] and HPS-v2 [9] to evaluate the
performance of human value alignment.

Text-Image CLIP score. The Text-Image CLIP score serves as a quantitative measure for evaluating
the likeness between text-image pairs. CLIPScore is fundamentally based on the CLIP model, which
transforms input text and images into distinct text and image vectors, followed by calculation of the
dot product of these vectors. Foundational aim of the CLIP model is to cultivate versatile multimodal
representations, free from specialized domain expertise, through the integration of linguistic indicators
and visual data. Training approach of CLIP model mainly hinges on contrastive learning, where the
system partitions the incoming text-image pairs into two categories: one cluster includes similar pairs
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to the input, whereas the other assembles dissimilar pairs. The model then learns representations
of these inputs, with the objective to increment similarity within matching pairs while reducing it
between non-matching pairs. Benefiting from its pre-training strategy, it enables the extraction of
significant image and text features from vast unsupervised datasets. The CLIP model and CLIPScore
have demonstrated commendable performance across a wide range of tasks, encompassing image
classification, semantic segmentation, image generation, object localization, video interpretation, and
so on.

VQAScore. VQAScore meticulously transforms textual cues into precise inquiries, deploying the
generative vision-language models with visual-question-answering (VQA) tasks to evaluate the
congruence between the image and the descriptive text. Such innovative approach streamlines
the assessment process while markedly enhancing the precision and dependability of evaluations.
Furthermore, by utilizing the CLIP-FlanT5 model, VQAScore fosters a reciprocal influence between
the visual content and the textual query, aligning more closely with human comprehension of the
interplay between the image and the text.

Aesthetics score. The LAION Aesthetics Predictor is utilized to estimate an image’s aesthetic
score, quantifying the mean human appreciation for its visual appeal. It leverages a neural network
architecture (MLP) that takes CLIP embeddings as inputs to ascertain the average preference level for
the image. Each image is assigned a score on the scale of 0 to 10, with 0 signifying the least visually
attractive and 10 denoting the highest level of visual appeal.

ImageReward. ImageReward, leveraging a structure that combines ViT-L for image encoding and a
12-layer Transformer for text encoding, tackles the challenges of text-to-image generation to some
extent, especially regarding the quality of pre-training data, which are plagued by noise and a skewed
distribution that doesn’t match the data users input in prompts. Notably, as a zero-shot evaluation tool,
ImageReward often aligns with human judgments, demonstrating the capability to make nuanced
quality comparisons between individual samples.

PickScore. A comprehensive, natural dataset, dubbed "Pick-a-Pic," is compiled and utilizing the
dataset, an advanced scoring function, namely "PickScore", is built. "PickScore" excels in assessing
generated images against prompts, surpassing not only machine learning models but also expert
human evaluations. Its utility spans multiple domains such as model evaluation, image generation
enhancement, text-to-image dataset refinement, and the optimization of text-to-image models through
methodologies such as Reinforcement Learning Human Feedback (RLHF). PickScore follows the
architecture of CLIP; provided a prompt x and an image y, PickScore s calculates a real number
through the representation of x with a text encoder and y with an image encoder as two d-dimensional
vectors, and subsequently returns their inner product:

score(x, y) = Etxt(x) · Eimg(y) · T

where T is the learned temperature parameter of CLIP.

HPS-v2. Human Preference Dataset v2 (HPD-v2) encapsulates human preferences for images
sourced from a multitude of platforms. It consists of 798,090 individual human preference choices
for 433,760 paired image comparisons. The dataset has been taken care to deliberately collect the text
prompts and images to minimize potential biases, a common pitfall in previous datasets. Whereafter,
through fine-tuning the CLIP model on HPD-v2, the Human Preference Score v2 (HPS-v2) is derived,
a scoring model that can more accurately gauge human preferences for generated images. HPS-v2
has been shown to generalize more effectively than earlier metrics across a variety of image datasets,
and it is responsive to algorithmic improvements of text-to-image generative models.

