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Abstract
In decision-making problems, the outcome of
an intervention often depends on the causal
relationships between system components and
is highly costly to evaluate. In such settings,
causal Bayesian optimization (CBO) exploits the
causal relationships between the system variables
and sequentially performs interventions to ap-
proach the optimum with minimal data. Extend-
ing CBO to the multi-outcome setting, we pro-
pose multi-objective causal Bayesian optimiza-
tion (MO-CBO), a paradigm for identifying Pareto-
optimal interventions within a known multi-target
causal graph. Our methodology first reduces
the search space by discarding sub-optimal in-
terventions based on the structure of the given
causal graph. We further show that any MO-CBO
problem can be decomposed into several tradi-
tional multi-objective optimization tasks. Our
proposed MO-CBO algorithm is designed to iden-
tify Pareto-optimal interventions by iteratively ex-
ploring these underlying tasks, guided by relative
hypervolume improvement. Experiments on syn-
thetic and real-world causal graphs demonstrate
the superiority of our approach over non-causal
multi-objective Bayesian optimization in settings
where causal information is available.

1. Introduction
Decision-making problems arise in various domains, such
as healthcare, manufacturing, and public policy, and in-
volve manipulating variables to obtain an outcome of in-
terest. In many such domains, interventions are inherently
costly, and practical applications are subject to budgetary
constraints. Moreover, these systems are often governed
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Figure 1. MO-CBO problem in healthcare. (a) Causal graph where
red, orange, and grey nodes depict outcome, manipulative, and
non-manipulative variables, respectively. (b) The solution consists
of interventions that yield optimal trade-offs between the targets.

by causal mechanisms, which can be exploited to approach
optimal outcomes in a targeted and cost-efficient manner.
A well-established strategy for optimizing such expensive-
to-evaluate black-box functions is Bayesian optimization
(Shahriari et al., 2016), but it cannot leverage the causal
structure between its input variables. To this end, causal
Bayesian optimization (CBO) (Aglietti et al., 2020) was in-
troduced to generalize Bayesian optimization to settings
where causal information is available. While existing CBO
variants focus on optimizing a single objective, real-world
systems often require the simultaneous optimization of mul-
tiple outcome variables. Here, the aim is to establish optimal
trade-offs between these variables instead of identifying the
global optimum of a single objective. As an example, con-
sider the graph in Figure 1 (a), which depicts the causal
relationships between prostate-specific antigen (PSA) and
its risk factors (Ferro et al., 2015). For patients sensitive
to Statin medications, the aim is to manipulate these risk
factors to simultaneously minimize both the required Statin
intake and PSA levels. Figure 1 (b) shows the Pareto front,
i.e., the optimal trade-offs between Statin and PSA.

We propose multi-objective causal Bayesian optimization
(MO-CBO) to generalize CBO to problems with multiple
outcome variables. Figure 2 gives a high-level overview of
our proposed methodology. Our key contributions are:

1. We formally define MO-CBO as a new class of optimiza-
tion problems.
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Figure 2. Overview of our MO-CBO methodology.

2. We present a mathematical framework to reduce the
search space of MO-CBO problems based on the topology
of the causal graph. It allows us to discard sub-optimal
interventions and focus exploration on possibly-optimal
strategies.

3. We propose an algorithm for the parallel exploration of
these possibly-optimal intervention strategies, guided by
a custom acquisition function.

4. We experimentally demonstrate on both synthetic and
real-world MO-CBO problems that our method can sur-
pass traditional multi-objective Bayesian optimization in
scenarios with known causal structures, achieving more
cost-effective, diverse, and accurate solutions.

To our knowledge, no other multi-objective optimization
method exists in the literature that can consider the causal
structure. We prove that MO-CBO’s reduced search space
retains all solutions achievable by traditional multi-objective
optimization, while in some cases containing superior, oth-
erwise unattainable solutions. The empirical results confirm
that our MO-CBO algorithm consistently matches, and in
some scenarios exceeds, the performance of standard base-
lines.

1.1. Related Work

We combine multi-objective Bayesian optimization (MOBO)
with techniques from causal inference to achieve MO-CBO.
Our method lies within the field of causal decision-making,
seeking to leverage known causal structures to enable
causally-informed decisions.

MOBO Multi-objective Bayesian optimization aims to
efficiently optimize multiple, often conflicting, objective
functions simultaneously. The existing algorithms can be
roughly categorized by their selection strategy: Single-point
methods select and evaluate one candidate solution at each

iteration, while batch methods select multiple solutions
simultaneously for parallel evaluation. One of the most
prominent single-point algorithms is ParEGO (Knowles,
2006), which randomly scalarizes the multi-objective prob-
lem into a single-objective one and chooses a sample that
maximizes the expected improvement. As for batch meth-
ods, MOEA/D-EGO (Zhang et al., 2010) builds on ParEGO
to incorporate multiple scalarization weights and perform
batch evaluation through MOEA/D (Zhang & Li, 2007).
Moreover, TSEMO (Bradford et al., 2018) adopts Thomp-
son sampling on the Gaussian process posterior as an acqui-
sition function, optimizes multiple objectives with NSGA-II
(Deb et al., 2002), and selects the next batch of samples
by maximizing the hypervolume improvement. Recently,
qNEHVI (Daulton et al., 2021) was proposed as a robust
method that scales to highly parallel evaluations of noisy
objectives. DGEMO (Konakovic Lukovic et al., 2020) is
most relevant for our work, and employs a novel batch selec-
tion strategy maintaining sample diversity in the input space.
Specifically, it partitions the input space into so-called di-
versity regions to guide the selection of diverse points in
each batch. We use DGEMO in our MO-CBO algorithm to
explore the possibly-optimal intervention strategies.

Causal Decision-Making Within this field, there is a line
of work focusing on multi-armed bandit problems and re-
inforcement learning settings. Here, actions or arms cor-
respond to interventions on an arbitrary causal graph with
existing links between the agent’s decisions and the received
rewards. Lee & Bareinboim (2018) identify a set of possibly-
optimal arms that an agent should explore to maximize its
expected reward in a multi-armed bandit problem. More-
over, Lee & Bareinboim (2019b) extend their previous work
to scenarios with non-manipulative variables. Collectively,
their findings represent the single-objective counterpart of
our search space reduction.

Causal decision-making also encompasses a growing body
of research specifically focused on advancing CBO (Aglietti
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et al., 2020). These advancements include extensions such
as constrained CBO (Aglietti et al., 2023), time-dynamic
CBO (Aglietti et al., 2021), and various other variants (Bran-
chini et al., 2023; Gultchin et al., 2023; Sussex et al., 2023;
2024; Ren & Qian, 2024; Zeitler & Astudillo, 2024). How-
ever, these methods are designed to optimize a single target
variable, rendering them infeasible for applications with
multiple objectives.

2. Preliminaries
In this paper, random variables and their realizations are de-
noted in the upper and lower case Latin letters, respectively.
Sets and vectors are written in bold. For a set X, its power
set is denoted as P(X).

2.1. MOBO Notation

MOBO simultaneously minimizes (or maximizes) a set of
black-box objectives f1, . . . , fm : X→ R, where X is an
arbitrary input space. It is designed to rely only on a small
number of function evaluations. Due to potential conflicts
between objectives, MOBO aims to find trade-off solutions,
known as Pareto optima (Miettinen, 1999):

Definition 2.1 (Pareto optimality). A point x ∈ X is called
Pareto-optimal if there is no other x′ ∈ X such that fi(x) ≥
fi(x

′) for all 1 ≤ i ≤ m and fi(x) > fi(x
′) for at least

one 1 ≤ i ≤ m. The set of Pareto-optimal points in X is
called Pareto set, denoted Ps. The Pareto front is the image
of the Pareto set under the objective functions, given by
Pf = {f(x) = (f1(x), . . . , fm(x)) | x ∈ Ps}.

At each iteration of a MOBO algorithm, prior data is used
to fit a surrogate model of the objectives, for which Gaus-
sian processes (Rasmussen, 2004) are predominantly used.
Based on the surrogates, an approximation P̃f of the Pareto
front is computed. To select which point, or batch of points,
to evaluate next, an acquisition function is used to assess
the utility of those evaluations. The most commonly used
acquisition function in MOBO is based on the hypervolume
indicatorH (Zitzler & Thiele, 1999). The larger the hyper-
volume, the better P̃f approximates the true Pareto front.
The hypervolume improvement determines how much the
hypervolume would increase if a batch of samples B ⊆ X
was added to the current approximation, and is given by

HVI(f(B), P̃f ) = H(P̃f ∪ f(B))−H(P̃f ) . (1)

Since DGEMO is the backbone of our MO-CBO algorithm,
we briefly describe its batch selection strategy. It consid-
ers hypervolume improvement as well as sample diversity
in the input space. To this end, the so called diversity re-
gions R1, . . . ,RK ⊆ X are constructed by using the cur-
rent Pareto front approximation to group the optimal points

based on their performance properties in the input space.
Formally, a batch is chosen as follows:

B = arg max
B⊆X,|B|=B

HVI(f(B), P̃f )

s.t. max
1≤k≤K

δk(B)− min
1≤k≤K

δk(B) ≤ 1, (2)

where B denotes the batch size and the functions δk(·) are
defined as the number of elements from B that belong to
Rk. We refer to Konakovic Lukovic et al. (2020) for the
complete selection algorithm.

