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Abstract
Recent advances in preference optimization001
have demonstrated significant potential for im-002
proving mathematical reasoning capabilities in003
large language models (LLMs). While cur-004
rent approaches leverage high-quality pairwise005
preference data through outcome-based crite-006
ria like answer correctness or consistency, they007
fundamentally neglect the internal logical co-008
herence of responses. To overcome this, we009
propose Probability-Consistent Preference Op-010
timization (PCPO), a novel framework that es-011
tablishes dual quantitative metrics for prefer-012
ence selection: (1) surface-level answer cor-013
rectness and (2) intrinsic token-level proba-014
bility consistency across responses. Exten-015
sive experiments show that our PCPO con-016
sistently outperforms existing outcome-only017
criterion approaches across a diverse range018
of LLMs and benchmarks. Our code is pub-019
licly available at https://anonymous.4open.020
science/r/PCPO-0AD3.021

1 Introduction022

In recent years, enhancing the mathematical rea-023

soning ability of Large Language Models (OpenAI,024

2023; Anil et al., 2023; Touvron et al., 2023a,b;025

Bai et al., 2023; Jiang et al., 2023b, 2024; An-026

thropic, 2024; Yang et al., 2024a) (LLMs) has027

emerged as an important research direction (Ahn028

et al., 2024; Minaee et al., 2024). Among vari-029

ous approaches, Direct Optimization Preference030

(DPO) (Rafailov et al., 2024) is widely used due to031

its simplicity and efficiency. Since its introduction,032

numerous extensions of DPO have been proposed033

to further improve mathematical reasoning in di-034

verse ways. For instance, methods such as Self-035

Rewarding LLMs (Yuan et al., 2024) and iterative036

DPO (Xu et al., 2023) demonstrate the effective-037

ness of iterative training strategies. Additionally,038

constructing high-quality pairwise preference data039

is essential for preference optimization (Bai et al.,040

2022; Yang et al., 2023).041

To construct high-quality pairwise preference 042

data, previous methods, such as IRPO (Pang et al., 043

2024) and ScPO (Prasad et al., 2024), select prefer- 044

ence training pairs from generated responses that 045

include a Chain-of-Thought (CoT) (Kojima et al., 046

2022) process followed by a final answer, have 047

proven particularly effective in advancing mathe- 048

matical reasoning performance. IRPO (Pang et al., 049

2024) employs gold labels (correct answers) to dis- 050

tinguish between chosen and rejected responses. 051

Specifically, if a response’s answer matches the 052

gold label, it is designated as a chosen response; 053

otherwise, it is classified as rejected. On the other 054

hand, ScPO (Prasad et al., 2024) utilizes a voting 055

function to evaluate the self-consistency (Wang 056

et al., 2022) of responses. Responses whose an- 057

swers appear most frequently are selected as cho- 058

sen, while those with the least frequent answers are 059

marked as rejected. 060

However, both methods focus solely on the cor- 061

rectness or frequency of the final answer while 062

overlooking the internal logical connections or nu- 063

anced differences between responses. This lim- 064

itation restricts the creation of more refined and 065

informative preference training data (Wang et al., 066

2024). Consequently, models may have difficulty 067

recognizing subtle yet critical distinctions between 068

chosen and rejected responses during the iterative 069

DPO training process (Fürnkranz and Hüllermeier, 070

2010; Wirth et al., 2017). 071

In this paper, we propose a novel method called 072

Probability-Consistent Preference Optimization 073

(PCPO), which leverages both the final answer 074

and the internal logical connections of responses 075

when selecting preference pairs. Our method is 076

grounded in the principle that the token generation 077

process in LLMs fundamentally involves predicting 078

new tokens based on the highest conditional prob- 079

ability given all existing tokens (Vaswani, 2017; 080

Radford, 2018). Specifically, PCPO calculates a 081

weighted score between preferred and dispreferred 082
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Figure 1: Overview of the PCPO method. The pipeline mainly consists of three steps. (1) Given a prompt set, utilize
Mt (M0 as the seed model) to generate responses yni with reasoning cni and answer ani , and construct candidate
pairs on correctness §2.1. (2) utilize Mt to calculate weighted scores sw for each pair based on the token probability
consistency, and select preference pairs based on it §2.2. (3) train the next iteration model Mt+1 with the selected
preference pairs and PCPO Loss §2.3.

