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ABSTRACT

Model attribution is a critical component of deep neural networks (DNNs) for
its interpretability to complex models. Recent works bring up attention to the
security of attributions as they are vulnerable to attribution attacks that generate
similar images with dramatically different attributions. Studies have been working
on empirically improving the robustness of DNNs against those attacks. However,
due to their lack of certification, the actual robustness of the model for a testing
point is not known. In this work, we define certified attribution robustness for
the first time that upper bounds the dissimilarity of attributions after the samples
are perturbed by any noises within a certain region while the classification results
remain the same. Based on the definition, we propose different approaches to cer-
tify the attributions using Euclidean distance and cosine similarity under both ℓ2
and ℓ∞-norm perturbations constraints. The bounds developed by our theoretical
study are validated on three datasets (MNIST, Fashion-MNIST and CIFAR-10),
and two different types of attacks (PGD attack and IFIA attribution attack). The
experimental results show that the bounds certify the model effectively.

1 INTRODUCTION

Attribution methods play an important role in deep learning applications as one of the subareas of
explainable AI. Practitioners use attribution methods to measure the relative importance among dif-
ferent features and to understand the impacts of features contributing to the model outputs. They
have been widely used in a number of critical real-world applications, such as risk management
(Bhatt et al., 2020), medical imaging (Sayres et al., 2019; Singh et al., 2020a) and drug discovery
(Jiménez-Luna et al., 2020). In particular, attributions are supposed to be secure and resistant to
external manipulation such that proper explanations can be applied to safety-sensitive applications.
Regulations are also deployed in countries to enforce the interpretability of deep learning models
for a ‘right to explain’ (Goodman & Flaxman, 2017). Although attribution methods have been ex-
tensively studied (Simonyan et al., 2014; Zeiler & Fergus, 2014; Lundberg & Lee, 2017; Shrikumar
et al., 2017; Sundararajan et al., 2017; Zintgraf et al., 2017), recent works reveal that they are vulner-
able to visually imperceptible perturbations that drastically alter the attributions and keep the model
outputs unchanged (Ghorbani et al., 2019; Dombrowski et al., 2019).

Prior works (Chen et al., 2019; Boopathy et al., 2020; Ivankay et al., 2020; Singh et al., 2020b;
Wang et al., 2020; Sarkar et al., 2021; Wang & Kong, 2022) investigate the attribution robustness
based on empirical and statistical estimations over entire dataset. However, unlike certification in
adversarial robustness (Zhang et al., 2018; Cohen et al., 2019; Singla & Feizi, 2020), current attri-
bution robustness works are unable to guarantee the robustness of any arbitrary test point, perturbed
or unperturbed. In this paper, we study the problem of certified attribution robustness. Specifically,
given a trained model and an image sample, we propose theoretical upper bounds of the attribu-
tion deviations from the unperturbed ones. As far as we know, this is the first attempt to provide a
guarantee of attribution robustness.

In this paper, we first formulate the problem of certified attribution robustness. We characterize the
certified attribution robustness as an upper bound for the changes of attributions after the samples
are perturbed. We analyze two cases including with and without label constraint, which refers to
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the classification labels being unchanged and changed, respectively, after the original samples are
attacked. For each case, two mostly used perturbation constraints, ℓ2 and ℓ∞-norm, are considered
to compute the upper bound. For ℓ2-norm constraint, our approach is based on the first-order Taylor
series of model attribution, and a tight upper bound ignoring the label constraint is computed from
the singular value of the attribution gradient. ℓ∞-norm constraint is more complicated because the
upper bound is a solution of a concave quadratic programming with box constraints, which is an
NP-hard problem. Thus, two relaxation approaches are proposed. Moreover, a more restricted cer-
tification constrained on the unchanged label is studied. In this study, Euclidean distance and cosine
distance, which are also employed in the previous empirical studies (Chen et al., 2019; Singh et al.,
2020b; Wang & Kong, 2022), are used as dissimilarity functions to measure attribution difference
for certification. We summarize the contributions of this paper as follows:

• We formally define the certifiable attribution robustness problem as an upper bound of
attributional differences. According to the best knowledge of the authors, it has not been
studied before.

• The tight upper bounds for ℓ2-norm constrained attacks with and without classification
label constraints are proposed based on the first-order Taylor series. The proposed bound
generalizes to all gradient-based attribution methods.

• Two different approaches are provided to bound the ℓ∞-norm constrained attacks above,
which uses an ℓp-norm relaxation and a mathematical property of the quadratic form.

• The experimental results show that the upper bounds derived in this paper can effectively
certify the tested samples and models.

The rest of this paper is organized as follows. We start with an introduction to notations and related
works. The formulation of certified attribution robustness is defined in Sec. 3. Specific certification
methods in different scenarios are provided in Sec. 4. In Sec. 5, detailed experimental results are
presented and the paper concludes in Sec. 6.

2 PRELIMINARIES AND RELATED WORKS

We consider a twice-differentiable classifier f that maps the input set D =
{
(x(i), y(i))

}n
i=1

to the
logits, f : Rd → Rk, where x(i) ∈ Rd and y(i) ∈ {1, . . . , k} represent the i-th sample and its
ground truth label. The non-bold version xk represents the k-th feature of x and fy is the logit at
label y. The model attribution of the input sample given label y is computed by gy : Rd → Rd, and
we denote the attribution of x by gy(x).

2.1 MODEL ATTRIBUTION

The model attribution studies the importance of each input feature xi that contributes to the final
output fy(x). We can classify the most used attribution methods into two categories, perturbations-
based methods (Zeiler & Fergus, 2014; Zintgraf et al., 2017) and backpropagation-based methods
(Shrikumar et al., 2017; Bach et al., 2015), which include gradient-based methods. In particular,
in this paper, we focus on the most commonly used gradient-based attribution methods, saliency
map (SM), gradient*input and integrated gradient (IG). Saliency map (Simonyan et al., 2014) is
defined as the gradients of output with respect to the input. Gradient*input (Shrikumar et al., 2016)
is computed by element-wise multiplication of input features and the gradients. Integrated gradients
(Sundararajan et al., 2017) is defined as line integral of gradients from a baseline image a to the input
image x weighted by their difference1. It is worth noting that IG satisfies the axiom of completeness,∑

i g
y
i (x) = fy(x), which builds a direct connection between the attributions and model outputs.

The mathematical expressions and examples of the attribution methods are given in Table 1.

