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Abstract

Recent research on Large Language Model
(LLM) judges in search largely focuses on their
role as offline evaluators. Instead, this paper
investigates using LLMs closer to simulation,
focusing on using them as proxies for human
feedback. We present LLM-Augmented Rel-
evance Feedback (LARF), which synthesises
the latest LLM Judge methods with Query
Reformulation and Query-by-Document rele-
vance feedback integration approaches to im-
prove the set of candidate documents. We per-
form experiments on standard conversational
search benchmarks, TREC 1IKAT and CAST.
Our work address three research questions: (1)
What is the retrieval benefit when LARF is used
with human feedback? (2) How does noise
in relevance judgements impact downstream
feedback effectiveness? (3) What are issues
with the current LLM judges when used with
LARF? We find that with human judgements,
Query-by-Document achieves new state-of-the-
art results, significantly outperforming previous
work (48% nDCG@3 on CAsT). We study how
effectiveness degrades as judgements become
noisier. And, when using current automatic
LLM judges, we find 18% nDCG@3 gain over
previous state-of-the-art on CAsT. We conclude
that LARF offers a new and effective mecha-
nism for improving retrieval quality in conver-
sational search and highlight the need for reduc-
ing noise, particularly for complex personalised
tasks.

1 Introduction

The role of Large Language Models (LLMs) in
search quality evaluation is hotly debated. Propo-
nents cite LLMs’ ability to approximate human
judgments at scale, reduce evaluation costs, and en-
sure benchmark consistency (Thomas et al., 2024;
MacAvaney and Soldaini, 2023; Upadhyay et al.,
2024b,c,a). Conversely, LLM evaluation may in-
troduce bias, hallucinate relevance, reinforce train-
ing data patterns, or impose artificial performance

ceilings, distorting outcomes and hindering system
comparison (Takehi et al., 2024; Faggioli et al.,
2023; Soboroff, 2025; Dietz et al., 2025; Clarke
and Dietz, 2024).

Instead of focusing on LLMs for offline evalu-
ation to replace human judges, we instead focus
on how they can be leveraged to improve core re-
trieval effectiveness during search. Soboroff (2025)
argues that asking an LLM to predict document
relevance is functionally identical to asking it to
rank documents. In this work, we experiment with
using the same state-of-the-art LLM judges used of-
fline and leverage them as part of automatic online
feedback during the search process.

The concept of simulating user preferences to
guide retrieval is well-established, and relevance
feedback (RF) is a primary mechanism by which
this simulation is realised. Such feedback, aiming
to improve effectiveness by acting on user prefer-
ence signals, can be sourced from dedicated user
simulators generating interactive responses (Owoi-
cho et al., 2023; Salle et al., 2022; Sekuli¢ et al.,
2022), or through judgements intrinsic to tech-
niques from classical Rocchio (Rocchio, 1971) and
RM3 (Abdul-Jaleel et al., 2004) to modern gener-
ative RF (GRF) (Mackie et al., 2023). Our work
synthesises these threads, proposing LLM judges
as active sources of generative RF, dynamically
steering search towards improved effectiveness.

We propose a new approach, LLM-Augmented
Relevance Feedback (LARF). LARF has two com-
plementary types of feedback policies for inte-
grating LLM-generated feedback into retrieval:
a Query-Reformulation Policy that integrates the
feedback from the top-N candidate documents of
an initial retrieval pass and a Query-By-Document
Policy that utilises the larger set of candidates. Both
enrich retrieval by injecting targeted relevance in-
formation at key decision points, using LLM judge-
ments to guide the search system.

We systematically evaluate the efficacy and



boundaries of this role for LLM judges by asking:

RQ1 What is the retrieval benefit when LARF is
used with human relevance judgements?

RQ2 How does retrieval effectiveness degrade
as controlled noise is introduced to human judge-
ments?

RQ3 How do current state-of-the-art LLM judges
perform with LARF in the context of RQ2? And
what is the impact on end-to-end effectiveness
when compared with human feedback?

We perform experiments on multiple standard
conversational search benchmarks, TREC 1IKAT
2023 (Aliannejadi et al., 2024) and TREC CAST
2022 (Owoicho et al., 2022). We find that human
feedback significantly and dramatically improves
retrieval effectiveness. We characterise how that ef-
fectiveness degrades as noise is added. We find that
depending on the policy used, current LLMs are
just on the cusp of providing benefits and need fur-
ther improvement providing gains of up to 18% in
nDCG@3 over previous systems on TREC CAST.
The results also highlight that more complex per-
sonalised tasks in iKAT result in higher levels of
LLM judge noise, showing an important area for
future work.

2 Retrieval Pipeline

We address enhancing search system output qual-
ity via feedback. Given an initial query ¢, we use
document-level relevance feedback to refine the re-
sults presented to the user. Specifically, we aim to
improve the retrieval pool, documents ultimately
reranked and surfaced as results, by leveraging this
feedback. Our approach, depicted in Figure 1, op-
erates in a multi-step pipeline:

1. Candidate Generation: Given query ¢, a
base search system retrieves an initial candi-
date set of documents D, from the corpus.

2. Document Feedback: A judge provides rele-
vance feedback (score or category, e.g., highly
relevant) for each d € D, with respect to ¢,
simulating a user’s initial assessment.

3. Pruning: Documents below a relevance
threshold 6 are pruned from D., yielding
D, C D.. This aligns with information for-
aging’s principle of abandoning low ’informa-
tion scent’ patches (Pirolli and Card, 1999),
focusing resources on promising candidates.