2.2. Causality

Graph Notation A graph G = (V,E) is defined by a
finite vertex set V and an edge set E ⊆ V ×V, contain-
ing ordered pairs of distinct vertices. The subgraph of G
restricted to V′ ⊆ V is given by G[V′] = (V′,E[V′]),
where E[V′] = {(i, j) ∈ E | i, j ∈ V′}. For V ∈ V,
the set of its parents, ancestors and descendants in G is de-
noted as pa(V )G , an(V )G , and de(V )G , respectively. Here,
no vertex is a parent, an ancestor, or a descendant of it-
self. Conversely, with a capital letter, this notation is ex-
tended to include the argument in the result, i.e., Pa(V )G =
pa(V )G ∪ {V }. Moreover, we define these relations for sets
of variables V′ ⊆ V, i.e., pa(V′)G =

⋃
V ∈V′ pa(V )G and

Pa(V′)G =
⋃

V ∈V′ Pa(V )G . Equivalent conventions apply
to the ancestor and descendant relationships.

Structural Causal Models Let ⟨V,U,F, P (U)⟩ be a
structural causal model (SCM) (Pearl, 2000) and G its associ-
ated acyclic graph that encodes the underlying causal mech-
anisms. Specifically, U is a set of independent exogenous
random variables distributed according to the probability
distribution P (U), V is a set of endogenous random vari-
ables, and F = {fV }V ∈V is a set of deterministic functions
such that V = fV (pa(V )G ,U

V ), where UV ⊆ U is the set
of exogenous variables affecting V ∈ V. The set UV ∩UW

consists of unobserved confounders between V,W ∈ V,
which are the exogenous variables influencing both V and
W . Within V, there are three different types of variables to
be distinguished: Non-manipulative variables C that can-
not be modified, treatment variables X which can be set
to specific values, and output variables Y = {Y1, . . . , Ym}
which represent the outcome of interest. We consider only
real-valued SCMs, where all endogenous variables have con-
tinuous domains. For Xs ⊆ X, CC(Xs)G refers to the
c-component of G (Tian & Pearl, 2002), which, in this con-
text, is the maximal set of variables that includes Xs and is
connected via unobserved confounders. The joint distribu-
tion of V, which is determined by P (U), is referred to as
observational distribution and denoted P (V).

Interventions A set Xs ∈ P(X) is called an intervention
set. The interventional domain of an intervention set is
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given as D(Xs) = ×X∈Xs
D(X) and describes the feasible

values of Xs. An intervention on Xs involves replacing the
structural equations fX with a constant intervention value
x, for all X ∈ Xs. This action is denoted with the do-
operator do(Xs = xs), where the vector of intervention
values is xs ∈ D(Xs). The graph GXs

represents this in-
tervention and is obtained by removing the incoming edges
into Xs. The observational distribution of GXs

is denoted
as P (V|do(Xs = xs)) and called interventional distribu-
tion. For Xs = ∅, no intervention is performed and the
observational and interventional distributions coincide. The
tuple (Xs,xs) is referred to as an intervention set-value pair.
Given two sets Xs,X

′
s ⊆ X and xs ∈ D(Xs), we write by

xs[X
′
s] the values of xs corresponding to Xs ∩X′

s.

3. The MO-CBO Problem
In our setting, we assume that the causal relationships en-
coded in G are known while the underlying parametrizations,
i.e., F and P (U), can be unknown. This restricted informa-
tion is denoted as ⟨G,Y,X,C⟩. The assumption is common
within the CBO line of work and allows generalization across
systems with the same causal structure.

A MO-CBO problem aims to identify intervention set-value
pairs (Xs,xs) that offer optimal trade-offs in minimizing
(or, maximizing) all target variables in Y. The outcomes of
an intervention do(Xs = xs) are captured as the expected
values

µi(Xs,xs) := EP (Yi|do(Xs=xs))[Yi], (3)

where P (Yi|do(Xs = xs)) denotes the interventional distri-
bution of Yi, for all i = 1, . . . ,m. We write µ(Xs,xs) =
(µ1(Xs,xs), . . . , µm(Xs,xs))

⊤ for the vector notation.
Next, we adopt the notion of Pareto optimality to inter-
vention set-value pairs:

Definition 3.1 (Pareto-optimal intervention set-value pair).
Given S ⊆ P(X), an intervention set-value pair (Xs,xs)
with Xs ∈ S, xs ∈ D(Xs) is called Pareto-optimal for S,
if there is no other intervention set-value pair (X′

s,x
′
s) with

X′
s ∈ S, x′

s ∈ D(X′
s) such that µi(X

′
s,x

′
s) ≤ µi(Xs,xs)

for all 1 ≤ i ≤ m and µi(X
′
s,x

′
s) < µi(Xs,xs) for at least

one 1 ≤ i ≤ m.

Definition 3.2 (Pareto front for S). The space of all Pareto-
optimal intervention set-value pairs for a given S ⊆ P(X) is
called the Pareto set for S , denoted Pc

s(S). The correspond-
ing Pareto front for S , denotedPc

f (S), is the m-dimensional
image of Pc

s(S) under the objectives µi, 1 ≤ i ≤ m.

We define MO-CBO problems as identifying the Pareto set
Pc
s(P(X)) which yields the optimal trade-offs among the

objectives, represented by the Pareto front Pc
f (P(X)).

3.1. Decomposition of MO-CBO Problems

We aim to simplify the search space to navigate the discov-
ery of Pareto-optimal intervention set-value pairs.

Definition 3.3 (Local MO-CBO problem). Let Xs ∈ P(X)
be an intervention set. Then, the multi-objective optimiza-
tion problem defined by the objective functions µi(Xs, · ) :
D(Xs) → R, xs 7→ µi(Xs,xs), 1 ≤ i ≤ m, is called the
local MO-CBO problem w.r.t. Xs.

The Pareto set of the local MO-CBO problem w.r.t.
Xs ∈ P(X) is denoted as P l

s(Xs) and the associated Pareto
front as P l

f (Xs). Each local MO-CBO problem corresponds
to a standard multi-objective optimization task, solvable
with existing methods. The following proposition decom-
poses MO-CBO problems into such local problems.

Proposition 3.4. Given ⟨G,Y,X,C⟩, let S ⊆ P(X) be a
non-empty collection of intervention sets. Then, it holds

Pc
f (S) ⊆

|S|⋃
s=1

P l
f (Xs). (4)

Proof. See Appendix A. Core idea: We exploit that the
space of all intervention set-value pairs is the union of the
input spaces of each local problem.

Proposition 3.4 allows to match the Pareto-optimal interven-
tion set-value pairs to the Pareto-optimal solutions from the
local problems where the intervention set is fixed. Therefore,
discovering Pc

f (P(X)) requires identifying Pareto-optimal
solutions of local MO-CBO problems with respect to all
intervention sets Xs ∈ P(X).

4. Solving MO-CBO Problems
In this section, we propose our methodology for solving
MO-CBO problems, which has been outlined in Figure 2. In
summary, we reduce the search space to a subset S ⊆ P(X),
solve the corresponding local MO-CBO problems w.r.t. each
element in S, and extract only Pareto-optimal intervention
set-value pairs to construct the Pareto front Pc

f (P(X)).

4.1. Reducing the Search Space

The complexity of solving the local MO-CBO problems w.r.t.
all Xs ∈ P(X) rises exponentially with the number of
treatment variables, making this strategy impracticable for
most tasks. This section proposes a method to exploit the
graph topology to identify a minimal subset S ⊆ P(X) with
Pc
f (P(X)) = Pc

f (S). Hereby, we generalize the results
from Lee & Bareinboim (2018) to the multi-objective set-
ting. All proofs and derivations are given Appendix B. For
now, we assume that there are no non-manipulative vari-
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ables, i.e., C = ∅. At the end of the section, we discuss the
general case C ̸= ∅.

We first reduce the search space by disregarding intervention
sets where some variables do not affect the targets:

Definition 4.1 (Minimal intervention set). A set Xs ∈ P(X)
is called a minimal intervention set if there exists no sub-
set X′

s ⊂ Xs such that for all xs ∈ D(Xs) it holds
µi(Xs,xs) = µi(X

′
s,xs[X

′
s]), 1 ≤ i ≤ m, for every SCM

conforming to G.

We denote the set of minimal intervention sets with MG,Y.
The following proposition characterizes such sets in a given
causal graph G.

Proposition 4.2. Xs ∈ P(X) is a minimal intervention set
if and only if it holds Xs ⊆ an(Y)GXs

.

Proof. See Appendix B.1. Core idea: The ”if” direction
shows by contradiction that any non-minimal intervention
set cannot consist solely of the ancestors of Y. The ”only if”
direction is straightforward to prove since variables without
an ancestral relationship to Y are redundant to intervene
upon.

We adapt the notion of possibly-optimal minimal interven-
tion sets (Lee & Bareinboim, 2018) for Pareto-optimality.
Intuitively, a minimal intervention set is called possibly
Pareto-optimal if it includes a Pareto-optimal intervention
set-value pair whose outcome is unattainable with any other
intervention set, for at least one SCM conforming to G.

Definition 4.3 (Possibly Pareto-optimal minimal interven-
tion set). A set Xs ∈ MG,Y is called possibly Pareto-
optimal if, for at least one SCM conforming to G, there
exists xs ∈ D(Xs) such that (Xs,xs) is Pareto-optimal for
P(X), and for no X′

s ∈ MG,Y\Xs,x
′
s ∈ D(X′

s) it holds
µi(X

′
s,x

′
s) ≤ µi(Xs,xs), for all 1 ≤ i ≤ m.

We denote the set of all possibly Pareto-optimal mini-
mal intervention sets by OG,Y. Next, we establish graph-
theoretical criteria to identify such sets in a given causal
graph. First, the proposition below considers a special case:

Proposition 4.4. If no Yi is confounded with an(Yi)G via
unobserved confounders, then pa(Y)G is the only possibly
Pareto-optimal minimal intervention set.

