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Abstract

While programming is one of the most broadly applicable skills in modern society,
it is unclear how well state-of-the-art machine learning models can write code. De-
spite its importance, there has been surprisingly little work on evaluating code gen-
eration, and it can be difficult to assess code generation performance in an accurate
and rigorous manner. To meet this challenge, we introduce APPS, a benchmark for
code generation. Unlike prior work in more restricted settings, our benchmark mea-
sures the ability of models to take an arbitrary natural language specification and
generate satisfactory Python code. Similar to how companies assess candidate soft-
ware developers, we evaluate models by checking their generated code on test cases.
Our benchmark includes 10,000 problems, which range from having simple one-
line solutions to being substantial algorithmic challenges. We fine-tune large lan-
guage models on both GitHub and our training set, and we find that the prevalence
of syntax errors is decreasing exponentially as models improve. Recent models such
as GPT-Neo can pass approximately 20% of the test cases of introductory problems,
so we find that machine learning models are now beginning to learn how to code.
As the social significance of automatic code generation increases over the coming
years, our benchmark can provide an objective measure for tracking advancements.

“Everybody should learn to program a computer, because it teaches you how to think.” — Steve Jobs

1 Introduction

Computer programming can be found in nearly all parts of society. Spanning entertainment, health-
care, education, and more, programming is an extraordinarily general tool with applications that are
vast in scope. As computers are becoming more ubiquitous in modern life, rising demand for high-
quality code draws an ever-greater number of aspiring programmers to the profession. After years of
study to become proficient coders, human experts are are able to convert abstract specifications of
diverse cognitive tasks into concrete programs.

In the past few years, large-scale language models have shown promise in generalizing to various
cognitive tasks, including linguistic inference (Wang et al., 2019a), commonsense reasoning (Zellers
et al., 2019; Huang et al., 2019; Bisk et al., 2019), logical deduction (Liu et al., 2020), mathematics
(Polu and Sutskever, 2020; Hendrycks et al., 2021c), and general understanding of multiple domains
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Figure 1: An example problem from APPS (left) along with possible generated code (middle) and
two example test cases we use to evaluate the generated code (right). Our evaluation framework has
test cases and 10,000 code generation problems of varying difficulty levels.

of human knowledge (Hendrycks et al., 2021b). However, whether large-scale language models can
reliably write code remains an open question.

Motivated by the potential of language models and the need for thorough code generation evaluation,
we introduce APPS, a benchmark for code generation from natural language specifications. Unlike
prior work on code generation with Transformer language models (Vaswani et al., 2017), which
mostly focuses on code translation (Lachaux et al., 2020) and pseudocode-to-code (Kulal et al., 2019),
we evaluate models on their ability to take specifications given in natural language and write code
that meets these specifications. This setting mirrors how human coders are evaluated and is a more
realistic and informative setting in which to benchmark models.

APPS provides a precise and comprehensive view of code generation. APPS evaluates models not
only on their ability to code syntactically correct programs, but also on their ability to understand task
descriptions and devise algorithms to solve these tasks. It contains 10,000 programming problems at
various levels of difficulty, covering simple introductory problems, interview-level problems, and
coding competition challenges. If a model were to perform well on APPS, this would indicate an
ability to flexibly use data structures and programming techniques, as well as an ability to correctly
interpret diverse task specifications, follow instructions, and understand human intent (Hendrycks
etal., 2021a).

For most text generation tasks, high-quality evaluation requires human feedback, which can be
time-consuming or carry pecuniary costs. As a result, automatic metrics such as BLEU (Papineni
et al., 2002) are often used to compare methods, but these metrics do not necessarily track program
correctness. Since the objective for code generation is to produce correct programs, we assess
programs not with BLEU but with test cases and error catching. Evaluating code generation on APPS
is facilitated by a large bank of over 130,000 test cases. The test cases are specifically chosen to
probe correct functionality across the input space. By using test cases, we provide a gold-standard
metric for code generation quality.