4. Pool Expansion: D, documents seed re-
trieval of additional related documents D, to
enrich the candidate set D,, uncovering items
missed by initial retrieval. This mirrors infor-
mation foraging’s exploration of new patches
from cues in exploited ones (Pirolli, 2007).
Seed selection and expansion use one of two
policies:

* The Query-Reformulation Policy
(Gupta and Dixit, 2023; Hust et al.,,
2002; Al-Thani et al., 2023) uses a small
number top-ranked documents in D,
as seeds. This policy emphasises ex-
ploitation of strong signals of relevance,
akin to deeply mining a high-scent
information patch.

The Query-By-Document Policy (Abol-
ghasemi et al., 2022; Yang et al., 2009;
Weng et al., 2011) draws seeds from a
broader range of documents within D,
allowing the system to explore more di-
verse or peripheral content areas and pro-
mote information patch enrichment.

5. Reranking: The updated pool D, U D, is
reranked to produce the final ranked list pre-
sented to the user.

This framework enables investigation of how
feedback type and fidelity impact retrieval effec-
tiveness and allows quantification of system robust-
ness to feedback imperfections. Section 3 details
policy instantiations and mechanisms employed for
each step in the pipeline.

3 Implementation

3.1 Retrieval Pipeline

Our retrieval pipeline, as outlined in Section 2, is
implemented as follows:

3.1.1 Candidate Generation

Initial candidates D, are retrieved using a BM25
(Robertson et al., 1995) + MONOTS (Nogueira
et al., 2020) baseline. This choice isolates our feed-
back mechanism’s impact and facilitates rapid ex-
perimentation with simpler, faster components. In-
dexing and BM25 retrieval (parameters k1 = 4.46,
b = 0.82 based on Castorini (2023) from a similar
document retrieval task; up to 1000 docs/query) use
Pyserini (Lin et al., 2021). These 1000 documents
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Figure 1: Overview of our feedback driven retrieval pipeline. 1. Candidate Generation: An initial document pool
(D.) is retrieved. 2. Document Feedback: A judge assesses relevance (information scent) for each document. 3.
Pruning: Documents with insufficient scent are removed, forming D,,. 4. Pool Expansion: D,, seeds the retrieval
of new documents D, to enrich the pool, guided by foraging principles. 5. Reranking: The final pool (D, U D) is

reranked for presentation.

are then reranked by a MONOTS5! model (trained
on MS MARCO passage ranking (Nguyen et al.,
2016)) to form the candidate set D...

3.1.2 Document Feedback

We explore three distinct types of "judges" to simu-
late feedback under varying levels of accuracy and
realism, matching our research questions:

Human Judge We simulate a human judge based
on professional TREC? assessments included in our
target benchmarks’ relevance judgements. Docu-
ments without ground-truth labels are assumed to
be non-relevant.

Noisy Human Judge For robustness analysis,
we design a Noisy Judge that simulates imperfect
feedback by injecting Bernoulli noise (Frénay and
Verleysen, 2013; Bernoulli, 1713) into the human
judgements. With probability p, a document’s score
is replaced by a random incorrect score. This mod-
els a generic probabilistically imperfect annotator
to study retrieval robustness at a specified error rate
p. Experiments with this judge are averaged over
5 runs with 95% confidence intervals due to the
stochasticity introduced.

Automatic LLM Judge We study representa-
tive LLM-based judges and one non-LLM baseline
judge. The LLM judges were prominent partici-
pants in the LLM Judge Challenge at SIGIR 2024
(Rahmani et al., 2025), which evaluated automatic
relevance assessment approaches on TREC 2023

"https://huggingface.co/castorini/monot5-base-msmarco-
10k
Zhttps://trec.nist.gov/

Deep Learning track (Craswell et al., 2024) judge-
ments. Judges are designed to predict a relevance
score on a 0-3 scale. We select judges based on
their reported performance on key inter-rater reli-
ability metrics in the challenge’s overview paper
and validated our implementations on a 5-fold split
of the challenge’s dev set, supplemented with 3000
randomly selected relevance judgements from our
target IKAT and CAST benchmarks.

e WILLIA-UMBRELA1 (GPT-40%): Achieves
strong Cohen’s x via zero-shot prompting
with the UMBRELA framework (Upadhyay
et al., 2024c) based on the techniques intro-
duced in Thomas et al. (2024).

* OLZ-GPT40 (GPT-40):, Achieves strong
Krippendorff’s « via a simple prompt asking
for the relevance judgement directly.

e TREMA-4PROMPTS (LLAMA-3-8B-
INSTRUCT?): Achieves high Kendall’s 7 and
Spearman’s Rank Correlation by decompos-
ing relevance into four criteria (exactness,
coverage, topicality, contextual fit), assessing
for each independently, then combining them
to determine overall relevance (Farzi and
Dietz, 2024).

* H20LOO-FEWSELF (GPT-40): Achieves
high Krippendorff’s « via prompting tech-
niques from Thomas et al. (2024), similar to
WILLIA-UMBRELA1, but with in context ex-
amples.

3https://platform.openai.com/docs/models/gpt-40

*https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct



* MONOTS5-JUDGE (Non-LLM): Based on the
MONOTS5 reranker. We reinterpret its proba-
bility of generating "true" (for relevance) as a
0-3 score by scaling this probability by 3 and
rounding to the nearest integer.

3.1.3 Pruning

D, documents are pruned via judge feedback using
a benchmark-specific relevance threshold 6. Docu-
ments scoring below 6 are removed, yielding D,,.
For CAsT, > 2 is relevant; for iKAT, > 1. We set
0 accordingly, after mapping our judge scores to
benchmark relevance scales (Section 3.3).