Proof. See Appendix B.2. Core idea: In the absence of
unobserved confounding between any Yi and its ancestors
an(Yi)G , the average effect of any intervention do(Xs = xs)
can be matched by intervening on pa(Y)G .

To characterize possibly Pareto-optimal minimal interven-
tion sets in arbitrary graphs, we extend the following two

(a)

Y2

Y1X1X3

X2X4

(b)

X4 X1

X2

Y1

Y2 X3

Figure 3. Two causal graphs with X = {X1, X2, X3, X4}, Y =
{Y1, Y2}. (a) No unobserved confounders. (b) The dashed bi-
directed edge depicts an unobserved confounder between X4 and
Y1.

definitions from Lee & Bareinboim (2018) to the multi-
objective setting. They aim to identify a region, starting
from Y, that is governed by unobserved confounders, along
with its outside border that determines the realization of
variables within the region.

Definition 4.5 (Minimal unobserved confounders’ terri-
tory). Let H = G[An(Y)G ]. A set of variables T in H,
with Y ⊆ T, is called a UC-territory for G w.r.t. Y if
De(T)H = T and CC(T)H = T. The UC-territory T is
said to be minimal, denoted T = MUCT(G,Y), if no
T′ ⊂ T is a UC-territory.

Definition 4.6 (Interventional border). Let us denote
T = MUCT(G,Y). Then, B = pa(T)G\T is called the
interventional border for G w.r.t. Y, which we write as
IB(G,Y).

Example We illustrate these two concepts with the causal
graphs from Figure 3. In Figure 3 (a), there are no unob-
served confounders and thus, it holds CC(Y)G = Y and
De(Y)G = Y. It follows MUCT(G,Y) = {Y1, Y2} and
IB(G,Y) = {X1, X2}. In Figure 3 (b), we construct the
minimal UC-territory, starting from T = Y, as follows:
Since Y1 has an unobserved confounder with X4, we update
T = CC(Y)G = {Y1, Y2, X4}, and thereafter add all the
descendants of X4, obtaining T = {Y1, Y2, X4, X1}. Since
there are no more unobserved confounders between T and
An(Y)G\T, the minimal UC-territory has been found and
is given by MUCT(G,Y) = {Y1, Y2, X1, X4} along with
IB(G,Y) = {X2, X3}.

Interventional borders can fully determine possibly Pareto-
optimal minimal intervention sets, which are described with
the following two results.

Proposition 4.7. IB(GXs
,Y) is a possibly Pareto-optimal

minimal intervention set for any Xs ∈ P(X).

Proof. See Appendix B.2. Core idea: We first prove in
Proposition B.2 that IB(G,Y) is a possibly Pareto-optimal
minimal intervention set by constructing an SCM where
do(IB(G,Y) = 0) is the single best intervention. This
construction then easily extends to show that IB(GXs

,Y)
can also represent the single optimal intervention.
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Next, we can finally characterize possibly Pareto-optimal
minimal intervention sets:

Theorem 4.8. A set Xs ∈ P(X) is a possibly Pareto-
optimal minimal intervention set if and only if it holds
IB(GXs

,Y) = Xs.

Proof. See Appendix B.2. Core idea: The ”if” statement
is a special case of Proposition 4.7. We prove the ”only if”
direction by showing that intervening on IB(GXs

,Y) is at
least as optimal as intervening on Xs,

Corollary 4.9. Let Xs ∈ P(X) and X′
s = IB(GXs

,Y).
For any xs ∈ D(Xs) there exist x′

s ∈ D(X′
s) such that it

holds µ(X′
s,x

′
s) ≤ µ(Xs,xs), for all 1 ≤ i ≤ m.

Corollary 4.9 is a direct result from the proof of Theorem 4.8.
In this setting, it is easy to construct an SCM, conforming to
G, for which strict inequality holds in at least one component.
Finally, we show that it suffices to only consider possibly
Pareto-optimal minimal intervention sets to solve MO-CBO
problems.

Theorem 4.10. It holds Pc
f (P(X)) = Pc

f (OG,Y).

Proof. ⊆: Assume Pc
f (P(X)) ̸⊆ Pc

f (OG,Y). Then, there
exists z ∈ Rm, with z = µ(Xs,xs) for some intervention
set-value pair (Xs,xs), such that z ∈ Pc

f (P(X)) and z ̸∈
Pc
f (OG,Y). If Xs ∈ OG,Y, it follows that (Xs,xs) is not

Pareto-optimal for OG,Y, which is a contradiction since it is
Pareto-optimal for P(X). Conversely, if Xs ∈ P(X)\OG,Y,
we set X′

s = IB(GXs
,Y) and from Corollary 4.9, we infer

that, for some SCM conforming to G, there exists x′
s ∈

D(X′
s) with µ(X′

s,x
′
s) ≤ µ(Xs,xs), for all 1 ≤ i ≤ m,

and µ(X′
s,x

′
s) < µ(Xs,xs), for at least one 1 ≤ i ≤ m.

This results in z ̸∈ Pc
f (P(X)), which is a contradiction.

⊇: Assume Pc
f (OG,Y) ̸⊆ Pc

f (P(X)). Then, there exists
z ∈ Rm, with z = µ(Xs,xs), such that z ∈ Pc

f (OG,Y)
and z ̸∈ Pc

f (P(X)). There exists some X′
s ∈ P(X)\OG,Y,

xs ∈ D(X′
s) such that (X′

s,x
′
s) is Pareto optimal and for

which it holds µ(X′
s,x

′
s) ≤ µ(Xs,xs), for all 1 ≤ i ≤ m,

and µ(X′
s,x

′
s) < µ(Xs,xs), for at least one 1 ≤ i ≤ m.

Since X′
s is not possibly Pareto-optimal, we infer from

Corollary 4.9 that for X′′
s = IB(G,Y) there exists x′′

s ∈
D(X′′

s ) such that µ(X′′
s ,x

′′
s ) ≤ µ(X′

s,x
′
s), for all 1 ≤ i ≤

m. Hence, it holds µ(X′′
s ,x

′′
s ) ∈ Pc

f (P(X)), which is a
contradiction to z ∈ Pc

f (OG,Y) since X′′
s ∈ OG,Y.

Using Theorem 4.10, we reduce the search space of MO-
CBO problems to S = OG,Y.

Example We illustrate the search space reduction with the
causal graphs from Figure 3. Note that in both cases it holds
P(X) = 2|X| = 16. In Figure 3 (a), there are no unobserved
confounders, and it follows OG,Y = pa(Y)G = {X1, X2}.

Algorithm 1 Our MO-CBO algorithm

Input: ⟨G,Y,X,C⟩, S ∈ {OG,Y,MG,Y,P(X)}, data
D, batch size B, number of iterations N
Output: Pc

s(S), Pc
f (S)

Initialize the dataset D0 = D
for s = 1 to |S| do

Fit surrogates µ̃i(Xs, · ) with D0, i = 1, . . . ,m
Approximate P l

s(Xs) and P l
f (Xs) using µ̃1, . . . , µ̃m

end for
for n = 1 to N do

for s = 1 to |S| do
Select batch Bs = {xb

s}Bb=1 via Equation (2)
end for
Select batch Bŝ from {B1, . . . ,B|S|} via Equation (6)
Intervene on Xŝ with Bŝ

Augment Dn = Dn−1 ∪ {(Xŝ,x
b
ŝ),µ(Xŝ,x

b
ŝ))}Bb=1

Update surrogates µ̃i(Xŝ, · ) with Dn, i = 1, . . . ,m
Approximate P l

s(Xŝ) and P l
f (Xŝ) using µ̃1, . . . , µ̃m

end for
Compute P l

s(Xs),P l
f (Xs) from DN , s = 1, . . . , |S|

Compute Pc
s(S) and Pc

f (S)

In Figure 3 (b), the intervention sets {X1, X2, X3} and
{X2, X3} satisfy the condition from Theorem 4.8, and thus,
OG,Y = {{X2, X3}, {X1, X2, X3}}.

We now consider the more general case with C ̸= ∅,
where non-manipulative variables can be present. The
definitions for the minimal intervention set and the pos-
sibly Pareto-optimal minimal intervention set are a straight-
forward extension. Lee & Bareinboim (2019a) propose
a projection G → G[V\C] which preserves the distri-
bution of the underlying SCM. Given such a projection,
we can identify the possibly Pareto-optimal minimal inter-
vention sets in ⟨G,Y,X,C⟩ by applying Theorem 4.8 to
⟨G[V\C],Y,X⟩.

4.2. Solving the Local Problems

We propose our algorithm to solve MO-CBO problems1,
for which the procedure is summarized in Algorithm 1. It
assumes a known causal graph ⟨G,Y,X,C⟩, prior data D,
and a set S ∈ {OG,Y,MG,Y,P(X)} that specifies which
local problems to consider. The idea is to alternately solve
the local MO-CBO problems using the MOBO algorithm
DGEMO.

More specifically, the algorithm operates as follows: For
each local MO-CBO problem w.r.t. Xs ∈ S, it first fits the
surrogate model to the objectives µi(Xs, · ), 1 ≤ i ≤ m,
via independent Gaussian processes. Based on the means of

1The full implementation of our algorithm is available at
https://github.com/ShriyaBhatija/MO-CBO
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Table 1. The generational distances, averaged across 10 random seeds. Lower values indicate closer approximation to Pc
f (P(X)).

