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Abstract001

Recent research on Large Language Model002
(LLM) judges in search largely focuses on their003
role as offline evaluators. Instead, this paper004
investigates using LLMs closer to simulation,005
focusing on using them as proxies for human006
feedback. We present LLM-Augmented Rel-007
evance Feedback (LARF), which synthesises008
the latest LLM Judge methods with Query009
Reformulation and Query-by-Document rele-010
vance feedback integration approaches to im-011
prove the set of candidate documents. We per-012
form experiments on standard conversational013
search benchmarks, TREC IKAT and CAST.014
Our work address three research questions: (1)015
What is the retrieval benefit when LARF is used016
with human feedback? (2) How does noise017
in relevance judgements impact downstream018
feedback effectiveness? (3) What are issues019
with the current LLM judges when used with020
LARF? We find that with human judgements,021
Query-by-Document achieves new state-of-the-022
art results, significantly outperforming previous023
work (48% nDCG@3 on CAsT). We study how024
effectiveness degrades as judgements become025
noisier. And, when using current automatic026
LLM judges, we find 18% nDCG@3 gain over027
previous state-of-the-art on CAsT. We conclude028
that LARF offers a new and effective mecha-029
nism for improving retrieval quality in conver-030
sational search and highlight the need for reduc-031
ing noise, particularly for complex personalised032
tasks.033

1 Introduction034

The role of Large Language Models (LLMs) in035

search quality evaluation is hotly debated. Propo-036

nents cite LLMs’ ability to approximate human037

judgments at scale, reduce evaluation costs, and en-038

sure benchmark consistency (Thomas et al., 2024;039

MacAvaney and Soldaini, 2023; Upadhyay et al.,040

2024b,c,a). Conversely, LLM evaluation may in-041

troduce bias, hallucinate relevance, reinforce train-042

ing data patterns, or impose artificial performance043

ceilings, distorting outcomes and hindering system 044

comparison (Takehi et al., 2024; Faggioli et al., 045

2023; Soboroff, 2025; Dietz et al., 2025; Clarke 046

and Dietz, 2024). 047

Instead of focusing on LLMs for offline evalu- 048

ation to replace human judges, we instead focus 049

on how they can be leveraged to improve core re- 050

trieval effectiveness during search. Soboroff (2025) 051

argues that asking an LLM to predict document 052

relevance is functionally identical to asking it to 053

rank documents. In this work, we experiment with 054

using the same state-of-the-art LLM judges used of- 055

fline and leverage them as part of automatic online 056

feedback during the search process. 057

The concept of simulating user preferences to 058

guide retrieval is well-established, and relevance 059

feedback (RF) is a primary mechanism by which 060

this simulation is realised. Such feedback, aiming 061

to improve effectiveness by acting on user prefer- 062

ence signals, can be sourced from dedicated user 063

simulators generating interactive responses (Owoi- 064

cho et al., 2023; Salle et al., 2022; Sekulić et al., 065

2022), or through judgements intrinsic to tech- 066

niques from classical Rocchio (Rocchio, 1971) and 067

RM3 (Abdul-Jaleel et al., 2004) to modern gener- 068

ative RF (GRF) (Mackie et al., 2023). Our work 069

synthesises these threads, proposing LLM judges 070

as active sources of generative RF, dynamically 071

steering search towards improved effectiveness. 072

We propose a new approach, LLM-Augmented 073

Relevance Feedback (LARF). LARF has two com- 074

plementary types of feedback policies for inte- 075

grating LLM-generated feedback into retrieval: 076

a Query-Reformulation Policy that integrates the 077

feedback from the top-N candidate documents of 078

an initial retrieval pass and a Query-By-Document 079

Policy that utilises the larger set of candidates. Both 080

enrich retrieval by injecting targeted relevance in- 081

formation at key decision points, using LLM judge- 082

ments to guide the search system. 083

We systematically evaluate the efficacy and 084
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boundaries of this role for LLM judges by asking:085