3.1.4 Pool Expansion

To enrich D,, up to a rerank budget of 1000 unique
documents, matching the evaluation depth of our
target benchmarks, we apply one of two feedback
policies:

Query-Reformulation Policy Expansion seeds
are the top N documents in D, (by original
MONOTS5 score; N empirically set to 1 due to
diminishing returns observed in preliminary exper-
iments, see Appendix A). For each seed, one of
three methods generates a new BM25 query to re-
trieve D,: (1) GPT-40-MINI® summary of seeds
with respect to ¢ (see Appendix C.1 for prompt);
(2) GPT-40-MINI reformulated query from seeds
(see Appendix C.2 for prompt); or (3) the combined
full texts of the seeds.

Query-By-Document Policy This policy iterates
through documents in D,, (sorted by descending
initial MONOTS scores). For each seed in D, we
retrieve a single unique neighbour for D, using one
of three distinct methods per run: (1) Summary:
GPT-40-MINI summary of seed w.r.t. ¢ as BM25
query (Appendix C.3); (2) RM3: seed text with
RM3 expansion as BM25 query; or (3) Full Text:
seed’s full text as BM25 query

Unique retrieved neighbours are added to D..
Expansion stops when |D.| = 1,000 or seeds are
exhausted. We use one neighbour per seed to op-
timise top-rank precision (e.g., nDCG@3), as pre-
liminary tests (Appendix B) showed deeper expan-
sions hurt precision on target benchmarks (Section
3.3).

3.2 Reranking

The final pool D), U D, (up to 1000 documents) is
reranked by MONOTS with respect to query g to

>https://platform.openai.com/docs/models/gpt-4o-mini

produce the system’s output.

3.3 Experimental Setup

3.3.1 Benchmarks

We evaluate primarily on TREC CAsT 2022 (Owoi-
cho et al., 2022) and iKAT 2023 (Aliannejadi et al.,
2024). These offer (1) challenging, realistic sce-
narios with evolving needs, a robust testbed for
feedback; (2) standardised TREC data/protocols
for reproducibility; and (3) a rich conversational
context where feedback is conceptually valuable.

Both datasets include information needs that
unfold over multiple conversational turns. To
isolate our feedback mechanisms from query-
reformulation complexity, we use the context-
independent "resolved utterance" variants. Note,
however, that in the iKAT benchmark some re-
solved utterances still rely on additional context in
so-called Personal Text Knowledge Bases (PTKBs).
For example, the query, "What should I cook for
dinner?" implicitly depends on PTKB details like
“healthy and tasty recipes for my family”. Although
we treat the resolved queries as standalone, this
unmodeled PTKB context can introduce noise or
ambiguity in relevance judgements, capping per-
formance for both the baseline and our feedback
methods.

CAST has 18 topics/conversations with an av-
erage of 11.39 turns. It uses a document collec-
tion derived from MS MARCO v2 (Craswell et al.,
2022), KILT (Petroni et al., 2020), and the Wash-
ington Post 6. IKAT extends CAST’s focus to
multi-persona conversations, comprising 25 test
topics. It draws documents from the ClueWeb22-B
(Overwijk et al., 2022) corpus of approximately
117 million documents.

Both benchmarks use a 0-4 relevance scale (0-
Fails to meet; 4-Fully meets). As our judges use a
0-3 scale, we map benchmark judgements by col-
lapsing original scores 3’ (Highly) and ’4’ (Fully)
into a single *3’. This applies to our Human Judge
and for interpreting relevance thresholds (e.g., an
original > 2 remains > 2 on our 0-3 scale).

All experiments use the context-independent "re-
solved utterance" query variants included in the
benchmarks that have conversational ambiguity dis-
ambiguated by humans. We chose this to focus on
the feedback elements instead of the noisy conver-
sational query understanding elements.

®https://trec.nist.gov/data/wapost/



3.3.2 Evaluation Protocol

We evaluate performance using official bench-
mark measures (primarily nDCG@3; also Re-
call, MRR, and Precision). Our main baseline
is BM25+MONOTS5 (Section 3.1.1) without feed-
back. We include prior SOTA from IKAT/CAST
overview papers for context. Paired t-tests (p <
0.05) assess significance against our baseline. For
LLM judge validation (Section 3.1.2) and align-
ment with human evaluations, we report Cohen’s x
and Krippendorff’s ce. We run all experiments on
a server running NVIDIA RTX 6000 Ada Gener-
ation Graphics Card, with each experiment taking
between 2 to 8 hours.

4 Results and Discussion

This section presents and discusses experimental
results, framed by our research questions: (RQ1)
LARF’s effectiveness with human feedback, (RQ2)
LARF’s robustness to noise in human feedback,
and (RQ3) LARF’s effectiveness with automatic
LLM judges.

4.1 RQ1: LARF with Human Feedback

We employed the Human Judge (Section 3.1.2)
with  Query-Reformulation and Query-By-
Document feedback policies on IKAT and CAST.
Performance (Table 1) is compared against our
BM25+MONOTS5 baseline (no feedback) and prior
state-of-the-art systems for IKAT (Aliannejadi
et al., 2024) and CAST (Owoicho et al., 2022).

The results compellingly show the significant, of-
ten transformative, potential of integrating true rel-
evance feedback directly into the retrieval pipeline.
On both IKAT and CAST, both policies substan-
tially outperformed the BM25+MONOTS5 baseline
across most key metrics, validating our hypothesis
that repurposing relevance judgments for active, in-
pipeline modification yields considerable benefits
with high-quality feedback.

