
FlowDrag: 3D-aware Drag-based Image Editing
with Mesh-guided Deformation Vector Flow Fields

Gwanhyeong Koo 1 Sunjae Yoon 1 Younghwan Lee 1 Ji Woo Hong 1 Chang D. Yoo 1

Abstract
Drag-based editing allows precise object manipu-
lation through point-based control, offering user
convenience. However, current methods often
suffer from a geometric inconsistency problem
by focusing exclusively on matching user-defined
points, neglecting the broader geometry and lead-
ing to artifacts or unstable edits. We propose
FlowDrag, which leverages geometric informa-
tion for more accurate and coherent transforma-
tions. Our approach constructs a 3D mesh from
the image, using an energy function to guide mesh
deformation based on user-defined drag points.
The resulting mesh displacements are projected
into 2D and incorporated into a UNet denoising
process, enabling precise handle-to-target point
alignment while preserving structural integrity.
Additionally, existing drag-editing benchmarks
provide no ground truth, making it difficult to as-
sess how accurately the edits match the intended
transformations. To address this, we present VFD
(VidFrameDrag) benchmark dataset, which pro-
vides ground-truth frames using consecutive shots
in a video dataset. FlowDrag outperforms existing
drag-based editing methods on both VFD Bench
and DragBench.

1. Introduction
The advancements in text-to-image (T2I) generation dif-
fusion models (Ramesh et al., 2022; Saharia et al., 2022;
Nichol et al., 2021; Li et al., 2023) have significantly en-
hanced image generation capabilities. Leveraging pretrained
T2I diffusion models (Rombach et al., 2022) trained on large
scale dataset, the image editing field has also seen substan-
tial progress. Text-based image editing (Hertz et al., 2022;

1Korea Advanced Institute of Science and Technology (KAIST).
Correspondence to: Chang D. Yoo <cdyoo@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(a) User Edit (b) DiffEditor (c) GoodDrag (d) FlowDrag (ours)

Figure 1. Results of drag-based image editing. While other meth-
ods only optimize around user-specified points, failing to preserve
the Statue of Liberty’s structure (first row), FlowDrag maintains
overall integrity. In the second row, FlowDrag stably rotates the
woman’s face from her nose without distorting her hat or hand,
whereas other methods fail to maintain geometric consistency.

Tumanyan et al., 2023; Cao et al., 2023; Koo et al., 2024a),
which uses user-provided prompts, has shown promising
results but often struggles with precise and fine-grained ed-
its. Even slight variations in text can lead to vastly different
results, making it difficult for users to achieve consistent
and detailed modifications, thereby highlighting the chal-
lenges of achieving precision in text-to-image editing. To
address this, DragGAN (Pan et al., 2023) introduced a point-
dragging method, enhancing user convenience for more
precise editing. However, due to the constraints of GANs,
struggled with general image performance. This limitation
led to interest in exploring drag-based image editing us-
ing diffusion models, which can be categorized into two
main approaches: motion-based (Shi et al., 2024; Ling et al.,
2023; Liu et al., 2024; Zhang et al., 2024) and gradient-
guidance-based (Mou et al., 2023; 2024) methods. The
motion-based approach in drag-based image editing consists
of two processes: motion supervision and point tracking.
Motion supervision measures the difference between the
handle and target points in the UNet decoder’s feature map
and applies it to optimize the latent, gradually shifting the
handle point toward the target. Subsequently, point track-
ing updates the handle point’s position in the feature map,
ensuring alignment with the progressively edited result. In
contrast, gradient-based methods derive inspiration from
score-based (Song et al., 2020b; Dhariwal & Nichol, 2021)

1

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

User Edit GoodDrag FlowDrag (ours)

(a) Drag Editing Results

(d) Comparison of Drag-Editing
Methods on DragBench

User Edit

Mesh Deformation

2D Vector Flow Field
(VF Field)

U-Net

xT

(b) Current Drag-based Editing System

Result

User Edit

(c) Overview of the FlowDrag for Generating 2D Vector Flow Field

U-Net

xT

Result

2D VF field3D Mesh

Handle Point Edit MaskTarget Point

(e) Comparison of Drag-Editing
Methods on VFD bench

Figure 2. (a) GoodDrag vs. FlowDrag (ours). GoodDrag fails to preserve object geometry, while FlowDrag retains structural integrity. (b)
Existing drag-editing systems focus only on moving user-defined handle points to target positions. (c) FlowDrag overview: from 3D
mesh creation to generating a 2D vector flow field. (d) Comparison of FlowDrag with other methods on DragBench. (e) Comparison of
FlowDrag with other methods on our VFD-Bench dataset.

diffusion model, utilizing gradient guidance governed by an
energy function to perform the drag-based editing.

However, existing drag editing methods often suffer from
a geometric inconsistency problem, leading to artifacts or
significant deviations from the original object’s structure.
These issues become evident in the first row of Fig.1(b)-
(c), where the existing model fails to preserve the statue’s
integrity, causing the arm and torch to become noticeably
altered and leading to visible artifacts. Similarly, in the
second row of Fig.1, we attempt to rotate a woman’s face
by placing a drag arrow on her nose. While her hat and the
hand resting on her face should naturally follow this rotation,
existing methods shift the nose but fail to preserve the hat
and hand, resulting in unnatural deformation. We identified
that these problems primarily stem from current methods’
exclusive focus on matching feature correspondence be-
tween user-defined handle and target points, neglecting the
broader geometric context of the image, as shown in Fig.
2(b). This issue is particularly prominent in edits that re-
quire preserving rigid parts of the object. Therefore, we
define any transformation that must maintain rigidity (such
as rotation, relocation, or pose changes) as a “Rigid Edit.”
In contrast, transformations that do not require strict rigidity,
such as rescaling (which alters proportions), are referred
to as “Non-rigid Edits.” In this paper, we focus on “Rigid
Edits” to ensure structural integrity during drag editing.

To overcome these limitations, we propose FlowDrag, a
novel method designed to ensure stable and accurate image
edits by preserving geometric information. Our approach

proceeds through several stages. First, we construct a 3D
mesh from the original image to represent the object’s ge-
ometry. Second, we employ a progressive SR-ARAP (Levi
& Gotsman, 2014) approach to deform the mesh from user-
defined handle points to target points, preserving the object’s
geometric integrity throughout the transformation, as illus-
trated in Fig. 2(c). Third, after the mesh deformation, we
compute the differential coordinates between the original
and modified mesh and project them onto a 2D vector field.
Finally, this vector field is integrated into the motion supervi-
sion phase of the UNet’s denoising process, which enhances
both spatial accuracy and edit stability. Unlike existing
methods restricted to user-defined drag editing points, Flow-
Drag leverages a continuous displacement field derived from
mesh deformations, preserving both spatial and geometric
coherence for more reliable results.

We also propose a new drag-editing benchmark called VFD-
Bench. Existing benchmarks, such as DragBench, do not
provide ground-truth edited images for each input, making
it difficult to accurately assess editing quality. The Image
Fidelity metric (1-LPIPS) measures similarity between the
original input and the edited result, often assigning lower
scores to successful geometry-preserving edits. For instance,
Fig.1(d) preserves geometry well but receives a relatively
low 1-LPIPS score of 0.72 compared to Fig.1(a), indicating
that this metric does not fully capture structural accuracy. To
address this, VFD-Bench provides video-derived datasets
where consecutive frames serve as paired input images and
ground-truth edits, enabling more precise evaluation. Our
FlowDrag achieves the highest MD metric on DragBench,

2

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

and as shown in Fig.2(d), also outperforms competing ap-
proaches on the new VFD-Bench, validating its effective-
ness in maintaining geometric consistency.