RQ1 What is the retrieval benefit when LARF is086

used with human relevance judgements?087

RQ2 How does retrieval effectiveness degrade088

as controlled noise is introduced to human judge-089

ments?090

RQ3 How do current state-of-the-art LLM judges091

perform with LARF in the context of RQ2? And092

what is the impact on end-to-end effectiveness093

when compared with human feedback?094

We perform experiments on multiple standard095

conversational search benchmarks, TREC IKAT096

2023 (Aliannejadi et al., 2024) and TREC CAST097

2022 (Owoicho et al., 2022). We find that human098

feedback significantly and dramatically improves099

retrieval effectiveness. We characterise how that ef-100

fectiveness degrades as noise is added. We find that101

depending on the policy used, current LLMs are102

just on the cusp of providing benefits and need fur-103

ther improvement providing gains of up to 18% in104

nDCG@3 over previous systems on TREC CAST.105

The results also highlight that more complex per-106

sonalised tasks in iKAT result in higher levels of107

LLM judge noise, showing an important area for108

future work.109

2 Retrieval Pipeline110

We address enhancing search system output qual-111

ity via feedback. Given an initial query q, we use112

document-level relevance feedback to refine the re-113

sults presented to the user. Specifically, we aim to114

improve the retrieval pool, documents ultimately115

reranked and surfaced as results, by leveraging this116

feedback. Our approach, depicted in Figure 1, op-117

erates in a multi-step pipeline:118

1. Candidate Generation: Given query q, a119

base search system retrieves an initial candi-120

date set of documents Dc from the corpus.121

2. Document Feedback: A judge provides rele-122

vance feedback (score or category, e.g., highly123

relevant) for each d ∈ Dc with respect to q,124

simulating a user’s initial assessment.125

3. Pruning: Documents below a relevance126

threshold θ are pruned from Dc, yielding127

Dp ⊆ Dc. This aligns with information for-128

aging’s principle of abandoning low ’informa-129

tion scent’ patches (Pirolli and Card, 1999),130

focusing resources on promising candidates.131

4. Pool Expansion: Dp documents seed re- 132

trieval of additional related documents De to 133

enrich the candidate set Dc, uncovering items 134

missed by initial retrieval. This mirrors infor- 135

mation foraging’s exploration of new patches 136

from cues in exploited ones (Pirolli, 2007). 137

Seed selection and expansion use one of two 138

policies: 139

• The Query-Reformulation Policy 140

(Gupta and Dixit, 2023; Hust et al., 141

2002; Al-Thani et al., 2023) uses a small 142

number top-ranked documents in Dp 143

as seeds. This policy emphasises ex- 144

ploitation of strong signals of relevance, 145

akin to deeply mining a high-scent 146

information patch. 147

• The Query-By-Document Policy (Abol- 148

ghasemi et al., 2022; Yang et al., 2009; 149

Weng et al., 2011) draws seeds from a 150

broader range of documents within Dp, 151

allowing the system to explore more di- 152

verse or peripheral content areas and pro- 153

mote information patch enrichment. 154

5. Reranking: The updated pool Dp ∪ De is 155

reranked to produce the final ranked list pre- 156

sented to the user. 157

This framework enables investigation of how 158

feedback type and fidelity impact retrieval effec- 159

tiveness and allows quantification of system robust- 160

ness to feedback imperfections. Section 3 details 161

policy instantiations and mechanisms employed for 162

each step in the pipeline. 163

3 Implementation 164

3.1 Retrieval Pipeline 165

Our retrieval pipeline, as outlined in Section 2, is 166

implemented as follows: 167

3.1.1 Candidate Generation 168

Initial candidates Dc are retrieved using a BM25 169

(Robertson et al., 1995) + MONOT5 (Nogueira 170

et al., 2020) baseline. This choice isolates our feed- 171

back mechanism’s impact and facilitates rapid ex- 172

perimentation with simpler, faster components. In- 173

dexing and BM25 retrieval (parameters k1 = 4.46, 174

b = 0.82 based on Castorini (2023) from a similar 175

document retrieval task; up to 1000 docs/query) use 176

Pyserini (Lin et al., 2021). These 1000 documents 177
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Figure 1: Overview of our feedback driven retrieval pipeline. 1. Candidate Generation: An initial document pool
(Dc) is retrieved. 2. Document Feedback: A judge assesses relevance (information scent) for each document. 3.
Pruning: Documents with insufficient scent are removed, forming Dp. 4. Pool Expansion: Dp seeds the retrieval
of new documents De to enrich the pool, guided by foraging principles. 5. Reranking: The final pool (Dp ∪ De) is
reranked for presentation.

are then reranked by a MONOT51 model (trained178

on MS MARCO passage ranking (Nguyen et al.,179

2016)) to form the candidate set Dc.180

3.1.2 Document Feedback181

We explore three distinct types of "judges" to simu-182

late feedback under varying levels of accuracy and183

realism, matching our research questions:184

Human Judge We simulate a human judge based185

on professional TREC2 assessments included in our186

target benchmarks’ relevance judgements. Docu-187

ments without ground-truth labels are assumed to188

be non-relevant.189

Noisy Human Judge For robustness analysis,190

we design a Noisy Judge that simulates imperfect191

feedback by injecting Bernoulli noise (Frénay and192

Verleysen, 2013; Bernoulli, 1713) into the human193

judgements. With probability p, a document’s score194

is replaced by a random incorrect score. This mod-195

els a generic probabilistically imperfect annotator196

to study retrieval robustness at a specified error rate197

p. Experiments with this judge are averaged over198

5 runs with 95% confidence intervals due to the199

stochasticity introduced.200

Automatic LLM Judge We study representa-201

tive LLM-based judges and one non-LLM baseline202

judge. The LLM judges were prominent partici-203

pants in the LLM Judge Challenge at SIGIR 2024204

(Rahmani et al., 2025), which evaluated automatic205

relevance assessment approaches on TREC 2023206

1https://huggingface.co/castorini/monot5-base-msmarco-
10k

2https://trec.nist.gov/

Deep Learning track (Craswell et al., 2024) judge- 207

ments. Judges are designed to predict a relevance 208

score on a 0-3 scale. We select judges based on 209

their reported performance on key inter-rater reli- 210

ability metrics in the challenge’s overview paper 211

and validated our implementations on a 5-fold split 212

of the challenge’s dev set, supplemented with 3000 213

randomly selected relevance judgements from our 214

target IKAT and CAST benchmarks. 215

• WILLIA-UMBRELA1 (GPT-4O3): Achieves 216

strong Cohen’s κ via zero-shot prompting 217

with the UMBRELA framework (Upadhyay 218

et al., 2024c) based on the techniques intro- 219

duced in Thomas et al. (2024). 220

• OLZ-GPT4O (GPT-4O):, Achieves strong 221

Krippendorff’s α via a simple prompt asking 222

for the relevance judgement directly. 223

• TREMA-4PROMPTS (LLAMA-3-8B- 224

INSTRUCT4): Achieves high Kendall’s τ and 225

Spearman’s Rank Correlation by decompos- 226

ing relevance into four criteria (exactness, 227

coverage, topicality, contextual fit), assessing 228

for each independently, then combining them 229

to determine overall relevance (Farzi and 230

Dietz, 2024). 231

• H2OLOO-FEWSELF (GPT-4O): Achieves 232

high Krippendorff’s α via prompting tech- 233

niques from Thomas et al. (2024), similar to 234

WILLIA-UMBRELA1, but with in context ex- 235

amples. 236

3https://platform.openai.com/docs/models/gpt-4o
4https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct
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• MONOT5-JUDGE (Non-LLM): Based on the237