2.2 ATTRIBUTION ROBUSTNESS

It has been discovered in the literature that model attributions can be easily sabotaged by adversaries.
Similar to adversarial examples (Goodfellow et al., 2015), human-indistinguishable perturbations

1The baseline is chosen to be a black image (a = 0) in this paper if not specifically stated. Without loss of
generality, fy(a) = 0.
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Table 1: Mathematical expressions and visual examples of the selected attribution methods. Attri-
butions have been taken absolute values and are presented heatmaps to reflect relative importance
among pixels. The baseline a of IG is chosen as a black image. ⊗ denotes the element-wise multi-
plication.

Original image Saliency map Input*gradient Integrated gradients
∇fy(x) x⊗∇fy(x) (x− a)⊗

∫ 1

0
∇fy(a+ α(x− a)) dα

can be also augmented to natural images that, though classification results remain unchanged, mis-
direct the model attributions towards meaningless interpretations (Ghorbani et al., 2019) or any
predefined arbitrary patterns which are unrelated to the original images (Dombrowski et al., 2019).

To mitigate the threat of being attacked, researchers have also worked on training attribution robust
models. The most considered techniques are adapted from adversarial training (Madry et al., 2018),
and they minimize the differences between original and the worst-case perturbed attributions. Chen
et al. (2019) and Boopathy et al. (2020) consider the ℓ1-norm distance to measure the difference
between attributions, and Ivankay et al. (2020) uses Pearson correlation coefficient. Singh et al.
(2020b) and Wang et al. (2020) choose ℓ2-norm distance, where the former upper bounds the differ-
ence using a spatial correlation between image and attribution, and the latter shows the smoothness
of the decision surface is related to attribution robustness based on a geometric understanding. Wang
& Kong (2022) emphasizes the directions of attributions using the relationship between Kendall’s
rank correlation and cosine similarity and protects the attribution based on the latter. However, none
of the aforementioned methods defines a certification of attribution robustness. More clearly, the
attributions are not guaranteed to be protected for all perturbations within the allowable region that
do not alter the classification outputs.

3 FORMULATION OF CERTIFIABLE ATTRIBUTION ROBUSTNESS

In this section, we introduce the problem of certifying attribution robustness. Recall that adversaries
incapacitate the attributions of neural networks by adding imperceptible noises to natural images.
For an attributional robust model, on the contrary, the imperceptible noises should not change the
interpretability of attributions, i.e., images perturbed by noises should provide similar attributions as
the original ones. To certify such resistance against adversaries, it is essential to find an upper bound
that represents the worst-case dissimilarity of attributions after the original images being perturbed.
Thus, we define the certifiable attribution robustness as follows.

Definition 1 (Certified attribution robustness). Given a trained neural network f , a fixed allow-
able region for perturbation δ, Bε = {δ : ∥δ∥p ≤ ε}, and an input sample x, the certified at-
tribution robustness is defined to be an upper bound T (ε;x) that, for all perturbations δ ∈ Bε,
if argmaxk fk(x) = argmaxk fk(x + δ), then their corresponding attributions satisfy that
D(gy(x), gy(x+ δ)) ≤ T (ε;x).

In the above definition, D(·, ·) is a dissimilarity metric that measures the difference between two
attributions, where a smaller value indicates that two attributions are more similar and represent
closer meaningful interpretations. T is a function with respect to the threshold ε and x. The defi-
nition formalizes the guarantee of attribution robustness, where when the model is more robust, the
model attributions being attacked are less likely to be misled. More precisely, when being attacked,
the change of attribution is certified to be bounded above and the smaller upper bound indicates the
more attributional robust model.
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Based on the above definition, the certified attribution robustness T (ε;x) can be found by solving
the optimization problem

max
δ

D(gy(x), gy(x+ δ))

s.t. ∥δ∥p ≤ ε

argmax
k

fk(x) = argmax
k

fk(x+ δ)

(1)

We refer the first constraint ∥δ∥p ≤ ε to the norm constraint and the second one to the label con-
straint as it requires the unchanged label after being perturbed. An alternative formulation of this
problem is to find the maximum ε subject to D(gy(x), gy(x + δ)) ≤ ω where ω is a predefined
threshold. In following sections, we attempt to solve the optimization problem (1) using the two
mostly used norm constraints on the perturbations, ℓ2 and ℓp, i.e., ∥δ∥2 ≤ ε and ∥δ∥∞ ≤ ε. For
the dissimilarity metric, we choose from previously used attribution measurements, the Euclidean
distance and the cosine distance. The results can be converted directly to the alternative formulation,
and we defer the procedures to Appendix E.

4 CERTIFIABLE ATTRIBUTION ROBUSTNESS

4.1 ℓ2-NORM CERTIFICATION WITHOUT THE LABEL CONSTRAINT

To start with, the certification without label constraints is studied. This will provide a looser bound
since, intuitively, stronger adversaries are allowed to perturb the samples that may change the clas-
sification results. While perturbations are only restricted in a small region where the perturbed
samples are still indistinguishable to humans, attributions are more vulnerable and could still be
malicious. The upper bound for ℓ2-norm constrained case is a straightforward derivation of the
first-order Taylor series of attribution functions. The following theorem provides a tight bound for
attribution robustness assuming that the attribution function is locally linear.
Theorem 1. Given a twice-differentiable classifier f : Rd → Rk, and its attribution gy on label y,
assume that gy is locally linear within the neighborhood of x, Bε(x) = {x+ δ|∥δ∥2 ≤ ε}, then for
all perturbations ∥δ∥2 ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ ξmaxε,

where ξmax is the largest singular value of H = ∇gy(x).