2. Related Work
2.1. Text-based Image Editing

Early GAN-based methods (Patashnik et al., 2021; Xia et al.,
2021) edited images by inverting them into StyleGAN latent
spaces conditioned on textual descriptions. However, these
methods had limited flexibility due to inherent trade-offs
between generalized editing capability and reconstruction
quality. Recently, diffusion-based methods (Kawar et al.,
2023; Couairon et al., 2022; Brooks et al., 2023) enabled
more precise and diverse edits by directly guiding the diffu-
sion process with text prompts. Prompt-to-Prompt (Hertz
et al., 2022) and Plug-and-Play (Tumanyan et al., 2023)
further improved editing precision through attention fea-
ture injection mechanisms. More recent work also explored
adjusting object poses and perspectives (Cao et al., 2023;
Koo et al., 2024a; Yoon et al., 2024a). With advances in
text-based editing techniques, various studies utilized these
methods for tasks such as improving editing efficiency (Koo
et al., 2024b; Deutch et al., 2024), human image animation
(Yoon et al., 2024c), and virtual try-on (Hong et al., 2025).
However, text-based methods often lack the precision re-
quired for fine-grained control, as minor textual variations
can result in unintended edits. This limitation has motivated
the emergence of drag-based editing methods, which offer
more direct and intuitive control.

2.2. Drag-based Image Editing

Drag-based image editing modifies images using user-drawn
drags, offering precise and interactive control for tasks such
as rotation, relocation, and rescaling. While early GAN-
based methods (Pan et al., 2023) suffered from limited edit
fidelity, diffusion models significantly improved both edit-
ing quality and diversity. Diffusion-based drag editing is
divided into two categories: motion-based and gradient-
guidance-based. Motion-based methods (Shi et al., 2024;
Ling et al., 2023; Liu et al., 2024; Zhang et al., 2024) rely
on motion supervision and point tracking to iteratively shift
handle points toward targets, preserving the original struc-
ture. Specifically, DragDiffusion optimizes the DDIM latent
at a specific timestep (t=35), while Drag Your Noise targets
bottleneck features in the U-Net across all timesteps. Good-
Drag further introduces the AlDD framework, alternating
drag operations and denoising across multiple timesteps to
reduce cumulative changes and enhance fidelity. In contrast,
gradient-guidance-based methods (e.g., DragonDiffusion
(Mou et al., 2023), DiffEditor (Mou et al., 2024)) use gra-
dient updates driven by an energy function derived from
score-based diffusion models (Song et al., 2020b; Dhari-

wal & Nichol, 2021), enabling more creative edits but often
causing artifacts or reduced fidelity. Although motion-based
approaches better preserve visual fidelity, they still struggle
with geometric integrity due to limited structural understand-
ing. To address this, we incorporate 3D mesh deformation
to add explicit geometric information in 2D.

3. Preliminary
3.1. DDIM Inversion

DDIM (Song et al., 2020a) eliminates the stochastic ele-
ments of DDPM (Ho et al., 2020), producing a deterministic,
non-Markovian process for precise control over diffusion
steps. A U-Net denoiser network, ϵθ, enables both sampling
(Eq. (1)) from noise to image and inversion (Eq. (2)) from
image to noise. Here, αt denotes the noise schedule at step
t, and zt is the latent representation at that step.

zt+1 =

√
αt+1

αt
zt +

(√
1− αt+1

αt
− 1

)
ϵθ(zt, t), (1)

z∗t =

√
αt

αt−1
z∗t−1 +

(√
1−αt

αt−1
− 1

)
ϵθ(z

∗
t−1, t− 1). (2)

In drag editing, DDIM Inversion is applied to obtain the
final DDIM latent zt by progressively adding noise from z0
to zt. As detailed in Section 3.2, this latent is optimized via
motion supervision to refine editing results.

3.2. Diffusion Latent Optimization in Drag Editing

Motion Supervision Motion-based drag editing typically
applies a motion supervision loss, Lms, to iteratively shift
n handle points {hk

i }ni=1 toward target points {ti}ni=1. For-
mally, the motion supervision loss is defined as:

Lms

(
zkt

)
=

n∑
i=1

∑
q∈P(hk

i ,R)

∥∥∥F q+δi

(
zkt

)
− sg

(
F q

(
zkt

))∥∥∥
1

+ λ
∥∥∥(zkt−1 − sg(z0t−1)

)
⊙

(
1−M

)∥∥∥
1
, (3)

where δi =
ti−hk

i

∥ ti−hk
i ∥2

is the normalized direction from

hk
i to ti, P(hk

i , R) is a patch of radius R around hk
i , F

denotes the U-Net feature map, k is denoising timestep
and sg(·) is the stop-gradient operator. The term λ weights
the regularization that keeps {zkt−1} close to the reference
{z0t−1} outside the masked region M . At each iteration, we
compute ∂Lms/∂z

k
t and update zkt via gradient descent:

zk+1
t = zkt − η

∂ Lms

(
zkt

)
∂ zkt

, (4)

where η is the learning rate. This process gradually moves
each handle point closer to its target in the latent space.

3

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Step 1. 3D Mesh Generation

2D Vector Flow Field

Image-to-3D
Diffusion Model

Depth-based Approach

Diffusion-based Approach

Depth MapInput Image

Input Image

Step 2. Progressive Mesh Deformation and 2D Vector Flow Generation

Input Image

Movable Vertices
Constraint Vertices

Handle Point
Target Point

Handle Vertex 𝒗𝒉
Target Vertex 𝒗𝒕
Intermediate Vertex 𝒗𝒉𝒌
Edit Mask

𝒗𝒉𝒗𝒕 𝒗𝒉𝒌

3D Mapping

Progressive SR-ARAP

•••

Top-view

Final Deformed MeshOriginal Mesh Difference

2D Projection

𝒌-th iteration

DepthMesh

DiffMesh

Figure 3. Overview of the FlowDrag pipeline. (a) Step 1: 3D mesh generation using depth-based and diffusion-based approaches. (b)
Step 2: Progressive mesh deformation via SR-ARAP, with differences projected as a 2D vector flow field.

Point Tracking Following motion supervision, point
tracking updates the handle points {hk

i } by searching for
the best matching features within a local patch. Specifically,

hk+1
i = argmin

q∈P(hk
i ,R2)

∥∥F q

(
z k+1
t

)
− Fh0

i

(
zt
)∥∥

1
, (5)

where P(hk
i , R2) is a square patch of radius R2 around hk

i .
This step aligns each handle point with the corresponding
features in the updated latent. Alternating motion supervi-
sion and point tracking guides handle points progressively
closer to their targets.

3.3. Geometric Mesh Deformation

In this section, we introduce widely utilized geometric mesh
deformation methods, the As-Rigid-As-Possible (ARAP)
(Sorkine & Alexa, 2007) approach and its enhanced vari-
ant, Smoothed Rotation As-Rigid-As-Possible (SR-ARAP)
(Levi & Gotsman, 2014). Let M = (V, F) represent the
source mesh, where V consists of vertices vi = (xi, yi, zi)
in R3×V , and F forms faces that are triangles formed by
these vertices. The deformed mesh is denoted as M̂ =
(V̂ , F), where V̂ consists of the deformed vertex positions
v̂i = (x̂i, ŷi, ẑi), maintaining the same connectivity.