Problem ParEGO MOEA/D-EGO TSEMO qNEHVI DGEMO MO-CBO (ours)

SYNTHETIC-1 0.30 0.38 0.16 0.27 0.14 0.14
SYNTHETIC-2 12.43 11.45 8.65 7.98 6.79 2.80
HEALTH 0.09 0.20 0.08 0.12 0.07 0.06
CREDIT APPROVAL 0.14 0.12 0.06 0.08 0.06 0.05

Table 2. The inverted generational distances, averaged across 10 random seeds. Lower values indicate a more diverse coverage of solutions
approximate to Pc

f (P(X)).

Problem ParEGO MOEA/D-EGO TSEMO qNEHVI DGEMO MO-CBO (ours)

SYNTHETIC-1 3.63 3.24 2.82 2.45 2.57 1.40
SYNTHETIC-2 7.43 7.70 4.78 5.49 4.50 0.87
HEALTH 0.15 0.16 0.05 0.10 0.05 0.02
CREDIT APPROVAL 0.24 0.28 0.08 0.21 0.09 0.08

the Gaussian process posteriors, approximations of P l
s(Xs)

and P l
f (Xs) are computed utilizing the Pareto discovery

approach from DGEMO. After this initial step, the most
promising intervention set is selected for batch evaluation
at each iteration. The dataset is then augmented with the
newly evaluated batch of samples. For the corresponding
local problem, we again update the surrogate model and the
Pareto set and front approximations. After completing all
iterations, the algorithm identifies the final Pareto sets and
fronts for each local MO-CBO problem using the collected
objective function evaluations DN . Thereafter, it is easy to
construct Pc

s(S) and Pc
f (S), see Section 4.3.

Batch Selection For the local MO-CBO problem w.r.t.
Xs ∈ S, let R1(Xs), . . . ,RK(Xs) ⊆ D(Xs) denote the
identified diversity regions from DGEMO, discussed in Sec-
tion 2.1. Our algorithm seeks to balance the exploration
of Pareto fronts from multiple local MO-CBO problems,
but evaluating all Bs, s = 1, . . . , |S|, during a single it-
eration, is an inefficient strategy. Instead, we select the
batch with the most promising hypervolume improvement
at each iteration. To this end, we introduce the term relative
hypervolume improvement, defined as

RHVI(µ(Xs,Bs),P l
f (Xs)) =

HVI(µ(Xs,Bs),P l
f (Xs))

H(P l
f (Xs))

.

(5)

As the name suggests, relative hypervolume improvement
is a normalized measure of improvement, enabling the as-
sessment of batch evaluations across different intervention
sets. Given B1, . . . ,B|S|, we propose the following batch
selection strategy for our MO-CBO algorithm:

Bŝ = arg max
Bs∈{B1,...,B|S|}

RHVI(µ(Xs,Bs),P l
f (Xs)). (6)

Overall, the proposed batch selection is designed to alter-
nately advance the Pareto fronts P l

f (X1), . . . ,P l
f (X|S|).

4.3. Building the Pareto Front

After Algorithm 1 has computed the Pareto sets and Pareto
fronts of the local problems, its final step is to simply extract
Pareto-optimal points from

⋃|S|
s=1 P l

s(Xs), as justified by
Proposition 3.4. This yields Pareto-optimal intervention
set-value pairs Pc

s(P(X)) and their corresponding Pareto
front Pc

f (P(X)).

5. Experiments
We evaluate our MO-CBO algorithm with S = OG,Y on
the causal graphs shown in Figure 3 (a) (SYNTHETIC-1),
Figure 3 (b) (SYNTHETIC-2), Figure 1 (HEALTH), and an
additional CREDIT APPROVAL example. We cover both syn-
thetic and real-world scenarios. The full description of the
underlying SCMs is given in Appendix C. We assume to have
an initial dataset D = {((Xs,x

k
s),µ(Xs,x

k
s))}

K,|S|
k=1,s=1

with K = 5 samples per intervention set. The batch size is
set to 5. For reproducibility, all experiments are run across
10 random seeds, resulting in varying initializations of D.

Baselines To the best of our knowledge, there exists no
other multi-objective optimization method in the literature
that can leverage the causal structure. As baselines, we there-
fore apply some of the most prominent MOBO algorithms
such as ParEGO, MOEA/D-EGO, TSEMO, qNEHVI, and
DGEMO (see the literature review). They intervene on
all treatment variables simultaneously and thus the objec-
tive functions are µi(X, · ) : D(X) → R, x 7→ µ(X,x),
i = 1, . . . ,m. Notably, Pc

f (P(X)) contains at least as opti-
mal outcomes as P l

f (X).
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Y1

Y
2

Pc
f (P(X))

MO-CBO (ours)
DGEMO

Figure 4. SYNTHETIC-1. Pareto front approximations from MO-
CBO (ours) and DGEMO. Our method offers a higher coverage of
Pc

f (P(X)).

Evaluation We assess the quality of the resulting Pareto
fronts by measuring their proximity to Pc

f (P(X)) using the
generational distance (GD) (Schutze et al., 2012). The
GD is defined as the average distance from any point in
the approximated front to its closest point on the ground-
truth front. Moreover, we calculate the diversity of the
identified solutions using the inverted generational distance
(IGD) (Schutze et al., 2012). The IGD represents the av-
erage distance from any point in the ground-truth front to
its closest point on the approximated front. The mathemat-
ical definitions are given in Appendix D. We present the
performance metrics from our experiments in Table 1 and
Table 2.

We run each experiment until a predefined cost budget is
exhausted, assuming each intervention comes at a certain
cost. The cost structure is detailed in Appendix D. In this
section, we will only present the visual results from the
experiments with DGEMO, with corresponding plots for
the other baselines provided in Appendix D.

5.1. Synthetic Problems

SYNTHETIC-1 As previously discussed in Section 4.1,
it holds OG,Y = {{X1, X2}}. We observe that the gen-
erational distances in Table 1 are negligible for MO-CBO
and all baseline algorithms. This is also supported by the
Pareto front approximations shown in Figure 4 where solu-
tions found by both MO-CBO and DGEMO closely match
Pc
f (P(X)). Similar results are observed for the other base-

lines and are presented in Appendix D. Theoretically, these
findings are expected, as µ(X,x) = µ(OG,Y,x[OG,Y])
guarantees that the baselines can reach the same solutions
as MO-CBO. Furthermore, we observe that our method of-
fers a better coverage of Pc

f (P(X)), a result confirmed by
its lower inverted generational distance in Table 2. The
improvement likely stems from avoiding unnecessary in-
terventions on X3 and X4, allowing for more exploratory
interventions on OG,Y within the same budget.

Y1

Y
2

Pc
f (P(X))

MO-CBO (ours)
DGEMO

Figure 5. SYNTHETIC-2. Pareto front approximations from MO-
CBO (ours) and DGEMO. Our approach tightly fits Pc

f (P(X)).

SYNTHETIC-2 In this setting, an unobserved confounder
exists between Y1 and X4, placing SYNTHETIC-2 in the
general case where hidden confounders may influence tar-
get variables through their ancestors. Consequently, it holds
OG,Y = {{X2, X3}, {X1, X2, X3}}. The Pareto front ap-
proximations are illustrated in Figure 5, demonstrating that
while the baseline method DGEMO fails to identify solu-
tions on Pc

f (P(X)), MO-CBO does indeed discover them.
Similar observations are seen for the other baselines, see
Appendix D. Further experiments reveal that only interven-
tions on {X2, X3} can yield Pareto-optimal solutions in
Pc
f (P(X)). This can be explained as follows: The baseline

strategy disrupts the causal path X4 → X1 → Y1, letting
the unobserved confounder influence Y1 without propagat-
ing through the aforementioned path. In contrast, our ap-
proach allows interventions on {X2, X3}, preserving this
causal structure. This distinction is crucial as the structural
assignment of Y1 includes the term −X1 ·X2 · U/2, with
U denoting the unobserved confounder (all structural equa-
tions are specified in Appendix C). Not intervening on X1,
causes this term to always be negative, yielding lower func-
tion values for Y1. However, if we do intervene on X1, it is
positive with probability 0.5, causing higher values for Y1

in the averaged outcomes.

5.2. Real-World Problems

HEALTH We revisit the causal graph from Figure 1,
which is based on real-world causal relationships in the
healthcare setting (Ferro et al., 2015). For patients sen-
sitive to Statin medication, one might aim to minimize
both Statin usage and PSA levels simultaneously. There
is only one possibly Pareto-optimal minimal intervention
set, OG,Y = {{BMI,Aspirin}}. Similarly to SYNTHETIC-1,
both our MO-CBO algorithm and the MOBO baselines iden-
tify Pareto-optimal solutions, while the baselines tend to
produce sparser approximations of Pc

f (P(X)). See Figure 6
for the results obtained using DGEMO.
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Statin

P
S

A

Pc
f (P(X))

MO-CBO (ours)
DGEMO

Figure 6. HEALTH. Pareto front approximations from MO-CBO

(ours) and DGEMO. Our approach yields a better coverage of
Pc

f (P(X)).

loan duration

ap
pr

ov
al

Pc
f (P(X))

MO-CBO (ours)
DGEMO

Figure 7. CREDIT APPROVAL. Pareto front approximations from
MO-CBO (ours) and DGEMO. Our approach yields a better cover-
age of Pc

f (P(X)).

CREDIT APPROVAL We consider a causal system which
models the credit approval probability as a function of de-
mographic and financial variables, see Appendix D for the
SCM specifications. The model is inspired by the German
Credit UCI dataset (Murphy, 1994), with causal dependen-
cies adapted from Karimi et al. (2020). Our objective is
to maximize the probability of credit approval and the re-
ceived loan duration (measured as a deviation from the
mean). There are no unobserved confounders, resulting in
OG,Y = {{loan amount, income, savings}}. Similarly to
before, we observe that our MO-CBO algorithm can yield a
more dense representation of Pc

f (P(X)) compared to some
baselines.