MONOT5 reranker. We reinterpret its proba-238

bility of generating "true" (for relevance) as a239

0-3 score by scaling this probability by 3 and240

rounding to the nearest integer.241

3.1.3 Pruning242

Dc documents are pruned via judge feedback using243

a benchmark-specific relevance threshold θ. Docu-244

ments scoring below θ are removed, yielding Dp.245

For CAsT, ≥ 2 is relevant; for iKAT, ≥ 1. We set246

θ accordingly, after mapping our judge scores to247

benchmark relevance scales (Section 3.3).248

3.1.4 Pool Expansion249

To enrich Dp up to a rerank budget of 1000 unique250

documents, matching the evaluation depth of our251

target benchmarks, we apply one of two feedback252

policies:253

Query-Reformulation Policy Expansion seeds254

are the top N documents in Dp (by original255

MONOT5 score; N empirically set to 1 due to256

diminishing returns observed in preliminary exper-257

iments, see Appendix A). For each seed, one of258

three methods generates a new BM25 query to re-259

trieve De: (1) GPT-4O-MINI5 summary of seeds260

with respect to q (see Appendix C.1 for prompt);261

(2) GPT-4O-MINI reformulated query from seeds262

(see Appendix C.2 for prompt); or (3) the combined263

full texts of the seeds.264

Query-By-Document Policy This policy iterates265

through documents in Dp (sorted by descending266

initial MONOT5 scores). For each seed in Dp, we267

retrieve a single unique neighbour for De using one268

of three distinct methods per run: (1) Summary:269

GPT-4O-MINI summary of seed w.r.t. q as BM25270

query (Appendix C.3); (2) RM3: seed text with271

RM3 expansion as BM25 query; or (3) Full Text:272

seed’s full text as BM25 query273

Unique retrieved neighbours are added to De.274

Expansion stops when |De| = 1,000 or seeds are275

exhausted. We use one neighbour per seed to op-276

timise top-rank precision (e.g., nDCG@3), as pre-277

liminary tests (Appendix B) showed deeper expan-278

sions hurt precision on target benchmarks (Section279

3.3).280

3.2 Reranking281

The final pool Dp ∪ De (up to 1000 documents) is282

reranked by MONOT5 with respect to query q to283

5https://platform.openai.com/docs/models/gpt-4o-mini

produce the system’s output. 284

3.3 Experimental Setup 285

3.3.1 Benchmarks 286

We evaluate primarily on TREC CAsT 2022 (Owoi- 287

cho et al., 2022) and iKAT 2023 (Aliannejadi et al., 288

2024). These offer (1) challenging, realistic sce- 289

narios with evolving needs, a robust testbed for 290

feedback; (2) standardised TREC data/protocols 291

for reproducibility; and (3) a rich conversational 292

context where feedback is conceptually valuable. 293

Both datasets include information needs that 294

unfold over multiple conversational turns. To 295

isolate our feedback mechanisms from query- 296

reformulation complexity, we use the context- 297

independent "resolved utterance" variants. Note, 298

however, that in the iKAT benchmark some re- 299

solved utterances still rely on additional context in 300

so-called Personal Text Knowledge Bases (PTKBs). 301

For example, the query, "What should I cook for 302

dinner?" implicitly depends on PTKB details like 303

“healthy and tasty recipes for my family”. Although 304

we treat the resolved queries as standalone, this 305

unmodeled PTKB context can introduce noise or 306

ambiguity in relevance judgements, capping per- 307

formance for both the baseline and our feedback 308

methods. 309

CAST has 18 topics/conversations with an av- 310

erage of 11.39 turns. It uses a document collec- 311

tion derived from MS MARCO v2 (Craswell et al., 312

2022), KILT (Petroni et al., 2020), and the Wash- 313

ington Post 6. IKAT extends CAST’s focus to 314

multi-persona conversations, comprising 25 test 315

topics. It draws documents from the ClueWeb22-B 316

(Overwijk et al., 2022) corpus of approximately 317

117 million documents. 318

Both benchmarks use a 0-4 relevance scale (0- 319

Fails to meet; 4-Fully meets). As our judges use a 320

0-3 scale, we map benchmark judgements by col- 321

lapsing original scores ’3’ (Highly) and ’4’ (Fully) 322

into a single ’3’. This applies to our Human Judge 323

and for interpreting relevance thresholds (e.g., an 324

original ≥ 2 remains ≥ 2 on our 0-3 scale). 325

All experiments use the context-independent "re- 326

solved utterance" query variants included in the 327

benchmarks that have conversational ambiguity dis- 328

ambiguated by humans. We chose this to focus on 329

the feedback elements instead of the noisy conver- 330

sational query understanding elements. 331

6https://trec.nist.gov/data/wapost/
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3.3.2 Evaluation Protocol332