answers by evaluating the conditional probability083

of each token in the responses (Holtzman et al.,084

2019; Welleck et al., 2020). Preference pairs are085

then selected based on the highest weighted scores.086

This approach provides a quantitative framework087

for selecting preference pairs by considering not088

only the correctness of the final answer but also the089

internal coherence of the responses. By incorporat-090

ing these factors, PCPO ensures a more robust and091

principled selection of preference pairs.092

In each iteration, We first use the seed model to093

generate multiple responses for each math problem,094

and we construct a candidate preference pair set095

based on the correctness of the final answer. Then,096

we calculate the token-level consistency score for097

all the preference pairs from the candidate pair set.098

Afterward, we select the preference pairs with the099

highest token-level weighted score for each prob-100

lem to construct preference training pairs eventu-101

ally. Finally, we use the preference pairs selected to102

train the next iteration model with a modified DPO103

loss. To validate our method, we apply it to widely104

used math datasets, including GSM8K (Cobbe105

et al., 2021), MATH-500 (Hendrycks et al., 2021;106

Lightman et al., 2023) Olympiadbench (He et al.,107

2024) and AMC23 (Mathematical Association of108

America, 2023).To comprehensively demonstrate109

the effectiveness of our approach, we conduct ex-110

periments across a diverse range of seed models,111

such as Llama-3-8b-Instruct (Dubey et al., 2024),112

Mathstral-7b-v0.1 (Jiang et al., 2023a), Qwen-2.5-113

7B-Instruct (Yang et al., 2024b) and Qwen-2.5-114

Math-7B-Instruct (Yang et al., 2024c). Consistent115

results across these models showcase the effective-116

ness of our method.117

In summary, our contributions are as follows:118

1) We propose Probability-Consistent Preference 119

Optimization (PCPO), a novel method that lever- 120

ages both the final answers and the internal con- 121

nections of the responses to select higher-quality 122

preference pairs for training, thereby enhancing the 123

mathematical reasoning capabilities of seed LLMs. 124

2) Extensive experiments demonstrate that our 125

method consistently outperforms existing outcome- 126

only criterion approaches (e.g.,, IRPO, ScPO) 127

across a diverse range of LLMs and benchmarks. 128

3) Through empirical analysis, we highlight the 129

critical importance of considering the internal con- 130

nections of responses when selecting preference 131

pairs. This insight paves the way for future re- 132

search aimed at improving reasoning capabilities 133

through more sophisticated preference pair selec- 134

tion methods. 135

2 Method 136

As depicted in Figure 1, our method starts with a 137

pre-trained seed language model and a fixed prompt 138

set of math problems with final answers. The PCPO 139

pipeline mainly consists of three steps. (1) utilize 140

Mt (M0 as the seed model) to generate responses 141

yni with reasoning cni and answer ani , and construct 142

candidate pairs on correctness §2.1. (2) utilize Mt 143

to compute weighted scores sw for each pair based 144

on the token probability, and select preference pairs 145

based on it §2.2. (3) train the next iteration model 146

Mt+1 with the selected preference pairs and PCPO 147

loss §2.3. The model will be trained and updated 148

at each iteration, resulting in a series of models 149

M1, . . . ,MT . 150
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2.1 Construct Candidate Pairs151

We assume we have an initial model M0, and a152

prompt set D = {(xi, y∗i )} containing questions153

xi and their correct answers y∗i . We focus on the154

process applied to a specific prompt xi, and there-155

fore, we omit the subscript i for simplicity in the156

following subsections.157

Response Generation. In each iteration, we first158

use the current model Mt to generate N different159

responses for the prompt x, i.e., Y = {yn =160

(cn, an) ∼ Mt(x)} and n ∈ [N ], where cn, an161

represents the Chain-of-Thought reasoning steps162

and the prediction answer. If the prediction an-163

swer an of the response yn equals the gold answer164

y∗, we put the response into a response subset Yw,165

otherwise Yl.166

Prepare candidate pair set. Assume that there167

are p chosen responses yw in Yw and q rejected re-168

sponses yl in Yl, where p and q satisfy the condition169

p + q = N . To generate all possible preference170

pairs, we use the cartesian product (Hewitt and171

Savage, 1955) between the set Yw and Yl to con-172

struct p×q pairs, denoted as Yw×Yl = {(yw, yl) |173

yw ∈ Yw, yl ∈ Yl}. However, due to computa-174

tional constraints, we must limit the number of175

candidate pairs. To achieve this, we employ the176

Levenshtein distance technique (Heeringa, 2004)177

to filter the candidate pairs effectively. Its rationale178

is discussed in Appendix A.179

The Levenshtein distance measures the mini-180

mum number of edits required to transform one181

sequence into another, serving as a metric for se-182

quence similarity. For each rejected response yl,183

we compute its Levenshtein distance with all cho-184

sen responses {yw} and select the top k pairs with185

the smallest distances as candidate pairs. This186

process results in the candidate pair set Cpairs
t =187

{(yjw, yl)}, where j = 1, 2, ...,min(p, k) repre-188

sents the number of candidate chosen responses189

for each rejected response yl.190

2.2 Construct Preference Pairs191

In this step, we first introduce the concept of token192

probability consistency (ct), a token-level metric193

derived from the standard cross-entropy formula-194

tion for individual tokens (Vaswani, 2017; Radford,195

2018; Hong et al., 2024):196

Lt = − logP (xi|x<i). (1)197

Next, we define the pair-weighted score(sw), a pair-198

level metric computed from the token probability199

consistency values of the chosen and rejected re- 200

sponses within a pair. Based on this score, we 201

selectively extract preference training pairs from 202

the candidate pairs set Cpairs
t . 203

Calculate token probability consistency. For 204

each response y in a certain candidate pair (yw, yl), 205

we perform the following steps. First we tokenize 206

y into a sequence {yti} using the tokenizer of the 207

current iteration model Mt, where t = 1, 2, ..., l 208

and l denotes the length of the token sequence {yt}. 209

We then infer Mt to obtain the casual conditional 210

probability PMt(y
t|y<t, x) for each token. 211

With the tokenized pairs and their corresponding 212

token probabilities, we proceed to the next step: 213

employing a matching function M in Appendix B 214

to align the common tokens between the two re- 215

sponses in a pair sequentially. This allows us to 216

compute the token consistency score(ct), which is 217

defined as 218

ct (yw|yl) = exp(−| logPw (yt|x, y<t) 219

− logPl (yt|x, y<t) |) , yt ∈ M(yw, yl). (2) 220

The concept of comparing token-level losses 221

draws inspiration from recent works such 222

as Christopoulou et al. (2024), which emphasizes 223

sparse token-level optimization, and Lin et al. 224

(2024b), which highlights the importance of crit- 225

ical tokens in alignment tasks. Additionally, the 226

use of exponential mapping aligns with the design 227

principles of ORPO’s odd-one-out loss (Hong et al., 228

2024), as both approaches aim to transform token- 229

level differences into probabilistic metrics for more 230

effective optimization. This combination of ideas 231

provides a principled foundation for our token prob- 232

ability consistency framework. 233

Calculating pair-weighted score. The pair- 234

weighted score st is a normalized metric ranging 235

between 0 and 1, where a higher value indicates a 236

smaller difference in logarithmic probabilities be- 237

tween the chosen and rejected responses for a given 238

token. Since the logarithmic probability represents 239

a conditional probability, a higher score suggests 240

that the preceding tokens provide the most relevant 241

context for predicting the current token (Vaswani, 242

2017; Radford, 2018). To compute the overall score 243

s, we aggregate the token-level consistency scores 244

ct across all matched tokens. However, since the 245

number of matched tokens varies with the length 246

of the responses, we normalize the final score by 247

dividing it by the total length of the preference pair. 248
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This yields the pair-weighted score sw for each249