G.2 Generation Diversity Metric

In this work, we utilize eight metrics for comprehensively evaluating generation diversity from diverse
aspects: Image-Image CLIP score [34], Image Entropy (Entropy 1D and Entropy 2D) [68], LPIPS
[38], RMSE [69], PSNR [70], SSIM [70], FSIM [37].

Image-Image CLIP score. Text-Image CLIP score and Image-Image CLIP score are both grounded
in the evaluation of high-dimensional embeddings produced by the CLIP model. Similarly, the
Image-Image CLIP score functions as an efficacious metric for evaluating the structural congruity
between images, thereby enabling assessments of images’ similarity. Hence, we select Image-Image
CLIP score as an indicator for the diversity of images produced by the trained diffusion model: a
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diminutive CLIP score between two generated images signifies a pronounced disparity, implying that
the model demonstrates a heightened capacity for generating diverse content.

Image Entropy (Entropy 1D and Entropy 2D). Image Entropy is a statistical metric employed
to evaluate the information content and complexity within an image. It quantifies the average
information per pixel, with higher entropy values signaling a greater diversity and richness in the
image’s information content. One-dimensional image entropy (Entropy 1D) quantifies the information
encapsulated within the distribution’s clustering properties of gray levels:

H1d =

255∑
i=0

Pi logPi

where Pi presents the proportion of pixels in the image with gray level value i.

The one-dimensional image entropy (Entropy 1D) successfully captures the aggregation properties
of gray level distribution, yet neglects spatial attributes. To rectify this discrepancy, supplementary
feature metrics are incorporated, which, in conjunction with the one-dimensional entropy, serve as the
cornerstone for the evolution of two-dimensional image entropy (Entropy 2D). Such augmentation
facilitates a more holistic evaluation that merges both spatial and distributional data within an image.
The neighborhood gray level mean, when chosen as a spatial feature quantity in conjunction with the
pixel gray levels, constitutes a feature tuple denoted as (i, j):

Pi,j =
f(i, j)

N2

where i is the gray value of the pixel, and j is the mean gray value of its neighborhood; f(i, j) is the
occurrence frequency of characteristic binary (i, j) and N is the dimension of the image. Then the
two-dimensional image entropy (Entropy 2D) can be defined as:

H2d =

255∑
i=0

255∑
j=0

Pij logPij

LPIPS. Learned Perceptual Image Patch Similarity (LPIPS) is a deep learning-based metric designed
for assessing image similarity, which is calculated based on features output by a deep convolutional
neural network (AlexNet in our work). Utilizing the feature representations learned by a deep neural
network, which is capable of capturing details of human visual perception such as texture, color, and
structure, the computation of perceptual similarity between two images can be conducted. Firstly,
pre-trained deep neural networks, notably those like AlexNet [71] or VGG [72], are employed to
extract features from input images. The outputs from the network’s intermediate layers are then
typically utilized, as they encapsulate a spectrum of abstract features, spanning from rudimentary
edge and texture details to more sophisticated representations of objects and scenes, denoted as ŷi1,
ŷi2 ∈ RHl×Wl×Cl . Subsequently, the distances between extracted features in the feature space can be
calculated:

d(y1, y2) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ŷi1 − ŷi2)∥22

and converted into a comprehensible similarity score by standardizing them to the range of 0 to 1.
For our evaluation, LPIPS is selected as a metric; a lower score indicates a higher similarity between
images, while a higher score suggests greater diversity or disparity between them.

RMSE. Root Mean Square Error (RMSE) is a statistical metric that primarily employed in statistical
analysis and machine learning disciplines, serving as a benchmark for gauging the accuracy of
predictions. In our scenario, we utilize the RMSE as a criterion to measure the pixel-level differences
between pairs of generated images. Such pixel-level variance can be considered as an indicator of the
images’ diversity, thereby offering a quantifiable assessment of the generated images’ diversity:

RMSE =

√√√√ 1

L×W

L×W∑
i=1

(pi − qi)2

where L is the length of the image, W is the width of the image; pi and qi are i-th pixels of two
generated images.
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PNSR. Peak Signal-to-Noise Ratio (PSNR), a prevalent metric in image processing and compression,
quantitatively assesses the discrepancy between an original image and its modified counterpart.
This metric, typically reported in decibels (dB), is characterized by a higher value indicative of a
diminished difference between the two images, effectively serving as a metric for evaluating the
diversity of generated images:

PSNR = 10 log10

(Max2

MSE

)
where Max denotes the maximum pixel value that an image attain, MSE denotes the mean squared
error between two images.