We evaluate performance using official bench-333

mark measures (primarily nDCG@3; also Re-334

call, MRR, and Precision). Our main baseline335

is BM25+MONOT5 (Section 3.1.1) without feed-336

back. We include prior SOTA from IKAT/CAST337

overview papers for context. Paired t-tests (p <338

0.05) assess significance against our baseline. For339

LLM judge validation (Section 3.1.2) and align-340

ment with human evaluations, we report Cohen’s κ341

and Krippendorff’s α. We run all experiments on342

a server running NVIDIA RTX 6000 Ada Gener-343

ation Graphics Card, with each experiment taking344

between 2 to 8 hours.345

4 Results and Discussion346

This section presents and discusses experimental347

results, framed by our research questions: (RQ1)348

LARF’s effectiveness with human feedback, (RQ2)349

LARF’s robustness to noise in human feedback,350

and (RQ3) LARF’s effectiveness with automatic351

LLM judges.352

4.1 RQ1: LARF with Human Feedback353

We employed the Human Judge (Section 3.1.2)354

with Query-Reformulation and Query-By-355

Document feedback policies on IKAT and CAST.356

Performance (Table 1) is compared against our357

BM25+MONOT5 baseline (no feedback) and prior358

state-of-the-art systems for IKAT (Aliannejadi359

et al., 2024) and CAST (Owoicho et al., 2022).360

The results compellingly show the significant, of-361

ten transformative, potential of integrating true rel-362

evance feedback directly into the retrieval pipeline.363

On both IKAT and CAST, both policies substan-364

tially outperformed the BM25+MONOT5 baseline365

across most key metrics, validating our hypothesis366

that repurposing relevance judgments for active, in-367

pipeline modification yields considerable benefits368

with high-quality feedback.369

4.1.1 Query Reformulation Policy370

With the Human Judge, this policy significantly371

boosted recall. IKAT, R@1000 rose from 0.451372

(baseline) to 0.508-0.552; on CAST, from 0.463 to373

0.565-0.631 (Table 1). This confirms that human-374

verified expansion from strong initial candidates375

effectively brings more relevant documents into the376

1000-document pool. However, these recall gains377

translated to less pronounced top-rank precision378

improvements (e.g., nDCG@3 on IKAT: 0.288 →379

0.338-0.355; CAST: 0.508 → 0.545-0.583). We380

attribute this to the policy’s exploitative expansion 381

retrieving a pool of mixed quality; while richer 382

in relevant documents, some lower-quality inclu- 383

sions challenge the final reranker’s ability to sur- 384

face the very best items. Across both benchmarks, 385

the "Full Text" expansion variant performed best or 386

comparably to summary-based methods, suggest- 387

ing that with perfect feedback, the inherent quality 388

of human-relevance judgements is effective, limit- 389

ing the added benefit of complex query/summary 390

generation. 391

4.1.2 Query-By-Document Policy 392

This policy yielded dramatic improvements in 393

precision-oriented metrics. On IKAT, nDCG@3 394

surged from a 0.288 baseline (0.412 prior) to 0.622- 395

0.683, and AP@1000 from 0.128 (0.191 prior) to 396

0.406-0.451. On CAST, gains were similarly strik- 397

ing: nDCG@3 improved from 0.508 (0.513 prior) 398

to 0.750-0.763, and MRR rose from 0.708 (0.717 399

prior) to 0.967. Critically, under oracle/human 400

conditions, the Query-By-Document policies es- 401

tablish new SOTA effectiveness on both IKAT and 402

CAST across key top-rank metrics, significantly ex- 403

ceeding prior results. This highlights the power of 404

leveraging diverse, high-quality relevance signals 405

for pool enrichment. 406

Intriguingly, this exceptional precision often 407

came with R@1000 figures at or slightly below 408

baseline levels (iKAT 0.453; CAsT 0.463, match- 409

ing baseline). This occurs because selecting diverse 410

seeds and retrieving only a single neighbour per 411

seed, combined with pruning non-relevant docu- 412

ments, yields a highly refined, though not neces- 413

sarily larger, unique relevant document set. This 414

higher-quality, higher-precision initial pool enables 415

the final re-ranker (MONOT5) to perform more ef- 416

fectively, leading to superior top-rank outcomes. 417

Conversely, the Query-Reformulation policy, de- 418

spite higher R@1000, creates a "noisier" pool, 419

diluting reranker effectiveness. Mitigating this 420

R@1000 behaviour in the Query-By-Document 421

policy while preserving precision (e.g., via alterna- 422

tive seed/neighbour selection) is future work. 423

Consistent with the Query-Reformulation, "Full 424

Text" or "RM3" expansion generally outper- 425

formed summary-based approaches for Query-By- 426

Document on both datasets, reinforcing that richer 427

seed representations benefit from high-quality feed- 428

back. 429
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iKAT CAsT
System nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000 nDCG@3 nDCG@1000 MRR R@1000 AP@1000

BM25+MONOT5 0.288 0.287 0.333 0.248 0.141 0.451 0.128 0.508 0.426 0.708 0.463 0.223
Best System 0.412 0.426 0.325 0.353 0.206 0.316 0.191 0.513 0.485 0.717 0.557 0.257

Query-Reformulation Policy
(1) Summary 0.352 0.343 0.406 0.305 0.174 0.549 0.174 0.583 0.531 0.795 0.622 0.321
(2) Reformulated Query 0.338 0.331 0.381 0.289 0.162 0.508 0.160 0.545 0.487 0.751 0.565 0.282
(3) Full Text 0.355 0.349 0.412 0.311 0.185 0.552 0.179 0.580 0.533 0.802 0.631 0.324

Query-By-Document Policy
(1) Summary 0.622 0.621 0.517 0.620 0.349 0.453* 0.406 0.750 0.462 0.965 0.463* 0.448
(2) RM3 0.664 0.667 0.535 0.651 0.361 0.452* 0.437 0.757 0.464 0.967 0.463* 0.455
(3) Full Text 0.683 0.682 0.541 0.668 0.367 0.451* 0.451 0.763 0.465 0.967 0.463* 0.462

Table 1: Upper bound retrieval performance on the iKAT and CAsT benchmarks using the Human Judge.
Compares our Query-Reformulation and Query-By-Document feedback integration policy variants against the
BM25+MONOT5 baseline (with no feedback) and the best systems previously reported for IKAT (Aliannejadi
et al., 2024) and CAST (Owoicho et al., 2022). Sign * indicates a difference that is NOT statistically significant (p
≥ 0.05) compared to the BM25+MONOT5 baseline. Best results achieved by our systems are shown in bold.

4.2 RQ2: LARF’s Robustness to Noisy430

Human Feedback431

Our Noisy Human Judge injects Bernoulli noise432

(error probability p, 10%-100%; p = 0% is RQ1’s433

Human Judge) into the Human Judge’s labels. We434

tested RQ1’s best "Full Text" Query-Reformulation435

and Query-By-Document policy variants on iKAT436

and CAsT. Figure 2 shows nDCG@3 and R@1000437

vs. noise; Figure 3 presents Cohen’s κ and Krip-438

pendorff’s α agreement between Noisy Judges and439

human labels.440

As expected, retrieval performance generally de-441

grades with increasing noise p (Figure 2), as do442

agreement scores (Figure 3). Critically, despite443

this, noisy feedback can still benefit retrieval over444

the BM25+MONOT5 baseline up to specific noise445

thresholds.446

4.2.1 Query-Reformulation Policy447

On IKAT (Figure 2a) and CAST (Figure 2c),448

R@1000 remained above baseline even at high449

noise (e.g., p ≈ 70%). This suggests its exploita-450

tive expansion maintains a recall advantage despite451

significant inaccuracies. nDCG@3, though more452

noise-sensitive, demonstrated a "safe zone" too,453

staying above baseline until p ≈ 70 − 80% on454

IKAT and p ≈ 30% on CAST. This indicates a455

considerable error margin before top-rank quality456

degrades below baseline. Benefits persist with sub-457

stantial noise if some genuinely relevant seeds are458

identified.459

4.2.2 Query-By-Document Policy460

The Query-By-Document policy for nDCG@3 in461

RQ1, showed a similar robustness profile. While462

its nDCG@3 gains were susceptible to noise, ef-463

fectiveness remained above baseline for a signifi-464

System LLMJudgeBenchmark iKAT CAsT
κ α κ α κ α

WILLIA-UMBRELA1 0.223 0.389 0.290 0.487 0.245 0.477
OLZ-GPT4O 0.248 0.457 0.356 0.608 0.309 0.567
TREMA-4PROMPTS 0.067 0.113 0.192 0.354 0.134 0.252
H2OLOO-FEWSELF 0.266 0.512 0.328 0.525 0.266 0.550
MONOT5-JUDGE 0.171 0.308 0.267 0.433 0.199 0.369