4.1.1 Query Reformulation Policy

With the Human Judge, this policy significantly
boosted recall. IKAT, R@1000 rose from 0.451
(baseline) to 0.508-0.552; on CAST, from 0.463 to
0.565-0.631 (Table 1). This confirms that human-
verified expansion from strong initial candidates
effectively brings more relevant documents into the
1000-document pool. However, these recall gains
translated to less pronounced top-rank precision
improvements (e.g., nDCG@3 on IKAT: 0.288 —
0.338-0.355; CAST: 0.508 — 0.545-0.583). We

attribute this to the policy’s exploitative expansion
retrieving a pool of mixed quality; while richer
in relevant documents, some lower-quality inclu-
sions challenge the final reranker’s ability to sur-
face the very best items. Across both benchmarks,
the "Full Text" expansion variant performed best or
comparably to summary-based methods, suggest-
ing that with perfect feedback, the inherent quality
of human-relevance judgements is effective, limit-
ing the added benefit of complex query/summary
generation.

4.1.2 Query-By-Document Policy

This policy yielded dramatic improvements in
precision-oriented metrics. On IKAT, nDCG@3
surged from a 0.288 baseline (0.412 prior) to 0.622-
0.683, and AP@1000 from 0.128 (0.191 prior) to
0.406-0.451. On CAST, gains were similarly strik-
ing: nDCG @3 improved from 0.508 (0.513 prior)
to 0.750-0.763, and MRR rose from 0.708 (0.717
prior) to 0.967. Critically, under oracle/human
conditions, the Query-By-Document policies es-
tablish new SOTA effectiveness on both IKAT and
CAST across key top-rank metrics, significantly ex-
ceeding prior results. This highlights the power of
leveraging diverse, high-quality relevance signals
for pool enrichment.

Intriguingly, this exceptional precision often
came with R@1000 figures at or slightly below
baseline levels GKAT 0.453; CAsT 0.463, match-
ing baseline). This occurs because selecting diverse
seeds and retrieving only a single neighbour per
seed, combined with pruning non-relevant docu-
ments, yields a highly refined, though not neces-
sarily larger, unique relevant document set. This
higher-quality, higher-precision initial pool enables
the final re-ranker (MONOTYS) to perform more ef-
fectively, leading to superior top-rank outcomes.
Conversely, the Query-Reformulation policy, de-
spite higher R@1000, creates a "noisier" pool,
diluting reranker effectiveness. Mitigating this
R@1000 behaviour in the Query-By-Document
policy while preserving precision (e.g., via alterna-
tive seed/neighbour selection) is future work.

Consistent with the Query-Reformulation, "Full
Text" or "RM3" expansion generally outper-
formed summary-based approaches for Query-By-
Document on both datasets, reinforcing that richer
seed representations benefit from high-quality feed-
back.



iKAT CAsT

System nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000 | nDCG@3 nDCG@1000 MRR R@1000 AP@1000
BM25+MONOTS 0.288 0.287 0.333 0248 0.141 0.451 0.128 0.508 0.426 0.708  0.463 0.223
Best System 0.412 0.426 0.325 0.353  0.206 0.316 0.191 0.513 0.485 0.717  0.557 0.257
Query-Reformulation Policy

(1) Summary 0.352 0.343 0.406 0305 0.174 0.549 0.174 0.583 0.531 0.795 0.622 0.321
(2) Reformulated Query 0.338 0.331 0.381 0.289  0.162 0.508 0.160 0.545 0.487 0.751 0.565 0.282
(3) Full Text 0.355 0.349 0.412 0311 0.185 0.552 0.179 0.580 0.533 0.802  0.631 0.324
Query-By-Document Policy

(1) Summary 0.622 0.621 0.517 0.620 0.349  0.453* 0.406 0.750 0.462 0965 0.463* 0.448
(2) RM3 0.664 0.667 0.535 0.651 0.361 0.452* 0.437 0.757 0.464 0.967  0.463* 0.455
(3) Full Text 0.683 0.682 0.541 0.668 0.367 0.451* 0.451 0.763 0.465 0.967 0.463* 0.462

Table 1: Upper bound retrieval performance on the iKAT and CAsT benchmarks using the Human Judge.
Compares our Query-Reformulation and Query-By-Document feedback integration policy variants against the
BM25+MONOTS5 baseline (with no feedback) and the best systems previously reported for IKAT (Aliannejadi
et al., 2024) and CAST (Owoicho et al., 2022). Sign * indicates a difference that is NOT statistically significant (p

> 0.05) compared to the BM25+MONOTS baseline. Best results achieved by our systems are shown in bold.

4.2 RQZ: LARF’S Robustness to NOisy System LI;MJudgeBencfhmark NiKATa ‘ ,{CASTQ

Human Feedback WILLIA-UMBRELAL | 0.223 0.389 0290 0487 | 0245 0477
Our Noisy Human Judge injects Bernoulli noise Temaamowers | 0061 0113 | 01% 0334 | 0134 025
eror probability . 10%-1006%: p= 0% is RQI's oot 1 1381 0% v 0

Human Judge) into the Human Judge’s labels. We
tested RQ1’s best "Full Text" Query-Reformulation
and Query-By-Document policy variants on iKAT
and CAsT. Figure 2 shows nDCG@3 and R@1000
vs. noise; Figure 3 presents Cohen’s x and Krip-
pendorft’s o agreement between Noisy Judges and
human labels.

As expected, retrieval performance generally de-
grades with increasing noise p (Figure 2), as do
agreement scores (Figure 3). Critically, despite
this, noisy feedback can still benefit retrieval over
the BM254+MONOTS baseline up to specific noise
thresholds.

4.2.1 Query-Reformulation Policy

On IKAT (Figure 2a) and CAST (Figure 2c),
R@1000 remained above baseline even at high
noise (e.g., p &~ 70%). This suggests its exploita-
tive expansion maintains a recall advantage despite
significant inaccuracies. nDCG@3, though more
noise-sensitive, demonstrated a "safe zone" too,
staying above baseline until p ~ 70 — 80% on
IKAT and p ~ 30% on CAST. This indicates a
considerable error margin before top-rank quality
degrades below baseline. Benefits persist with sub-
stantial noise if some genuinely relevant seeds are
identified.