SSIM. Structural Similarity Index Measure (SSIM) is a metric designed to assess the likeness between
images by emulating the human visual system’s perception of image quality. Traditional metrics
(e.g. RMSE, PNSR, Image Entropy) usually focus on disparities in pixel values, whereas SSIM
incorporates the structural aspects of images for evaluation. It is often executed from three aspects:
luminance similarity, contrast similarity, and structural similarity - on a scale from 0 to 1:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
;

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
;

s(x, y) =
σxy + c3
σxσy + c3

where µx and µy are means of x and y; σx and σy are variances of x and y, respectively; and σxy

is the covariance of x and y. SSIM calculates similarity between two images across these three
dimensions, providing an overall similarity index ranging from 0 to 1. The closer the value is to 1,
the more similar the two images are:

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
In typical situations, α, β and γ are all set to 1.

FSIM. Feature Similarity Index Measure (FSIM) utilizes feature similarity for assessment. The
Human Visual System (HVS) bases its perception on essential visual attributes, and the phase
congruency (PC) feature excels in depicting local structures. Remarkably, PC’s resilience to changes
in the image context guarantees the stability of feature extraction. Nonetheless, it’s recognized that
modifications in the image can influence visual perception. Therefore, to augment the comprehensive
analysis, gradient features, particularly gradient magnitude (GM), are incorporated. Consequently, in
FSIM, both PC and GM features collaborate to serve complementary roles, synergistically capturing
a holistic evaluation. For two images, the calculations for PC1, GM1, PC2, and GM2 are firstly
performed. Subsequently, compute the similarity for PC and for GM as follows:

SPC(x) =
2PC1(x) · PC2(x) + T1

PC1(x)2 + PC2(x)2 + T1
;

SGM (x) =
2GM1(x) ·GM2(x) + T2

GM1(x)2 +GM2(x)2 + T2
.

Furthermore, the similarity expressed by fusion of PC and GM can be given as:

SL(x) = [SPC(x)]
α · [SGM (x)]β

Finally, the calculation of FSIM is described as follows:

FSIM =

∑
x∈Ω SL(x) · PCm(x)∑

x∈Ω PCm(x)
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H Further Larger-Scale Evaluation

To further demonstrate the persuasiveness of our conclusions, we conduct additional evaluation on
the aligned models. GenAI-Bench [73], serves as a comprehensive benchmark for compositional
text-to-visual generation, and we report the evaluation results on GenAI-Bench in Table 4 (alignment
performance) and Table 5 (diversity performance). Furthermore, we employ the parti-prompts [74]
training dataset and the entire HPS-v2 [9] training set for evaluation, by combining the generated
images from these sets together, we report the evaluation results on all 4832 prompts in Table 6
(alignment performance) and Table 7 (generation diversity). The results obtained are similar to
that in the main paper. Jensen-Shannon divergence exhibits the best alignment performance and
suboptimal generation diversity, achieving the best trade-off.

Model CLIPScore ↑ VQAScore ↑ Aesthetics Score ↑ ImageReward ↑ Pickscore ↑ HPS-V2 ↑

Original Model 0.334±0.046 0.638±0.268 5.433±0.427 0.195±0.996 21.446±1.143 27.148±1.463

Reverse KL Divergence 0.344±0.045 0.669±0.265 5.582±0.408 0.556±0.947 21.889±1.153 27.827±1.452