Table 2: Cohen’s κ and Krippendorff’s α agree-
ment between various LLM judges (and our MonoT5-
Judge) and perfect human judgements across the LLM-
JUDGEBENCHMARK dev set, IKAT and CAST. Higher
values suggest greater alignment with human evaluators.

cant range; up to p ≈ 75% on IKAT (Figure 2b) 465

and p ≈ 55% on CAST (Figure 2d). This im- 466

plies its exploration/enrichment precision benefits 467

are somewhat resilient, though the margin shrinks 468

rapidly. As Query-By-Document did not initially 469

improve R@1000 (RQ1), noise generally kept re- 470

call at/below baseline. This policy’s primary bene- 471

fit is top rank precision, which noise erodes without 472

compensatory recall gains. 473

4.3 RQ3: LARF with Automatic LLM Judges 474

Our central finding is that automatic LLM 475

Judges can significantly improve retrieval over 476

the BM25+MONOT5 baseline, though not reach- 477

ing Human Judge levels. Several configurations 478

yielded statistically significant gains (Table 3). 479

For example, OLZ-GPT4O with the Query-By- 480

Document policy improved iKAT nDCG@3 from 481

0.288 to 0.364. On CAsT, this combination 482

achieved nDCG@3 of 0.605 (vs. 0.508 baseline), 483

surpassing the prior work of 0.513 (Table 1). 484

Policy characteristics from RQ1 largely hold, 485

but with clear degradation. Query-Reformulation 486

with LLM Judges (e.g., OLZ-GPT4O) enhanced 487

R@1000 (iKAT: 0.479 vs. 0.451 baseline), but 488

nDCG@3 gains were modest (iKAT: 0.312 vs. 489
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Figure 2: Performance on IKAT (top row) and CAST (bottom row) benchmarks as a function of increasing noise
levels in the Human Judge. Results are shown for the best-performing configurations of the Query-Reformulation
(right column) and Query-By-Document (left column) policies identified in RQ1 (see Table 1). Solid lines represent
the mean performance over 5 runs; shaded areas indicate 95% confidence intervals. Dashed horizontal lines show
the performance of the BM25+MONOT5 baseline (no feedback) for reference.

0.288) and sometimes insignificant. Conversely,490

Query-By-Document with effective LLMs (e.g.,491

OLZ-GPT4O) delivered stronger nDCG@3 im-492

provements (iKAT: 0.364; CAsT: 0.605), under-493

scoring its exploration strategy’s value with reason-494

ably accurate judgments.495

A positive correlation emerges between judge496

agreement (Table 2) and top-rank retrieval impact.497

For example, OLZ-GPT4O (CAsT κ = 0.309) pro-498

duced strong nDCG@3. This κ suggests p ≈ 40−499

50% effective noise (Figure 3). Our RQ2 analysis500

(Figure 2) predicted Query-By-Document would501

remain above baseline here; OLZ-GPT4O’s strong502

performance (Table 3) aligns, confirming operation503

within "safe zones". Conversely, lower-agreement504

judges like TREMA-4PROMPTS (iKAT κ = 0.192,505

implying higher effective noise) yielded top-rank506

performance near or not significantly above base-507

line.508

Finally, as discussed (Section 3.3), IKAT’s im-509

plicit PTKB dependencies likely contributed to rela-510

tively more modest gains there versus CAST. LLM511

judges lacking PTKB context may struggle to align512

with human judgments reliant on it, limiting effec- 513

tiveness on iKAT. 514

5 Conclusion 515

This paper investigated a novel role for LLM 516

Judges in information retrieval, shifting their appli- 517

cation from external evaluators to active, internal 518

components that provide real-time, generative rele- 519

vance feedback. We introduced two distinct feed- 520

back integration policies, Query-Reformulation 521

and Query-By-Document, designed to leverage 522

LLM judgements for pruning and expanding the 523

candidate document pool within a multi-stage re- 524

trieval pipeline. 525

Our systematic evaluation across the IKAT and 526

CAST benchmarks yielded three key insights. 527

Firstly, under ideal conditions with Human Feed- 528

back, our approach demonstrates substantial poten- 529

tial, with the Query-By-Document policy achieving 530

state-of-the-art performance that significantly sur- 531

passed baselines and prior results (RQ1). Secondly, 532

we establish that these feedback mechanisms are 533

remarkably robust to noise. Even with considerable 534
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Figure 3: Cohen’s κ and Krippendorff’s α agreement between a simulated noisy judge (with 0-100% Bernoulli error
probability p) and human judgements across the LLMJUDGEBENCHMARK dev set, CAST, and IKAT. Solid/dashed
lines represent the mean agreement over 5 simulation runs, with shaded areas indicating 95% confidence intervals.

iKAT CAsT
System nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000 nDCG@3 nDCG@1000 MRR R@1000 AP@1000

BM25+MONOT5 0.288 0.287 0.333 0.248 0.141 0.451 0.128 0.508 0.426 0.708 0.463 0.223
Best System 0.412 0.426 0.325 0.353 0.206 0.316 0.191 0.513 0.485 0.717 0.557 0.257

Query-Reformulation Policy
WILLIA-UMBRELA1 0.311 0.302 0.351 0.255* 0.144* 0.476 0.138 0.542 0.491 0.742 0.564 0.275
OLZ-GPT4O 0.312 0.304 0.358 0.260 0.145* 0.479 0.140 0.545 0.495 0.746 0.569 0.279
TREMA-4PROMPTS 0.288* 0.284* 0.350 0.247* 0.140* 0.489 0.133 0.515* 0.485 0.700* 0.556 0.266
H2OLOO-FEWSELF 0.311 0.300 0.352 0.254 0.143* 0.476* 0.137 0.539 0.494 0.740 0.561 0.275
MONOT5-JUDGE 0.285* 0.278 0.348 0.241* 0.139* 0.490 0.131* 0.506* 0.496 0.701 0.583 0.266