4.2.2 Query-By-Document Policy

The Query-By-Document policy for nDCG@3 in
RQI1, showed a similar robustness profile. While
its nDCG@3 gains were susceptible to noise, ef-
fectiveness remained above baseline for a signifi-

Table 2: Cohen’s x and Krippendorff’s « agree-
ment between various LLM judges (and our MonoT5-
Judge) and perfect human judgements across the LLM-
JUDGEBENCHMARK dev set, IKAT and CAST. Higher
values suggest greater alignment with human evaluators.

cant range; up to p ~ 75% on IKAT (Figure 2b)
and p ~ 55% on CAST (Figure 2d). This im-
plies its exploration/enrichment precision benefits
are somewhat resilient, though the margin shrinks
rapidly. As Query-By-Document did not initially
improve R@1000 (RQ1), noise generally kept re-
call at/below baseline. This policy’s primary bene-
fit is top rank precision, which noise erodes without
compensatory recall gains.

4.3 RQ3: LARF with Automatic LLM Judges

Our central finding is that automatic LLM
Judges can significantly improve retrieval over
the BM25+MONOTS baseline, though not reach-
ing Human Judge levels. Several configurations
yielded statistically significant gains (Table 3).
For example, OLZ-GPT40 with the Query-By-
Document policy improved iKAT nDCG@3 from
0.288 to 0.364. On CAST, this combination
achieved nDCG@3 of 0.605 (vs. 0.508 baseline),
surpassing the prior work of 0.513 (Table 1).
Policy characteristics from RQ1 largely hold,
but with clear degradation. Query-Reformulation
with LLM Judges (e.g., OLZ-GPT40) enhanced
R@1000 (iKAT: 0.479 vs. 0.451 baseline), but
nDCG@3 gains were modest (iIKAT: 0.312 vs.
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Figure 2: Performance on IKAT (top row) and CAST (bottom row) benchmarks as a function of increasing noise
levels in the Human Judge. Results are shown for the best-performing configurations of the Query-Reformulation
(right column) and Query-By-Document (left column) policies identified in RQ1 (see Table 1). Solid lines represent
the mean performance over 5 runs; shaded areas indicate 95% confidence intervals. Dashed horizontal lines show
the performance of the BM25+MONOTS baseline (no feedback) for reference.

0.288) and sometimes insignificant. Conversely,
Query-By-Document with effective LLMs (e.g.,
OLZ-GPT40) delivered stronger nDCG@3 im-
provements (iKAT: 0.364; CAsT: 0.605), under-
scoring its exploration strategy’s value with reason-
ably accurate judgments.

A positive correlation emerges between judge
agreement (Table 2) and top-rank retrieval impact.
For example, OLZ-GPT40 (CAsT « = 0.309) pro-
duced strong nDCG@3. This x suggests p ~ 40 —
50% effective noise (Figure 3). Our RQ2 analysis
(Figure 2) predicted Query-By-Document would
remain above baseline here; OLZ-GPT40’s strong
performance (Table 3) aligns, confirming operation
within "safe zones". Conversely, lower-agreement
judges like TREMA-4PROMPTS (iKAT x = 0.192,
implying higher effective noise) yielded top-rank
performance near or not significantly above base-
line.

Finally, as discussed (Section 3.3), IKAT’s im-
plicit PTKB dependencies likely contributed to rela-
tively more modest gains there versus CAST. LLM
judges lacking PTKB context may struggle to align

with human judgments reliant on it, limiting effec-
tiveness on iKAT.

5 Conclusion

This paper investigated a novel role for LLM
Judges in information retrieval, shifting their appli-
cation from external evaluators to active, internal
components that provide real-time, generative rele-
vance feedback. We introduced two distinct feed-
back integration policies, Query-Reformulation
and Query-By-Document, designed to leverage
LLM judgements for pruning and expanding the
candidate document pool within a multi-stage re-
trieval pipeline.

Our systematic evaluation across the IKAT and
CAST benchmarks yielded three key insights.
Firstly, under ideal conditions with Human Feed-
back, our approach demonstrates substantial poten-
tial, with the Query-By-Document policy achieving
state-of-the-art performance that significantly sur-
passed baselines and prior results (RQ1). Secondly,
we establish that these feedback mechanisms are
remarkably robust to noise. Even with considerable
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Figure 3: Cohen’s x and Krippendorff’s o agreement between a simulated noisy judge (with 0-100% Bernoulli error
probability p) and human judgements across the LLMJUDGEBENCHMARK dev set, CAST, and IKAT. Solid/dashed
lines represent the mean agreement over 5 simulation runs, with shaded areas indicating 95% confidence intervals.

iKAT CAsT

System nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000 | nDCG@3 nDCG@1000 MRR R@1000 AP@1000
BM25+MONOT5 0.288 0.287 0.333 0248  0.141 0.451 0.128 0.508 0.426 0.708 0.463 0.223
Best System ‘ 0.412 0.426 0.325 0.353  0.206 0.316 0.191 ‘ 0.513 0.485 0.717 0.557 0.257
Query-Reformulation Policy

WILLIA-UMBRELA1 0.311 0.302 0.351 0.255%  0.144* 0.476 0.138 0.542 0.491 0.742 0.564 0.275
OLZ-GPT40 0.312 0.304 0.358 0260 0.145%  0.479 0.140 0.545 0.495 0.746 0.569 0.279
TREMA-4PROMPTS 0.288* 0.284* 0.350 0.247% 0.140*  0.489 0.133 0.515% 0.485 0.700*  0.556 0.266
H20LOO-FEWSELF 0.311 0.300 0.352 0254  0.143*  0.476* 0.137 0.539 0.494 0.740 0.561 0.275
MONOTS-JUDGE 0.285* 0.278 0.348 0.241*%  0.139*  0.490 0.131* 0.506* 0.496 0.701 0.583 0.266
Query-By-Document Policy