6. Conclusion
This paper introduces MO-CBO as a new problem class for
optimizing multiple target variables within a known causal
graph. We show that any MO-CBO problem can be decom-
posed into local problems, and propose theoretical analyses
to identify a minimal collection of such local problems guar-
anteed to contain all Pareto-optimal solutions. Finally, we
present our MO-CBO algorithm that explores this reduced

search space to identify such solutions. Notably, we have
observed that traditional multi-objective optimization is sim-
ply misspecified for causal systems and can therefore yield
suboptimal outcomes. More specifically, our experimen-
tal results reveal two distinct scenarios: In the absence of
unobserved confounders between the targets and their ances-
tors, both our MO-CBO algorithm and the MOBO baselines
recover optimal solutions, albeit our method can offer a
higher solution diversity. In the contrasting scenario, the
MOBO baselines can lead to suboptimal solutions, while our
method remains effective. These observations align with
our theoretical findings.

The search space reduction in Section 4.1 requires prior
causal knowledge, which is a notable limitation of our ap-
proach. In some domains, such knowledge is accessible
through experimental studies (Blomqvist et al., 2020), and
when unavailable, could potentially be inferred using meth-
ods from causal discovery (Zanga et al., 2022). Moreover,
in our current implementation, the surrogate model assumes
independent outcomes, overlooking shared endogenous con-
founders. Future work could enhance sample efficiency by
integrating multi-task Gaussian processes to capture shared
information across treatment variables. Other directions
for future research include the adaptation of existing CBO
variants to the multi-objective setting.
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A. Decomposition of MO-CBO Problems
Recall the definition of the local MO-CBO problems.

Definition 3.3 (Local MO-CBO problem). Let Xs ∈ P(X) be an intervention set. Then, the multi-objective optimisation
problem defined by the objective functions µi(Xs, · ) : D(Xs)→ R, xs 7→ µ(Xs,xs), 1 ≤ i ≤ m, is called local MO-CBO
problem w.r.t. Xs.

For the local MO-CBO problem w.r.t. Xs ∈ P(X), we denote its Pareto set as P l
s(Xs) and the associated Pareto front as

P l
f (Xs).

Proposition 3.4. Given ⟨G,Y,X,C⟩, let S ⊆ P(X) be a non-empty collection of intervention sets. Then, it holds

Pc
f (S) ⊆

|S|⋃
s=1

P l
f (Xs). (7)

Proof. Assume for contradiction that Pc
f (S) ̸⊆

⋃|S|
s=1 P l

f (Xs). Then, there exists some z ∈ Rm such that z ∈ Pc
f (S)

and z ̸∈ P l
f (Xs) for all s = 1, . . . , |S|. For some intervention set X′

s ∈ S and intervention value x′
s ∈ D(X′

s), it holds
z = (µ1(X

′
s,x

′
s), . . . , µm(X′

s,x
′
s)). LetP l

s(X1), . . . ,P l
s(X|S|) be the Pareto sets of the associated local MO-CBO problems

w.r.t. X1, . . . ,X|S|, respectively. Since z ̸∈ P l
f (X

′
s), it follows x′

s ̸∈ P l
s(X

′
s), i.e. x′

s is not Pareto-optimal in the local
MO-CBO problem w.r.t. X′

s. Thus, there exists another intervention value x′′
s ∈ D(X′

s) such that µi(X
′
s,x

′
s) ≥ µi(X

′
s,x

′′
s )

for all i and µi(X
′
s,x

′
s) > µi(X

′
s,x

′′
s ) for at least one 1 ≤ i ≤ m. In other words, the intervention set-value pair (X′

s,x
′
s)

is not Pareto-optimal for S since it is dominated by (X′
s,x

′′
s ). Therefore, z ̸∈ Pc

f (S) which is a contradiction.

B. Reducing the Search Space
Lee & Bareinboim (2018) leverage the graph topology of an SCM to identify intervention sets that are redundant to consider
in any optimisation scheme. Their formalism exploits the rules of do-calculus to identify invariances and partial-orders
among intervention sets, in order to obtain those sets that could potentially yield optimal outcomes for a given graph. To
take advantage of their ideas for this paper, the relevant concepts and their theoretical properties must be extended to
accommodate multi-target settings, which will be the focus of this section.

Let ⟨V,U,F, P (U)⟩ denote an SCM and G its associated acyclic graph that encodes the underlying causal mechanisms.
Recall that we assume C = ∅, i.e., there are no non-manipulative variables. In this section, we require the notation
EP (W|do(Xs=xs))[W] := E[W|do(Xs = xs)] for sets Xs ⊆ X, W ⊆ V.

B.1. Equivalence of Intervention Sets

As a first step, we establish invariances within P(X) in regards to the effects of intervention sets on the target variables.
Recall the following definition from the main part of the paper.

Definition 4.1 (Minimal intervention set). A set Xs ∈ P(X) is called a minimal intervention set if, for every SCM
conforming to G, there exists no subset X′

s ⊂ Xs such that for all xs ∈ D(Xs) it holds µ(Xs,xs) = µ(X′
s,xs[X

′
s]), for

all 1 ≤ i ≤ m.

We denote the set of minimal intervention sets with MG,Y. In other words, no subset of a minimal intervention set can
achieve the same expected outcome on Y. Intervention sets, that are not minimal in the sense of Definition 4.1, are redundant
to consider in any optimization task.

Proposition 4.2. Xs ∈ P(X) is a minimal intervention set if and only if it holds Xs ⊆ an(Y)GXs
.

Proof. (If) Let xs ∈ D(Xs) be any intervention value. Assume that there is a subset X′
s ⊂ Xs such that for all

SCMs conforming to G it holds E[Yi|do(Xs = xs)] = E[Yi|do(X′
s = xs[X

′
s])] for all 1 ≤ i ≤ m. For the sake of

contradiction, assume Xs ⊆ an(Y)GXs
. Consider an SCM with real-valued variables where each V ∈ V is associated

with its own binary exogenous variable UV with P (UV = 1) = 0.5. Let the function of an endogenous variable
be the sum of values of its parents. Then, there exists a directed path from Xs\X′

s to some Yi without passing X′
s.
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Hence, setting W = Xs\X′
s to the values w = E[W|do(X′

s = xs[X
′
s])] + 1 yields E[Yi|do(W = w,X′

s = xs[X
′
s])] >

E[Yi|do(X′
s = xs[X

′
s])], contradicting the assumption.

(Only if) Assume that Xs ̸⊆ an(Y)GXs
. Then, for X′

s = Xs ∩ an(Y)GXs
it holds X′

s ⊂ Xs and by the third rule of
do-calculus, for every xs ∈ D(Xs) it holds E[Yi|do(Xs = xs)] = E[Yi|do(X′

s = xs[X
′
s])], 1 ≤ i ≤ m. This is a

contradiction because Xs was assumed to be a minimal intervention set.

B.2. Partial-Orders among Intervention Sets

Recall the definition of possibly Pareto-optimal minimal intervention sets.

Definition 4.3 (Possibly Pareto-optimal minimal intervention set). A set Xs ∈MG,Y is called possibly Pareto-optimal if,
for at least one SCM conforming to G, there exists xs ∈ D(Xs) such that (Xs,xs) is Pareto-optimal for P(X), and for no
X′

s ∈MG,Y\Xs,x
′
s ∈ D(X′

s) it holds µ(X′
s,x

′
s) ≤ µ(Xs,xs), for all 1 ≤ i ≤ m.

Characterizing such sets is the aim of this section. For simplicity, we first consider the special case in which G exhibits no
unobserved confounders between Yi and any of its ancestors.

Proposition 4.4. If no Yi is confounded with an(Yi)G via unobserved confounders, then pa(Y)G is the only possibly
Pareto-optimal minimal intervention set.

Proof. Let Xs = pa(Y)G , and let pa(Y)G ̸= X′
s be another minimal intervention set with x′

s ∈ D(X′
s). Define

Z = Xs\(X′
s ∩Xs) and W = X′

s\(X′
s ∩Xs). Moreover, we choose an intervention value x∗

s ∈ D(Xs) such that it
dominates xs ∈ D(Xs) which is given by xs[X

′
s] = x′

s[Xs] and xs[Z] = E[Z|do(X′
s = x′

s)]. If xs is non-dominated,
define x∗

s = xs. Then, for all i = 1, . . . ,m it holds

E[Yi|do(Xs = x∗
s)] = E[Yi|do(Xs ∩X′

s = x∗
s[X

′
s],Z = x∗

s[Z])] (8)
≤ E[Yi|do(Xs ∩X′

s = xs[X
′
s],Z = xs[Z])] (9)

= E[Yi|do(Xs ∩X′
s = xs[X

′
s],Z = xs[Z],W = x′

s[W])] (10)
= E[Yi|do(Xs ∩X′

s = xs[X
′
s],W = x′

s[W]),Z = xs[Z]] (11)
= E[Yi|do(Xs ∩X′

s = xs[X
′
s],W = x′

s[W])] (12)
= E[Yi|do(X′

s = x′
s)], (13)

where the inequality holds because xs (weakly) dominates x∗
s . Note that the second and third equalities are derived through

the third and second rules of do-calculus, respectively. The second rule of do-calculus assumes that Yi is not confounded with
an(Yi)G via unobserved confounders. For Xs = pa(Y)G , it is possible to construct an SCM, conforming to G, such that strict
inequality holds for some Yi, see the proof of Theorem B.2. This shows that pa(Y)G is the only possibly Pareto-optimal
minimal intervention set.