Query-By-Document Policy
WILLIA-UMBRELA1 0.331 0.319 0.316 0.273 0.153 0.370 0.133 0.594 0.315 0.781 0.260 0.187
OLZ-GPT4O 0.364 0.349 0.334* 0.300 0.169 0.366 0.148 0.605 0.335 0.781 0.284 0.208
TREMA-4PROMPTS 0.312 0.307 0.340 0.270 0.154 0.435 0.140 0.529 0.417 0.711* 0.432 0.231
H2OLOO-FEWSELF 0.331 0.320 0.322 0.275 0.155 0.381 0.134 0.586 0.371 0.762 0.329 0.225*
MONOT5-JUDGE 0.288* 0.287* 0.319 0.248* 0.141* 0.413 0.126 0.508* 0.407 0.708* 0.429 0.218

Table 3: Retrieval performance on the iKAT and CAsT benchmarks using the LLM Judges. Compares our
Query-Reformulation and Query-By-Document feedback integration policy variants against the BM25+MONOT5
baseline (with no feedback) and the best systems previously reported for IKAT (Aliannejadi et al., 2024) and CAST
(Owoicho et al., 2022). Sign * indicates a difference that is NOT statistically significant (p ≥ 0.05) compared to the
BM25+MONOT5 baseline. Best results achieved by our systems are shown in bold.

inaccuracies in judgements, Query-Reformulation535

and Query-By-Document policies often outper-536

formed a system with no feedback, defining "safe537

operational zones" for practical deployment (RQ2).538

Thirdly, and most critically, experiments with auto-539

matic LLM judges confirm LARF continues to be540

effective. The best-performing LLM judges, when541

integrated into our Query-By-Document policy, led542

to significant improvements over the baseline and543

even achieved new state-of-the-art results on the544

CAST benchmark. The effectiveness of these auto-545

matic judges correlated with their agreement with546

human judgements and their operation within the547

identified robustness thresholds.548

Our findings collectively argue for a paradigm549

shift in how LLM capabilities are used in search.550

Rather than just relying on them for post-hoc eval-551

uation, their inherent ability to simulate user pref-552

erence and predict relevance can be constructively 553

embedded within the retrieval process to dynam- 554

ically enhance search quality. While challenges 555

related to the "effective noise" of current LLM 556

judges and dataset-specific nuances (like the IKAT 557

PTKBs) remain, our work provides strong evidence 558

that LLMs are powerful and practical tools for 559

building more effective search systems when de- 560

ployed as internal feedback providers. 561

Future work could explore more sophisticated 562

feedback integration strategies, investigate the cost- 563

benefit trade-offs of different LLM judges, and 564

extend this framework to incorporate richer contex- 565

tual information, such as user profiles or conversa- 566

tional history, into the feedback generation process. 567

Further, as both feedback policies are complemen- 568

tary, combining them to unlock wholistic retrieval 569

gains is an exciting prospect. 570
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6 Limitations571