preference pair, defined as250

sw (yw|yl) =
∑

t ct (yw|yl)
lyl

, (3)251

where lyl denotes the length of the token sequence252

in the rejected response. This normalization en-253

sures that the score is robust to variations in re-254

sponse length and provides a fair comparison255

across preference pairs.256

Select preference pairs. Given that we have per-257

formed the process in Section 2.2 for all the candi-258

date pairs (yjw, yl). Next, we select the preference259

pair with the highest pair-weighted score for the260

rejected responses yl. Specifically, for a given re-261

jected response yl, we choose the corresponding262

chosen response ychosenw that maximizes the pair-263

weighted score sw. This ensures that the chosen264

response exhibits the strongest token-level consis-265

tency and correlation with the rejected response,266

making it the most suitable candidate for prefer-267

ence optimization (Holtzman et al., 2019; Welleck268

et al., 2020). The resulting set of selected prefer-269

ence pairs can be formally represented as270

Spairs
t = {(ychosenw , yl)} (4)271

=

{
argmax
(yjwyl)

sw
(
yjw|yl

) ∣∣∣∣ yjw, yl ∈ {(yjw, yl)}

}
,

(5)

272

where Spairs
t denotes the final set of selected pref-273

erence pairs for the prompt x, and argmax iden-274

tifies the chosen response ychosenw that maximizes275

the pair-weighted score sw for a given rejected276

response yl. This selection process ensures that277

the chosen pairs are optimized for token-level con-278

sistency and alignment with human preferences,279

while maintaining a strong correlation between the280

chosen and rejected responses.281

2.3 PCPO Loss Function282

We design our PCPO loss function as follows:283

LPCPO(y
+, y−|x)=

−sw(x) log σ

(
β log

Mθ(y
+ |x)

Mt(y+ | x)
− β log

Mθ(y
− |x)

Mt(y− | x)

)
︸ ︷︷ ︸

Weighted DPO Loss

−αsw(x)

|y+|
logMθ(y

+ |x)︸ ︷︷ ︸
Weighted NLL Loss

.

284

The loss function integrates a pair-weighted 285

score sw into both DPO and NLL losses, inspired 286

by IRPO (Pang et al., 2024) and ScPO (Prasad 287

et al., 2024). The weighted DPO loss and the 288

weighted NLL loss, dynamically prioritize pairs 289

with high token-level consistency, akin to sparse 290

alignment strategies in SparsePO (Christopoulou 291

et al., 2024). It also adaptively balances language 292

modeling with preference alignment, similar to 293

ScPO’s self-consistency weighting. 294

The use of sw as a dynamic weighting mecha- 295

nism is grounded in token-level consistency princi- 296

ples from Zeng et al. (2024) and Lin et al. (2024b), 297

while the inclusion of NLL loss ensures stable op- 298

timization, as highlighted in IRPO (Pang et al., 299

2024). This design enables adaptive sample weight- 300

ing, robustness to sequence length variations, and 301

flexible optimization through parameters β and α. 302

The pair-weighted score sw serves as a key innova- 303

tion, enhancing the training process’s effectiveness 304

and interpretability. 305

3 Experiment setup 306

Datasets. We assess the effectiveness of PCPO 307

across a large and challenging range of mathe- 308

matical reasoning datasets: GSM8K consists of 309

1.3k high-quality grade school math word prob- 310

lems. MATH-500 is a curated subset drawn 311

from the MATH dataset comprising 500 chal- 312

lenging competition-style mathematics problems. 313

Olympiadbench is a test set of mathematics prob- 314

lems from olympiads, designed to assess deep 315

problem-solving skills, creativity, and advanced 316

mathematical reasoning. AMC23 is a test set of 317

40 problems from the 2023 American Mathemat- 318

ics Competitions (AMC 12). These problems are 319

renowned for their depth and subtlety, offering a 320

rigorous assessment of reasoning skills and preci- 321

sion. 322

Metrics. We report zero-shot Pass@1 and 323

Maj@8 results. The Pass@1 score denotes The 324

greedy decoding accuracy of a single response. The 325

Maj@8 score denotes the accuracy of the majority 326

answer voted from 8 candidate responses (Wang 327

et al., 2022). More evaluation details are presented 328

in Appendix C. 329

Training data. Our training data includes 7.5k 330

GSM8K training set, 7.5k MATH training set, 7.5k 331

subset of Orca-math (Li et al., 2024), and 7.5k sub- 332

set of Cn-k12 (Li et al., 2024), 30k in total. In our 333
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Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
IRPO M1 79.1 86.4 29.4 35.6 7.3 10.0 0 17.5
IRPO M2 81.1 88.4 30.6 36.6 6.7 9.8 0 12.5
ScPO M1 79.3 87.5 30.2 34.6 6.4 10.4 7.5 15.0
ScPO M2 81.6 88.6 32.2 36.4 7.9 10.5 5.0 17.5
PCPO (ours) M1 80.1 87.8 32.2 36.6 7.9 9.5 15.0 22.5
PCPO (ours) M2 82.8 88.9 33.2 38.4 9.5 11.7 10.0 20.0

Mathstral-7B-v0.1
Seed M0 84.3 91.4 57.2 63.2 21.8 26.7 25.0 40.0
IRPO M1 87.0 92.3 57.2 63.4 23.6 29.0 20.0 32.5
IRPO M2 87.7 91.4 58.4 66.8 24.6 29.2 20.0 30.0
ScPO M1 87.1 92.0 57.4 65.4 23.4 30.5 22.5 27.5
ScPO M2 87.6 92.3 60.4 66.8 24.1 30.7 27.5 40.0
PCPO (ours) M1 87.9 91.9 58.6 66.4 24.9 29.2 20.0 37.5
PCPO (ours) M2 89.0 92.3 61.8 69.4 25.2 32.1 32.5 47.5