ARAP. ARAP aims to preserve local rigidity while al-
lowing controlled deformations. Initially, users designate
certain vertices as constraints, including vertices explicitly
moved to desired positions (e.g., handle points moved to tar-
get points in drag editing) and vertices outside the editable
region that remain unchanged. The remaining vertices are
considered movable. Setting these constraint vertices trans-
forms the original mesh V to the new constraint positions
V̂ , from which optimization begins. The ARAP method
adjusts movable vertex positions by minimizing an energy

function, maintaining local rigidity under fixed constraints.
The energy function is defined as:

EARAP(M) =
∑
i∈V

∑
j∈N(i)

wij

∥∥si Ri

(
v̂i − v̂j

)
−

(
vi − vj

)∥∥2
,

(6)
where Ri and si are internally optimized rotation matrices
and local scale factors for each vertex i (with si set to 1,
preventing scale changes). The terms wij represent cotan-
gent weights, reflecting the stiffness or rigidity between
vertices. The notation N(i) denotes the set of neighbors for
vertex i, specifically those vertices directly connected by
an edge, and j denotes each neighboring vertex within this
set. Here, v̂i,v̂j represent vertex positions optimized during
deformation, whereas vi, vj refer to positions from the orig-
inal undeformed mesh. During the optimization process,
these positions v̂i,v̂j are iteratively updated to minimize the
energy function, with only movable vertices adjusted, while
constraints remain fixed as boundary conditions.

SR-ARAP. Smoothed Rotation ARAP extends the ARAP
formulation by adding a rotation-consistency term:

ESR-ARAP(M) = EARAP(M) + α
∑
i∈V

∑
j∈N(i)

∥Ri −Rj∥2, (7)

where Ri and Rj are the per-vertex rotation matrices, α is
a regularization parameter. This extra term penalizes sig-
nificant rotational discrepancies between adjacent vertices,
resulting in smoother deformations. Specifically, a larger
rotation difference ∥Ri−Rj∥2 increases the energy, prompt-
ing the optimization process to minimize these differences.
As a result, rotations among adjacent vertices remain as
consistent as possible, ensuring smoother and more natural
deformations. These formulations facilitate controlled mesh
deformation, beneficial for achieving smoother and locally
rigid structural modifications.

4

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Step 3. Vector Flow-based Drag Editing

Motion Supervision & Point Tracking

Invert

U-Net

xT

Result

Handle Vertex
Target Vertex
Edit Mask

Point Sampling

Input Image
Noisy Latent Map 𝒛𝒕

Handle points 𝒑𝒊
Target points 𝒕𝒊

𝒑𝒊
𝒕𝒊

𝒑𝒊
𝒕𝒊

2D Vector Flow Field

Optimized Latent Map 𝒛𝒕#

DDIM
Inversion

•••

User Edit

Mesh Deformation

Original
Mesh

Deformed
Mesh

Difference

DDIM
Inversion U-Net

xT

Layout Feature Injection2D Projection of the
 Deformed Mesh

Drag Editing

UNet Decoder’s Feature Map

Reconstruction

•••

Edit Branch

Guidance Branch

Figure 4. Step 3: Vector Flow-Based Drag Editing in FlowDrag. The 2D vector flow field is employed for motion supervision and
point tracking. Meanwhile, the 3D deformed mesh is projected onto a 2D plane and incorporated as a layout feature through the guidance
branch at an early denoising stage. Through these processes, geometric consistency is enhanced during drag editing.

4. Method
FlowDrag addresses the geometric inconsistency problem in
drag-based editing by incorporating 3D mesh deformation.
First, we generate a 3D mesh from the input image using
a depth-based or diffusion-based approach (Fig. 3-Step 1).
Next, we deform the mesh using progressive SR-ARAP
and derive a 2D vector flow from the deformed mesh (Fig.
3-Step 2). Finally, we integrate the 2D vector flow into the
motion-based drag-edit pipeline to achieve geometry-aware
movements, and utilize the 2D projection of the deformed
mesh as layout features to preserve structural consistency
and ensure accurate shape preservation (Fig. 4-Step 3). The
following sections describe each of these steps in detail.

4.1. 3D Mesh Generation: Depth-based and
Diffusion-based Approaches

We first generate a 3D mesh from the input image by ex-
tracting a depth map and using it as a foundation. For depth
extraction, we adopt the Marigold (Ke et al., 2024) model,
which reliably provides depth information from a single
image within a few seconds. The depth-based mesh con-
struction then proceeds in three stages. First, in the vertex
mapping step, each pixel’s depth value is converted into
a corresponding vertex coordinate in 3D space. Next, the
facet formation step connects adjacent vertices whose depth
values are sufficiently similar, forming smooth surfaces.
Finally, the artifact reduction step excludes connections
between vertices with large depth differences, minimizing
discontinuities and effectively separating the foreground
object from its background. Algorithm 1 in the appendix

summarizes this procedure in detail.

Although this depth-based approach is simple and fast, it
cannot account for unseen regions from a single viewpoint.
Therefore, we additionally employ image-to-3D diffusion
models (Xiang et al., 2024; Zhao et al., 2025), which infer
hidden structures to produce more complete meshes. We
refer to the mesh generated by our depth-based approach as
DepthMesh, and the one produced by the diffusion-based
approach as DiffMesh, as illustrated in Fig. 3-Step 1. We
employ both meshes in our experiment to explore different
levels of geometry detail and completeness.

4.2. Progressive Mesh Deformation and 2D Vector Flow
Generation

We begin by mapping the user-defined handle point, target
point, and mask from the 2D drag-editing setting onto our
3D mesh M = (V, F). In this mapping, a handle vertex
vh ∈ V corresponds to the handle point, and its target
vertex vt ∈ V corresponds to the target point. The masked
region indicates which vertices are movable, while all other
vertices become constraints (see Fig. 3-Step2). Following
the ARAP principle, each movable vertex adjusts its position
by minimizing the ARAP energy, preserving local rigidity.
In contrast, the constrained vertices remain fixed at their
designated positions.

Progressive Deformation with SR-ARAP. In ARAP-
based methods, the handle vertex vh is typically moved
directly to its target position vt, followed by mesh deforma-
tion through ARAP energy minimization. However, when

5

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

the distance between vh and vt is large, directly moving
vh can cause abrupt local distortions and unnatural defor-
mation (Sorkine & Alexa, 2007; Chen et al., 2017). Such
distortions arise because large vertex displacements signif-
icantly stretch local edges, increasing ARAP energy and
potentially causing convergence to suboptimal local minima.
To mitigate these issues, we propose a progressive deforma-
tion strategy with two components. First, we incrementally
move the handle vertex toward its target over K iterations:

v
(k+1)
h = v

(k)
h + λ

(
vt − v

(k)
h

)
, 0 < λ ≤ 1, (8)

where v
(0)
h is the initial handle position, v(K)

h = vt, and
0 ≤ k < K. The parameter λ controls the fraction of re-
maining distance covered at each step, smoothly distributing
large displacements. Second, we introduce an Inter-Step
Smoothness term to the SR-ARAP energy (Eq. 9), penaliz-
ing large vertex displacements between iterations to ensure
gradual and stable deformation:

ESR-ARAP+InterStep

(
M̂ (k+1)

)
= ESR-ARAP

(
M̂ (k+1)

)
+ β

∑
i∈V

∥∥v̂(k+1)
i − v̂

(k)
i

∥∥2, (9)

where v̂
(k)
i and v̂

(k+1)
i are the positions of the movable

vertices at iterations k and k+1. The parameter β adjusts the
strength of this regularization, with higher values promoting
smoother transitions and smaller vertex movements, while
lower values allow larger displacements.