In our experiments, we find that models are now starting to exhibit nonzero accuracy and solve some
coding problems. Additionally, as models improve, we observe that syntax errors are exponentially
decreasing. We also find further evidence that BLEU is a problematic metric for code generation,
sometimes being anticorrelated with gold-standard accuracy. We find that accuracy decreases with
difficulty level and improves through fine-tuning and model size increases. The strongest model that
we evaluate on introductory problems passes almost 20% of test cases given five attempts. These
results position code generation as a challenging but now tractable testbed for large-scale language
models.

Writing code to meet specifications in natural language is an economically valuable task with
widespread social implications should it be solved, as it could eventually facilitate malicious code
generation and one day result in job automation. As large-scale language models have the potential



PY150 CONCODE SPoC APPS

Programming Language Python Java C++ Python

Test Cases X X v’ v’

Number of Programs N/A 104,000 18,356 232,421

Lines per Program (Avg.) 1 26.3 14.7 18.0
Number of Exercises 3,000 104,000 677 10,000

Text Input Python Docstrings Pseudocode  Problem Descriptions

Table 1: A comparison of the APPS dataset to existing datasets for converting between text and code.
APPS has over an order of magnitude more ground-truth solutions than these datasets, test cases, and
natural language problem descriptions.

to make significant progress on code generation, it is essential that we begin to track advancements
on this task. Our new benchmark facilitates measuring performance in an accurate and rigorous
manner. Using APPS, we find that programming is very difficult for modern language models, though
performance is improving. Thus, the APPS benchmark can provide foresight about the performance
of future large-scale language models at the critical task of program synthesis from natural language.
The dataset is available at https://github.com/hendrycks/apps.

2 Related Work

Program Synthesis. Program synthesis is the task of generating a computer program that satisfies
given specifications. Deductive program synthesis uses formal logic specifications to define a
search problem. Complex optimization techniques are used to generate programs satisfying these
specifications (Alur et al., 2018). Because specifications must be converted into a formal language,
these approaches can be rigid. Inductive synthesis from example input-output behavior can provide
an alternative to formal specification (Cai et al., 2017; Gulwani et al., 2017), but it is often hard to
full specify behavior with examples, as any machine learning practitioner is well-aware.

An alternative to formal or inductive specification is to specify program behavior in natural language,
which prior work has considered in constrained settings. Raza et al. (2015) and Desai et al. (2016)
generate short programs using ad-hoc programming languages to solve specifications such as “Any
2 letters followed by any combination of 6 whole numbers.” Yu et al. (2018) introduce the Spider
dataset for converting natural language queries into short SQL database commands. In contrast, we
consider long natural language specifications and general-purpose programming languages.

Code Understanding Datasets. Language modeling is a compelling tool for code generation,
and several works have achieved success generating code with language models in limited settings.
Lachaux et al. (2020) use unsupervised machine translation techniques to translate functions across
programming languages, attaining identical behavior after translation in many cases. Kulal et al.
(2019) introduce SPoC, a method for converting pseudocode to code utilizing seq2seq machine
translation with an additional search step. To train SPoC, they collect line-by-line descriptions of C++
programs using Amazon Mechanical Turk. Recently, Lu et al. (2021) introduce the CodeXGLUE
benchmark which aggregates various previous benchmarks and use CodeBLEU (Ren et al., 2020)
and CONCODE. Iyer et al. (2018) investigate generating Java code from docstrings and evaluate
performance with BLEU. The docstrings are often incomplete specifications of what should be coded
and only 14.7 words long on average, e.g. “Convert mixed case to underscores.” By comparison,
problem specifications in our new APPS benchmark are self-contained and have a much larger
average length of 293.2 words. Unlike Iyer et al. (2018), APPS contains test cases for every exercise,
enabling a high-quality evaluation of code correctness. Further comparisons are in the Appendix.