Proof. Based on the Taylor series of gy(x) and the above condition, we have

∥gy(x+ δ)− gy(x)∥22 ≤ ∥δ⊤∇gy(x)∥22 = δ⊤∇gy(x)∇gy(x)⊤δ (2)

=
δ⊤

∥δ∥2
P

δ

∥δ∥2
· ∥δ∥22 (3)

≤ λmax∥δ∥22 ≤ λmaxε
2 (4)

where λmax is the largest eigenvalue of P = HH⊤ = ∇gy(x)∇gy(x)⊤, and vmax is the corre-
sponding eigenvector. The equality in Eq. 4 is achieved when δ is εvmax or −εvmax. Since the
singular values of H are equal to the square root of the eigenvalues of P , then,

∥gy(x+ δ)− gy(x)∥2 ≤
√
λmaxε = ξmaxε. (5)

Note that the local linearity of attribution function is a weak assumption for both attribution and
adversarial robust models since most of the defense methods (Qin et al., 2019; Wang et al., 2020)
attempt to smoothen the functions. In addition, when the magnitude of perturbation δ is constrained
to small size, the magnitude of the higher-order Taylor remainders is negligible. We include the
empirical results evaluating this assumption in Appendix B. Furthermore, we also provide a gener-
alization of the theorem that bounds the attribution differences as a function of a constant c ≥ 1 that
measures the error margin of the first-order Taylor series in Appendix B.2, which can be applied
similarly on all other results in this work.
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gy(x)

A

O

H
M⊤δ < b (Eq. 8)B

θ = sin−1
(

ξmaxε
∥gy(x)∥2

)
(Eq. 10)

ξmaxε (Eq. 5)

δ⊤Pδ (Eq. 3)

gy1 (x)

gy2 (x)

(a) (b)

Figure 1: (a) 2D illustration of certification on Euclidean distance and cosine distance. (b) Visualiza-
tion of the absolute values of gradient IG as a heat map. The gradient is generated using CIFAR-10
(3072 × 3072), and the values are normalized to [0, 1]. Here the first 100 dimensions of each axis
are plotted for better visualization, and more figures and mathematical analysis are in Appendix C.

We also notice that the above theorem uses the gradient of attribution H = ∇gy(x), which is also
the Hessian matrix ∇2fy(x) when the attribution is chosen as saliency maps and can be computed
easily for other gradient-based attribution methods. Moreover, the second-order derivatives can be
zeros for ReLU networks. In this work, the non-linearity functions are replaced by softplus function
f(x;β) = 1

β log(1 + eβx) as in Dombrowski et al. (2019). A 2D example of the upper bound is
illustrated in Fig. 1a. The optimum solution is in the same direction as the semi-major axis of the
ellipse, which represents δ⊤Pδ. The circle represents the 2D Euclidean ball bounded by T (ε;x),
which is derived from the length of the semi-major axis.

4.2 ℓ∞-NORM CERTIFICATION WITHOUT THE LABEL CONSTRAINT

The upper bound for ℓ∞ constrained case is more complicated as ∥δ∥∞ ≤ ε defines a box constraints
inequality system that −ε ≤ δi ≤ ε for all i. If we still consider the quadratic form derived from
the first-order Taylor series as in Sec. 4.1, the above optimization problem (1) turns into a concave
quadratic programming with box constraints, which is NP-hard (Pardalos & Vavasis, 1991). In order
to compute the upper bound efficiently, we consider a loose relaxation of p-norms.
Corollary 1. Given a twice-differentiable classifier f : Rd → Rk, and its attribution gy on label
y, assume that gy is locally linear within the neighborhood of x, Bε(x) = {x+ δ|∥δ∥p ≤ ε}, then
for all perturbations ∥δ∥p ≤ ε that p > 2, ∥gy(x + δ) − gy(x)∥2 ≤ d

1
2− 1

p ξmaxε, where ξmax is
the largest singular value of H = ∇gy(x).

The proof of the relaxation of p-norm and Corollary 1 can be found in Appendix A.1. Note that this
corollary not only avoids the NP-hard problem for ℓ∞-norm constraint, but it is also a general upper
bound for p-norm constraint on δ when p > 2. However, it is also noticed that the upper bound
increases with respect to the input sample dimension. The multiplication factor for ℓ∞ is

√
d. For

high-dimensional input samples, the provided method would scale up to an extremely loose upper
bound that can be trivial but meaningless for the robust certification. To better certify the attribution
in the ℓ∞-norm case, we provide a tighter upper bound using the sparsity of attribution gradients.
Theorem 2. Given a twice-differentiable classifier f , its attribution on label y, gy , and the gra-
dient H = ∇gy , assume that gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥∞ ≤ ε}, then for all perturbations ∥δ∥∞ ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ ε

√∑

i,j

|Pij |. (6)

where P = HH⊤ and the equality is taken at δ = (±ε, . . . ,±ε)⊤.
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The proof is deferred to Appendix A.2. This upper bound as the summation of absolute values of
the matrix P = ∇gy(x)∇gy(x)⊤ is shown to be tighter than that given in Corollary 1 since P is a
diagonal-dominated and positive semi-definite matrix (see Fig. 1b), which implies that |Pii| ≈ λi.

4.3 CERTIFICATION WITH THE LABEL CONSTRAINT

In this section, we generalize our certification to the case that labels are not changed after the samples
are perturbed. Here, only attribution methods satisfying the axiom of completeness are studied as the
axiom provides a direct connection between attributions and model outputs, i.e.,

∑
i g

y
i (x) = fy(x).

The following proposition gives a sufficient condition to ensure that the classification result remains
unchanged after the sample is perturbed.
Proposition 1. Denote the gradient-based attribution satisfying the completeness axiom of x on
ground truth label y by gy(x), and the attribution on a different label y′ by gy

′
(x). Given

the perturbation δ, assume that gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥p ≤ ε}, the classification result of x+ δ does not change from y to y′ if

((
∇gy

′
(x)−∇gy(x)

)
∆
)⊤

δ < fy(x)− fy′(x), (7)

where ∆ is an all one vector, ∆ = (1, . . . , 1)
⊤ ∈ Rd.

The full proof can be found in Appendix A.3. Note that the inequality is linear to δ and we denote
M = (∇gy

′
(x)−∇gy(x))∆ and b = fy(x)− fy′(x) for simplicity, i.e., M⊤δ < b. To certify the

attribution differences after the sample is perturbed by noise δ in ℓ2-norm ball, i.e., ∥δ∥2 ≤ ε, the
upper bound can be formulated by rewriting the optimization problem (1) as the optimal value of the
following quadratic programing with concave objective function and a system of linear constraints
for all labels different from y,

max
δ

δ⊤Pδ s.t. ∥δ∥2 ≤ ε and M⊤δ < b. (8)

To simplify the computation, in this work, we only consider the second best label y′, i.e., y′ =
argmaxk∈{1,...,c}\y fk(x). In such case, the constraint M⊤δ < b defines a half-space. Recall that
Theorem 1 states that the upper bound in ℓ2-norm certification without label constraint is ξmaxε, and
we noticed that this bound is achieved at two opposite vectors δ∗ = εvmax or δ∗ = −εvmax. Thus,
at least one of these two vectors lies in the half-space defined by the linear constraint (see point A
and B in Fig. 1a. Therefore, the upper bound provided in Theorem 1 is also achieved even if the
label constraint is added, i.e., the optimal value of optimization problem (8) is also ξmaxε.