2D Vector Flow Generation. After K iterations, the orig-
inal mesh M converges to a final deformed mesh M̂ . We
then project both meshes onto the 2D image plane, denoted
by π(M) and π(M̂), respectively. The 2D vector flow Φ is
defined based per-vertex displacements:

Φ =
{(

∆xi, ∆yi
)
| ∆xi = x′

i − xi, ∆yi = y′i − yi
}
,

(10)
where (xi, yi) and (x′

i, y
′
i) are the 2D coordinates of vertex

i in π(M) and π(M̂). Thus, by capturing how each ver-
tex moves from M to M̂ , the vector flow Φ encodes the
geometric changes induced by our progressive SR-ARAP
approach. In the next section, we show how both Φ and
π(M̂) integrate into the motion-based drag-edit pipeline,
providing geometry-aware guidance for image editing.

4.3. Vector Flow-based Drag Editing

Vector Flow Sampling We focus on selecting an optimal
set of vectors from the 2D flow field Φ for motion supervi-
sion (Eq.3) and point tracking (Eq. 5). First, we uniformly
sample an N ×N grid of candidate vectors within the edit
mask, taking N positions along each axis. To refine this
set, we explore two approaches: (1) Magnitude-based sam-
pling, which sorts all candidates by displacement magnitude

Input Image GT Image Input Image GT Image Input Image GT Image

Figure 5. Example images from VFD-Bench. We constructed
this drag-based image editing dataset by selecting closely spaced
frames from DAVIS, LOVEU-TGVE, and copyright-free Pexels
videos, focusing on noticeable changes in pose or structure.

and keeps only the top few, and (2) Uniform sub-sampling,
which retains vectors at regular intervals to ensure broad
coverage. Either method yields a final subset Φ̂, typically
containing 5–30 vectors that capture the most significant or
representative displacements. We then restrict the summa-
tion in Eq.3 to q ∈ Φ̂, focusing the motion supervision on
these carefully selected flow vectors.

Layout Feature Injection In addition to leveraging our
vector flow for latent optimization, we introduce a guid-
ance branch utilizing the 2D projection of the deformed
mesh, π(M̂), to provide complementary geometric context.
Specifically, as illustrated in Fig. 4, we first invert π(M̂)
via DDIM Inversion to obtain a latent noise representation.
During the denoising process, we inject selected attention
features from this representation into the primary drag-edit
branch. Previous diffusion studies (Wu et al., 2023b; Yoon
et al., 2024b) have shown that earlier timesteps establish
broad structural outlines, while later timesteps refine finer
details. Following this insight, we inject attention features
only from earlier or intermediate timesteps, embedding ap-
proximate layout information derived from the deformed
mesh. This ensures broader geometric context is transferred
without imposing overly specific or potentially conflicting
details, as the deformed mesh may not perfectly align with
the user’s final desired details. Thus, this layout feature
injection complements vector-flow-based optimization by
explicitly providing structural context, guiding the main edit
branch toward a more geometrically consistent edited result.

5. VFD-Bench Dataset
Existing drag-based editing benchmarks, such as Drag-
Bench, provide input images along with user-defined han-
dle/target points and masks, but do not include ground-truth
(GT) edited images. As a result, commonly used metrics
like Image Fidelity (IF) and Mean Distance (MD) are com-
puted between the input and the edited output. Specifically,
IF (measured as 1-LPIPS) assesses how closely the edited

6

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

image resembles the original, while MD uses DIFT features
to measure how effectively the handle points have moved
to their targets. However, in cases where rotation or pose
changes are successfully introduced, IF often yields low
scores simply because the edited object differs from the
original layout, even though the edit is successful.

To address these limitations, we propose VFD-Bench, a
new dataset that provides an explicit GT image for each
input. As illustrated in Fig. 5, VFD-Bench is constructed
by selecting pairs of video frames (from sources such as
DAVIS (Pont-Tuset et al., 2017), LOVEU-TGVE (Wu et al.,
2023a), TVR (Lei et al., 2020) and copyright-free clips on
Pexels1) where an object undergoes a clear change in pose or
structure. In total, we construct 250 input-GT pairs suitable
for drag-based editing. For each pair, the handle points and
target points are defined based on the differences between
the input and ground-truth (GT) images, with 1–5 drags
assigned per sample. Further details regarding the dataset
annotation process and the number of images per category
are provided in Appendix C.

5.1. Evaluation Metrics

Unlike previous benchmarks, VFD-Bench enables direct
comparison of edited images to actual GT results. We mea-
sure Image Fidelity using both PSNR (at the RGB level)
and LPIPS (at the feature level). For assessing how well
handle points align with target points, we retain the Mean
Distance (MD) metric. Since video frames can contain
changing backgrounds unrelated to the target object, we
compute all metrics within the user mask to focus on the
edited region. This approach allows for a more reliable and
detailed evaluation of drag-based editing methods.

6. Experiments
6.1. Implementation Details

We validate FlowDrag using the pre-trained Stable Diffu-
sion 1.5 model (Rombach et al., 2022), processing images
at a resolution of 512×512. For image encoding and decod-
ing, we use VQ-VAE (Razavi et al., 2019). Following prior
motion-based approaches (Ling et al., 2023; Zhang et al.,
2024; Liu et al., 2024), we fine-tune the input image with
LoRA (Hu et al., 2021) (rank = 16) for 200 steps. DDIM
Inversion is applied up to step 38 (75% of the total 50 de-
noising steps), as in (Zhang et al., 2024), with layout feature
injection at timestep t′ = 30. For 3D mesh generation,
we primarily utilize DiffMesh. However, when DiffMesh
exhibits significant artifacts or deviates substantially from
the original image, we employ DepthMesh instead. In Pro-
gressive SR-ARAP mesh deformation, we compute wij in

1Pexels: copyright-free videos at (https://www.pexels.com/)

Table 1. Performance of recent drag-based editing methods on the
DragBench dataset.

Method 1−LPIPS↑ MD↓
DragBench

DiffEditor (Mou et al., 2024) 0.89 28.46
DragDiffusion (Shi et al., 2024) 0.89 33.70
DragNoise (Liu et al., 2024) 0.63 33.41
FreeDrag (Ling et al., 2023) 0.70 35.00
GoodDrag (Zhang et al., 2024) 0.86 22.96
FlowDrag (ours) 0.82 22.88

Table 2. Performance of recent drag-based editing methods on the
VFD-Bench dataset.

Method PSNR↑ 1−LPIPS↑ MD↓

VFD-Bench

DiffEditor (Mou et al., 2024) 21.6 0.72 24.88
DragDiffusion (Shi et al., 2024) 24.5 0.78 36.52
DragNoise (Liu et al., 2024) 22.3 0.68 36.21
FreeDrag (Ling et al., 2023) 22.0 0.74 38.32
GoodDrag (Zhang et al., 2024) 25.2 0.82 25.65
FlowDrag (Ours) 26.3 0.85 24.51

Eq. 6 using Open3D library, and set α between 0.2 and 0.4.
Additionally, we conduct an ablation study on the Inter-Step
Smoothness term (Section 6.4), exploring β ∈ [0, 1] in Eq.
9. To integrate vector flow into drag editing, we uniformly
sample points from a 20× 20 grid (N = 20) within the 2D
flow field over the edit mask, selecting between 5 and 30
points for optimization. This setup balances computational
efficiency with adequate coverage of the flow field.