While our findings demonstrate the promising po-572

tential of repurposing LLM judges for in-pipeline573

feedback, we acknowledge several limitations:574

Cost and Latency: Our current framework, par-575

ticularly the Query-By-Document policy, involves576

multiple calls to an LLM for feedback on numer-577

ous documents and potentially for generating sum-578

maries/queries during expansion. This incurs sig-579

nificant cost (if using closed-source LLMs) and la-580

tency, making the current instantiation not directly581

"deployable" in many real-time search scenarios.582

However, practical systems may not always need to583

process or rerank up to 1,000 documents; a smaller,584

more targeted application might be feasible. Fur-585

thermore, future advancements in LLM efficiency,586

smaller specialised models, or caching strategies587

could mitigate these concerns.588

Generalisability: Our experiments were con-589

ducted using a BM25 + MonoT5 baseline for re-590

trieval tasks. While this is a standard baseline (Saha591

et al., 2022; Almeida and Matos, 2024; Rosa et al.,592

2022b,a), different base retrieval architectures (e.g.,593

dense retrievers, more complex multi-stage sys-594

tems) might interact differently with our feedback595

policies, potentially yielding varying magnitudes596

of improvement or different optimal policy config-597

urations.598

Query Type: The CAST and IKAT benchmarks599

feature relatively verbose, fully-formed natural lan-600

guage queries. The efficacy of our LLM-feedback601

approach with shorter, keyword-based queries, or602

queries from different domains, remains to be ex-603

plored. LLMs might behave differently in assessing604

relevance or generating useful expansion material605

for such query types.606

Relevance Scale Mapping: We mapped the orig-607

inal 5-point (0-4) relevance scales of the bench-608

marks to the 4-point (0-3) scale used by our judges609

by collapsing the top two original categories. This610

introduces an assumption about the equivalence of611

these collapsed levels. While a pragmatic choice, it612

could subtly influence perceived judge agreement613

and the precise interpretation of relevance thresh-614

olds (θ).615

Relevance Threshold (θ) Selection: Our prun-616

ing step relies on a predefined relevance threshold θ.617

In our experiments, this was guided by benchmark618

definitions of relevance. In practical scenarios with- 619

out such predefined ground truth or when adapting 620

to new domains/users, dynamically determining or 621

learning an optimal θ would be a necessary and 622

non-trivial challenge. 623

iKAT PTKB Context: As discussed, our ex- 624

periments on iKAT did not explicitly incorporate 625

the Personal Text Knowledge Bases (PTKBs) that 626

sometimes provide crucial context for the "resolved 627

utterances." This unmodeled context likely influ- 628

enced our LLM judge assessments, potentially un- 629

derestimating the full potential of our approach on 630

this dataset had PTKB information been available 631

to the feedback mechanism. 632

7 Ethical Considerations 633

Similarly, we acknowledge the following ethical 634

considerations: 635

Environmental Impact: The training and infer- 636

ence of large LLMs, as used by some of our tested 637

judges and for expansion query generation, are 638

computationally intensive and consume significant 639

energy resources (Husom et al., 2024). While we 640

used existing models, widespread adoption of such 641

techniques contributes to these broader concerns. 642

We are hopeful that ongoing research into more ef- 643

ficient model architectures and inference methods 644

will alleviate this over time. 645

Bias Amplification and Fairness: LLMs are 646

known to inherit and potentially amplify biases 647

present in their training data (Li et al., 2025; Nav- 648

igli et al., 2023; Gallegos et al., 2024). If LLM 649

judges exhibit biases (e.g., demographic, view- 650

point), their in-pipeline feedback could systemati- 651

cally skew search results, leading to unfair or un- 652

representative information being surfaced to users. 653

This could reinforce societal biases or limit expo- 654

sure to diverse perspectives. Careful auditing of 655

LLM judges for such biases and developing de- 656

biasing techniques for feedback mechanisms are 657

critical before deployment. 658

Content Moderation and Harmful Content: 659

An LLM judge providing feedback might inadver- 660

tently (or if an LLM itself is not well-moderated) 661

assign high relevance to or promote the expansion 662

of problematic content (e.g., misinformation, hate 663

speech) (Vinay et al., 2025; Williams et al., 2024; 664

Zhou et al., 2023; Chen and Shu, 2024; Guo et al., 665

2025). While the final reranker might also play 666
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a role, the feedback mechanism itself needs safe-667

guards if it’s to actively shape the candidate pool.668

Transparency and Explainability: The669

decision-making process of LLMs, especially for670

relevance assessment, can be opaque (Arabzadeh671

and Clarke, 2025; Liao and Vaughan, 2023; Singh,672

2025; Dietz et al., 2025). If an LLM judge’s673

feedback significantly alters search results, the674

lack of transparency in why certain documents675

were favoured or pruned could be problematic for676

users seeking to understand search behaviour or677

for system developers trying to debug it.678
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A Ablation Study on Number of Seeds for 939

Query-Reformulation Policy Expansion 940

Section 3 describes our Query-Reformulation feed- 941

back policy, where top-N documents from the 942

pruned pool (Dp) are used as seeds to generate new 943

queries for expanding the candidate set. The num- 944

ber of seed documents (N ) chosen for this process 945

is a key parameter. To determine an effective value 946

for N , we conducted preliminary experiments on 947

the iKAT benchmark using the Perfect Judge with 948

a relevance threshold of θ = 1 for pruning. We 949

varied N from 1 to 6 seed documents and tested 950

each of our three expansion query generation meth- 951

ods: "Full Text," "Reformulated Query," and "Sum- 952

mary." Table 4 presents these results against the 953

BM25+MONOT5 baseline. 954

The results in Table 4 reveal that, for the Query- 955

Reformulation policy, top-rank precision metrics 956

such as nDCG@3 generally peak or are strongest 957

when using a very small number of seed docu- 958

ments, typically N=1. For instance, with the "Full 959

Text" expansion method, nDCG@3 is 0.355 with 960

1 seed document. While there are minor fluctua- 961

tions, increasing the number of seed documents 962

beyond 1 does not consistently lead to further im- 963

provements in nDCG@3 and sometimes results in 964

a slight degradation (e.g., nDCG@3 for "Full Text" 965

with 6 seeds is 0.349). Similar trends are observ- 966

able for the "Summary" and "Reformulated Query" 967

methods, where N=1 often provides the best or 968

near-best nDCG@3 performance. 969

Conversely, Recall@1000 tends to exhibit a 970

slight upward trend or plateaus as more seed doc- 971

uments are incorporated, although the gains be- 972

yond N=1 are often marginal. For example, with 973

the "Full Text" method, R@1000 increases from 974

0.552 (1 seed) to 0.583 (6 seeds). This suggests 975

that while using more seeds can bring in a slightly 976

larger pool of relevant documents, the additional 977

documents may not be of sufficiently high quality 978

or distinctiveness to improve top-rank precision, 979

potentially due to increased overlap or the introduc- 980

tion of mildly relevant but not top-tier documents. 981

Considering the emphasis on top-rank perfor- 982

mance in our target benchmarks and the obser- 983

vation that precision benefits diminish or satu- 984

rate quickly beyond a single seed document, we 985

opted to use N=1 seed document for the Query- 986

Reformulation policy experiments reported in the 987
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Method nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000

Baseline 0.288 0.287 0.333 0.248 0.141 0.451 0.128

1 doc
Full Text 0.355 0.349 0.412 0.311 0.185 0.552 0.179
Reformulated Query 0.338 0.331 0.381 0.289 0.162 0.508 0.160
Summary 0.352 0.343 0.406 0.305 0.174 0.549 0.174

2 docs
Full Text 0.347 0.338 0.412 0.284 0.166 0.571 0.166
Reformulated Query 0.333 0.330 0.386 0.287 0.168 0.518 0.163
Summary 0.343 0.334 0.405 0.287 0.165 0.565 0.165

3 docs
Full Text 0.340 0.326 0.410 0.282 0.170 0.579 0.163
Reformulated Query 0.331 0.326 0.383 0.277 0.165 0.514 0.160
Summary 0.341 0.334 0.408 0.287 0.166 0.570 0.166

4 docs
Full Text 0.340 0.327 0.409 0.278 0.167 0.579 0.160
Reformulated Query 0.334 0.331 0.385 0.283 0.167 0.517 0.162
Summary 0.342 0.332 0.410 0.284 0.164 0.577 0.166

5 docs
Full Text 0.349 0.333 0.414 0.277 0.168 0.582 0.165
Reformulated Query 0.330 0.325 0.381 0.279 0.165 0.514 0.160
Summary 0.340 0.332 0.407 0.280 0.163 0.573 0.164

6 docs
Full Text 0.349 0.338 0.415 0.274 0.167 0.583 0.165
Reformulated Query 0.340 0.337 0.386 0.286 0.170 0.511 0.163
Summary 0.337 0.331 0.408 0.280 0.160 0.576 0.164