The certification of ℓp-norm constrained case can be derived similarly. The less tight upper bound
is still achievable at d

1
2− 1

p ξmaxε as in Corollary 1. Generalizing the ℓ∞-norm constrained upper
bound using Eq. 6 is simpler. According to Theorem 2, there are 2d different optimal solutions that
achieve the optimum and they are the corners of the ℓ∞-norm box. As long as the feasible region
is non-empty, there exists at least one corner of the box lying inside the feasible region, and the
optimum value is achieved. Similarly, given a d-dimensional ℓ∞-norm box, and k label constraints
that each separates the entire space into two half-spaces, if at least one corner of the box lies within
the feasible region, the optimum value is attainable.

4.4 CERTIFICATION BASED ON COSINE DISTANCE

In the previous parts of this section, we discussed several cases in certified attribution robustness
based on Euclidean distance. It is mentioned in Wang & Kong (2022) that cosine similarity (Ds)
is a better metric to measure the difference of attributions as it emphasizes the relative importance
among different features rather than the absolute magnitude of each individual feature. Our method
can be trivially extended to the scenarios using cosine distance (Dc = 1 −Ds(g

y(x + δ), gy(x)))
as the dissimilarity function D defined in the formulation (1) with simple modifications.
Corollary 2. Given a twice-differentiable classifier f : Rd → Rk and its attribution gy on label y,
for all perturbations ∥δ∥p ≤ ε, if the Euclidean distance of gy(x+ δ) and gy(x) is upper bounded
by T (ε;x), and 0 ≤ T (ε;x) ≤ ∥gy(x)∥2, then their cosine distance (Dc) is upper bounded by

Dc(g
y(x+ δ), gy(x)) ≤ 1−

√
1− T (ε;x)2

∥gy(x)∥22
. (9)
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Table 2: Evaluation of certification without the label constraint.

SM Input*gradient IG

T̂e Te T ′
e T̂c Tc T̂e Te T ′

e T̂c Tc T̂e Te T ′
e T̂c Tc

ℓ2 0.09 0.31 0.34 6.88 7.41 0.07 0.46 0.46 0.51 2.60 0.02 0.17 0.17 1.80 3.84
ℓ∞ 0.41 0.85 - 21.87 27.09 0.07 0.69 - 7.03 50.59 0.25 0.52 - 23.24 35.00

This upper bound is valid when the assumption that 0 ≤ T (ε;x) ≤ ∥gy(x)∥2 is satisfied, i.e., the
variation of attribution distance is smaller than the original attribution. As shown in Fig. 1a, the
angle between original and perturbed attributions is bounded by θ computed from the corollary.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our certification by numerical experiments under
both ℓ2 and ℓ∞-norms. Same as in the previous sections, we evaluate the certification under the
local linearity assumption, which omits the higher-order remainder of Taylor series. In the following
results, we compute the theoretical upper bound for adversarial robust models and attributional
robust models, including Adversarial Training (AT) (Madry et al., 2018), IG-NORM (Chen et al.,
2019), Adversarial Attributional Training with robust training loss (AdvAAT) (Ivankay et al., 2020),
Attributional Robustness Training (ART) (Singh et al., 2020b), TRADES (Zhang et al., 2019) and
Integrated Gradients Regularizer (IGR) (Wang & Kong, 2022). We follow previous attribution
robustness studies to use ResNet-18 to evaluate CIFAR-10 (Krizhevsky, 2009), and use the neural
network with four convolutional layers followed by three fully-connected layers to evaluate MNIST
(LeCun et al., 2010) and Fashion-MNIST (Xiao et al., 2017).

For each selected model, the theoretical upper bounds for both Euclidean distance and cosine dis-
tance are computed. We convert the cosine values to degrees for easier comparison. The theoretical
bounds are compared with corresponding sample distances to verify the effectiveness of the bounds.
We denote the theoretical upper bounds for Euclidean distance and cosine distance as Te and Tc,
respectively. The ℓ2 PGD-20 attack (Madry et al., 2018) is implemented for ℓ2-norm bounded cer-
tification. The 200-step IFIA with the top-k intersection as dissimilarity function (Ghorbani et al.,
2019) is implemented for ℓ∞-norm bounded certification, where k is 100 for MNIST and Fashion-
MNIST and 1000 for CIFAR-10. Each sample is attacked 20 times and the mean distance is com-
puted. The sample mean distances of the entire dataset under corresponding attacks are denoted
by T̂e and T̂c, respectively. All the experiments are implemented on NVIDIA GeForce RTX 3090
(Source code will be provided later).

In addition, we also provide a generalization of the proposed bounds based on the generalization of
Theorem 1 (Appendix B.2) that adaptively multiply a scalar c for an given input x in case that the
weak assumption is violated in rare cases. Explicitly, the adaptive value of c for i-th sample is given
as follows (details in Appendix B.3)

c(i) = max

{
1,

∥gy(x(i) + εv
(i)
max)− gy(x(i))∥2
ξ
(i)
maxε

}
. (10)

5.1 EVALUATION OF CERTIFICATION WITHOUT THE LABEL CONSTRAINT

We first evaluate the certification without label constraints, which can be applied to any gradient-
based attribution method. Here three methods are evaluated, saliency map, input*gradient and inte-
grated gradients. We provide the certification of TRADES+IGR on CIFAR-10 to validate the bounds
as in Table 2, and leave the other models in Appendix D.1. We use the unlabelled certification intro-
duced in Theorem 1 and 2 to compute Te = ξmaxε and extend it to Tc using Eq. 9. The perturbation
size is chosen to be 0.1 for ℓ2 and 0.25 for ℓ∞. The generalized upper bound T ′

e = cξmaxε (Eq. 10)
is also provided for ℓ2 case, and is not necessary for ℓ∞ case. As we observe in the table, the pro-
posed certification is valid for different attribution methods and both Euclidean and cosine distances
are well-bounded. More precisely, none of the ℓ∞ perturbed attributions is outside theoretical bound
and none of the ℓ2 perturbed attributions is outside the generalized bound.
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Table 3: Evaluation of ℓ2-norm certification with the label constraint. The numbers in the brackets
indicate the percentages that attacked attribution is outside the Te.