WILLIA-UMBRELA1 0.331 0.319 0.316 0273  0.153 0.370 0.133 0.594 0.315 0.781 0.260 0.187
OLZ-GPT40 0.364 0.349 0.334* 0.300  0.169 0.366 0.148 0.605 0.335 0.781 0.284 0.208
TREMA-4PROMPTS 0.312 0.307 0.340 0270  0.154 0.435 0.140 0.529 0.417 0.711* 0.432 0.231
H20LOO-FEWSELF 0.331 0.320 0.322 0275  0.155 0.381 0.134 0.586 0.371 0.762 0.329 0.225%*
MONOTS-JUDGE 0.288* 0.287* 0.319 0.248* 0.141* 0413 0.126 0.508%* 0.407 0.708*  0.429 0.218

Table 3: Retrieval performance on the iKAT and CAsT benchmarks using the LLM Judges.

Compares our

Query-Reformulation and Query-By-Document feedback integration policy variants against the BM25+MONOTS5
baseline (with no feedback) and the best systems previously reported for IKAT (Aliannejadi et al., 2024) and CAST
(Owoicho et al., 2022). Sign * indicates a difference that is NOT statistically significant (p > 0.05) compared to the
BM25+MONOTS baseline. Best results achieved by our systems are shown in bold.

inaccuracies in judgements, Query-Reformulation
and Query-By-Document policies often outper-
formed a system with no feedback, defining "safe
operational zones" for practical deployment (RQ?2).
Thirdly, and most critically, experiments with auto-
matic LLM judges confirm LARF continues to be
effective. The best-performing LLM judges, when
integrated into our Query-By-Document policy, led
to significant improvements over the baseline and
even achieved new state-of-the-art results on the
CAST benchmark. The effectiveness of these auto-
matic judges correlated with their agreement with
human judgements and their operation within the
identified robustness thresholds.

Our findings collectively argue for a paradigm
shift in how LLM capabilities are used in search.
Rather than just relying on them for post-hoc eval-
uation, their inherent ability to simulate user pref-

erence and predict relevance can be constructively
embedded within the retrieval process to dynam-
ically enhance search quality. While challenges
related to the "effective noise" of current LLM
judges and dataset-specific nuances (like the IKAT
PTKBs) remain, our work provides strong evidence
that LLMs are powerful and practical tools for
building more effective search systems when de-
ployed as internal feedback providers.

Future work could explore more sophisticated
feedback integration strategies, investigate the cost-
benefit trade-offs of different LLM judges, and
extend this framework to incorporate richer contex-
tual information, such as user profiles or conversa-
tional history, into the feedback generation process.
Further, as both feedback policies are complemen-
tary, combining them to unlock wholistic retrieval
gains is an exciting prospect.



6 Limitations

While our findings demonstrate the promising po-
tential of repurposing LLM judges for in-pipeline
feedback, we acknowledge several limitations:

Cost and Latency: Our current framework, par-
ticularly the Query-By-Document policy, involves
multiple calls to an LLM for feedback on numer-
ous documents and potentially for generating sum-
maries/queries during expansion. This incurs sig-
nificant cost (if using closed-source LLLMs) and la-
tency, making the current instantiation not directly
"deployable" in many real-time search scenarios.
However, practical systems may not always need to
process or rerank up to 1,000 documents; a smaller,
more targeted application might be feasible. Fur-
thermore, future advancements in LLM efficiency,
smaller specialised models, or caching strategies
could mitigate these concerns.

Generalisability: Our experiments were con-
ducted using a BM25 + MonoT?5 baseline for re-
trieval tasks. While this is a standard baseline (Saha
et al., 2022; Almeida and Matos, 2024; Rosa et al.,
2022b,a), different base retrieval architectures (e.g.,
dense retrievers, more complex multi-stage sys-
tems) might interact differently with our feedback
policies, potentially yielding varying magnitudes
of improvement or different optimal policy config-
urations.

Query Type: The CAST and IKAT benchmarks
feature relatively verbose, fully-formed natural lan-
guage queries. The efficacy of our LLM-feedback
approach with shorter, keyword-based queries, or
queries from different domains, remains to be ex-
plored. LLMs might behave differently in assessing
relevance or generating useful expansion material
for such query types.

Relevance Scale Mapping: We mapped the orig-
inal 5-point (0-4) relevance scales of the bench-
marks to the 4-point (0-3) scale used by our judges
by collapsing the top two original categories. This
introduces an assumption about the equivalence of
these collapsed levels. While a pragmatic choice, it
could subtly influence perceived judge agreement
and the precise interpretation of relevance thresh-
olds (0).

Relevance Threshold (6) Selection: Our prun-
ing step relies on a predefined relevance threshold 6.
In our experiments, this was guided by benchmark

definitions of relevance. In practical scenarios with-
out such predefined ground truth or when adapting
to new domains/users, dynamically determining or
learning an optimal # would be a necessary and
non-trivial challenge.

iKAT PTKB Context: As discussed, our ex-
periments on iKAT did not explicitly incorporate
the Personal Text Knowledge Bases (PTKBs) that
sometimes provide crucial context for the "resolved
utterances." This unmodeled context likely influ-
enced our LLM judge assessments, potentially un-
derestimating the full potential of our approach on
this dataset had PTKB information been available
to the feedback mechanism.