6.2. Datasets and Evaluation Metrics

Datasets We evaluate FlowDrag on the DragBench (Shi
et al., 2024) and our proposed VFD-Bench. DragBench
contains 205 images of diverse content, along with 349
pairs of handle and target points. Each image has one or
more dragging instructions (i.e., handle–target point pairs)
and a mask that specifies the editable region. VFD-Bench,
introduced in Section 5, includes 250 images selected from
video sources (DAVIS, TGVE, TVR, and Pexels), each
paired with a ground-truth (GT) edit.

Metrics We evaluate both fidelity and precision for each
edited image. On DragBench, where no ground truth (GT)
is provided, we measure Image Fidelity (IF) as 1-LPIPS
and compute the Mean Distance (MD) using DIFT (Tang
et al., 2023) to track how well handle points move to their
targets. In VFD-Bench, which provides GT images, we
quantify fidelity with both PSNR (RGB-level) and LPIPS
(feature-level) while retaining MD for point alignment, as
described in Section 5. Since VFD-Bench frames can in-
volve irrelevant background changes, we compute metrics
within the user-defined mask to focus on the edited region.

7

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

GoodDrag FlowDrag (ours)DiffEditorUser Edit FreeDrag

Figure 6. Qualitative results with recent drag-based image edit-
ing systems. Our FlowDrag produces outputs that maintain geo-
metric consistency more effectively than other methods.

6.3. Experimental Results

Qualitative Comparisons. We compare FlowDrag with
current drag-based editing methods in Fig. 6. Although
motion-based approaches generally outperform the gradient-
guided DiffEditor, FreeDrag and GoodDrag often neglect
the object’s broader spatial structure by relying solely on
user drag points. In contrast, FlowDrag leverages a vector
flow field from mesh deformation, enabling more cohesive
transformations. For example, in the first row of Fig. 6,
only one drag point is provided. DiffEditor fails to move
the face, FreeDrag relocates the face but leaves the hat
unchanged, and GoodDrag removes the brim. However,
FlowDrag adjusts both the face and the hat, illustrating
how spatially informed vectors yield more natural edits
with fewer artifacts. Additional qualitative comparisons on
DragBench and VFD-Bench are provided in Appendix F.

Quantitative Results. On DragBench, FlowDrag
achieves the best Mean Distance (MD), indicating effective
dragging, as shown in Table 1. However, DiffEditor scores
highest on the 1-LPIPS fidelity metric because it induces
minimal edits. In VFD-Bench, which includes actual
ground-truth images from real video frames, FlowDrag
outperforms all methods in PSNR, 1-LPIPS, and MD,
demonstrating its effectiveness in preserving geometric
consistency while delivering accurate edits.

Figure 7. User study on drag accuracy and image quality.

(a) PSNR value over the number of vectors (b) 1-LPIPS value over the number of vectors

Figure 8. Impact of vector count on (a) PSNR and (b) 1-LPIPS.
When 10 vectors are sampled, both metrics achieve their highest
values, indicating the importance of optimal vector selection.

User Study. We conducted a user study on 50 images
from DragBench and VFD-Bench, comparing FlowDrag
with DiffEditor, FreeDrag, and GoodDrag. We recruited 25
volunteers to rank each method’s edited results (4 = best, 1 =
worst) based on drag accuracy and image quality. As shown
in Fig. 7, FlowDrag consistently received higher scores than
the other methods in both aspects.

6.4. Ablation Study

We conducted an ablation study in FlowDrag on VFD-Bench
by evaluating the following three aspects: (1) influence of
the regularization parameter β in progressive SR-ARAP
deformation, (2) effect of selected vector count on perfor-
mance, (3) magnitude-based vs. uniform sub-sampling in
2D vector flow field sampling.

Influence of β in Progressive SR-ARAP We investi-
gate the effect of varying the parameter β of the Inter-Step
Smoothness term in Eq.9 on local rigidity preservation dur-
ing mesh deformation. To quantify this, we introduce a rigid-
ity measure (see Appendix A.1) based on mean edge length
ratios (MELR) and the Mean ARAP Error (mARAPError)
between the original mesh M and its deformed counterpart
M̂ . The results for β ∈ {0.2, 0.4, 0.6, 0.8, 1.0} are pre-
sented in Table 4. Higher β values penalize large vertex
displacements between iterations, resulting in smoother de-
formations but potentially restricting flexibility. Notably,
β = 0.8 yields the best results, achieving maximal mean
edge length ratio and mean ARAP error, indicating effective
shape preservation with stable and smooth vertex transitions.

8

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Mesh
Deformation

ResultsDiffMeshUser Edit
Editing

Constraints

Handle Vertex
Target Vertex

Handle Points
Target Points

Movable Vertices

Constraint Vertices
Deformation Vector

2D vector flow

Figure 9. Visualization of the mesh-guided editing process using DiffMesh. Our FlowDrag process begins with user-defined edits
specifying handle and target points. DiffMesh reconstructs a structured 3D mesh, from which editing constraints (movable and constraint
vertices) are defined. Guided by these constraints, the mesh undergoes deformation, yielding clear deformation vectors. These deformation
vectors are projected onto a 2D vector flow field, where representative vectors are sampled. These sampled vectors provide accurate
geometric guidance, resulting in stable and precise image editing outcomes.

Table 3. Comparison of sampling strategies using MD and 1-LPIPS
metrics on VFD-Bench.

Sampling Strategy MD ↓ 1-LPIPS ↑

Uniform Sub-sampling 24.75 0.83
Magnitude-based Sampling 24.51 0.85

Effect of Selected Vector Count on Performance We
analyzed the impact of the number of selected vectors in Φ̂
on the PSNR metric. Fig. 8 shows the results, indicating the
best performance at 10 vectors. These results emphasize the
importance of selecting an optimal vector count for effective
editing performance.

Magnitude-based vs. Uniform Sub-sampling in 2D Vec-
tor Flow Field Sampling We compare magnitude-based
sampling and uniform sub-sampling using Mean Distance
(MD) and Image Fidelity (1-LPIPS). As shown in Table 3,
magnitude-based sampling consistently achieves lower MD
and higher 1-LPIPS scores, indicating more effective vector
selection. This highlights the benefit of prioritizing vectors
with larger magnitudes in the flow field.

More Visualization Results Detailed visualizations of
FlowDrag’s mesh-guided editing process are shown in Fig.9
and Fig.16. Additional sensitivity analysis on how varia-
tions in mesh deformation influence editing outcomes can
be found in Appendix D, and further analysis of mesh de-
formation efficiency is provided in Appendix E.