Model T̂e Te T ′
e T̂c(deg) Tc(deg)

ε = 0.05 MNIST

AT 0.0685 0.1537 [2.25%] 0.1596 3.6935 7.0951
IG-NORM 0.1158 0.2888 [2.00%] 0.2967 3.3174 7.2615
ART 0.0626 0.3591 [6.00%] 0.3702 2.3923 6.8657
AdvAAT 0.0876 0.3269 [6.20%] 0.3404 1.9034 6.8992
TRADES 0.1620 0.5060 [1.68%] 0.5271 2.8374 6.9988
TRADES+IGR 0.1784 0.4964 [1.32%] 0.5145 2.9075 6.9779

ε = 0.05 Fashion-MNIST

AT 0.0659 0.0700 [2.19%] 0.0869 10.1442 12.9577
IG-NORM 0.1181 0.1789 [0.00%] 0.1789 6.6002 8.8043
AdvAAT 0.1115 0.1735 [6.20%] 0.1858 5.8544 9.3692
ART 0.0940 0.1387 [0.94%] 0.1411 5.4507 9.8234
TRADES 0.0626 0.0963 [4.16%] 0.1184 8.3521 12.0991
TRADES+IGR 0.0403 0.0453 [1.91%] 0.0507 7.7302 8.8411

ε = 0.1 CIFAR-10

AT 0.0392 0.2532 [0.09%] 0.2533 2.7335 4.7724
IG-NORM 0.0149 0.1582 [0.42%] 0.1621 1.6505 4.3711
AdvAAT 0.0374 0.2386 [0.06%] 0.2386 0.2847 3.8202
ART 0.0733 0.2278 [0.00%] 0.2278 0.5918 4.2123
TRADES 0.0264 0.1734 [0.16%] 0.1734 1.9084 3.8686
TRADES+IGR 0.0240 0.1692 [0.09%] 0.1692 1.8011 3.8384

5.2 EVALUATION OF ℓ2-NORM BOUNDED CERTIFICATION WITH THE LABEL CONSTRAINT

To certify the attributions of samples being attacked by ℓ2-norm constrained perturbations, we use
the method provided in Sec. 4.3 and 4.4 to obtain the theoretical upper bounds for both Euclidean
distance (Te = ξmaxε) and cosine distance (Tc in Eq. 9). Integrated gradients (IG) is chosen here
as the certification with the label constraint is based on the axiom of completeness. Besides, as
discussed in Sec. 4.1, the percentages of attacked attribution outside Te are provided, and the gen-
eralized bound is also calculated and denoted by T ′

e = cξmaxε. Since T ′
e bounds all the attacked

attributions, i.e., 100% for all the models, we do not report the percentages in the table. From
Table 3, we observe the following results. (i) The percentages are low, which supports our assump-
tion in Sec. 4.1 that gy is locally linear. (ii) The computed upper bounds for both Euclidean (T ′

e)
and cosine distance (Tc) successfully certify the attribution differences for every dataset and every
model. In addition, we also show the minimum Euclidean gaps between samples and bounds in
Appendix D.3 to illustrate that the tightness of the proposed bounds.

5.3 EVALUATION OF ℓ∞-NORM BOUNDED CERTIFICATION WITH THE LABEL CONSTRAINT

We certify the attributions of samples under ℓ∞ attacks in this subsection. Instead of the much
looser bound derived from ℓp-norm relaxation (Corollary 1), the upper bound is computed from
Te = ε

√∑
|Pij | as introduced in Sec. 4.3 and 4.4 . Moreover, the empirical attribution robustness

is also provided using Kendall’s rank correlation (Kendall, 1948) for comparison of theoretical and
empirical protection. It should be emphasized that all the previous attribution robustness studies
are based on ℓ∞-norm constraints. Kendall’s rank correlation is used to measure the difference
between the original attributions and the attributions attacked by IFIA under ℓ∞ constraints. From
the results in Table 4, we see that the computed theoretical upper bounds are valid certifications of
the attributions. For each dataset and each model, the sample mean of attribution distances is strictly
smaller than the theoretical distance. Because of the relaxation, all attacked attributions are bounded
by Te. There is no outlier, and there is no need to use the generalized bound T ′

e. Moreover, the

8
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2: Comparison between Kendall’s rank correlation and the theoretical bound of cosine dis-
tance. For clear comparison, we convert the cosine distance to angles in degrees.

Table 4: Evaluation of ℓ∞-norm certification with the label constraint.

Model Kendall T̂e Te T̂c(deg) Tc(deg)

ε = 0.05 MNIST

AT 0.1846 0.3461 0.7752 15.3616 38.7024
IG-NORM 0.1562 0.6836 1.2046 16.4506 31.8791
AdvAAT 0.3791 1.6269 2.1992 11.3173 26.3000
ART 0.1439 1.4193 2.8218 12.8025 64.3115
TRADES 0.2127 1.1779 2.2216 15.9881 33.4681
TRADES+IGR 0.4537 1.2991 2.0386 17.5923 26.5748

ε = 0.05 Fashion-MNIST

AT 0.1516 0.0990 0.2802 18.9720 55.1501
IG-NORM 0.3446 0.2384 0.8819 12.6023 46.4270
AdvAAT 0.5810 0.1938 0.9206 9.4499 44.9184
ART 0.2079 0.1660 0.7215 9.6582 53.7281
TRADES 0.2582 0.1042 0.4536 13.7010 51.6448
TRADES+IGR 0.6565 0.0722 0.2526 15.0947 44.4703

ε = 0.1 CIFAR-10

AT 0.5578 0.4058 0.7649 26.6195 45.3223
IG-NORM 0.5811 0.1997 0.4783 21.6311 35.2981
AdvAAT 0.5484 0.2293 0.5211 28.7342 39.3981
ART 0.6875 0.3128 0.6734 31.0090 35.6422
TRADES 0.6903 0.2322 0.5001 22.9779 36.3759
TRADES+IGR 0.6940 0.2474 0.5236 23.2356 35.0009

results also show that for a model with a larger Kendall’s rank correlation, the theoretical cosine
distance upper bound is more likely to be smaller (see Fig. 2), which means that the model is more
difficult to be attacked. This also confirms that cosine similarity is positively correlated to Kendall’s
rank correlation as proposed in (Wang & Kong, 2022).

6 CONCLUSION

For the first time, we formulate the certified attribution robustness as a constrained optimization
problem, whose optimum value is the upper bound of differences between original and perturbed
attributions. The optimization problem is constrained on the size of perturbation and the unchanged
classification label after being perturbed. For each of the two metrics of the attribution difference,
Euclidean and cosine distances, the problem is solved to certify ℓ2 and ℓ∞-norm attacks based on
the first-order Taylor series and the estimation of attribution gradients. Experimental results validate
the certifications.
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A PROOFS

A.1 PROOF OF COROLLARY 1

Before we prove Corollary 1, We first introduce the following lemma.
Lemma 1. For 0 < q < p, the following inequality holds:

∥x∥q ≤ d
1
q− 1

p ∥x∥p (11)

where x ∈ Rd.

