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Abstract

This paper extensively investigates the effectiveness of syn-
thetic training data in improving the capabilities of vision-
and-language models for visual grounding. We explore
various strategies to best generate image-text pairs and
image-text-box triplets using a series of pretrained mod-
els. Through comparative analyses with synthetic, real,
and web-crawled data, we identify factors that contribute
to performance differences, and propose SynGround, an
effective pipeline for generating useful synthetic data for
visual grounding. We show that data generated with Syn-
Ground improves the pointing game accuracy of pretrained
ALBEF and BLIP models by 4.81% and 17.11% absolute
percentage points, respectively, across the RefCOCO+ and
the Flickr30k benchmarks.

1. Introduction

Vision-and-language models pretrained on large-scale web-
sourced image and text pairs have become exceedingly ac-
curate across various tasks [3, 19, 26, 28, 29, 32, 34, 41, 46].
Our work focuses on the task of visual grounding, which
consists of mapping arbitrary input text to image regions.
Recent methods finetune pre-trained vision-and-language
models with a large but more modest number of images
annotated with bounding boxes or other region annota-
tions; alternatively, these methods leverage pretrained ob-
ject detectors that have been trained on such annotated
data [6, 7, 13, 16, 20, 21, 29, 66, 68]. However, region anno-
tations in the form of bounding boxes or segments can not
be easily obtained from the web, and require more cognitive
effort to annotate manually than providing a single label.
For instance, curating the widely used Visual Genome [24]
dataset involved contributions from 33,000 unique work-
ers over 6 months, following 15 months of experimenta-
tion and refinement of the data representation. The massive
manual demand restricts the scale of such region-annotated
data compared to the image-text datasets at the billion
scale [55]. Recent work has championed the use of syn-
thetic data – learning from models – even for tasks that re-
quire only image-text pair supervision [58]. Our work takes

this paradigm one step further by investigating whether syn-
thetic data obtained from models is ready to make signifi-
cant improvements for the visual grounding task, where we
need to obtain high-quality image-text-region triplets.

In this paper, we take advantage of recent advancements
in text-to-image generation [39, 48, 54], large language
models [8, 59] and models for other vision-and-language
tasks [27, 29, 31] to design an effective pipeline, Syn-
Ground, to supervise vision-and-language models for visual
grounding. Our key findings and contributions are sum-
marized as follows: (1) We propose SynGround, an ef-
fective pipeline to synthesize image-text-boxes for visual
grounding. This method leverages exhaustive image de-
scriptions for image synthesis, an LLM for text synthesis
from phrase extraction, and an open-vocabulary object de-
tector for bounding box generation. (2) Our results show
that using our generated synthetic data outperforms using
web-crawled data (Sec. 5.3). Additionally, our synthetic
data can effectively augment real data (Sec. 3.1) and shows
an upward trend in terms of scalability (Sec. 5.2).

2. Related Work

Visual Grounding. Visual grounding associates textual
descriptions with relevant regions within images. Previ-
ous methods typically rely on expensive image-text-box
triplets [6, 10–13, 15, 16, 21, 33, 63, 68]. Although some
studies collect more data [65] or generate annotations for
existing image-text datasets [44, 64, 70], we posit that our
contribution is orthogonal as we aim to investigate the feasi-
bility and limitations of generating and using synthetic data.

Learning from Synthetic Data. The use of synthetic data
has been widely explored across various computer vision
tasks, including image classification [14, 37, 43], semantic
segmentation [5, 47, 49], object detection [42, 52], human
pose estimation [22, 61], action recognition [62], and many
other domains [1, 9, 18, 25, 35, 36, 38, 50, 51, 60, 67, 69].
Our research not only generates image-text pairs but also
provides corresponding synthetic boxes, facilitating a com-
prehensive exploration of the efficacy of synthetic image-
text-box triplets in visual grounding.



3. Methodology
We investigate effective strategies to generate image-text-
boxes ⟨I, T,B⟩ to improve the visual grounding ability of a
generic vision-and-language model. This model comprises
a text encoder ϕt, a visual encoder ϕv , and a multimodal fu-
sion encoder ϕf . We first introduce the objectives for tuning
the base model on image-text pairs ⟨I, T ⟩ and image-text-
box triplets ⟨I, T,B⟩. Then, we conduct extensive experi-
ments and analyses with our proposed image-text-box syn-
thesis, SynGround, which integrates an image caption gen-
erator Ψc, a text-to-image generator Ψg , a large language
model Ψt and an object detector Ψd. Sec. 3.1 shows evalu-
ation of SynGround when combined with Real Data.
Preliminaries and Setup
Image-Text Matching. We adopt ALBEF [26] as the main
base model which incorporates image-text objectives in-
cluding a standard image-text matching loss (Litm), an
image-text contrastive loss (Litc) and a masking language
modeling loss (Lmlm). The overall objective to tune the
base model on image-text pairs is Lvl = Litm+Litc+Lmlm.