7. Limitation and Future Work
FlowDrag effectively addresses geometric inconsistencies
prevalent in current drag-based editing methods, but sev-
eral limitations remain. First, our method relies on stable
mesh deformation, inherently limiting feasible dragging dis-
tances. Thus, our method is optimal for moderate dragging
operations that preserve structural coherence. Additionally,
FlowDrag primarily supports rigid edits, but struggles with
significant content creation or removal tasks requiring ma-
jor structural changes. Lastly, FlowDrag projects 3D mesh
deformation onto a 2D plane, inherently losing detailed
3D structural information. This issue is compounded by
FlowDrag’s reliance on Stable Diffusion, which lacks 3D
understanding. While our approach enhances geometric
coherence, it cannot fully preserve the original 3D geometry.
We believe future work could benefit from exploring inher-
ently 3D-aware or motion-aware diffusion models, such as
video diffusion, to better capture object dynamics and 3D
structures, enhancing 3D understanding in image editing.

8. Conclusion
In this paper, we propose FlowDrag, a framework designed
to address geometric inconsistencies in drag-based image
editing via 3D mesh deformation. Additionally, we intro-
duce VFD-Bench, a benchmark providing explicit ground-
truth edits. Our experiments demonstrate FlowDrag’s supe-
rior editing quality and geometric coherence on both Drag-
Bench and VFD-Bench.

9

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Impact Statement
Drag-based image editing offers an intuitive and precise way
to alter images, greatly enriching creative workflows. How-
ever, this technology also raises concerns about authenticity
and potential misuse in generating deceptive or manipulated
media. Ensuring transparency through watermarking and
responsible deployment is crucial to mitigate risks while
harnessing its full creative potential.

Acknowledgements
This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-
2021-II211381, Development of Causal AI through Video
Understanding and Reinforcement Learning, and Its Ap-
plications to Real Environments) and partly supported by
Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.RS-2022-II220184, Development
and Study of AI Technologies to Inexpensively Conform to
Evolving Policy on Ethics).

References
Brooks, T., Holynski, A., and Efros, A. A. Instructpix2pix:

Learning to follow image editing instructions. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18392–18402, 2023.

Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., and Zheng, Y.
Masactrl: Tuning-free mutual self-attention control for
consistent image synthesis and editing. arXiv preprint
arXiv:2304.08465, 2023.

Chen, S.-Y., Gao, L., Lai, Y.-K., and Xia, S. Rigidity control-
lable as-rigid-as-possible shape deformation. Graphical
Models, 91:13–21, 2017.

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M.
Diffedit: Diffusion-based semantic image editing with
mask guidance. arXiv preprint arXiv:2210.11427, 2022.

Deutch, G., Gal, R., Garibi, D., Patashnik, O., and Cohen-Or,
D. Turboedit: Text-based image editing using few-step
diffusion models. In SIGGRAPH Asia 2024 Conference
Papers, pp. 1–12, 2024.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K.,
Pritch, Y., and Cohen-Or, D. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hong, J. W., Ton, T., Pham, T. X., Koo, G., Yoon, S., and
Yoo, C. D. Ita-mdt: Image-timestep-adaptive masked
diffusion transformer framework for image-based virtual
try-on. arXiv preprint arXiv:2503.20418, 2025.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel,
T., Mosseri, I., and Irani, M. Imagic: Text-based real
image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6007–6017, 2023.

Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R. C.,
and Schindler, K. Repurposing diffusion-based image
generators for monocular depth estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9492–9502, 2024.

Koo, G., Yoon, S., Hong, J. W., and Yoo, C. D. Flexiedit:
Frequency-aware latent refinement for enhanced non-
rigid editing. arXiv preprint arXiv:2407.17850, 2024a.

Koo, G., Yoon, S., and Yoo, C. D. Wavelet-guided acceler-
ation of text inversion in diffusion-based image editing.
In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
4380–4384. IEEE, 2024b.

Lei, J., Yu, L., Berg, T. L., and Bansal, M. Tvr: A large-scale
dataset for video-subtitle moment retrieval. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXI 16, pp.
447–463. Springer, 2020.

Levi, Z. and Gotsman, C. Smooth rotation enhanced as-
rigid-as-possible mesh animation. IEEE transactions
on visualization and computer graphics, 21(2):264–277,
2014.

Li, S., van de Weijer, J., Hu, T., Khan, F. S., Hou,
Q., Wang, Y., and Yang, J. Stylediffusion: Prompt-
embedding inversion for text-based editing. arXiv
preprint arXiv:2303.15649, 2023.

Ling, P., Chen, L., Zhang, P., Chen, H., and Jin, Y. Freedrag:
Point tracking is not you need for interactive point-based
image editing. arXiv preprint arXiv:2307.04684, 2023.

Liu, H., Xu, C., Yang, Y., Zeng, L., and He, S. Drag
your noise: Interactive point-based editing via diffusion

10

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

semantic propagation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 6743–6752, 2024.

Mou, C., Wang, X., Song, J., Shan, Y., and Zhang, J. Dragon-
diffusion: Enabling drag-style manipulation on diffusion
models. arXiv preprint arXiv:2307.02421, 2023.

Mou, C., Wang, X., Song, J., Shan, Y., and Zhang, J. Diffed-
itor: Boosting accuracy and flexibility on diffusion-based
image editing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
8488–8497, 2024.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Pan, X., Tewari, A., Leimkühler, T., Liu, L., Meka, A., and
Theobalt, C. Drag your gan: Interactive point-based ma-
nipulation on the generative image manifold. In ACM SIG-
GRAPH 2023 Conference Proceedings, pp. 1–11, 2023.

Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., and
Lischinski, D. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 2085–2094,
2021.

Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-
Hornung, A., and Van Gool, L. The 2017 davis chal-
lenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. Advances in
neural information processing systems, 32, 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. Photorealistic text-to-image diffusion
models with deep language understanding, 2022.

Shi, Y., Xue, C., Liew, J. H., Pan, J., Yan, H., Zhang, W.,
Tan, V. Y., and Bai, S. Dragdiffusion: Harnessing diffu-
sion models for interactive point-based image editing. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8839–8849, 2024.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Sorkine, O. and Alexa, M. As-rigid-as-possible surface mod-
eling. In Symposium on Geometry processing, volume 4,
pp. 109–116. Citeseer, 2007.

Tang, L., Jia, M., Wang, Q., Phoo, C. P., and Hariharan,
B. Emergent correspondence from image diffusion. Ad-
vances in Neural Information Processing Systems, 36:
1363–1389, 2023.

Tumanyan, N., Geyer, M., Bagon, S., and Dekel, T. Plug-
and-play diffusion features for text-driven image-to-
image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
1921–1930, 2023.

Wu, J. Z., Li, X., Gao, D., Dong, Z., Bai, J., Singh, A.,
Xiang, X., Li, Y., Huang, Z., Sun, Y., et al. Cvpr 2023
text guided video editing competition. arXiv preprint
arXiv:2310.16003, 2023a.

Wu, T., Si, C., Jiang, Y., Huang, Z., and Liu, Z. Freeinit:
Bridging initialization gap in video diffusion models.
arXiv preprint arXiv:2312.07537, 2023b.

Xia, W., Yang, Y., Xue, J.-H., and Wu, B. Tedigan: Text-
guided diverse face image generation and manipulation.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2256–2265, 2021.

Xiang, J., Lv, Z., Xu, S., Deng, Y., Wang, R., Zhang, B.,
Chen, D., Tong, X., and Yang, J. Structured 3d latents
for scalable and versatile 3d generation. arXiv preprint
arXiv:2412.01506, 2024.

Yoon, S., Koo, G., Hong, J. W., and Yoo, C. D. Dni: Dilu-
tional noise initialization for diffusion video editing. In
European Conference on Computer Vision, pp. 180–195.
Springer, 2024a.