Evaluating Large-Scale Language Models. Modern large-scale language models have demon-
strated impressive capabilities across a variety of text-based tasks. On the SuperGLUE benchmark
(Wang et al., 2019b), some models now exceed human performance. On many commonsense reason-
ing benchmarks, performance is rising quickly (Zellers et al., 2019; Huang et al., 2019; Bisk et al.,
2019). Even when language models are evaluated across diverse technical areas such as law and
medicine, performance is surprisingly high and poised to improve as models are scaled up further
(Hendrycks et al., 2021b). With rapid improvements across numerous datasets, finding resilient
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benchmarks on which models significantly underperform humans is challenging. APPS represents an
attempt to fill this gap and cleanly separate model performance from that of expert humans.

3 The APPS Dataset

The APPS dataset consists of problems collected from different open-access coding websites such as
Codeforces, Kattis, and more. The APPS benchmark attempts to mirror how humans programmers are
evaluated by posing coding problems in unrestricted natural language and using test cases to evaluate
solution correctness. The problems range in difficulty from introductory to collegiate competition
level and measure coding and problem-solving ability.

The Automated Programming Progress Standard, abbreviated APPS, consists of 10,000 coding
problems in total, with 131,777 test cases for checking solutions and 232,421 ground-truth solutions
written by humans. Problems can be complicated, as the average length of a problem is 293.2 words.
The data are split evenly into training and test sets, with 5,000 problems each. In the test set, every
problem has multiple test cases, and the average number of test cases is 21.2. Each test case is
specifically designed for the corresponding problem, enabling us to rigorously evaluate program
functionality.

Dataset Construction. To create the APPS dataset, we manually curate problems from open-access
sites where programmers share problems with each other, including Codewars, AtCoder, Kattis, and
Codeforces. Problems are posed as natural language specifications of what should be coded, and they
come in various formats. To improve quality and consistency, we wrote custom HTML parsers for
each source of problems, which allows us to properly format LaTeX expressions, lists, and sections in
the question text. Where necessary, we convert equation images to LaTeX using the MathPix API, and
we remove problems that rely on image figures. We also perform deduplication using tf-idf features
with SVD dimensionality reduction and cosine similarity. Several graduate and undergraduate student
authors polished and refined this dataset over the course of six months, ensuring a high-quality set of
problems.

Executing and evaluating arbitrary Python code is challenging. On the websites we source data from,
human solutions are allowed to run arbitrary code, including import statements for common modules
and libraries. To handle this, each website implements a custom judging system for solutions. We
design a testing framework with this in mind, which merges the judging functionality of several
websites. We also standardize the format of test cases. The end result is that solutions are allowed to
execute arbitrary Python code, and the results are compared against test cases for a given problem.

Dataset Difficulty. Each of our problem sources uses a separate scale for measuring difficulty. We
place problems from these different sources into three categories. For example, problems from Kattis
with difficulty less than 3 are categorized as “introductory,” problems with difficulty between 3 and 5
as “interview,” and problems with difficulty greater than 5 as “competition.”

1. Introductory Level. These are problems that most programmers with 1-2 years of expe-
rience can answer without requiring complicated algorithms. Examples of such problems
include counting the number of vowels in a string, or returning the running sum of a list of
integers. There are 3,639 problems classified as introductory level and 1,000 in the test set.

2. Interview Level. These are problems that are more algorithmic and difficult in nature and
would be at the level of questions asked in programming technical interviews. Examples
of such problems might include those involving data structures such as trees or graphs,
or problems that requiring nontrivial algorithms. There are 5,000 problems classified as
interview level and 3,000 in the test set.

3. Competition Level. These are problems are the most challenging and are at the level of the
most advanced high school and collegiate programming competitions, including USACO,
101, and ACM. There are 1,361 competition level problems and 1,000 in the test set.

Problem Formats. To accommodate a broad range of problem sources, problems in APPS come
in two formats.

 Call-Based Format problems generally provide initial starter code, usually in the form of a
function header, and ask for the solution to be provided as the function’s return value.