Image-Text-Box Matching. We adopt an attention mask
consistency objective Lamc to add region-level box super-
vision on top of the ALBEF model [68]. This objective
uses gradient-based explanation heatmaps G through Grad-
CAM [56], and maximizes the consistency between this
map and region annotations. This objective considers two
terms. The first term Lmax encourages the maximum value
of G inside a target box B to surpass the maximum value
outside by a margin δ1.

Lmax = E
(I,T,B)∼D

[
max(0, max

i,j
((1−Bi,j)Gi,j)−max

i,j
(Bi,jGi,j) + δ1)

]
,

where Bi,j is 1 when pixel location i, j is inside the box,
and zero otherwise. The second term Lmean encourages the
mean value of heatmap G inside the box to be larger than
the mean value outside by a margin δ2.

Lmean = E
(I,T,B)∼D

[
max(0,

∑
i,j (1−Bi,j)Gi,j∑

i,j(1−Bi,j)
−

∑
i,j Bi,jGi,j∑
i,j(Bi,j)

+ δ2)

]
.

The full Lamc objective is Lamc = Lmax + λ · Lmean,
where λ is a trade-off hyperparameter. The base model is
tuned with both Lvl and Lamc on image-text-box triplets.
Visual Grounding Evaluation. Following prior works for
Visual Grounding methods that predict heatmaps, our eval-
uation uses pointing game accuracy, which measures the
proportion of instances where the maximal activation point
within generated heatmaps correctly falls within the anno-
tated ground-truth box regions [2, 10, 13, 16, 17, 26, 33, 68].
We conduct evaluation across multiple benchmarks, includ-
ing RefCOCO+ [71] and Flickr30k [45].
Image-Text-Box Generation Pipeline. Fig. 1 shows an
overview of our proposed SynGround pipeline along with

representative examples of our generated image-text-boxes,
including images with specific and recognizable entities
(the first image shows “a Siamese cat”), complex scenar-
ios with composite subjects (the second image shows “rice,
beans and meat”). The third image shows a synthetic per-
son with unrealistic features, observed in several generated
results. This contrasts with improvements on RefCOCO+
Test A (a person-only subset), suggesting that realistic ob-
ject details are not crucial for visual grounding. The fourth
image showcases creative objects with unusual attributes
such as a pink coffee table, which showcases diversity in
our generated data.

3.1. Using Real and/or Synthetic Data
SynGround can augment training with real data. Table 1
presents comparisons between training exclusively on real
data from the Visual Genome (VG) dataset, synthetic data
from SynGround, and a combination of both. The baseline
performance (row 1) is significantly enhanced by incorpo-
rating synthetic data, yielding an average improvement of
4.81% (row 3). While it falls short of the gains achieved
through training on real data (row 2), SynGround offers an
average improvement of 9.16% when combined with real
data (row 5), outperforming the state-of-the-art (row 2) [68]
on RefCOCO+ [71] Test A and B, and Flickr30k [45]
benchmarks using Pointing Game accuracy. More impor-
tantly, the SynGround generation takes 501 GPU hours on
a single NVIDIA A40, which is around 1/9 of VG’s data
curation time from 33,000 unique workers [24]. The per-
formance, obtained by training on a percentage of the VG
dataset that could plausibly be collected within an equiva-
lent time span using 33,000 human annotators as reported
in the original study (row 3), is on par with SynGroundS .
Computation details and comparisons are in the Supp.