We continue and study the more general case where unobserved confounders can be present between Yi and any of
its ancestors. For this intent, we extend two existing concepts, called minimal unobserved-confounders’ territory and
interventional border (Lee & Bareinboim, 2018), to the multi-objective setting. Using these notions, we derive results which
can fully characterize possibly Pareto-optimal minimal intervention sets in the aforementioned scenario.

Definition 4.5 (Minimal unobserved confounders’ territory). LetH = G[An(Y)G ]. A set of variables T inH, with Y ⊆ T,
is called a UC-territory for G w.r.t. Y if De(T)H = T and CC(T)H = T. The UC-territory T is said to be minimal,
denoted T = MUCT(G,Y), if no T′ ⊂ T is a UC-territory.

A minimal UC-territory for G w.r.t. Y can be constructed by extending a set of variables, starting from Y, and iteratively
updating the set with the c-component and descendants of the set. More intuitively, it is the minimal subset of An(Y)G that
is governed by unobserved confounders, where at least one target Yi is adjacent to an unobserved confounder.

Definition 4.6 (Interventional border). Let T = MUCT(G,Y). Then, B = pa(T)G\T is called the interventional border
for G w.r.t. Y, denoted as IB(G,Y).

We have already described these concepts in the main part. Before connecting the notion of minimal UC-territory and
interventional border to possibly Pareto-optimal minimal intervention sets, we require the following proposition:
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Proposition B.1. Let T be a minimal UC-territory and B an interventional border for G w.r.t. Y. Let Xs ⊆ X be an
intervention set and S = (T ∩Xs) ∪B. Then, for any xs ∈ D(Xs) there exists s ∈ D(S) such that E[Yi|do(S = s)] ≤
E[Yi|do(Xs = xs)], for all i = 1, . . . ,m.

Proof. (Case B ⊆ Xs) Let xs ∈ D(Xs) be an intervention value. Then, by the third rule of do-calculus, it holds
E[Yi|do(Xs = xs)] = E[Yi|do(Xs ∩ (T ∪ B) = xs[T ∪ B])], 1 ≤ i ≤ m. Since Xs ∩ (T ∪ B) = S, by setting
s = xs[T ∪B], it follows E[Yi|do(Xs = xs)] = E[Yi|do(S = s)].

(Case B ̸⊆ Xs) Let xs ∈ D(Xs) be an intervention value. We define B′ = S\(Xs∩S) = S\(Xs∩(T∪B)) = B\(Xs∩B)
and W = Xs\(Xs ∩S) = Xs\(Xs ∩ (T∪B)). Moreover, let s∗ ∈ D(S) such that it dominates s ∈ D(S), which is given
by s[B′] = E[B′|do(Xs = xs)] and s[Xs] = xs[T ∪B]. If s is non-dominated, we set s∗ = s. Then, for all i = 1, . . . ,m
it holds

E[Yi|do(S = s∗)] = E[Yi|do(Xs ∩ (T ∪B) = s∗[Xs],B
′ = s∗[B′])] (14)

≤ E[Yi|do(Xs ∩ (T ∪B) = s[Xs],B
′ = s[B′])] (15)

= E[Yi|do(Xs ∩ (T ∪B) = s[Xs],B
′ = s[B′],W = xs[W])] (16)

= E[Yi|do(Xs ∩ (T ∪B) = s[Xs],W = xs[W]),B′ = s[B′]] (17)
= E[Yi|do(Xs ∩ (T ∪B) = s[Xs],W = xs[W])] (18)
= E[Yi|do(Xs = xs)], (19)

where the inequality holds because s is (weakly) dominated by s∗. Furthermore, the second and third equalities are derived
through the third and second rules of do-calculus, respectively.

The following proposition is a building block for characterizing possibly Pareto-optimal minimal intervention sets via
interventional borders. The proof is similar to the one given by Lee & Bareinboim (2018)

Proposition B.2. IB(G,Y) is a possibly Pareto-optimal minimal intervention set.

Proof. The intuition of this proof is to construct an SCM, conforming to G, for which the single best strategy involves
intervening on IB(G,Y). Let T and B denote MUCT(G,Y) and IB(G,Y), respectively. Every exogenous variable in
U shall be a binary variable with its domain being {0, 1}. Let ⊕ denote the exclusive-or function and

∨
the logical OR

operator.

(Case T = Y) In this case, B corresponds to the parents of Y. Therefore, no target variable Yi is confounded with an(Yi)G
via unobserved confounders. Define an SCM such that

• Each endogenous variable V ∈ V is influenced by an exogenous variable UV ∈ V;

• fYi
=

∨
uYi ⊕

∨
paYi

with P (UYi = 0) ≈ 1, for all i = 1, . . . ,m;

• fX = (
⊕

uX)⊕ (
⊕

paX) for X ∈ X and P (U = 0) = 0.5 for every U ∈ U\(
⋃m

i=1 U
Yi).

By the third rule of do-calculus and by taking conditional expectations, it holds

E[Yi|do(B = 0)] = E[Yi|do(pa(Yi)G = 0)] (20)

= E[Yi|do(pa(Yi)G = 0),UYi ̸= 0]P (UYi ̸= 0) + E[Yi|do(pa(Yi)G = 0),UYi = 0]P (UYi = 0) (21)
≈ 0 (22)

for every 1 ≤ i ≤ m. Meanwhile, all other interventions yield expectations greater than or equal to 0.5 in at least one
component. Therefore, B is a possibly Pareto-optimal minimal intervention set.

(Case T ⊂ Y) In this case, at least one target variable Yi has an unobserved confounder with its ancestors. As a first step, it
will be shown that there exists an SCM, conforming toH = G[T ∪B], where the intervention do(B = 0) is the single best
strategy. To achieve this, we first define individual SCMs for each unobserved confounder inH[T], and merge them into a
single SCM where do(B = 0) is indeed the best strategy. Let U′ = {Uj}kj=1 be the set of unobserved confounders inH[T].
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Figure 8. Original causal graph G and its color-coded subgraphs for each unobserved confounder.

Table 3. Values for M1, M2 and M given X4 = X5 = 0. The target variables are shown as bit sequences, Y ′
1 and Y ′

2 , as well as binary
values, Y1 and Y2.

Given Uj ∈ U′, let B(j) and R(j) denote its two children. We define an SCMMj , where the graph structure is given by

Hj = H
[
De

({
B(j), R(j)

})
H
∪
(
B ∩ pa

(
De

({
B(j), R(j)

})
H

))]
, (23)

and all bidirected edges, except for Uj , are removed. In order to set the structural equations for variables inHj , the vertices
will be labelled via colour coding: Let vertices in De

(
B(j)

)
H \De

(
R(j)

)
H be labelled as blue, De

(
R(j)

)
H \De

(
B(j)

)
H

as red, and De
(
B(j)

)
H ∩ De

(
R(j)

)
H as purple. All target variables are coloured as purple as well. Moreover, B(j) and

R(j) shall perceive Uj as a parent coloured as blue with value Uj and red with value 1− Uj , respectively. The blue-, red-
and purple-coloured variables are set to 3 if any of their parents in B is not 0. Otherwise, their values are determined as
follows. For every blue and red vertex, the associated structural equation returns the common value of its parents of the
same colour and returns 3 if coloured parents’ values are not homogeneous. For every purple vertex, its corresponding
equation returns 2 if every blue, red and purple parent is 0,1, and 2, respectively, and returns 1 if 1,0,1, respectively.

Next, the SCMsM1, . . . ,Mk will be merged into one single SCM, that conforms to H, and for which do(B = 0) is the
single best intervention. Note that inMj all variables can be represented with just two bits. To construct a unified SCM,
variables in T are represented with 2k bits, whereMj takes the 2j−1th and 2jth bits. Every target variable Yi is represented
as a sequence of bits and binarised as follows. Yi is set to 0 if its 2j − 1th and 2jth bits are 00, 01 or 10 for every 1 ≤ j ≤ k,
and 1 otherwise. Let P (Uj = 1) = 0.5 for Uj ∈ U′. Therefore, it holds Yi = 0 if do(B = 0) and Yi = 1 if do(B ̸= 0). If
any variable in T is intervened, then at least one SCMMj will be disrupted, resulting in an expectation larger than or equal to
0.5 for at least one target variable. In the multi-target setting, it may happen that some target variables do not occur in any of
theMj’s. This happens if a target Yi has no parents in T, but only in B. For all such Yi’s, we set fYi

= uYi ⊕
∨

paYi
with

P (UYi = 0) ≈ 1. As such, the newly constructed SCM enforces E[Yi|do(B = 0)] ≈ 0. Meanwhile, all other interventions
yield expectations greater than or equal to 0.5

As a last step, the previously defined SCM for H = G[T ∪ B], will be extended to an SCM for G. However, we can
ignore joint probability distributions for any exogenous variables only affecting endogenous variables outside ofH. Setting
structural equations for endogenous variables outside of H is redundant as well. For V ∈ An(Y)G\T, we define the
structural equations as fV = (

⊕
uV )⊕ (

⊕
paV ). For U ∈ U\U′, we set P (U = 0) = 0.5 if U ’s child(ren) is disjoint to

T, and P (U = 0) ≈ 1 otherwise. Note that do(B = 0) is still the single optimal intervention. Therefore, B is a possibly
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Pareto-optimal minimal intervention set.