Yoon, S., Koo, G., Kim, G., and Yoo, C. D. Frag: Frequency
adapting group for diffusion video editing. arXiv preprint
arXiv:2406.06044, 2024b.

11

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Yoon, S., Koo, G., Lee, Y., and Yoo, C. Tpc: Test-time
procrustes calibration for diffusion-based human image
animation. Advances in Neural Information Processing
Systems, 37:118654–118677, 2024c.

Zhang, Z., Liu, H., Chen, J., and Xu, X. Gooddrag: Towards
good practices for drag editing with diffusion models.
arXiv preprint arXiv:2404.07206, 2024.

Zhao, Z., Lai, Z., Lin, Q., Zhao, Y., Liu, H., Yang, S., Feng,
Y., Yang, M., Zhang, S., Yang, X., et al. Hunyuan3d
2.0: Scaling diffusion models for high resolution textured
3d assets generation. arXiv preprint arXiv:2501.12202,
2025.

12

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

A. A comparison of progressive SR-ARAP
performance in mesh deformation

By varying the parameter β of the Inter-Step Smoothness
term in our progressive SR-ARAP formulation (Eq.9), we
evaluate how effectively the deformation preserves original
geometry. To quantitatively assess these characteristics, we
define two rigidity metrics: the Mean Edge Length Ratio
(MELR) and the Mean ARAP Error (mARAPError) (see
SectionA.1 for detailed definitions). The MELR measures
the average ratio of edge lengths in the deformed mesh
relative to their original lengths, indicating how well the
deformation preserves the original geometry. The ARAP
Error measures a simplified residual per triangle, reflect-
ing how closely local rotations match between the original
and deformed meshes. We measure these metrics for β
values ranging from 0.2 to 1.0 to observe their effects on
deformation quality. As shown in Table 4, β = 0.8 effec-
tively balances smooth transitions and rigidity preservation,
yielding stable deformations with minimal distortions.

A.1. Rigidity Metrics

To quantify how closely a deformed mesh M̂ = (V̂ , F)
preserves the original geometry M = (V, F), we compute
two metrics specifically for the vertices optimized through
the energy function (i.e., movable vertices), as constraint
vertices remain fixed during deformation.

Mean Edge Length Ratio (MELR). Let {(i, j)} be the
set of unique edges connecting movable vertices derived
from the triangular faces in M . For each such edge (i, j),
we measure the ratio of its length in the deformed mesh to
its length in the original mesh, as defined in Eq. 11.

Ratioij =

∥∥v̂j − v̂i
∥∥∥∥vj − vi
∥∥ ,

where vi, vj ∈ Vmovable, v̂i, v̂j ∈ V̂movable,

(11)

We then compute the mean edge length ratio (MELR),
across all movable edges, as shown in Eq. 12. A MELR
value closer to 1.0 indicates minimal distortion of edge
lengths.

MELR =
1

|Emovable|
∑

(i,j)∈Emovable

Ratioij , (12)

ARAP Error. To measure local distortion between orig-
inal and deformed meshes, we compute a best-fit rotation
matrix R for each face△ = (i0, i1, i2) ∈ F . Let the vertex
coordinates of the original and deformed face be pk and p̂k,

Table 4. Ablation study on the regularization parameter β in Pro-
gressive SR-ARAP. A higher MELR and lower mARAPError

indicate better preservation of mesh rigidity.

β MELR(↑) mARAPError(↓)
0.2 0.87 17.24
0.4 0.88 14.91
0.6 0.92 12.56
0.8 0.94 10.12
1.0 0.93 11.60

respectively, for k ∈ {0, 1, 2} (Eq. 13). We first compute
their centroids, c and ĉ, as follows:

pk, p̂k for k ∈ {0, 1, 2}, (13)

c =
p0 + p1 + p2

3
, ĉ =

p̂0 + p̂1 + p̂2
3

, (14)

Then, we form local point sets centered by these centroids:

P =

p0 − c
p1 − c
p2 − c

 , P̂ =

p̂0 − ĉ
p̂1 − ĉ
p̂2 − ĉ

 , (15)

Next, the optimal rotation R aligning P to P̂ is obtained
via the SVD-based Kabsch algorithm. Using this rotation,
the ARAP residual for each face△ is calculated as:

Err△ =

2∑
k=0

∥R(pk − c)− (p̂k − ĉ)∥2 . (16)

We then compute the overall ARAP Error by summing resid-
uals across all faces and normalize it by the total number of
faces |F | to obtain the Mean ARAP Error:

mARAPError =
1

|F |
∑
△∈F

Err△. (17)

A lower mARAPError indicates better preservation of lo-
cal rigidity in the deformation, enabling fair comparisons
regardless of mesh size or face count.

B. 3D Mesh Generation Based on Depth
Approach

The depth-map-based 3D mesh generation discussed in Sec-
tion 4.1 is formalized as the algorithm shown in Algorithm 1.
We set the depth threshold (τd) to 0.1 and defined the back-
ground threshold (τb) as the mean depth value plus 0.3. This
approach effectively removes background noise.

13

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Algorithm 1 Depth Map and Mesh Generation
input D: Depth map (normalized to [0, 1]), τd: Depth

threshold, τb: Background threshold
output M = (V,F),M: Generated 3D mesh, V: Set of

vertex, F : Set of facets
Step 1: Depth Map Extraction
D ← Marigold(I): Extract depth map using Marigold

Step 2: Vertex Mapping
For each pixel (x, y) ∈ D do
z ← D(x, y): Map depth value to z-coordinate
Add vertex V (x, y, z) toM

Step 3: Facet Formation
For each vertex V (x, y, z) ∈M do

if |D(x, y)−D(adjacent)| < τd
Connect V to adjacent vertices, add facet to F

Step 4: Artifact Reduction
For each facet (vi, vj , vk) ∈ F do

if |D(vi)−D(vj)| ≥ τd or D(vi) < τb
Remove (vi, vj , vk) ∈M

Return: M = (V,F): Return the final 3D mesh

C. VFD Dataset
C.1. Dataset Categories

We constructed the VFD Dataset by selecting pairs of video
frames from various sources, including DAVIS (Pont-Tuset
et al., 2017), LOVEU-TGVE (Wu et al., 2023a), TVR (Lei
et al., 2020), and copyright-free clips available on Pexels.
Each pair captures significant structural or pose changes
suitable for drag-based editing. The dataset comprises a
total of 250 image pairs categorized as follows:

Animal (140 images). Captures diverse animal move-
ments and expressions, including general motion changes,
head movements, and mouth opening or closing.

Human (65 images). Includes human-related changes cat-
egorized into facial expressions, head rotations, and overall
pose adjustments involving face, hand, and arm movements.

Object (45 images). Consists of various object move-
ments, including household items (e.g., coffee cups, kettles),
food-related actions (e.g., pizza movement, tomato slicing),
and miscellaneous objects (e.g., trains, clocks).

C.2. Labeling Procedure

To accurately define user arrows between input and ground-
truth (GT) images extracted from videos, we first blend the
two images and then draw user-defined arrows indicating
the desired handle and target points (Fig. 10). Using this la-
beling method, we produce precise annotations, facilitating
reliable evaluation of drag-based editing performance.