4. Implementation Details
Image-Text-Box Synthesis. To favor reproducibility and
accessibility, we adopted Stable Diffusion 2.1 [48] with
guidance scale 10.0 as the text-to-image generator Ψg , an
open-source LLM Vicuna-13B [8] as Ψt, and GLIP [29] as
the object detector Ψd. We selected the box with top-1 con-
fidence if it exceeds the default confidence threshold (0.7)
in the official implementation. For image description gen-
eration Ψc, we experimented with BLIP-2 [27] and LLaVA
1.5 [31] for the Image2Text strategy. For the Concept2Text
variant, we used Vicuna-13B [8] to generate image descrip-
tions from a two-concept query with four randomly sam-
pled in-context examples. The concept list contains nouns
extracted from real VG captions.
Visual Grounding Tuning. The main base model ALBEF-
14M [26] is the same as that adopted by the current SotA
fully- [68] and weakly-supervised methods [17] for Point-
ing Game accuracy metric. ALBEF is pretrained on image-



In the image, a cat is laying on a couch, 

surrounded by a white stuffed teddy bear 

and a white towel. The cat is resting 

peacefully on the couch with the stuffed 

animal and towel nearby. The scene conveys 

a sense of coziness and relaxation, as the 

cat enjoys its time on the couch. 

LLM Ψt

Image Generator Ψg

Detector Ψd

a cat

a couch

a white stuffed teddy bear

a white towel

the cat

...
T

I

<I, T, B>
Generated Image 

Description

Image

Description

Generator

Ψc

Sample Generated Boxes with Region CaptionsOur SynGround Image-Text-Box Generation Pipeline

Figure 1. On the left, an overview of our SynGround image-text-box synthesis pipeline, and on the right some sample generated image-
text-box triplets. We use an image description generator Ψc to output a description that serves as a prompt to an image generator Ψg to
obtain synthetic image I . This description is also used to obtain text phrases T by prompting an LLM Ψt. Finally, the synthetic text and
image are fed into an object detector Ψd to obtain synthetic boxes B.

Table 1. Training on synthetic and/or real data. We compare visual grounding improvements for the base model (row 1), using the full
amount of real data from VG (row 2), a percentage of the real data from VG that could be plausibly annotated by 33,000 human workers
in the same time that it takes to generate SynGround images on a single GPU (row 3), synthetic data (row 4), and both (row 5).

Method Data #Images ⟨I, T,B⟩
RefCOCO+

Flickr30k ∆avg

Test A Test B

ALBEF [26] Off-the-Shelf – – 69.35 53.77 79.38 -
AMC [68] Real 94,893 1,649,546 78.89 61.16 86.46 +8.00

AMC′ Real 76,829 183,282 76.96 59.07 85.01 +6.18
SynGroundS Synthetic 94,893 998,406 73.70 56.35 86.89 +4.81
SynGround Real&Synthetic 189,786 2,627,952 79.06 63.67 87.26 +9.16

text pairs from CC [4], ImageNet-1k [53], MS-COCO [30],
SBU Captions [40] and VG [24]. Tuning for visual ground-
ing applies Lvl on image-text pairs and a combination of
Lvl and Lamc on image-text-box triplets, adhering to the
coefficient settings δ1 = 0.5, δ2 = 0.1, λ1 = 0.8, and
λ2 = 0.2 as originally proposed in Yang et al. [68]. The
training is conducted on a single node with 8 NVIDIA A40
GPUs. Input images are resized to 256×256 pixels and aug-
mented with color jittering, horizontal flipping, and random
grayscale conversion. All ALBEF-based experiments use
an Adam optimizer [23] with a learning rate set to 1e-5 and
a batch size of 512.

5. Discussion and Analysis

In this section we analyze the effectiveness of SynGround
and what are the contributing factors to its performance
with respect to real data (Sec 5.1), performance at various
data scales (Sec 5.2), and comparison against web-crawled
data (Sec 5.3).

Table 2. Factors causing the performance gap with the real data.
We investigate how each model caused the ineffectiveness com-
pared to the real data. ‘R” for real and “S” for synthetic. I: Off-the-
shelf base model. II: Learning from real data. III-V: Sequentially
replacing real boxes, text, and images with synthetic variants.

Ex. Image Text Box ⟨I, T,B⟩
RefCOCO+

Flickr30k ∆avg

Test A Test B

I - - - – 69.35 53.77 79.38 -
II R R R 1.65M 78.89 61.16 86.46 +8.00
III R R S 1.60M 76.88 59.79 86.76 +6.98
IV R S S 1.00M 73.11 57.35 87.49 +5.15
V S S S 0.99M 73.70 56.35 86.89 +4.81

5.1. Real-Synthetic Performance Gap Factors

Table 2 analyzes the factors contributing to the performance
gap between synthetic and real data. Experiment I is the
off-the-shelf ALBEF performance, serving as a baseline.
Experiment II provides the results from training on real
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Figure 2. Pointing game accuracy improvement on RefCOCO+
and Flickr30k at various scales. The line denotes the mean im-
provement across 3 sampled subsets at each scale, and the error
bars are corresponding standard deviations.