In order to illustrate the construction of an SCM where do(IB(G,Y) = 0) is the single best strategy, consider Figure 8,
showing an exemplary graph and its colour-coded subgraphs,H1 andH2, for each unobserved confounder. Table 3 presents
the associated values forM1 andM2, as well as values for the target variables in the final SCMM. The next proposition
generalizes the previous one.

Proposition 4.7. IB(GXs
,Y) is a possibly Pareto-optimal minimal intervention set for any Xs ∈ P(X).

Proof. Let Xs be an intervention set. Let us denote T = MUCT(GXs
,Y), B = IB(GXs

,Y) and T0 = MUCT(G,Y).
Using the strategy from Theorem 4.7, we construct an SCM for G[T∪B] while ignoring unobserved confounders between T
and T0\T. Let U′ be the set of such unobserved confounders. Now, the SCM needs to be modified to ensure that do(B = 0)
is the single best intervention. Every U ∈ U′ shall flip (i.e., 0 ←→ 1) the value of its endogenous child in T whenever
U = 1. Let P (U = 0) ≈ 1, so that it holds E[Yi|do(B = 0)] ≈ 0. Intervening on B ̸= 0 or on any variable in T results in
expectations around 0.5 or above.

Notably, Proposition 4.7 extends Proposition B.2 when Xs ̸= ∅. Note that, by iterating over all intervention sets Xs ∈ P(X),
we can discover possibly Pareto-optimal minimal intervention sets in a given graph. The following theorem is an extension
of the main result by Lee & Bareinboim (2018) to the scenario where multiple target variables are present. It shows that the
aforementioned strategy suffices to find not some, but all, such sets.

Theorem 4.8. A set Xs is a possibly Pareto-optimal minimal intervention set if and only if it holds IB(GXs
,Y) = Xs.

Proof. (If) This is a special case of Proposition 4.7.

(Only if) Let Xs be a minimal intervention set and xs ∈ D(Xs) an intervention value. Denote T = MUCT(GXs
,Y),

B = IB(GXs
,Y), T0 = MUCT(G,Y) and B0 = IB(G,Y). From Theorem B.1, we know that no POMIS intersects with

An(B0)G\B0 and thus, it is possible to conclude Xs ⊆ T0 ∪B0\Y. Note that it holds Xs ⊆ An(B)G since otherwise it
would follow Xs ∩T ̸= ∅, which contradicts that Xs is neither a descendant of some variable nor confounded in GXs

. Let
B′ = B\(Xs ∩B) and W = Xs\(Xs ∩B). Moreover, we define an intervention value b∗ ∈ D(B) such that it dominates
b ∈ D(B), which is given by b[B′] = E[B′|do(Xs = xs)] and b[Xs] = xs[B]. If b is non-dominated, we set b∗ = b.
Then, for all i = 1, . . . ,m, it holds

E[Yi|do(B = b∗)] = E[Yi|do(B ∩Xs = b∗[Xs],B
′ = b∗[B′])] (24)

≥ E[Yi|do(B ∩Xs = b[Xs],B
′ = b[B′])] (25)

= E[Yi|do(B ∩Xs = b[Xs],B
′ = b[B′],W = xs[W])] (26)

= E[Yi|do(B ∩Xs = b[Xs],W = xs[W]),B′ = b[B′]] (27)
= E[Yi|do(B ∩Xs = b[Xs],W = xs[W])] (28)
= E[Yi|do(Xs = xs)], (29)

where the inequality holds because b is (weakly) dominated by b∗. Furthermore, the second and third equalities are derived
through the third and second rules of do-calculus, repectively.

Theorem 4.8 provides a necessary and sufficient condition for a set of variables to be a possibly Pareto-optimal minimal
intervention set. The proof of the theorem gives the following corollary:

Corollary 4.9. Let Xs ∈ P(X) and X′
s = IB(GXs

,Y). For any xs ∈ D(Xs) there exist x′
s ∈ D(X′

s) such that it holds
µ(X′

s,x
′
s) ≤ µ(Xs,xs), for all 1 ≤ i ≤ m.
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C. MO-CBO Problems
In this section, we present the collection of synthetic and real-world causal graphs used to evaluate the performance of
MO-CBO in comparison to standard MOBO baselines.

Cost of Interventions The MO-CBO algorithm requires evaluating the objective functions which inherently involves
implementing interventions on the system. However, in practical scenarios, such interventions can be costly, making it
important to prioritize sample efficiency and explicitly account for the cost of an intervention do(Xs = xs), denoted as
cost(Xs,xs). We use the convention cost(Xs,xs) =

∑
Xi∈Xs,xi=xs[Xi]

cost(Xi, xi). Each experiment is conducted under
a fixed cost budget, terminating once the budget is exhausted. To reflect practical constraints, every MO-CBO scenario
includes a tailored cost structure that accurately represents the varying difficulty or expense of different interventions.

C.1. SYNTHETIC-1

We introduce the first synthetic MO-CBO problem in our experimental study, referred to as SYNTHETIC-1, which is defined
by the causal graph G and associated structural assignments presented in Figure 9. The interventional domains are specified
as D(X1),D(X2) = [−1, 2] and D(X3),D(X4) = [−1, 1]. Moreover, all exogenous variables follow the standard normal
distribution, and there are no unobserved confounders. All treatment variables Xi, 1 ≤ i ≤ 4, shall have fixed unit cost of
cost(Xi, xi) = 1 for all xi ∈ D(Xi).

Y2

Y1X1X3

X2X4

X1 = exp((X3 −X4)/2) + UX1

X2 = ((X3 −X4)/2)
3 + UX2

X3 = UX3

X4 = UX4

Y1 = (X1 +X2)
2 + UY1

Y2 = (X1 +X2 − 10)2 + UY2

UXi , UYi ∼ N (0, 1)

Figure 9. SYNTHETIC-1. An SCM consisting of four treatment and two output variables, depicted with grey and red nodes, respectively.
There are no unobserved confounders.

C.2. SYNTHETIC-2

SYNTHETIC-2 is the next MO-CBO problem of our experimental study, defined by the causal graph G and associated
structural equations in Figure 10. The interventional domains are D(X1) = [−2, 5], D(X4) = [−4, 5] and D(Xi) = [0, 5]
for i = 1, 2. Moreover, the exogenous variables UXi , UYi follow a Gaussian distribution, and there is an unobserved
confounder U influencing the target variable Y1 and its ancestor X4. All treatment variables Xi, 1 ≤ i ≤ 4, have fixed unit
cost of cost(Xi, xi) = 1 for all xi ∈ D(Xi).

X4 X1

X2

Y1

Y2 X3

X1 = X4/2 + U2
X1

X2 = U2
X2

X3 = U2
X3

X4 = U + U2
X4

Y1 = ln(1 +X2
1 ) + 2 ·X2

2 −X1 ·X2 · U/2 + U3
Y1

Y2 = sin(X2
2 )−X2

3 −X2 ·X3 + 50 + U3
Y2

U ∈ {−4, 4}, P (U = −4) = P (U = 4) = 0.5

UXi , UYi ∼ N (0, 0.5)

Figure 10. SYNTHETIC-2. An SCM consisting of four treatment and two output variables, depicted with grey and red nodes, respectively.
It includes an unobserved confounder, denoted via the dashed bi-directed edge, affecting one output and its ancestor.
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C.3. HEALTH

The MO-CBO problem HEALTH is defined by the causal graph and structural equations in Figure 11. This model originates
from previous works of Ferro et al. (2015), and is based on real-world causal relationships. It captures prostate-specific-
antigen (PSA) levels in causal relation to its risk factors, such as BMI, calorie intake (CI) and aspirin usage. The variable
Aspirin indicates the daily aspirin regimen while Statin denotes a subject’ statin medication. Additionally, PSA represents
the total antigen level circulating in a subject’s blood, measured in ng/mL. For patients sensitive to Statin medications, the
aim is to determine how to manipulate relevant risk factors to minimize both Statin and PSA. To this end, we treat both Statin
and PSA as target variables. The treatment variables include BMI, Weight, CI, and Aspirin usage with interventional domains
D(BMI) = [20, 30], D(Weight) = [50, 100], D(CI) = [−100, 100] and D(Aspirin) = [0, 1]. We choose to consider a
specific age groups of interest, and define Uage as a Gaussian random variable with mean 65 and standard deviation 1,
focusing on individuals close to the age of 65. The variables CI and Aspirin are set to have fixed unit cost, i.e. cost(X,x) = 1
for X ∈ {CI, Aspirin}, x ∈ D(X). Since BMI and weight are significantly harder to treat, we increase their cost to
cost(X,x) = 3 for X ∈ {BMI, weight}, x ∈ D(X).

The single-objective version of HEALTH, aiming to minimize only PSA, has previously been used to demonstrate the
applicability of CBO (Aglietti et al., 2020), as well as for several of its variants (e.g. Gultchin et al. (2023) and Aglietti et al.
(2023)).

PSA

A
sp

ir
in

BMI

Age

Cancer

Statin

Weight

Height
BMR

CI

CI = UCI, UCI ∼ U(−100, 100)

BMR = 1500 + 10UBMR, Uheight ∼ tN (−1, 2)

height = 175 + 10Uheight, Uheight ∼ tN (−0.5, 0.5)

age = Uage, Uage ∼ N (65, 1)

weight = (BMR + 6.8age − 5height)/(13.7 + CI150/7716)

BMI = weight/(height/100)2

aspirin = σ(−8 + 0.1age + 0.03BMI), σ(x) = 1
1+e−x

statin = σ(−13 + 0.10age + 0.20BMI)

cancer = σ(2.2− 0.05age + 0.01BMI − 0.04statin + 0.02aspirin)
PSA = 6.8 + 0.04age − 0.15BMI − 0.6statin + 0.55aspirin + cancer + UPSA

UPSA ∼ N (0, 0.4)

Figure 11. HEALTH. An SCM with relations between variables such as age, BMI, aspirin and statin usage, and their effects on PSA levels
(Gultchin et al., 2023). U(·, ·) denotes a uniform distribution and tN (a, b) a standard Gaussian distribution truncated between a and b.
Red, orange, and grey nodes depict target, manipulative, and non-manipulative variables, respectively.