Qwen2.5-7B-Instruct
Seed M0 92.3 94.0 76.4 81.2 38.5 44.9 47.5 60.0
IRPO M1 92.2 93.9 75.2 80.4 37.9 43.3 50.0 55.0
IRPO M2 92.3 93.9 77.6 81.2 40.1 45.0 52.5 57.5
ScPO M1 92.2 94.1 76.8 80.8 39.9 44.4 55.0 60.0
ScPO M2 92.3 93.9 76.8 81.4 39.9 44.7 57.5 60.0
PCPO (ours) M1 92.6 94.5 76.4 81.8 39.9 45.9 45.0 62.5
PCPO (ours) M2 92.6 94.1 78.0 82.4 40.3 45.0 57.5 65.0

Qwen2.5-Math-7B-Instruct
Seed M0 92.9 93.9 81 83.0 43.4 46.1 62.5 70.0
IRPO M1 93.1 94.0 81.2 82.8 44.1 47.4 67.5 70.0
IRPO M2 92.7 93.9 79.8 83.6 44.6 47.7 65 70.0
ScPO M1 92.6 94.1 80.8 83.0 44.7 47.3 67.5 70.0
ScPO M2 93.1 94.0 80.8 83.0 44.6 48.1 67.5 70.0
PCPO (ours) 92.9 94.2 80.6 83.4 44.9 48.7 70.0 72.5
PCPO (ours) 93.3 94.1 81.4 83.8 44.3 48.7 67.5 75.0

Table 1: Results of our method PCPO comparing with the baseline methods on GSM8K, MATH, Olympiadbench,
and AMC23. The results are zero-shot Pass@1 and Maj@8 accuracy.

approach, we don’t need to generate new data, and334

the training data are fixed for all the experiments.335

Baselines. Seed Model uses Chain-of-Thought336

prompting (Kojima et al., 2022) with greedy de-337

coding, achieving zero-shot Pass@1 and Maj@8338

accuracy. IRPO (Pang et al., 2024) utilizes itera-339

tive training with pairwise preferences at the out-340

come level, considering the correctness of the fi-341

nal answer when building preference training data.342

ScPO (Prasad et al., 2024) uses an inference-time-343

only approach that selects the most frequent final344

answer to build preference training data. Similar to345

IRPO, ScPO is still an outcome-level method that346

considers the correctness and the frequency of the347

final answer.348

Implementation details. We set N = 16 to gen-349

erate responses for the training data, with the tem-350

perature of 1 and top-p = 0.95. For each iteration,351

we sample 15k training data, training a total of 6352

epochs with a useful batch size of 128. We use353

an initial leaning rate 1.0 × 10−7 with the cosine354

scheduler and AdamW optimizer with a warm-ratio355

of 0.1 for smoother training. The NLL regulariza- 356

tion coefficient α is set to 1 and the DPO loss term 357

coefficient β is set to 0.5, following Prasad et al. 358

(2024). For the Pass @1 evaluation, we implement 359

greedy decoding with the temperature of 0, and for 360

the Maj@8 evaluation, we set a temperature of 0.95 361

and top-p = 0.95. We use one node containing 8 362

A800 GPUs for training. 363

4 Rresults and Analysis 364

4.1 Comparison Results 365

The main results are shown in Table 1, demon- 366

strating that the performance of our PCPO exceeds 367

baseline methods across multiple seed models on 368

the GSM8K, MATH, Olympiadbench, and AMC23 369

benchmarks. 370

Specifically, for the Llama-3-8B-Instruct model, 371

PCPO achieves significant improvements over 372

ScPO and IRPO. On the GSM8K Pass@1 test, it 373

surpasses ScPO and IRPO by 1.2 and 1.7 points, 374

respectively. Similarly, on the MATH-500 Pass@1 375

test, it outperforms these baselines by 1.0 and 376
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Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
IRPO+DPO M1 79.8 88.1 29.4 34.2 6.8 10.8 5.0 10.0
IRPO+DPO M2 81.7 88.2 30.0 35.8 7.4 8.1 0 5.0
ScPO+DPO M1 79.3 86.7 29.4 37.0 7.3 11.0 5.0 10.0
ScPO+DPO M2 81.3 88.6 31.6 38.8 7.0 8.7 5.0 12.5
PCPO (ours)+DPO M1 80.6 87.9 30.4 38.4 7.4 11.0 7.5 10.0
PCPO (ours)+DPO M2 81.9 89.0 31.8 39.8 9.3 12.1 7.5 15.0

PCPO (ours) M1 80.1 87.8 32.2 36.6 7.9 9.5 15.0 22.5
PCPO (ours) M2 82.8 88.9 33.2 38.4 9.5 11.7 10.0 20.0

Table 2: DPO training results with the preference pair training data curated by our PCPO method and baseline
methods on GSM8K, MATH, Olympiadbench, and AMC23. For instance, IRPO+DPO represents DPO training
with the preference data constructed by IRPO method. The results are zero-shot Pass@1 and Maj@8 accuracy.