7 Ethical Considerations

Similarly, we acknowledge the following ethical
considerations:

Environmental Impact: The training and infer-
ence of large LLMs, as used by some of our tested
judges and for expansion query generation, are
computationally intensive and consume significant
energy resources (Husom et al., 2024). While we
used existing models, widespread adoption of such
techniques contributes to these broader concerns.
We are hopeful that ongoing research into more ef-
ficient model architectures and inference methods
will alleviate this over time.

Bias Amplification and Fairness: LLMs are
known to inherit and potentially amplify biases
present in their training data (Li et al., 2025; Nav-
igli et al., 2023; Gallegos et al., 2024). If LLM
judges exhibit biases (e.g., demographic, view-
point), their in-pipeline feedback could systemati-
cally skew search results, leading to unfair or un-
representative information being surfaced to users.
This could reinforce societal biases or limit expo-
sure to diverse perspectives. Careful auditing of
LLM judges for such biases and developing de-
biasing techniques for feedback mechanisms are
critical before deployment.

Content Moderation and Harmful Content:
An LLM judge providing feedback might inadver-
tently (or if an LLM itself is not well-moderated)
assign high relevance to or promote the expansion
of problematic content (e.g., misinformation, hate
speech) (Vinay et al., 2025; Williams et al., 2024;
Zhou et al., 2023; Chen and Shu, 2024; Guo et al.,
2025). While the final reranker might also play



a role, the feedback mechanism itself needs safe-
guards if it’s to actively shape the candidate pool.

Transparency and  Explainability: The
decision-making process of LLMs, especially for
relevance assessment, can be opaque (Arabzadeh
and Clarke, 2025; Liao and Vaughan, 2023; Singh,
2025; Dietz et al., 2025). If an LLM judge’s
feedback significantly alters search results, the
lack of transparency in why certain documents
were favoured or pruned could be problematic for
users seeking to understand search behaviour or
for system developers trying to debug it.
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A Ablation Study on Number of Seeds for
Query-Reformulation Policy Expansion

Section 3 describes our Query-Reformulation feed-
back policy, where top-N documents from the
pruned pool (D)) are used as seeds to generate new
queries for expanding the candidate set. The num-
ber of seed documents (V) chosen for this process
is a key parameter. To determine an effective value
for NV, we conducted preliminary experiments on
the iKAT benchmark using the Perfect Judge with
a relevance threshold of # = 1 for pruning. We
varied IV from 1 to 6 seed documents and tested
each of our three expansion query generation meth-
ods: "Full Text," "Reformulated Query," and "Sum-
mary." Table 4 presents these results against the
BM25+MONOTS baseline.

The results in Table 4 reveal that, for the Query-
Reformulation policy, top-rank precision metrics
such as nDCG @3 generally peak or are strongest
when using a very small number of seed docu-
ments, typically N=1. For instance, with the "Full
Text" expansion method, nDCG @3 is 0.355 with
1 seed document. While there are minor fluctua-
tions, increasing the number of seed documents
beyond 1 does not consistently lead to further im-
provements in nDCG@3 and sometimes results in
a slight degradation (e.g., nDCG @3 for "Full Text"
with 6 seeds is 0.349). Similar trends are observ-
able for the "Summary" and "Reformulated Query"
methods, where N=1 often provides the best or
near-best nDCG @3 performance.

Conversely, Recall@1000 tends to exhibit a
slight upward trend or plateaus as more seed doc-
uments are incorporated, although the gains be-
yond N=1 are often marginal. For example, with
the "Full Text" method, R@1000 increases from
0.552 (1 seed) to 0.583 (6 seeds). This suggests
that while using more seeds can bring in a slightly
larger pool of relevant documents, the additional
documents may not be of sufficiently high quality
or distinctiveness to improve top-rank precision,
potentially due to increased overlap or the introduc-
tion of mildly relevant but not top-tier documents.

Considering the emphasis on top-rank perfor-
mance in our target benchmarks and the obser-
vation that precision benefits diminish or satu-
rate quickly beyond a single seed document, we
opted to use N=1 seed document for the Query-
Reformulation policy experiments reported in the



Method nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000
Baseline 0.288 0.287 0.333  0.248 0.141 0.451 0.128
1 doc

Full Text 0.355 0.349 0412 0311 0.185 0.552 0.179
Reformulated Query 0.338 0.331 0.381  0.289 0.162 0.508 0.160
Summary 0.352 0.343 0.406  0.305 0.174 0.549 0.174
2 docs

Full Text 0.347 0.338 0412 0.284 0.166 0.571 0.166
Reformulated Query 0.333 0.330 0.386  0.287 0.168 0.518 0.163
Summary 0.343 0.334 0.405 0.287 0.165 0.565 0.165
3 docs

Full Text 0.340 0.326 0410 0.282 0.170 0.579 0.163
Reformulated Query 0.331 0.326 0.383  0.277 0.165 0.514 0.160
Summary 0.341 0.334 0.408  0.287 0.166 0.570 0.166
4 docs

Full Text 0.340 0.327 0.409 0.278 0.167 0.579 0.160
Reformulated Query 0.334 0.331 0.385 0.283 0.167 0.517 0.162
Summary 0.342 0.332 0.410 0.284 0.164 0.577 0.166
5 docs

Full Text 0.349 0.333 0414  0.277 0.168 0.582 0.165
Reformulated Query 0.330 0.325 0.381 0.279 0.165 0.514 0.160
Summary 0.340 0.332 0.407 0.280 0.163 0.573 0.164
6 docs

Full Text 0.349 0.338 0415 0.274 0.167 0.583 0.165
Reformulated Query 0.340 0.337 0386 0.286 0.170 0.511 0.163
Summary 0.337 0.331 0.408 0.280 0.160 0.576 0.164

Table 4: Comparison of retrieval metrics using Query-Reformulation policy across varying numbers of seed

documents and methods.

main paper. This choice prioritises optimising for
metrics like nDCG@3 while still leveraging the
strongest initial signal for exploitation.