α-Divergence

α=0.2 0.344±0.046 0.665±0.270 5.607±0.428 0.535±0.949 21.850±1.168 27.900±1.475

α=0.4 0.343±0.045 0.666±0.269 5.547±0.405 0.563±0.918 21.874±1.162 27.803±1.407

α=0.6 0.340±0.046 0.650±0.275 5.585±0.399 0.486±0.960 21.764±1.158 27.785±1.446

α=0.8 0.343±0.045 0.661±0.268 5.582±0.436 0.491±0.943 21.821±1.169 27.709±1.448

Forward KL Divergence 0.344±0.046 0.664±0.266 5.589±0.416 0.517±0.942 21.852±1.138 27.854±1.446

Jensen-Shannon Divergence 0.342±0.045 0.661±0.268 5.649±0.409 0.573±0.940 21.904±1.158 27.880±1.436

Table 4: Evaluations of the alignment performance with Gen-AI Benchmark experiments, where
the CLIPScore and VQAScore evaluates image-text alignment performance, and the remaining four
metrics evaluate human value alignment performance.

Model Image-Image CLIPScore ↓ Entropy 1D ↑ Entropy 2D ↑ LPIPS ↑

Original Model 0.8358 ± 0.0916 3.8889 ± 0.1875 7.6543 ± 0.4906 0.3031 ± 0.0388

Reverse KL Divergence 0.8668 ± 0.0843 3.9865 ± 0.1107 7.8165 ± 0.3640 0.3020 ± 0.0355

α-Divergence

α =0.2 0.8683 ± 0.0834 3.9724 ± 0.1298 7.8136 ± 0.4026 0.3121 ± 0.0371

α =0.4 0.8646 ± 0.0857 4.0095 ± 0.1018 7.8478 ± 0.3396 0.3058 ± 0.0336

α =0.6 0.8608 ± 0.0864 3.9634 ± 0.1252 7.8141 ± 0.3904 0.3185 ± 0.0371

α =0.8 0.8653 ± 0.0870 3.9733 ± 0.1398 7.7432 ± 0.4297 0.3088 ± 0.0380

Forward KL Divergence 0.8682 ± 0.0847 3.9804 ± 0.1143 7.7786 ± 0.3660 0.3072 ± 0.0350

Jensen-Shannon Divergence 0.8685 ± 0.0818 3.9886 ± 0.1145 7.8590 ± 0.3808 0.3103 ± 0.0359

Model RMSE ↑ PSNR ↓ SSIM ↓ FSIM ↓

Original Model 0.0133 ± 0.0026 37.686 ± 1.797 0.8838 ± 0.0323 0.3795 ± 0.0213

Reverse KL Divergence 0.0153 ± 0.0025 36.415 ± 1.501 0.8550 ± 0.0326 0.3803 ± 0.0188

α-Divergence

α =0.2 0.0161 ± 0.0025 35.943 ± 1.453 0.8445 ± 0.0339 0.3755 ± 0.0208

α =0.4 0.0155 ± 0.0023 36.288 ± 1.363 0.8540 ± 0.0308 0.3806 ± 0.0180

α =0.6 0.0165 ± 0.0025 35.757 ± 1.384 0.8394 ± 0.0330 0.3771 ± 0.0209

α =0.8 0.0153 ± 0.0026 36.417 ± 1.632 0.8553 ± 0.0349 0.3783 ± 0.0210

Forward KL Divergence 0.0157 ± 0.0026 36.170 ± 1.410 0.8501 ± 0.0315 0.3762 ± 0.0189

Jensen-Shannon Divergence 0.0158 ± 0.0026 36.092 ± 1.372 0.8473 ± 0.0313 0.3793 ± 0.0201

Table 5: Evaluations of the generation diversity with Gen-AI Benchmark. The metrics originally
utilized for evaluating image similarity exhibit an opposite property when evaluating generation
diversity.
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Model CLIPScore ↑ VQAScore ↑ Aesthetics Score ↑ ImageReward ↑ Pickscore ↑ HPS-V2 ↑

Original Model 0.343±0.054 0.658±0.251 5.575±0.556 0.231±1.047 21.059±1.216 27.082±1.541

Reverse KL Divergence 0.353±0.053 0.710±0.234 5.698±0.534 0.661±0.940 21.682±1.194 27.907±1.519