2.6 points, respectively. The improvements are377

more pronounced on the OlympiadBench Pass@1378

test, with gains of 1.6 and 2.8 points over ScPO379

and IRPO, respectively. Notably, on the AMC23380

Pass@1 test, PCPO achieves an impressive lead of381

7.5 and 15.0 points over ScPO and IRPO, respec-382

tively. A similar trend is observed for Mathstral-383

7B-v0.1, with PCPO achieving gains of 1.4 and 1.3384

points on GSM8K Pass@1, 1.4 and 3.4 points on385

MATH-500 Pass@1, and 5.0 and 12.5 points on386

AMC23 Pass@1 over ScPO and IRPO.387

For the Qwen-2.5-7B-Instruct model, which388

was post-trained using supervised fine-tuning389

(SFT) (Ouyang et al., 2022), DPO (Rafailov et al.,390

2024), and GRPO (Shao et al., 2024) on over 1391

million examples (Yang et al., 2024b), the per-392

formance gains are relatively smaller. Neverthe-393

less, PCPO still consistently outperforms IRPO and394

ScPO across all benchmarks, demonstrating a clear395

advantage over outcome-level methods. The Qwen-396

2.5-MATH-7B-Instruct model, built on Qwen-2.5-397

7B-Instruct, presents a greater challenge for post-398

training improvements. Notably, while IRPO and399

ScPO underperform the seed model M0 on MATH-400

500, PCPO continues to demonstrate consistent401

gains, highlighting its robustness over outcome-402

level methods.403

Table 1 also demonstrated that the performance404

of PCPO shows more consistency and robustness405

over the iteration training, detailed explanations in406

Appendix D. Overall, PCPO consistently outper-407

forms the baselines that rely solely on final results408

when constructing preference training data on all409

the benchmarks with Pass@1 and Maj@8 metrics.410

4.2 Effect of Preference Data 411

To isolate the impact of training data quality, we 412

design an experiment where all methods—PCPO, 413

IRPO (Pang et al., 2024), and ScPO (Prasad et al., 414

2024)—use the same DPO loss function (Rafailov 415

et al., 2024), despite their original loss functions 416

differing as described in Section 2.3. This allows 417

us to directly compare the effectiveness of the pref- 418

erence pairs generated by each method. 419

Table 2 shows the performance of Llama-3-8B- 420

Instruct trained with preference pairs curated by 421

PCPO, IRPO, and ScPO, all optimized using the 422

DPO loss. Here, "IRPO+DPO" denotes training 423

data curated by IRPO with the DPO loss, and sim- 424

ilarly for other methods. The results demonstrate 425

that models trained with PCPO’s preference pairs 426

consistently outperform those trained with IRPO 427

or ScPO pairs. Specifically, PCPO M2 achieves 428

1.9 and 2.3 points higher on the OlympiadBench 429

Pass@1 test compared to IRPO M2 and ScPO M2, 430

respectively, and 2.5 points higher on the AMC23 431

Pass@1 test than the best-performing model trained 432

with IRPO or ScPO data. These results highlight 433

the superior quality of PCPO’s preference pairs, fur- 434

ther validating its effectiveness in curating training 435

data. 436

4.3 Effect of Loss 437

Table 2 further demonstrates that the model trained 438

with the PCPO Loss, as described in Section 2.3, 439

outperforms the model trained with the original 440

DPO Loss PCPO on the same PCPO curated pref- 441

erence pairs. Figure 2 shows the chosen and re- 442

jected responses reward comparison of PCPO and 443

DPO training on the same preference pairs. The 444

reward, denoted as r = β log πθ(y|x)
πref (y|x) , reflects the 445

preference intensity of the current strategy model 446

6



Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
DPO M1 79.8 87.4 29.4 34.2 6.8 10.8 5.0 10.0
PCPO (ours)+DPO M1 80.6 87.9 30.4 38.4 7.4 11.0 7.5 15.0
RPO M1 79.1 86.4 29.4 35.6 7.3 10.0 0 17.5
PCPO (ours)+RPO M1 80.0 87.3 30.6 37.4 7.4 10.7 5.0 22.5
IPO M1 80.6 88.0 24.4 37.6 8.1 11.9 10.0 10.0
PCPO (ours)+IPO M1 81.3 88.1 32.2 38.4 9.9 12.6 15.0 20.0
ORPO M1 81.6 88.1 27.0 32.8 8.0 10.5 10.0 12.5
PCPO (ours)+ORPO M1 81.9 88.2 29.0 36.4 8.6 11.9 10.0 25.0
TDPO M1 79.8 86.5 29.8 35.0 7.7 9.0 5.0 12.5
PCPO (ours)+TDPO M1 79.7 87.1 30.4 36.2 8.4 9.8 5.0 25.0

Table 3: Performance of applying PCPO framework to construct training data with different DPO variants on
GSM8K, MATH, Olympiadbench, and AMC23. The results are zero-shot Pass@1 and Maj@8 accuracy.

Figure 2: Rewards of PCPO and DPO. The chosen
and rejected responses reward comparison of PCPO and
DPO training on the same preference pairs.

πθ for generating a specific response y relative to447

the reference model πref (Stiennon et al., 2020;448

Rafailov et al., 2024). Notably, the chosen reward449

for PCPO Loss exhibits a more pronounced in-450

crease, indicating more efficient learning from pref-451

erence data due to an improved gradient update452

strategy. These results underscore that the PCPO453

Loss enables more effective preference training454

compared to the original DPO Loss.455

4.4 Generalizability456

Section 4.2 shows that the preference training data457

curated by our PCPO framework is of higher qual-458

ity. To further validate its versatility, we apply459

our framework to enhance several DPO variants:460

RPO (Pang et al., 2024) (the single-iteration ver-461

sion of IRPO), IPO (Azar et al., 2024) (designed462

to prevent overfitting), ORPO (Hong et al., 2024)463

(reference-free alignment), and TDPO (Zeng et al.,464

2024) (token-level alignment). As shown in Ta-465

ble 3, PCPO +RPO, PCPO +IPO, PCPO +ORPO,466

and PCPO +TDPO consistently outperform their467

original counterparts across nearly all benchmarks.468

These results highlight the effectiveness and broad469

Pairs a & c b & c a & d b & d

sweighted 0.791 0.525 0.559 0.793

Table 4: The weighted score sweighted of the four re-
sponses in Figure 3.