Proof. Consider u,v ∈ Rd, using the Hölder’s Inequality that for m,n satisfying 1
m + 1

n = 1,

∑

i

|ui||vi| ≤

(∑

i

|ui|m
) 1

m
(∑

i

|vi|n
) 1

n

. (12)

If we take |ui| = |xi|q , vi = 1, m = p
q and n = p

p−q , we get

∑

i

|xi|q ≤

(∑

i

|xi|p
) q

p

d
p−q
p (13)

By taking the power of 1
q on both sides, we have

(∑

i

|xi|q
) 1

q

≤

(∑

i

|xi|p
) 1

p

d
1
q− 1

p (14)

which concludes the proof.

Corollary 1. Given a twice-differentiable classifier f : Rd → Rk, and its attribution gy on label
y, assume that gy is locally linear within the neighborhood of x, Bε(x) = {x+ δ|∥δ∥p ≤ ε}, then
for all perturbations ∥δ∥p ≤ ε that p > 2, ∥gy(x + δ) − gy(x)∥2 ≤ d

1
2− 1

p ξmaxε, where ξmax is
the largest singular value of H = ∇gy(x).

Proof. Using Lemma 1, we have ∥δ∥2 ≤ d
1
2− 1

p ∥δ∥p. Similar to the proof of Theorem 1,

∥gy(x+ δ)− gy(x)∥22 ≤ λmax∥δ∥22 ≤ λmax

(
d

1
2− 1

p ∥δ∥p
)2

≤ λmax

(
d

1
2− 1

p ε
)2

(15)

Therefore,
∥gy(x+ δ)− gy(x)∥2 ≤ d

1
2− 1

p ξmaxε (16)

A.2 PROOF OF THEOREM 2

Theorem 2. Given a twice-differentiable classifier f , its attribution on label y, gy , and the gra-
dient H = ∇gy , assume that gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥∞ ≤ ε}, then for all perturbations ∥δ∥∞ ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ ε

√∑

i,j

|Pij |. (6)

where P = HH⊤ and the equality is taken at δ = (±ε, . . . ,±ε)⊤.

Proof. Recall that under the local linearity assumption,

∥gy(x+ δ)− gy(x)∥22 ≤ δ⊤Pδ =
∑

i,j

Pijδiδj . (17)

Since Pij ≤ |Pij | and δiδj ≤ ∥δ∥2∞ ≤ ε2 for all i, j, we can easily prove the theorem that

∥gy(x+ δ)− gy(x)∥22 ≤ ε2
∑

i,j

|Pij |. (18)

13



Under review as a conference paper at ICLR 2023

A.3 PROOF OF PROPOSITION 1

Proposition 1. Denote the gradient-based attribution satisfying the completeness axiom of x on
ground truth label y by gy(x), and the attribution on a different label y′ by gy

′
(x). Given

the perturbation δ, assume that gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥p ≤ ε}, the classification result of x+ δ does not change from y to y′ if

((
∇gy

′
(x)−∇gy(x)

)
∆
)⊤

δ < fy(x)− fy′(x), (7)

where ∆ is an all one vector, ∆ = (1, . . . , 1)
⊤ ∈ Rd.

Proof. Recall that we denote the gradient-based attribution satisfying the completeness axiom of
x on target label y by gy(x), e.g., integrated gradients. Similarly, we denote the attribution on a
different label y′ by gy

′
(x). Given the perturbation δ, according to the above assumption, we can

write that
gy(x+ δ) = gy(x) +∇gy(x)⊤δ (19)

Similarly, the approximation of gy
′
(x+ δ) is given by:

gy
′
(x+ δ) = gy

′
(x) +∇gy

′
(x)⊤δ (20)

According to the completeness axiom, given an all one vector ∆ = (1, . . . , 1)⊤, we have

∆⊤gy(x) = fy(x). (21)

Consider the perturbation δ, if δ does not change the label of x from y to y′, then fy′(x + δ) <
fy(x+ δ), i.e.,

∆⊤gy
′
(x+ δ) < ∆⊤gy(x+ δ), (22)

which gives
∆⊤gy

′
(x) + ∆⊤∇gy

′
(x)⊤δ < ∆⊤gy(x) + ∆⊤∇gy(x)⊤δ. (23)

By rearranging the above inequality, we have
((

∇gy
′
(x)−∇gy(x)

)
∆
)⊤

δ < fy(x)− fy′(x). (24)

A.4 PROOF OF COROLLARY 2

Corollary 2. Given a twice-differentiable classifier f : Rd → Rk and its attribution gy on label y,
for all perturbations ∥δ∥p ≤ ε, if the Euclidean distance of gy(x+ δ) and gy(x) is upper bounded
by T (ε;x), and 0 ≤ T (ε;x) ≤ ∥gy(x)∥2, then their cosine distance (Dc) is upper bounded by

Dc(g
y(x+ δ), gy(x)) ≤ 1−

√
1− T (ε;x)2

∥gy(x)∥22
. (9)

Proof. The corollary can be proved using the geometric property (see Fig. 1a) that

sin(gy(x+ δ), gy(x)) ≤ T (ε;x)

∥gy(x)∥2
, (25)

and,

cosd(gy(x+ δ), gy(x)) = 1− cos(gy(x+ δ), gy(x)) (26)

= 1−
√

1− sin2(gy(x+ δ), gy(x)) (27)

≤ 1−

√
1− T (ε;x)2

∥gy(x)∥22
(28)
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(a) AT (b) IG-NORM (c) AdvAAT

(d) ART (e) TRADES (f) TRADES+IGR

Figure 3: Values of η for different ∥δ∥∞ computed from CIFAR-10 using integrated gradients. The
magnitudes are ranging from 0.07 to 0.09 and are negligible comparing with the average norm of
attributions which is 3.47 on CIFAR-10.