VG image-text-boxes, leading to an average improvement
of 8%. Experiment III retains real images and texts from
VG, but employs GLIP-generated boxes. The 1.02% de-
crease in performance compared to Experiment II suggests
that the synthetic boxes, while effective, may lack the pre-
cision of manual-annotated equivalents. Experiment IV fur-
ther replaces real VG captions with synthetic captions from
SynGround (i.e., LLaVAS), resulting in an additional av-
erage reduction of 1.83%. This decline could stem from
a reduction in the number of captions (∼600K fewer) or
discrepancies in image-text alignment, coverage, and diver-
sity compared to manually curated captions (details in the
supplementary material.). Interestingly, the performance
on Flickr30k is enhanced by 1.03% over real data (II),
showing a potential distribution shift from synthetic cap-
tions. In Experiment V, the setting consists entirely of syn-
thetic image-text-box data, eliminating real images from the
dataset. Compared to Experiment IV, it modestly drops an-
other 0.34%. This minor decrement, relative to the changes
observed with synthetic texts and boxes, indicates that syn-
thetic images maintain a level of effectiveness for visual
grounding tasks comparable to their real counterparts.

5.2. Effect of Data Scale on Visual Grounding
This section explores the scalability of synthetic data. We
start the image-text-box synthesis at the scale of 250k and
then extend it to 1M (SynGround). We sample 3 times from
the 1M SynGround data and experiment with each scale
to measure variance. Fig. 2 illustrates the average point-
ing game accuracy improvement across RefCOCO+ [71]
and Flickr30k [45]. We plot the mean improvement at
each scale with lines and their standard deviations with er-
ror bars. The observed upward trend indicates a promising
scaling-up ability to use synthetic data with SynGround.

5.3. Synthetic Data vs. Web-Crawled Data
To showcase the challenge and necessity of generating ef-
fective synthetic data tailored for visual grounding, Table 3

Table 3. Comparisons of our synthetic data with web-crawled data.
The first row is the off-the-shelf base model performance, and the
second is the performance after tuning on real data. The third row
(“CC”) tunes on a subset of CC [57] image-text pairs with gener-
ated synthetic boxes, while “CCPhrase” processes the text through
LLM phrase extraction. SynGroundH

S and SynGroundS refer to
tuning on our synthetic data, relying less or more on the real data
during synthesis, respectively.

Method Data ⟨I, T,B⟩ RefCOCO+ Flickr30k ∆avg

Test A Test B

ALBEF [26] - – 69.35 53.77 79.38 -
AMC [68] Real 1,649,546 78.89 61.16 86.46 +8.00

CC Web 1,000,000 69.05 54.96 83.94 +1.82
CCPhrase Web 1,000,000 70.35 55.31 85.43 +2.86

SynGroundH
S Synthetic 719,254 71.27 56.82 86.78 +4.12

SynGroundS Synthetic 998,406 73.70 56.35 86.89 +4.81

compares our synthetic data and web-crawled data. The
first and second rows are the off-the-shelf and tuning on
real VG data, respectively. For fair comparisons, we ran-
domly sample 1M web-crawled data from Conceptual Cap-
tions (CC) [57], approximately matching the scale of our
synthetic data. As CC data only encompasses images and
texts, we add synthetic boxes using an open-vocabulary de-
tector [29], as the same in our method. Tuning the base
model on it achieves (row 3) a 1.82% average performance
gain. Additionally, He et al. [17] find that visual ground-
ing ability can be enhanced more significantly with object-
centric short phrases rather than generic image descriptions.
Considering that CC text might describe entire scenarios,
we further apply our LLM phrase extraction (row 4) and
generate synthetic boxes for the synthetic text phrases, lead-
ing to a greater average improvement of 2.86%. How-
ever, to our best effort, we can not make the web-crawled
data reach a similar enhancement with our synthetic data
(SynGroundHS , SynGroundS). Our experimental results in-
dicate that it is non-trivial to curate or synthesize image-
text-boxes for visual grounding. The image and text fa-
vored by visual grounding seem to feature specific proper-
ties, such as images with multiple objects and text for region
descriptions.

6. Conclusion

We propose SynGround – an effective framework to gen-
erate synthetic training data for improving visual ground-
ing. SynGround can augment real data to yield further per-
formance gains, and surpasses the efficacy of web-crawled
data in visual grounding. Furthermore, SynGround is scal-
able and capable of generating theoretically infinite data us-
ing LLMs for image description generation.
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