Problem

You are given a string s = s15s . .. S, of length n, which only contains digits 1, 2,..., 9. A substring
s[l...r] of sis a string $;8;418142 .- Sr. A substring s[l...7] of s is called even if the number
represented by it is even. Find the number of even substrings of s. Note, that even if some substrings
are equal as strings, but have different [ and r, they are counted as different substrings. The first line
contains an integer n (1 < n < 65000) — the length of the string s. The second line contains a string
s of length n. The string s consists only of digits 1, 2,..., 9. Print the number of even substrings of s.
Model Output

n = int (input())
s = input ()
ans = 0
for i in range (n):
for 3 in range (i, n):
if int(s[i:J+1]) % 2 == 0:
ans += 1
print (ans)

Figure 2: Model-generated code from GPT-2 1.5B. 18/18 test cases pass for the problem. Note that
models were given in problems exactly as they they are formatted here, which even meant parsing
IATX. For brevity, we exclude formatting instructions from this depicted problem.

» Standard Input Format problems generally lack starter code. Instead, the model is only
provided with the problem and must output its answers to the STDOUT stream, such as by
using print statements.

For the call-based format problems, we prompt models using the following inputs:

"\nQUESTION:\n" + g_str + "\n" + starter_code_str + "\n" + "\nUse
Call-Based Format\n\nANSWER:\n"

For the above prompt, the variable g_str represents the raw text of the problem statement. The
variable starter_code_str represents the starter code given in the problem definition, or the
empty string if no starter code was provided. For the standard input format problems, we prompt
the model with the input string as before, but we replace “Call-Based Format” with “Standard Input
Format.” Note that if starter code is given, it is only part of the input. This means that to use the
starter code, a model must learn to copy the starter code at the beginning of its outputted answer in
order to get the question correct. We find that fine-tuned models are able to do this without difficulty.

Test Case Quality. In the APPS test split, the average number of test cases is 21.2, but some
problems only have two test cases. These problems mainly come from Kattis and were chosen for
the test split due to limited numbers of competition problems. A potential concern is that these
problems could result in false positives if models happen to guess both test cases correctly. This is
very unlikely in problems with large output spaces, but some problems have small output spaces,
such as {“YES”, “NO”}. Although the model must narrow down these two options from the space of
all possible strings, we find that this is not difficult for current models to accomplish, and this may
cause false positives in our evaluation.

To quantify the impact of these problems, we took all 2- and 3-test-case problems that GPT-Neo 2.7B
passed and manually checked for false positives. Out of 12 problems that the model got correct with
2 test cases, 8 were false positives. Out of 6 problems with 3 test cases, only 1 was a false positive.
Since the test cases are from coding challenge websites with many users, we can assume that false
negatives are absent. Thus, the false positive rate with 2 test cases is 8/(890 — 4) = 0.009 < 1% and
1/(765—5) = 0.001 < 1% with 3 test cases. The upshot is that the potential for noise is significantly
less than that of most naturally annotated datasets.



Problem

You are given two integers n and m. Calculate the number of pairs of arrays (a, b) such that: the
length of both arrays is equal to m; each element of each array is an integer between 1 and n
(inclusive); a; < b; for any index ¢ from 1 to m; array a is sorted in non-descending order; array b is
sorted in non-ascending order. As the result can be very large, you should print it modulo 10° + 7.
Input: The only line contains two integers n and m (1 < n < 1000, 1 < m < 10). Output: Print one
integer — the number of arrays a and b satisfying the conditions described above modulo 10° + 7.

Model Output

n, m = map(int, input().split())
mod = 10*x%9+7

fact = [1, 1]
factinv = [1, 1]
inv = [0, 1]

for i in range (2, n+l):
fact.append((fact[-1] * i) % mod)
inv.append((-inv[mod % i] * (mod//i)) % mod)

)
factinv.append((factinv[-1] % inv[-1]) % mod)

o)

def cmb(n, r, mod):
if (r < 0) or (n < r):
return 0O
r = min(r, n — r)
return fact[n] x factinv([r] * factinv[n-r] % mod

print ((cmb(n, m, mod) x cmb(m-1, n-1, mod)) % mod)

Figure 3: An example from GPT-2 1.5B. Although the code generated passes O test cases, it looks
plausible at first glance.