applicability of our framework in improving di- 470

verse preference alignment methods. 471

4.5 Case Study 472

We have already presented the efficiency and versa- 473

tility of the preference training pairs curated with 474

our PCPO framework in Section 4.2, 4.4, and we 475

will quantitatively analyze it through some cases in 476

this section. Figure 3 shows four responses from 477

the Llama3-8B-Instruct with the same prompt gen- 478

erated in Section 2.1. These four responses exem- 479

plify the response generation process, showcasing 480

both correct and incorrect answers, as well as var- 481

ious answer patterns. In this case, response-a and 482

response-b have the right answer, while response-c 483

and response-d have the wrong answer. Moreover, 484

it can be easily seen from the bold sentence that 485

these four responses have two answer patterns, and 486

response-a and response-c are of one pattern while 487

response-b and response-d are of another pattern. 488

However, because they have no difference in their 489

final answer, outcome-only methods are not able 490

to distinguish them, so it’s totally random for these 491

methods to construct preference pairs from them. 492

Our PCPO can easily identify different answer pat- 493

terns in the token-level and put the responses with 494

the nearest pattern in a preference pair. 495

In this case, the weighted scores in Equation (3) 496

of these pairs are shown in Table 4, thus PCPO is 497

able to select response-a and response-c as a pref- 498

erence pair and response-b and response-d another. 499
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"Maria bought 8 DVDs at Store A for $15 each, so the total cost of her 
purchase at Store A is 8 * $15 = $120.\nShe bought 12 DVDs at Store B for $12 
each, so the total cost of her purchase at Store B is 12 * $12 = $144.\nShe bought 
5 DVDs online at $16.99 each, so the total cost of her online purchase is 5 * 
$16.99 = $84.95.\nThe total cost of all her purchases before the discount is $120 
+ $144 + $84.95 = $348.95.\nMaria has a 15% discount on her purchases from 
Store A and Store B, so the discount on these purchases is 15\/100 * ($120 + 
$144) = 15\/100 * $264 = $39.60.\nThe final amount Maria has to pay after the 
discount is $348.95 - $39.60 = $309.35.\nThe answer is: $309.35$"

Right: response-a
"At Store A, Maria bought 8 DVDs at $15 each, so her total cost is 8 * $15 = 
$120.\nAt Store B, she bought 12 DVDs at $12 each, so her total cost is 12 * $12 
= $144.\nAt the online store, she bought 5 DVDs at $16.99 each, so her total cost 
is 5 * $16.99 = $84.95.\nThe total cost before the discount is $120 + $144 + 
$84.95 = $348.95.\nMaria has a 15% discount on her total cost from Store A and 
Store B, so the discount is 0.15 * ($120 + $144) = 0.15 * $264 = $39.60.\nThe
final amount Maria has to pay after the discount is $348.95 - $39.60 = 
$309.35.\nThe answer is: $309.35$"

Right: response-b

"Maria bought 8 DVDs from Store A at $15 each, so the total cost was 8 * $15 
= $120.\nShe bought 12 DVDs from Store B at $12 each, so the total cost was 12 
* $12 = $144.\nShe bought 5 DVDs from the online store at $16.99 each, so the 
total cost was 5 * $16.99 = $84.95.\nThe total cost of all her purchases before the 
discount was $120 + $144 + $84.95 = $348.95.\nMaria had a 15% discount for 
her purchases from Store A and Store B, which means she got a discount of 
15\/100 * ($120 + $144) = $45.\nSo the total cost after the discount was $348.95 
- $45 = $303.95.\nThe answer is: $303.95$"

Wrong: response-c
"At Store A, Maria bought 8 DVDs at $15 each, so her total cost there was 8 
* $15 = $120.\nAt Store B, she bought 12 DVDs at $12 each, so her total cost 
there was 12 * $12 = $144.\nAt the online store, she bought 5 DVDs at $16.99 
each, so her total cost there was 5 * $16.99 = $84.95.\nThe total cost before the 
discount is $120 + $144 + $84.95 = $348.95.\nMaria has a 15% discount for her 
physical store purchases, so the discount is 15\/100 * ($120 + $144) = 
$45.\nAfter the discount, Maria's total cost is $348.95 - $45 = $303.95.\nThe
answer is: $303.95$"

Wrong: response-d

Figure 3: A few right and wrong responses from the same prompt. The four responses can be divided into two
groups, where each has a similar response pattern.

From this case study, we can conclude that our500

PCPO can select preference pairs with the highest501

token probability consistency, which the existing502

outcome-level methods can not do.503

5 Related Works504

Preference optimization for math reasoning.505

Reinforcement learning from human feedback506

(RLHF) (Christiano et al., 2017) methods such as507

Direct Optimization Preference (DPO) (Rafailov508

et al., 2024) have emerged as a prominent approach509

for aligning Large Language Models (LLMs) with510

human preferences (Ouyang et al., 2022; Yang511

et al., 2024b). Recent advancements have intro-512

duced specialized variants for mathematical reason-513

ing tasks. For instance, IRPO (Pang et al., 2024)514

selects preference training pairs from generated515

responses that include a Chain-of-Thought (CoT)516

and trains with DPO Loss adding a NLL term.517

ScPO (Prasad et al., 2024) utilizes a voting function518

to evaluate the self-consistency (Wang et al., 2022)519

of responses and trains with a weighted DPO+NLL520

loss. IPO aims to prevent DPO from overfitting521

to the preference dataset and ORPO eliminates the522

need for a reference model. our proposed PCPO523

distinguishes itself by explicitly considering the in-524

ternal logical relationships within preference pairs,525

offering a unique approach to preference optimiza-526

tion in mathematical reasoning tasks.527

Token-level preference optimization. Recent528

advancements in token-level preference optimiza-529

tion have sought to address the inherent mismatch530

between sequence-level rewards and the token-531

level nature of LLM training and generation (Lin532

et al., 2024a). For instance, TDPO (Zeng et al., 533

2024) introduces a novel framework for aligning 534

LLMs with human preferences at the token level, 535

incorporating forward KL divergence constraints 536

for individual tokens. SparsePO (Christopoulou 537

et al., 2024) learns automatically during training in- 538

herently sparse masks over token-level rewards and 539

KL divergences, highlighting that not all tokens 540

are important in preference optimization. Lin et al. 541

(2024b) illustrated the importance of critical tokens 542

and proposed ⌋DPO to automatically recognize and 543

conduct token-level rewards for the critical tokens 544

during the alignment process. The methods above 545

either emphasize or ignore certain tokens when ap- 546

plying preference optimization, while our method 547

PCPO utilizes token-level probability consistency 548

to select preference pairs before the preference op- 549

timization process. 550

6 Conclusion 551

In this paper, we introduce Probability-Consistent 552

Preference Optimization (PCPO), which provides 553

a quantitative framework for selecting preference 554

pairs by considering both the correctness of the 555

final answer and the internal coherence of the re- 556

sponses. We introduced the concept of token prob- 557

ability consistency and the pair-weighted score to 558

help select resulting preference training pairs. Ex- 559

tensive experiments demonstrate that our method 560

consistently outperforms existing outcome-only cri- 561

terion approaches (e.g., IRPO, ScPO) across a di- 562

verse range of LLMs and benchmarks. This work 563

paves the way for future research aimed at improv- 564

ing reasoning capabilities through more sophisti- 565

cated preference pair selection methods. 566
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7 Limitations567