B ANALYSIS OF LOCAL LINEARITY ASSUMPTION

B.1 EVALUATION OF LOCAL LINEARITY ASSUMPTION OF ATTRIBUTION FUNCTIONS

The theories of this work are based on the local linearity assumption that gy(x) is linear within
Bε(x) = {x + δ|∥δ∥p ≤ ε}. It is worth noting that such local linearity is a valid assumption
for smooth functions, which can be achieved by both adversarial and attributional robust methods.
Adversarial defense methods look for locally linearity functions to reduce the impact of adversarial
attacks (Qin et al., 2019; Yang et al., 2020). Similarly, attributional defense methods train for smooth
gradients to defend against attribution attacks (Wang et al., 2020). It is also a common practice in
related literature (Finlay & Oberman, 2019; Guo et al., 2019; Simon-Gabriel et al., 2019; Laidlaw
et al., 2021; Zhang et al., 2021) to make similar assumptions.

Furthermore, the validity of this assumption also depends on the size of δ. The perturbation δ is
restricted within a small ℓp ball around x to ensure that the perturbed images are visually indistin-
guishable comparing to its original counterpart. The maximum allowable size ε for δ is relatively
small compared with the intensity range of the original image. When δ is small, the remainder of the
Taylor series of gy(x) is negligible and the local linearity assumption is valid. As shown in Figure 3,
the value of η(x, δ) = ∥gy(x)− gy(x+ δ)− δ⊤∇gy(x)∥2 is small and negligible when ∥δ∥∞ is
small.

B.2 GENERALIZATION OF THEOREM 1

Theorem 3. Given a twice-differentiable classifier f : Rd → Rk, and its attribution gy on label y,
denote the Taylor series of gy(x + δ) as gy(x) + δ⊤∇gy(x) + R1(x). If −(c − 1)δ⊤∇gy(x) ⪯
R1(x) ⪯ (c− 1)δ⊤∇gy(x) for a constant c ≥ 1, where ⪯ refers to element-wise less than or equal
to, then for all perturbations ∥δ∥2 ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ cξmaxε,

where ξmax is the largest singular value of H = ∇gy(x).
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Proof. Based on the Taylor series of gy(x) and the above condition, we have

∥gy(x+ δ)− gy(x)∥22 ≤ ∥δ⊤∇gy(x) + (c− 1)δ⊤∇gy(x)∥22 = c2δ⊤∇gy(x)∇gy(x)⊤δ (29)

= c2
δ⊤

∥δ∥2
P

δ

∥δ∥2
· ∥δ∥22 (30)

≤ c2λmax∥δ∥22 ≤ c2λmaxε
2 (31)

where λmax is the largest eigenvalue of P = HH⊤ = ∇gy(x)∇gy(x)⊤, and vmax is the corre-
sponding eigenvector. The equality in Eq. 31 is achieved when δ is εvmax or −εvmax. Since the
singular values of H are equal to the square root of the eigenvalues of P , then,

∥gy(x+ δ)− gy(x)∥2 ≤ c
√
λmaxε = cξmaxε. (32)

This is a generalized version of Theorem 1 that is applicable for all twice-differentiable classifiers.
Under local linearity assumption, R1(x) = 0, which means c = 1, the result coincides with the
original version of Theorem 1.

B.3 DERIVATION OF EQ. (10)

By Taylor expansion, gy(x+ δ)− gy(x) = δ⊤∇gy(x) +R1(x), where R1 is the first order Taylor
remainder. Thus, we have

∥R1(x)∥2 ≥ ∥gy(x+ δ)− gy(x)∥2 − ∥δ⊤∇gy(x)∥2 (33)

Take c = ∥R1(x)∥2

∥δ⊤∇gy(x)∥2
+ 1,

∥δ⊤∇gy(x)∥2 + ∥R1(x)∥2 = c∥δ⊤∇gy(x)∥2, (34)

and it would be the worst-case for the linear assumption when δ = εvmax. By taking εvmax as δ,
∥R1(x)∥2 can be estimated by

max
{
0, ∥gy(x+ εvmax)− gy(x)∥2 − ∥εv⊤

max∇gy(x)∥2
}
. (35)

Since ∥gy(x + εvmax) − gy(x)∥2 − ∥εv⊤
max∇gy(x)∥2 ≤ ∥R1(x)∥2. Putting Eq. (35) into c and

using the result in Eq. (5), we have

c = max

{
0,

∥gy(x+ εvmax)− gy(x)∥2 − ∥εv⊤
max∇gy(x)∥2

ξmaxε

}
+ 1 (36)

= max

{
1,

∥gy(x+ εvmax)− gy(x)∥2
ξmaxε

}
. (37)

C ANALYSIS OF ATTRIBUTION GRADIENTS

C.1 THE GRADIENT OF INTEGRATED GRADIENTS

We provide the justification showing that the gradient of IG is diagonal-dominated. Consider that

IG(x)i = xi ×
1

m

m∑

α=1

∂f( α
mx)

∂xi
(38)

and

∇IG(x)ij =
∂IG(x)i
∂xj

(39)

If i ̸= j, then
∂IG(x)i
∂xj

= xi ·
1

m

m∑

α=1

∂2f( α
mx)

∂xi∂xj
× α

m
(40)
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(a) (b)

Figure 4: The first 100 dimensions of gradient attribution generated from (a) MNIST and (b)
Fashion-MNIST.

If i = j, then

∂IG(x)i
∂xj

=
1

m

m∑

α=1

∂f( α
mx)

∂xj
+ xi ·

1

m

m∑

α=1

∂2f( α
mx)

∂xi∂xj
× α

m
(41)

Denote that H(α)
ij =

∂2f( α
mx)

∂xi∂xj
, i.e., H(α) is the Hessian matrix of f( α

mx). Thus

∂IG(x)i
∂xj

=

{
1
m

∑m
α=1 ∇f( α

mx) + xi · α
m2H

(α)
ij , i = j

xi ·
∑m

α=1
α
m2H

(α)
ij , i ̸= j

(42)

In matrix form,

∇IG = diag

(
1

m

m∑

α=1

∇f(
α

m
x)

)
+ [x, · · · ,x]⊗ α

m2

m∑

α=1

H(α) (43)

If we use softplus as an activation function, i.e., g(x) = 1
β log(1 + exp(βx)), then,

g′′(x) =
βeβx

(eβx + 1)2
(44)

and

lim
β→∞

g′′(x) = 0 (45)

As β → ∞, H(α) will tend to 0, and the second term in Eq. 43 will tend to 0. At the same time,
if we choose the number of steps in IG, m larger, α

m2 will converge to 0 faster than 1
m . Therefore,

∇IG will be diagonal-dominated.