User ArrowGT ImageInput Image Blended Image

Figure 10. Visualization of the labeling procedure in the VFD
Dataset. We first blend the input and ground-truth (GT) images
to identify structural differences. Then, user-defined arrows are
drawn, indicating precise handle points (arrow tails) and corre-
sponding target points (arrowheads).

D. Sensitivity Analysis
We perform sensitivity analysis to evaluate the robustness of
mesh deformation and its subsequent effects on drag-based
editing results. Specifically, we examine how variations in
mesh construction parameters influence the editing quality
for both DepthMesh and DiffMesh methods (Fig. 15).
First, we analyze DepthMesh by varying its reduction ratio,
which determines the density of facet connections during
mesh construction (Supplementary Algorithm 1, Step 3). A
reduction ratio of 1 corresponds to a fully detailed mesh,
while lower values progressively simplify geometry. As
illustrated in Fig.15(a), we quantify the editing robustness
using the PSNR ratio and 1–LPIPS ratio, comparing results
to the baseline (reduction ratio = 1). Our results show that
the editing performance remains robust and stable within
the reduction ratio range from 1 down to 0.001, indicating
that our method effectively preserves essential geometric in-
formation even under significant mesh simplification. Qual-
itative results (Fig.15(b)) visually confirm that drag-based
editing remains accurate and stable across these reduction
ratios, while excessively simplified meshes (reduction ratio
= 0.0001) yield distorted and unsatisfactory results due to
insufficient geometric information.
Next, we examine DiffMesh sensitivity by adjusting the
sampling steps in the image-to-3D diffusion process (Hun-

14

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

User Edit

(a) 3D mesh with background

Handle Point
Target Point

Edit Mask

Depth Map

(b) 3D mesh without background

3D Mesh
Generation

(1) Before deformation (2) After deformation (3) Visualize Vector Flow

(1) Before deformation (2) After deformation (3) Visualize Vector Flow

Figure 11. DepthMesh deformation results when generating
the mesh from the depth map with and without background
consideration. (a) Result with background. (b) Result without
background.

yuan3D 2.0 (Zhao et al., 2025)). As demonstrated in
Fig.15(c), editing quality is robust across sampling steps
ranging from 10 to 40, ensuring consistent geometric guid-
ance. Qualitative evaluation (Fig.15(d)) further verifies that
our method maintains stable and accurate editing perfor-
mance for sampling steps of 10 or higher. However, fewer
sampling steps (e.g., step = 5) degrade the mesh geometry,
resulting in noticeable quality deterioration in drag editing
outcomes.

These analyses collectively confirm that our method demon-
strates robustness and stability in drag-based editing across
a wide range of mesh deformation parameters.

E. Analysis of Mesh Deformation Efficiency
E.1. 1. Impact of Background Separation on Mesh

Deformation Quality

Unlike DiffMesh, which inherently isolates foreground ob-
jects due to the diffusion generation process, the quality
of DepthMesh deformation can significantly vary depend-
ing on whether the background is included. To analyze
this effect, we performed mesh deformation experiments
both with and without background separation. The results
are presented in Fig. 11. As shown in Fig. 11(a), when
the background is included in the mesh, the deformation
appears constrained and unnatural due to the influence of
the background. In contrast, Fig. 11(b) shows that when
the background is removed, the mesh deforms much more
freely and naturally. Based on these observations, we de-
cided to focus on foreground meshes only, excluding the
background, when generating the mesh for deformation.

Vertices 262,144

Faces 522,242

16,607 4,445

7,68730,752

Deformation
Time

5.27s 2.21s 0.63s

Results

Figure 12. Deformation time and results based on the number
of vertices and faces in the 3D Mesh. As vertices and faces
decrease, deformation time also decreases, but the ability to capture
detailed mesh changes is reduced.

E.2. 2. Deformation Time Relative to Face Count

Mesh deformation is a critical step in FlowDrag, as it gener-
ates the 2D vector flow field required for input. To assess
the time required for mesh deformation, we measured the
deformation time while adjusting the number of faces in the
mesh. In Fig. 12, the sample on the far left represents a mesh
generated directly from the depth map of the image, with a
deformation time of 5.27 seconds. As we move to the right,
the number of faces in the mesh decreases, and we observe
a corresponding reduction in deformation time. However,
reducing the number of faces also diminishes the mesh’s
ability to capture fine deformations accurately. Therefore,
to better preserve the fidelity of the mesh transformations,
we opted not to reduce the face count during deformation.
On average, this approach resulted in a processing time of 5
seconds per sample.

F. Additional Qualitative Comparisons
Additional qualitative results on DragBench and VFD-
Bench are presented in Fig.13 and Fig.14, respectively.
FlowDrag consistently preserves spatial coherence and pro-
duces more stable editing outcomes compared to existing
drag-based methods, demonstrating the benefits of leverag-
ing structured 3D spatial context.

15

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

GoodDrag FlowDrag (ours)DiffEditorUser Edit FreeDrag

Figure 13. Additional Qualitative Comparisons on DragBench.

16

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

GoodDrag FlowDrag (ours)FreeDragUser Edit GT

Figure 14. Additional Qualitative Comparisons on VFD-Bench.

17

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Mesh
Deformation

Depth Map

Input Image

DepthMesh

Vertices

Faces

3D Mesh
Generation

2D Vector
Flow

Results

Reduction
Ratio

Handle Point Target Point

1 0.01 0.001 0.0001

262,144

522,242

4,445

7,687

262

522

35

72

(a) Sensitivity analysis of DepthMesh with respect to PSNR and 1-LPIPS ratios
under varying reduction ratios.

(b) Visualization of mesh deformation and editing results using DepthMesh with
different reduction ratios

Mesh
Deformation

Input Image

DiffMesh

Vertices

Faces

3D Mesh
Generation

2D Vector
Flow

Results

Sampling
Step

Handle Point Target Point

40 20 10 5

19,952

39,984

19,948

39,980

19,952

39,984

18,812

39,992

(d) Visualization of mesh deformation and editing results using DiffMesh with
different sampling steps.

Robust operation region Robust operation region
Robust operation region

Robust operation region

(c) Sensitivity analysis of DiffMesh with respect to PSNR and 1-LPIPS ratios
under varying sampling steps.

Figure 15. Sensitivity analysis and qualitative comparison of mesh deformation and drag-editing results. (a) We evaluate the
robustness of DepthMesh under different reduction ratios, which control the density of facet connections during mesh construction (see
Algorithm 1). A ratio of 1 denotes a fully connected mesh, while lower values lead to degraded geometry. Since no ground-truth exists for
DragBench dataset, we compute the PSNR ratio and 1–LPIPS ratio using the result at reduction ratio = 1 as reference. The editing remains
robust within the reduction ratio range of 0.001 to 1. (b) Qualitative results confirm that our method maintains stable and accurate editing
across the reduction ratio range of 0.001 to 1. (c) We assess the robustness of DiffMesh by varying the sampling step in the image-to-3D
diffusion model (Hunyuan3D 2.0 (Zhao et al., 2025)). Editing quality remains stable for sampling steps of 10 to 40. (d) Visual results
show that our method remains robust for sampling steps of 10 or higher.

18

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields

Mesh
Deformation

ResultsDiffMeshUser Edit Editing
Constraints

Handle Vertex
Target Vertex

Handle Points
Target Points

Movable Vertices

Constraint Vertices
Deformation Vector

2D vector flow

Figure 16. More Visualization of the mesh-guided editing process using DiffMesh.

19