4 Experiments

4.1 Experimental Setup

Models. We use GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), and GPT-Neo (Black
et al., 2021) models. The GPT architecture is especially appropriate for text generation because it is
autoregressive. However, GPT-2 was not pretrained on code, so we pretrain it on GitHub as described
in the next paragraph. Anecdotal evidence indicates that GPT-3 can generate code. To determine the
extent of its code generation ability, we use the ‘davinci’ (Instruct series) model, the largest publicly
available model speculated to have 175 billion parameters. Finally, GPT-Neo has an architecture
similar to GPT-3, and it was pretrained on the Pile (Gao et al., 2020) which includes GitHub. Unlike
GPT-3, GPT-Neo’s weights are publicly available, hence we are able to fine-tune it with APPS.

GPT-2 Pretraining. Since GPT-2 was trained on natural language and not code, we collected
GitHub code to further pretrain GPT-2. GitHub repositories with fewer than one star were filtered
out. While Neo’s GitHub pretraining data did nof undergo an APPS data decontamination process,
our GPT-2 models are trained on decontaminated data. Specifically, all repositories matching certain
keywords that would suggest overlap with common programming exercises were removed. We
provide the list of keywords in the Supplementary Materials. We also discard any GitHub code that
contains functions with the same signatures as functions in the starter code in many of our APPS
problems. This leaves us with 30 GB of Python code. To improve the efficiency of pretraining, we
process all Python code in the pretraining dataset by converting from spaces to tabs, which saves the
character conversion when running model tokenizers.

Fine-tuning. During fine-tuning with APPS, the objective is to predict the entire code solution,
given both the English text problem statement and the problem format (call-based format or standard
input format). For problems with starter code, we exclude the starter code from the training loss.



Test Case Average Strict Accuracy

Model Introductory Interview Competitive Average | Introductory Interview Competition Average
GPT-20.1B 5.64 6.93 437 6.16 1.00 0.33 0.00 0.40
GPT-2 1.5B 7.40 9.11 5.05 7.96 1.30 0.70 0.00 0.68
GPT-Neo 2.7B 14.68 9.85 6.54 10.15 3.90 0.57 0.00 1.12
GPT-3 175B 0.57 0.65 0.21 0.55 0.20 0.03 0.00 0.06

Table 2: Average percentage of test cases passed and strict accuracy for each model and difficulty
level. All values are percentages. Note ‘0.1B’ indicates the number of model parameters in billions.
GPT-3 is a few-shot model and not fine-tuned, unlike the other models. GPT-Neo does best and
attains approximately 4% strict accuracy on Introductory problems, and for these problems it passes
approximately 15% of the test cases.

Across pretraining and fine-tuning, we use the AdamW optimizer (Loshchilov and Hutter, 2019),
a batch size of 256, and a weight decay of 0.05. We fine-tune for 10 epochs. We use DeepSpeed
and its implementation of the ZeRO optimizer to reduce memory consumption while training large
models (Rasley et al., 2020; Rajbhandari et al., 2020). Unless otherwise specified, we use the default
HuggingFace generation parameters, except that we use beam search with a beam size of 5. Models
are fine-tuned on 8 A100 GPUs.

4.2 Metrics

To obtain a comprehensive evaluation of code generation ability, we use the large bank of test cases
and ground-truth solutions provided with APPS. Test cases allow for automatic evaluation, even
though the the space of possible programs can be combinatorially large. Therefore, unlike many
other text generation tasks, manual analysis is not necessary. We aggregate the generated code’s
performance on test cases with two metrics, “test case average” and “strict accuracy.”