While our approach demonstrates strong perfor-568

mance in supervised settings, it inherently depends569

on access to ground-truth final answers to construct570

reliable preference pairs. Acquiring high-quality571

labeled data is often resource-intensive, which re-572

stricts the scalability of our method to new domains.573

These limitations require preference optimization574

frameworks that can function effectively without575

gold-standard annotations. Addressing these chal-576

lenges would significantly broaden the applicabil-577

ity of our method to real-world scenarios where578

labeled data is scarce or unavailable.579

Additionally, the process of selecting preference580

training pairs necessitates generating a substantial581

number of candidate pairs, which in turn requires582

producing a larger volume of responses. This in-583

creases the computational demands and GPU hours,584

posing additional resource constraints.585

8 Ethics Statement586

8.1 Privacy Considerations587

In this study, we employed several publicly avail-588

able datasets, including GSM8K1 (Cobbe et al.,589

2021), MATH-5002 (Hendrycks et al., 2021; Light-590

man et al., 2023), Olympiadbench3 (He et al.,591

2024), AMC234 (Mathematical Association of592

America, 2023), and Numina-math5 (Li et al.,593

2024). These datasets are distributed under per-594

missive licenses.595

For model training, we utilized Llama-3-596

8B-Instruct (Dubey et al., 2024), Mathstral-597

7B-v0.1 (Jiang et al., 2023a), Qwen-2.5-7B-598

Instruct (Yang et al., 2024b), and Qwen-2.5-Math-599

7B-Instruct (Yang et al., 2024c). All these mod-600

els are licensed under Apache License 2.0 and are601

available for academic use.602

In summary, our use of these datasets and mod-603

els strictly complies with ethical guidelines for re-604

search data usage, upholding the principles of aca-605

demic integrity and responsible research conduct.606

1https://huggingface.co/datasets/openai/gsm8k
2https://huggingface.co/datasets/

HuggingFaceH4/MATH-500
3https://huggingface.co/datasets/realtreetune/

olympiadbench
4https://github.com/QwenLM/Qwen2.5-Math/tree/

main/evaluation/data/amc23
5https://huggingface.co/datasets/AI-MO/

NuminaMath-CoT

8.2 Security considerations 607

Security Considerations In this study, the mod- 608

els were trained using generated mathematical re- 609

sponses, which were carefully curated to ensure 610

they do not contain any malicious or adversarial 611

content. All responses were derived from fixed 612

problem sets, which were explicitly selected to 613

avoid any overlap with potential test datasets. This 614

approach mitigates the risk of data leakage and en- 615

sures that the training process remains secure and 616

unbiased. By adhering to these practices, we main- 617

tain the integrity of the training data and prevent 618

any unintended exposure of sensitive or proprietary 619

information. 620
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Appendix899

A Levenshtein Distance900

In this experiment, we established an edit distance901

threshold of 8, corresponding to a total of 16 re-902

sponses per prompt. For each rejected response,903

we retained the chosen responses with the 8 small-904

est edit distances. In cases where the number of905

chosen responses was fewer than 8, all available906

responses were preserved. Figure 4 displays the907

frequency distribution (bars) and cumulative per-908

centage (line) of edit distance rankings (1–8, from909

min to max) for the final selected preference pairs.910

Rank 1 shows the highest frequency (50.2%), fol-911

lowed by rank 2 (20%), with frequencies declining912

sharply for ranks 5–8. The cumulative percentage913

reaches 95.4% by rank 5 and 100% at rank 8, in-914

dicating minimal contributions from higher ranks.915

Key Insights:916

• Pareto Dominance: Ranks 1–5 (95.4% cumu-917

lative) dominate outcomes, aligning with the918

Pareto principle.919

• Central Tendency: Rank 1 alone captures920

50.2%, highlighting strong local consistency.921

• Low Dispersion: Ranks 6–8 contribute negligi-922

bly (<4.6%), confirming high data concentra-923

tion.924

The results mean we can set an edit distance925

threshold of 5 to filter candidate pairs with more926

than 90 percent of resulting preference pairs within.927

This analysis supports algorithm optimization by928

prioritizing top-ranked edit distances for candidate929

pair filtering.930

Figure 4: Frequency Distribution and Cumulative Per-
centage Pareto Chart of Edit Distance Rankings.

B Matching Function931

Algorithm 1 shows the match function pseudocode.932

Let c = [c1, c2, . . . , cm] and r = [r1, r2, . . . , rn]933

Algorithm 1 Match Function
Require: c = [c1, . . . , cm], r = [r1, . . . , rn].
Ensure: Masks Mc, Mr , index mapping I.
1: matcher← SequenceMatcher(None, c, r)
2: Mc ← [False]×m, Mr ← [False]× n
3: I ← ∅
4: for (tag, i1, i2, j1, j2) ∈ matcher do
5: if tag = equal and (i2 − i1) ≥ 1 then
6: for (ci, rj) ∈ zip(range(i1, i2), range(j1, j2)) do
7: Mc[ci]← True
8: Mr[rj]← True
9: I ← I ∪ {(ci, rj)}