α-Divergence

α=0.2 0.352±0.054 0.705±0.236 5.712±0.527 0.627±0.962 21.581±1.200 27.953±1.543

α=0.4 0.351±0.053 0.700±0.239 5.659±0.519 0.626±0.957 21.611±1.205 27.840±1.504

α=0.6 0.349±0.053 0.691±0.241 5.666±0.509 0.569±0.971 21.456±1.205 27.831±1.513

α=0.8 0.351±0.054 0.697±0.239 5.701±0.537 0.598±0.969 21.555±1.195 27.786±1.510

Forward KL Divergence 0.353±0.054 0.706±0.236 5.735±0.524 0.626±0.952 21.640±1.184 27.941±1.510

Jensen-Shannon Divergence 0.352±0.053 0.707±0.235 5.765±0.513 0.672±0.942 21.708±1.194 27.954±1.502

Table 6: Evaluations of the alignment performance with larger-scale (parti-prompts and HPS-V2
training set, total 4832 prompts) experiments, where the CLIPScore and VQAScore evaluates
image-text alignment performance, and the remaining four metrics evaluate human value alignment
performance.

Model Image-Image CLIP score ↓ Entropy 1D ↑ Entropy 2D ↑ LPIPS ↑

Original Model 0.8096 ± 0.0982 3.8279 ± 0.2675 7.5427 ± 0.5896 0.3002 ± 0.0404

Reverse KL Divergence 0.8491 ± 0.0891 3.9519 ± 0.1578 7.7858 ± 0.3904 0.2957 ± 0.0349

α-Divergence

α =0.2 0.8420 ± 0.0887 3.9231 ± 0.1743 7.8985 ± 0.3214 0.3096 ± 0.0321

α =0.4 0.8471 ± 0.0892 3.9689 ± 0.1564 7.7860 ± 0.3721 0.2995 ± 0.0348

α =0.6 0.8472 ± 0.0881 3.9216 ± 0.1932 7.7592 ± 0.4400 0.3132 ± 0.0140

α =0.8 0.8423 ± 0.0795 3.9448 ± 0.1851 7.7059 ± 0.4409 0.3030 ± 0.0363

Forward KL Divergence 0.8505 ± 0.0876 3.9409 ± 0.1639 7.7315 ± 0.3868 0.3004 ± 0.0346

Jensen-Shannon Divergence 0.8503 ± 0.0885 3.9532 ± 0.1569 7.8239 ± 0.3928 0.3036 ± 0.0358

Model RMSE ↑ PSNR ↓ SSIM ↓ FSIM ↓

Original Model 0.0133 ± 0.0028 37.660 ± 1.879 0.8819 ± 0.0380 0.3779 ± 0.0227

Reverse KL Divergence 0.0154 ± 0.0027 36.360 ± 1.587 0.8521 ± 0.0374 0.3800 ± 0.0185

α-Divergence

α =0.2 0.0176 ± 0.0025 35.192 ± 1.280 0.8354 ± 0.0350 0.3757 ± 0.0182

α =0.4 0.0155 ± 0.0026 36.317 ± 1.489 0.8535 ± 0.0357 0.3806 ± 0.0184

α =0.6 0.0166 ± 0.0027 35.708 ± 1.488 0.8371 ± 0.0348 0.3765 ± 0.0212

α =0.8 0.0155 ± 0.0028 36.327 ± 1.646 0.8528 ± 0.0383 0.3789 ± 0.0210

Forward KL Divergence 0.0157 ± 0.0026 36.133 ± 1.536 0.8475 ± 0.0366 0.3763 ± 0.0194

Jensen-Shannon Divergence 0.0158 ± 0.0026 36.054 ± 1.511 0.8450 ± 0.0363 0.3798 ± 0.0202

Table 7: Evaluations of the generation diversity with larger-scale (parti-prompts and HPS-V2 training
set, total 4832 prompts) experiments. The metrics originally utilized for evaluating image similarity
exhibit an opposite property when evaluating generation diversity.
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I Qualitative Comparison of Alignment with Diverse Divergence
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