Test Case Average. We compute the average fraction of test cases passed. Concretely, let the
number of problems in the test set be P. For a given problem p, let the code generated to solve

problem p be denoted (code,), and set of test cases for problem p be {(z ., yp,c)}fz”l' Then the
test case average is
I on 1
Z 1{eval({codep), Zp.c) = Yp.c}
p:l p c=1

Oftentimes, solutions can successfully pass a subset of the test cases but not cover every corner
case. This allows for less stringent model evaluation, as strict accuracy may currently obscure model
improvements.

Strict Accuracy. Eventually, generated solutions should pass all test cases including corner cases.
To compute the strict accuracy which requires programs pass every test case, we run the code generated
by the model on every test case of every problem. Strict accuracy is then computed by taking the
number of solutions passing every test case divided by the total number of exercises. Using the

notation from before, we can write the strict accuracy as + 25:1 ]_[Sil 1{eval({code,),zp.) =
Yp,c }- Future research may only use strict accuracy when models become sufficiently capable.

4.3 Model Performance Analysis

Qualitative Qutput Analysis. Models can sometimes generate correct or superficially plausible
code. Figure 2 shows code generated by GPT-2 1.5B that passes all test cases. When models do
not pass the test cases, sometimes their generated code still appears plausible at first glance. For
example, in Figure 3, we see that the 1.5B parameter model generates code that is related to the
problem statement and makes a plausible attempt to solve it.

Test Case Evaluation. We show the main results in Table 2. We observe that models are able to
generate code that passed some test cases, implying many generated programs are free of syntax errors
and can successfully process inputs test cases to produce correct answers. Note that for Introductory
questions, GPT-Neo passes approximately 15% of the test cases. We visualize Test Case Average
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passed increases with larger fine-tuned models. ~ With fine-tuning and increased model sizes. GPT-
Neo 2.7B has very few syntax errors.

results in Figure 4. This demonstrates models are showing marked improvements on code generation
and now starting to have traction on code generation.

Performance can be further improved by sampling mul-

tiple solutions and selecting the best. Here, we per-

form beam search with beam width 5 and evaluate its Top-1  Top-5
5 beams, so that each model has five attempts to get Test Case Average | 14.7% 19.9%
a problem correct rather than one. With this setup, Strict Accuracy 3.9% 5.5%
GPT-Neo’s strict accuracy on Introductory problem
then exceeds 5%, as shown in Table 3. Our results in Table 3: GPT-Neo 2.7B performance on in-
the Supplementary Materials show that the top-5 test troductory problems using one generated
case average GPT-2 0.1B is 10.75 while the top-1 test program (Top-1) and the best of five gener-
case average of GPT-2 1.5B is 7.96. This highlights ated programs (Top-5). Full results are in
that simply sampling multiple candidate solutions is a the Supplementary Materials.

powerful way to markedly improve performance.

Our results also provide us with information about the

importance of model choice. Evidently existing few-shot GPT-3 models are not necessarily better at
code generation than fine-tuned models that are smaller by two orders of magnitude. Additionally,
performance improvement from GPT-2 1.5B to GPT-Neo 2.7B is larger than that from GPT-2 0.1B
to GPT-2 1.5B. Potential causes of GPT-Neo’s better performance are that GPT-Neo is trained on
more code from GitHub, it has more parameters, or its architecture hyperparameters were chosen
better. Memorization explaining all performance is an implausible explanation as performance tracks
problem difficulty; were models just memorizing, we would expect uniform performance across
difficulties. Since models still have large room for improvement, solving the APPS benchmark
without unreasonable amounts of computational resources may require architectural or algorithmic
improvements.