Table 4: Comparison of retrieval metrics using Query-Reformulation policy across varying numbers of seed
documents and methods.

main paper. This choice prioritises optimising for988

metrics like nDCG@3 while still leveraging the989

strongest initial signal for exploitation.990

B Ablation Study on Number of Seeds for991

Query-By-Document Policy Expansion992

In Section 3, we describe our Query-By-Document993

feedback policy, where documents from the pruned994

pool (Dp) seed the retrieval of neighboring docu-995

ments to enrich the candidate set. A key parameter996

in this process is the number of neighbors retrieved997

per seed document. To determine an optimal set-998

ting that balances top-rank precision with sufficient999

pool enrichment, we conducted preliminary exper-1000

iments on the iKAT benchmark using the Perfect1001

Judge with a relevance threshold of θ = 2 for prun-1002

ing. We varied the number of neighbors retrieved1003

per seed from 1 to 30. Table 5 presents the results1004

of this ablation study, comparing various retrieval1005

metrics against the BM25+MONOT5 baseline.1006

The results clearly illustrate a trade-off between1007

top-rank precision and overall recall as the number1008

of retrieved neighbors increases. As seen in Table 1009

5, precision-oriented metrics such as nDCG@3 and 1010

P@20 peak when retrieving only 1 neighbour per 1011

seed document (nDCG@3 = 0.621). As the num- 1012

ber of neighbors increases beyond one, there is a 1013

consistent degradation in these top-rank precision 1014

metrics. For instance, nDCG@3 drops from 0.621 1015

(1 neighbour) to 0.542 (2 neighbours), and further 1016

to 0.393 when retrieving 20 neighbours. This sug- 1017

gests that while retrieving more neighbours might 1018

bring in more documents, many of these additional 1019

documents are either not as relevant or introduce 1020

noise that makes it harder for the final reranker to 1021

identify the very best documents for the top posi- 1022

tions. 1023

Conversely, Recall@1000 exhibits the opposite 1024

trend. It starts relatively low when retrieving only 1025

1 neighbour (R@1000 = 0.205, which is below the 1026

baseline’s 0.451 in this specific ablation setup with 1027

θ = 2) and gradually increases with the number 1028

of neighbours retrieved, reaching 0.319 with 30 1029

neighbours. This indicates that retrieving more 1030

neighbours per seed does indeed bring more unique 1031
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Method nDCG@3 nDCG@5 nDCG@1000 P@20 R@20 R@1000 AP@1000

Baseline 0.288 0.287 0.333 0.248 0.141 0.451 0.128

1 neighbour 0.621 0.600 0.376 0.412 0.174 0.205 0.205
2 neighbours 0.542 0.524 0.360 0.385 0.172 0.222 0.185
3 neighbours 0.506 0.496 0.356 0.366 0.168 0.235 0.179
4 neighbours 0.485 0.472 0.352 0.347 0.163 0.242 0.173
5 neighbours 0.474 0.462 0.350 0.339 0.161 0.248 0.170
10 neighbours 0.431 0.417 0.345 0.311 0.155 0.274 0.162
15 neighbours 0.407 0.398 0.343 0.299 0.152 0.289 0.159
20 neighbours 0.393 0.382 0.342 0.293 0.151 0.300 0.156
30 neighbours 0.381 0.360 0.342 0.281 0.147 0.319 0.153

Table 5: Comparison of retrieval metrics using the Query-By-Document Policy at varying number of neighbours.

relevant documents into the 1000-document pool1032

overall.1033

Given that the conversational search benchmarks1034

used in our main experiments (IKAT and CAST)1035

place a strong emphasis on top-rank performance1036

(e.g., high nDCG@3 is critical for success), and our1037

primary goal is to demonstrate significant improve-1038

ments in this area, we selected the configuration1039

that maximised these precision metrics. There-1040

fore, based on this ablation, we opted to retrieve1041

1 neighbour per seed document for all Query-By-1042

Document policy experiments reported in the main1043

paper. While this experiment was conducted with a1044

pruning threshold of θ = 2 on iKAT, we observed1045

similar trends regarding the precision-recall trade-1046

off with varying numbers of neighbours when using1047

a threshold of θ = 1 (the threshold used for iKAT1048

in our main experiments, as detailed in Section 3).1049

This consistent behaviour reinforced our decision1050

to restrict expansion to a single, closest neighbour1051

to optimise for top-rank precision.1052

C Prompts 1053

C.1 Query-Reformulation Summary Prompt 1054

Query-Reformulation Summary Prompt

You are a Passage Summarizer whose job is
to read a set of passages and produce a con-
cise, accurate answer to the user’s question
using only the information provided.
Your output must satisfy these require-
ments:

1. Completeness: Include all key facts
from the passages that directly answer
the question.

2. Fidelity: Do not add any information
or assumptions not present in the pas-
sages.

3. Clarity: Write in clear, direct lan-
guage, referencing the same names and
terms used in the passages.

4. Brevity: Keep the answer as short
as possible while fully answering the
question.

Question:
<insert user query here>
Passages:

• <passage 1>

• <passage 2>

Answer:
1055
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C.2 Query-Reformulation Query1056

Reformulation Prompt1057

Query-Reformulation Query Reformulation
Prompt

You are a Question-Rewriter whose job is
to take an arbitrary user question and turn
it into a new question that can be answered
using the information contained in a given
set of passages.
Your output must satisfy these require-
ments:

1. Answerability: The rewritten question
must be fully answerable by the facts,
names, dates, and relationships explic-
itly stated in the passages.

2. Fidelity: Do not introduce any new
facts or assumptions that are not
present in the passages.

3. Clarity: Make the question as clear
and specific as possible, referencing
the same concepts used in the pas-
sages.

4. Conciseness: Keep the question brief;
only include what is needed to ensure
answerability.

Passages:

• <passage 1>

• <passage 2>

Original Question:
<insert original user query here>
Rewritten Question:

1058

C.3 Query-By-Document Summary Prompt1059

Query-By-Document Summary Prompt

Generate a concise summary of the Passage
so that it completely answers the Question.
Question:
<insert question here>
Passage:
<insert passage here>
Summary:

1060
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