B Ablation Study on Number of Seeds for
Query-By-Document Policy Expansion

In Section 3, we describe our Query-By-Document
feedback policy, where documents from the pruned
pool (D,) seed the retrieval of neighboring docu-
ments to enrich the candidate set. A key parameter
in this process is the number of neighbors retrieved
per seed document. To determine an optimal set-
ting that balances top-rank precision with sufficient
pool enrichment, we conducted preliminary exper-
iments on the iKAT benchmark using the Perfect
Judge with a relevance threshold of § = 2 for prun-
ing. We varied the number of neighbors retrieved
per seed from 1 to 30. Table 5 presents the results
of this ablation study, comparing various retrieval
metrics against the BM25+MONOTS baseline.
The results clearly illustrate a trade-off between
top-rank precision and overall recall as the number
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of retrieved neighbors increases. As seen in Table
5, precision-oriented metrics such as nDCG@3 and
P@20 peak when retrieving only 1 neighbour per
seed document (NDCG@3 = 0.621). As the num-
ber of neighbors increases beyond one, there is a
consistent degradation in these top-rank precision
metrics. For instance, nDCG@3 drops from 0.621
(1 neighbour) to 0.542 (2 neighbours), and further
to 0.393 when retrieving 20 neighbours. This sug-
gests that while retrieving more neighbours might
bring in more documents, many of these additional
documents are either not as relevant or introduce
noise that makes it harder for the final reranker to
identify the very best documents for the top posi-
tions.

Conversely, Recall@ 1000 exhibits the opposite
trend. It starts relatively low when retrieving only
1 neighbour (R@1000 = 0.205, which is below the
baseline’s 0.451 in this specific ablation setup with
0 = 2) and gradually increases with the number
of neighbours retrieved, reaching 0.319 with 30
neighbours. This indicates that retrieving more
neighbours per seed does indeed bring more unique



Method nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000
Baseline 0.288 0.287 0.333 0.248 0.141 0.451 0.128
1 neighbour 0.621 0.600 0376 0412 0.174 0.205 0.205
2 neighbours 0.542 0.524 0.360 0385 0.172 0.222 0.185
3 neighbours 0.506 0.496 0.356  0.366  0.168 0.235 0.179
4 neighbours 0.485 0.472 0.352  0.347  0.163 0.242 0.173
5 neighbours 0.474 0.462 0.350 0339  0.161 0.248 0.170
10 neighbours 0.431 0.417 0.345 0311  0.155 0.274 0.162
15 neighbours 0.407 0.398 0.343 0299  0.152 0.289 0.159
20 neighbours 0.393 0.382 0.342 0293  0.151 0.300 0.156
30 neighbours 0.381 0.360 0.342  0.281  0.147 0.319 0.153

Table 5: Comparison of retrieval metrics using the Query-By-Document Policy at varying number of neighbours.

relevant documents into the 1000-document pool
overall.

Given that the conversational search benchmarks
used in our main experiments (IKAT and CAST)
place a strong emphasis on top-rank performance
(e.g., high nDCG@3 is critical for success), and our
primary goal is to demonstrate significant improve-
ments in this area, we selected the configuration
that maximised these precision metrics. There-
fore, based on this ablation, we opted to retrieve
1 neighbour per seed document for all Query-By-
Document policy experiments reported in the main
paper. While this experiment was conducted with a
pruning threshold of § = 2 on iKAT, we observed
similar trends regarding the precision-recall trade-
off with varying numbers of neighbours when using
a threshold of § = 1 (the threshold used for iKAT
in our main experiments, as detailed in Section 3).
This consistent behaviour reinforced our decision
to restrict expansion to a single, closest neighbour
to optimise for top-rank precision.

C Prompts

C.1 Query-Reformulation Summary Prompt

Query-Reformulation Summary Prompt

You are a Passage Summarizer whose job is
to read a set of passages and produce a con-
cise, accurate answer to the user’s question
using only the information provided.

Your output must satisfy these require-
ments:

1. Completeness: Include all key facts
from the passages that directly answer
the question.

2. Fidelity: Do not add any information
or assumptions not present in the pas-
sages.

3. Clarity: Write in clear, direct lan-
guage, referencing the same names and
terms used in the passages.

4. Brevity: Keep the answer as short
as possible while fully answering the
question.

Question:
<insert user query here>
Passages:

* <passage 1>
* <passage 2>

Answer:
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C.2 Query-Reformulation Query
Reformulation Prompt

Query-Reformulation Query Reformulation

Prompt

You are a Question-Rewriter whose job is
to take an arbitrary user question and turn
it into a new question that can be answered
using the information contained in a given
set of passages.

Your output must satisfy these require-
ments:

1. Answerability: The rewritten question
must be fully answerable by the facts,
names, dates, and relationships explic-
itly stated in the passages.

2. Fidelity: Do not introduce any new
facts or assumptions that are not
present in the passages.

3. Clarity: Make the question as clear
and specific as possible, referencing
the same concepts used in the pas-
sages.

4. Conciseness: Keep the question brief;
only include what is needed to ensure
answerability.

Passages:
e <passage 1>
* <passage 2>

Original Question:
<insert original user query here>
Rewritten Question:

\

C.3 Query-By-Document Summary Prompt

Query-By-Document Summary Prompt

Generate a concise summary of the Passage
so that it completely answers the Question.
Question:

<insert question here>

Passage:

<insert passage here>

Summary:
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