Syntax Errors. We now assess the frequency of syntax errors, errors that prevent the program from
being interpreted including inconsistent spacing, unbalanced brackets, missing colons, and so on.
Syntax errors are identified in our testing framework based on the heuristic of whether pyext is able
to load the generated code as a Python module. For our purposes, this almost exclusively occurs for
syntax errors. We visualize the prevalence of syntax errors in Figure 5. While approximately 59% of
GPT-3’s generated solutions for introductory problems have syntax errors, GPT-Neo syntax error
frequency is approximately 3%. Note that recent work such as Yasunaga and Liang (2020) create a
separate model to repair source code to fix compilation issues, but our results suggest that such efforts
may be unnecessary in the future as syntax error frequency is sharply decreasing automatically.



BLEU. We find that assessing model performance with BLEU is a poor substitute for evaluating
with test cases. To evaluate BLEU, we take the generated solution and compute its BLEU with each
human-written solution for a given problem; we then record the highest BLEU score. Observe in
Figure 6 that BLEU increases as problem sources become more difficult, even though models actually
perform worse on harder problems. Moreover, worse models can have similar or higher BLEU scores.
For example, GPT-2 0.1B has 26.8, 29.7, and 30.2 as BLEU scores for introductory, interview, and
competition problems, respectively. Meanwhile GPT-Neo 2.7B has 27.1, 29.1, and 29.3 as its BLEU
scores, respectively. Hence BLEU wrongly suggests GPT-Neo is a worse model.

Evaluating GPT-3. We evaluate GPT-3 175B
on APPS in a few-shot setting. A separate 32|3|_|5u Does Not Track Performance WeII16

prompt is used for standard input and call-based
questions, and each prompt includes instruction e BLEU L 14
> . 31 mmm Test Case Average (%) -
text along with two example questions and solu- 128
tions from the corresponding question type. We 30 g
find that GPT-3 only solves 3 problems out of S roe
5,000: two introductory problems and one inter- & g | 8 2
view problem. The two introductory problems © 6 2
. . . . ©
are simple interpretation tasks, such as imple- 28 o
menting a specified algebraic expression. The r4 é
interview problem requires higher-level thinking 271 2
that suggests nontrivial reasoning. However, it 0

is possible that GPT-3 memorized the solution Introductory  Interview  Competition
during pretraining, or that it took a lucky guess
based on heuristics in the question. One poten-
tial factor in GPT-3’s poor performance is that Figure 6: BLEU scores for GPT-Neo 2.7B increase
it handles syntax p()()r]y. Namely, we observed Wwith difﬁculty level and are anticorrelated with a
cases where improper formatting of otherwise gold-standard accuracy metric.

functioning code causes a syntax error. For spe-

cific examples and more details, see the Supplementary Materials.

Problem Difficulty

Evaluations on Larger Models. Since the public release of APPS, several others have trained
even larger models on APPS than we evaluate here. OpenAl Codex is a 12B parameter Transformer
language model pre-trained on large quantities of public code and comments. Chen et al. (2021)
evaluate Codex on APPS under various configurations and achieve top-1 and top-5 accuracy on
introductory problems of 4.14% and 9.65% respectively, close to double the top-5 accuracy of
GPT-Neo 2.7B. Furthermore, by scaling up to a top-1000 evaluation they obtain 25% accuracy.
This demonstrates that larger models trained specifically for code generation can improve APPS
performance even further, but are still far from solving the task.

5 Conclusion

We introduced APPS, a benchmark of 10,000 Python programming problems. Unlike prior work
that focused on pseudocode to code generation or translation between programming languages, our
benchmark measures how well language models can generate python code given natural language
specifications. By performing extensive quality assurance and including hundreds of thousands of
test cases and ground-truth solutions across different difficulty levels, we created a comprehensive
and rigorous testbed for evaluating models. We assessed state-of-the-art generative models on our
benchmark and found that overall performance was low. However, the prevalence of syntax errors
decreased exponentially as models improved, and recent models such as GPT-Neo solved over 5% of
our introductory problems. As models become more competent at code generation, it is important to
have a proxy for tracking this capability which could one day result in automation or malicious code
generation. The APPS benchmark can provide an important measure for tracking upstream program
synthesis advancements.
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