10: end for
11: end if
12: end for
13: return (Mc,Mr, I)

represent the token sequences of the chosen and 934

rejected responses, respectively. The function iden- 935

tifies the longest common subsequence (LCS) of 936

tokens between c and r. For each aligned sub- 937

sequence of length at least 1, it generates binary 938

masks Mc ∈ {0, 1}m and Mr ∈ {0, 1}n, Addi- 939

tionally, the function outputs an index mapping I, 940

which records the positions of aligned tokens in c 941

and r. 942

In summary, the function can be compactly rep- 943

resented as 944

(Mc,Mr, I) = Match(c, r) 945

where Match is the sequence matching operation 946

that identifies common tokens and generates the 947

corresponding masks and index mapping. 948

Figure 5 illustrates the visualization for applying 949

the Match function to align token sequences be- 950

tween chosen and rejected responses. As outlined 951

in Section 2.2, we first tokenize the responses using 952

the current iteration model Mt. Next, the Match 953

function M generates common token masks for 954

the sequences in a sequential manner. The masked 955

tokens are highlighted in different colors, with in- 956

dex mappings indicating their positions in each 957

sequence. We obtain the final matched tokens by 958

extracting these tokens. 959

C Evaluation details. 960

We use the standard automatic evaluation scripts 961

following Qwen-Math (Yang et al., 2024c). The au- 962

tomatic evaluation pipeline mainly contains three 963

steps: response generation, answer parsing, and 964

comparison. First, the pipeline employs model 965

Mt to generate responses for each problem in the 966

test set with a CoT prompt (Kojima et al., 2022) 967
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"Let's break it down step by step:\n\n1. Initially, there are 
55.0 oranges in the box.\n2. Deborah has 11.0 oranges in 
a bag, but we don't add those to the box yet.\n3. Susan 
puts 35.0 more oranges into the box. We add these new 
oranges to the initial 55.0 oranges.\n4. To find the total 
number of oranges in the box now, we add the initial 
number and the new number:\n\n55.0 (initial) + 35.0 
(new) = 90.0\n\nSo, there are \\boxed{90.0} oranges in 
the box now.."

Chosen response:
“Let‘s break it down step by step:\n\nInitially, there are 
55.0 oranges in the box.\n\nDeborah has 11.0 oranges in a 
bag, but we need to add those to the box. So, the total 
number of oranges in the box becomes:\n\n55.0 + 11.0 = 
66.0 oranges\n\nThen, Susan puts 35.0 more oranges into 
the box. So, we add those to the total:\n\n66.0 + 35.0 = 
101.0 oranges\n\nTherefore, there are now \\boxed{101.0} 
oranges in the box.”

Rejected response:

"Let's break it down step by step:\n\n1. Initially, there are 
55.0 oranges in the box.\n2. Deborah has 11.0 oranges in 
a bag, but we don't add those to the box yet.\n3. Susan 
puts 35.0 more oranges into the box. We add these new 
oranges to the initial 55.0 oranges.\n4. To find the total 
number of oranges in the box now, we add the initial 
number and the new number:\n\n55.0 (initial) + 35.0 
(new) = 90.0\n\nSo, there are \\boxed{90.0} oranges in 
the box now.."

Chosen response selected tokens:
“Let‘s break it down step by step:\n\nInitially, there are 
55.0 oranges in the box.\n\nDeborah has 11.0 oranges in 
a bag, but we need to add those to the box. So, the total 
number of oranges in the box becomes:\n\n55.0 + 11.0 = 
66.0 oranges\n\nThen, Susan puts 35.0 more oranges into 
the box. So, we add those to the total:\n\n66.0 + 35.0 =
101.0 oranges\n\nTherefore, there are now
\\boxed{101.0} oranges in the box.”

Rejected response token sequence:
𝑀𝑀𝑡𝑡 tokenize, Match Function

Figure 5: The Match Function pipeline. For a given pair of chosen and rejected responses, we first utilize
the current iteration model Mt to tokenize them and then use the algorithm 1 to get the longest common token
subsequences, as highlighted in different colors.

(e.g., "Please reason step by step, and put your fi-968

nal answer within boxed{}") Second, the pipeline969

will extract the final answer from the response us-970

ing regular expressions and fix the format of the971

answer such as removing extra brackets and mod-972

ify the representation of fractions etc. Finally, the973

pipeline compares the extracted answer with the974

ground truth using an exact match criterion. This975

criterion requires that the answers satisfy one of976

the following conditions: (1) numerical equality,977

where both answers can be converted to floats and978

are equal, or (2) symbolic equality, where both an-979

swers can be converted to SYMPY6 expressions and980

are equal. Through this pipeline, we can maximize981

the consistency and accuracy of the test results.982

D Iterations983

Table 1 presents the model performance evolve-984

ment over the seed model M0, M1 and M2. In a985

nutshell, PCPO performs better along the iterations986

over baseline methods IRPO, ScPO while achiev-987

ing better absolute scores. For instance, on the988

Llama3-8B-Instruct,PCPO Pass@1 on the GSM8K989

test evolves from M1 80.1% to M2 82.8%, and990

the Olympiadbench test evolves from M1 7.9% to991

M2 9.5%, surpassing each iteration of the IRPO992

and ScPO method. Results on the Mathstral-7B-993

6https://github.com/sympy/sympy

v0.1 show a similar trend. Although the iteration 994

gains of all methods on the Qwen2.5-7B-Instruct 995

and the Qwen2.5-MATH-7B-Instruct is less stable 996

owning to the reason we explained in Section 4.1, 997

our PCPO still performs a more consistent perfor- 998

mance. The ScPO method almost saturates on the 999

Qwen2.5-7B-Instruct through iterations, with only 1000

a small gain on the AMC23 Pass@1 test, and the 1001

IRPO method drops on the GSM8k, MATH-500 1002

and AMC23 Pass@1 test from M1 to M2. In all, 1003

the performance of PCPO shows more consistency 1004

and robustness over the iteration training, confirm- 1005

ing the effectiveness of our method. 1006

E Prompts 1007

Prompt templates7 for generating responses are 1008

shown below: 1009

Response Generation Template

User:
Please reason step by step, and put
your final answer within \\boxed{{}}.

{{ question }}

Assistant:
1010

7The prompt template was from https://github.com/
QwenLM/Qwen2.5-Math
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