C.4. CREDIT APPROVAL

The final MO-CBO problem in our experiments is called CREDIT APPROVAL, and is specified by the causal graph and
structural equations shown in Figure 12. This problem models the probability of credit approval as a function of various
demographic and financial variables, including age, gender, education, loan amount, loan duration, income, and savings.
It is based on the German Credit UCI dataset (Murphy, 1994) and causal relationships adapted from in (Karimi et al.,
2020). We treat both approval probability and loan duration as target variables. The treatment variables are education, loan
amount, income and savings, with interventional domains given as: D(education) = [−0.5, 0.5],D(loan amount) = [−1, 2],
D(income) = [−2, 1], andD(savings) = [−5, 1]. Note that the variables age, education, loan amount, loan duration, income
and savings are modelled as a deviations from their means. To reduce complexity and focus our analysis, we fix the gender
variable to 0 (e.g., male), diverging from the original specification by Karimi et al. (2020), where gender is defined as
Bernoulli(0.5). Additionally, we assume that all other variables remain close to their mean values and reduce the level of
observational noise compared to Karimi et al. (2020). The variables loan amount and income are set to have fixed unit
cost, i.e. cost(X,x) = 1 for X ∈ {loan amount, income}, x ∈ D(X). For education and savings, we increase the cost to
cost(X,x) = 2 for X ∈ {education, savings}, x ∈ D(X).
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age gender

amountedu.

duration income

savings approval

gender = 0

age = −35 + Uage, Uage ∼ Gamma(10, 3.5)

edu. = −0.5 + σ−1(−1 + 0.5gender + σ−1(0.1age) + Uedu.)− 1, Uedu. ∼ N (0, 0.25)
amount = 1 + 0.1(age − 5)(5− age) + gender + Uamount, Uamount ∼ N (0, 4)

duration = −1 + 0.01age + 2gender + amount + Uduration, Uduration ∼ N (0, 9)

income = −4 + 0.1(age + 35) + 2gender + gender ∗ edu. + Uincome, Uincome ∼ N (0, 4)

savings = σ(−4 + 1.5 · ⊮income>0income + Usavings, Usavings ∼ N (0, 25)

approval = σ(0.3(−amount − duration + income + savings + income · savings))

Figure 12. CREDIT APPROVAL. An SCM which models the probability of credit approval as a function of various demographic and
financial variables (Karimi et al., 2020). Red, orange, and grey nodes depict target, manipulative, and non-manipulative variables,
respectively.

D. Experiments
D.1. Hyperparameters

MO-CBO algorithm The DGEMO backbone of our MO-CBO algorithm has mostly the same hyperparameters as its
original implementation from Konakovic Lukovic et al. (2020). The batch size is set to 5.

ParEGO We adopt a batch variant of ParEGO by using b random scalarization weights in each iteration, with b being the
batch size. Moreover, Chebyshev scalarization (Miettinen, 1999) and the CMA-ES algorithm (Hansen, 2023) are used to
solve the scalarized single-objective problems with σ = 0.5 as initial standard deviation.

MOEA/D-EGO Following Konakovic Lukovic et al. (2020), our implementation of the MOEA/D-EGO baseline follows
its original framework, with the key difference being the removal of FuzzyCM. Given the current computational efficiency
of training Gaussian process models, they opt to use them directly for prediction instead of relying on faster but less accurate
approximation techniques. As a result, this version may offer improved performance due to the enhanced predictive accuracy.
We employ simulated binary crossover and polynomial mutation for MOEA/D, with the remaining hyperparameters detailed
in Konakovic Lukovic et al. (2020).

TSEMO For TSEMO, we largely adopt the same hyperparameter settings as in the original implementation. Specifically,
we use 100 points for spectral sampling.

qNEHVI We implement qNEHVI using the botorch library. We use 10 optimization restarts, and 64 raw samples for
acquisition maximization. Moreover, the acquisition function uses a Sobol QMC sampler with 128 samples.

DGEMO For DGEMO, we retain the hyperparameter configuration from its original implementation.

D.2. Performance Metrics

We require metrics to assess the quality of a given Pareto front approximation. These metrics evaluate both the convergence
of the approximated front to the true front and the diversity of the solutions across the performance space. For a given
optimisation problem, let A be the set of points from an approximated Pareto front. If the ground-truth Pareto front is
known, it is possible to evaluate how well A approximates it given the following two metrics. Let Z be the set of points on
the true Pareto front.

Generational distance (GD) A common performance indicator for evaluating a given Pareto front approximation is the
so-called generational distance (Schutze et al., 2012). It is the average distance from any point ai ∈ A to its closest point in
the Pareto front Z. Formally,

GD(A) =

(
1

|A|

|A|∑
i=1

dpi

)1/p

, (30)
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where dpi is the Euclidean distance from ai to its nearest point in Z. We set p = 2 in our experiments.

Inverted generational distance (IGD) The inverted generational distance measures the distance from any point zi ∈ Z to
its closest point in A (Schutze et al., 2012). Thereby, it can serve as an indicator of the coverage given by the approximated
front. Formally,

IGD(A) =

(
1

|Z|

|Z|∑
i=1

d̂i
p
)1/p

, (31)

where dpi is the Euclidean distance from zi to its nearest point in A. We set p = 2 in our experiments.

The GD evaluates the convergence of the approximated Pareto front to the true front, whereas the IGD measures the diversity
of the solutions across the output space. For both metrics, smaller values indicate a better approximation of the true Pareto
front.

D.3. Runtime

All experiments were executed on a machine equipped with an Apple M2 processor and 8GB of RAM. The average runtimes
are reported in Table 4.

Table 4. Algorithm runtime comparison (seconds per iteration), averaged across 10 seeds.

Problem ParEGO MOEA/D-EGO TSEMO qNEHVI DGEMO MO-CBO (ours)

SYNTHETIC-1 14.39 0.62 0.20 14.23 4.35 3.43
SYNTHETIC-2 9.29 0.74 0.35 12.09 4.47 3.82
HEALTH 8.65 4.19 3.81 18.98 6.26 6.12
CREDIT APPROVAL 10.13 0.77 0.34 20.87 26.45 10.55
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D.4. Results

SYNTHETIC-1 We present the experimental results for the MO-CBO problem SYNTHETIC-1, see Figure 13. We observe
that our MO-CBO algorithm consistently outperforms all MOBO baselines, yielding more diverse and well-distributed
solutions across the target Pareto front Pc

f (P(X)). All methods were run until a fixed cost budget of 150 was exhausted.

Pc
f (P(X)) MO-CBO (ours)

ParEGO MOEA/D-EGO

TSEMO qNEHVI

DGEMO

Figure 13. SYNTHETIC-1. Comparison of Pareto front approximations produced by our MO-CBO algorithm and various MOBO baselines:
ParEGO, MOEA/D-EGO, TSEMO, qNEHVI, and DGEMO. The x-axis corresponds to objective Y1, and the y-axis to Y2.
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SYNTHETIC-2 We present the experimental results for the MO-CBO problem SYNTHETIC-2, see Figure 14. We observe
that the solutions identified by our MO-CBO algorithm tightly fit the target Pareto front Pc

f (P(X)), and strictly dominate
those found by the MOBO baselines. All methods were run until a fixed cost budget of 200 was exhausted.

Pc
f (P(X)) MO-CBO (ours)

ParEGO MOEA/D-EGO

TSEMO qNEHVI

DGEMO

Figure 14. SYNTHETIC-2. Comparison of Pareto front approximations produced by MO-CBO (ours) and various MOBO baselines: ParEGO,
MOEA/D-EGO, TSEMO, qNEHVI, and DGEMO. The x-axis corresponds to objective Y1, and the y-axis to Y2.
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HEALTH We present the experimental results for the MO-CBO problem HEALTH, see Figure 15. We observe that the
solutions identified by our MO-CBO algorithm tightly fit the target Pareto front Pc

f (P(X)), and strictly dominate those found
by the MOBO baselines. All methods were run until a fixed cost budget of 120 was exhausted.

Pc
f (P(X)) MO-CBO (ours)

ParEGO MOEA/D-EGO

TSEMO qNEHVI

DGEMO

Figure 15. HEALTH. Comparison of Pareto front approximations produced by MO-CBO (ours) and various MOBO baselines: ParEGO,
MOEA/D-EGO, TSEMO, qNEHVI, and DGEMO. The x-axis corresponds to objective Y1, and the y-axis to Y2.
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CREDIT APPROVAL We present experimental results for the MO-CBO problem CREDIT APPROVAL in Figure 16. Our
MO-CBO algorithm consistently outperforms the MOBO baselines, producing solutions that are both more diverse and better
distributed across the target Pareto front. The experiments are executed until a cost budget of 300 is reached.

Pc
f (P(X)) MO-CBO (ours)

ParEGO MOEA/D-EGO

TSEMO qNEHVI

DGEMO

Figure 16. CREDIT APPROVAL. Comparison of Pareto front approximations produced by MO-CBO (ours) and various MOBO baselines:
ParEGO, MOEA/D-EGO, TSEMO, qNEHVI, and DGEMO. The x-axis corresponds to objective loan duration, and the y-axis to the
approval probability.
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