C.2 ADDITIONAL VISUALIZATION OF ATTRIBUTION GRADIENTS

We provide the first 100-dimensions heatmaps of absolute values of attribution gradients, i.e., gradi-
ents of IG, on MNIST and Fashion-MNIST in addition to CIFAR-10 presented in Fig. 1b. Moreover,
the complete heatmaps for all the three datasets are also presented. As observed in Figs. 4 to 7, the
matrices of attribution gradients are diagonal-dominant.
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Figure 5: The full heatmap of attribution gradients of MNIST in size 784× 784.

Figure 6: The full heatmap of attribution gradients of Fashion-MNIST in size 784× 784.
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Figure 7: The full heatmap of attribution gradients of CIFAR-100 in size 3072× 3072.

Table 5: Evaluation of certification without the label constraint. The cosine distance values T̂c and
T̂ ′
c are converted to degrees for easier comparison.

SM Input*gradient IG

ℓ2 T̂e Te T ′
e T̂c Tc T̂e Te T ′

e T̂c Tc T̂e Te T ′
e T̂c Tc

AT 0.44 0.94 0.98 9.19 14.87 0.07 0.63 0.63 1.17 4.34 0.04 0.25 0.25 2.73 4.77
IG-NORM 0.03 0.70 0.79 4.33 9.06 0.03 0.50 0.52 1.40 4.75 0.01 0.16 0.16 1.65 4.37
AdvAAT 0.30 1.83 1.83 11.24 20.44 0.08 0.66 0.67 1.84 3.79 0.04 0.24 0.24 0.28 3.82
ART 0.18 0.79 0.81 10.88 14.21 0.09 0.92 0.97 0.83 6.06 0.07 0.23 0.23 0.59 4.21
TRADES 0.11 0.76 0.76 10.01 18.40 0.05 0.48 0.48 1.19 3.20 0.03 0.17 0.17 1.91 3.87

ℓ∞

AT 0.55 1.27 - 23.47 30.18 0.63 0.73 - 9.28 61.03 0.41 0.76 - 26.62 45.32
IG-NORM 0.42 0.70 - 25.16 32.60 0.21 0.70 - 6.88 42.94 0.20 0.48 - 21.63 35.30
AdvAAT 0.64 1.83 - 25.20 31.25 0.07 0.74 - 7.79 45.16 0.23 0.52 - 28.73 39.40
ART 0.49 1.01 - 23.81 35.17 0.27 0.79 - 10.21 48.30 0.31 0.67 - 31.01 35.64
TRADES 0.39 0.75 - 22.40 29.10 0.33 0.69 - 9.17 52.63 0.23 0.50 - 22.98 36.38

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS ON MORE MODELS OF CERTIFICATION WITHOUT THE LABEL
CONSTRAINT

In this subsection, we evaluate the certification without the label constraint for the other models,
apart from TRADES+IGR in the paper. The perturbation size is chosen to be 0.1 for all evaluations.
As in Sec. 5, we use Theorem 1 and 2 to compute Te = ξmaxε and extend it to Tc using Eq. 9. The
modified upper bound T ′

e = cξmaxε is also provided to address the inaccurate Taylor approximation
(less than 1%). T̂e and T̂c are computed from the corresponding average attribution differences. The
results are given in Table 5. It is shown that the sample distances under both Euclidean and cosine
metrics are bounded by T ′

e and Tc as expected. All the distortion caused by the attacks i.e., T̂e and
T̂c are smaller than T ′

e and Tc.

19



Under review as a conference paper at ICLR 2023

Table 6: Evaluation of ℓ2-norm certification with the label constraint on MNIST, Fashion-MNIST
and CIFAR-10 using different ε.

T̂e Te T ′
e T̂c(deg) Tc(deg) T̂e Te T ′

e T̂c(deg) Tc(deg)

MNIST ε = 0.1 ε = 0.2

AT 0.0856 0.3074 0.3101 4.6026 14.3020 0.1176 0.4611 0.4617 5.9845 29.6082
IG-NORM 0.1436 0.5776 0.5776 3.9514 14.6430 0.2094 0.8664 0.8679 5.4824 30.3707
AdvAAT 0.0938 0.7182 0.7193 2.1315 13.8325 0.1346 1.0773 1.1013 2.8725 28.5660
ART 0.2031 0.6538 0.6542 6.4244 13.9011 0.2302 0.9807 0.9993 8.5982 28.7175
TRADES 0.2159 1.0120 1.0812 3.4791 14.1049 0.3281 1.5180 1.5211 4.9429 29.1695
TRADES+IGR 0.2171 0.9928 1.0101 3.4171 14.0621 0.3032 1.4892 1.4892 4.5166 29.0745

Fashion-MNIST ε = 0.1 ε = 0.2

AT 0.1080 0.1400 0.1401 16.7770 26.6451 0.1413 0.2100 0.2119 21.3901 63.7570
IG-NORM 0.1232 0.3578 0.3578 8.9312 17.8256 0.1771 0.5367 0.5371 12.5177 37.7516
AdvAAT 0.1500 0.3470 0.3533 7.3499 19.0014 0.1984 0.5205 0.5209 9.4643 40.6308
ART 0.2057 0.2774 0.2775 11.6920 19.9515 0.2343 0.4161 0.4161 13.4216 43.0352
TRADES 0.0797 0.1926 0.1987 10.5544 24.7845 0.1050 0.2889 0.2889 13.8358 56.9729
TRADES+IGR 0.0672 0.0906 0.0906 11.3338 17.9020 0.0879 0.1359 0.1510 14.7998 37.9358

CIFAR-10 ε = 0.2 ε = 0.3

AT 0.0607 0.5064 0.5064 3.7975 9.5783 0.0858 1.2661 1.2661 5.2981 24.5816
IG-NORM 0.0123 0.3164 0.3164 1.4311 8.7679 0.0592 0.7910 0.7910 6.9460 22.4006
AdvAAT 0.0300 0.4772 0.4775 1.7094 7.6575 0.0548 1.1933 1.1933 3.0553 19.4588
ART 0.0501 0.4556 0.4699 3.1004 8.4476 0.0718 1.1391 1.1420 6.3493 21.5468
TRADES 0.0360 0.3468 0.3468 3.9435 7.7550 0.0528 0.8671 0.8780 5.7514 19.7151
TRADES+IGR 0.0395 0.3384 0.3385 4.1222 7.6942 0.0577 0.8460 0.8460 5.9201 19.5551

D.2 ABLATION STUDY OF CERTIFICATION USING DIFFERENT ε

In this subsection, we provide more experimental results of certifications on MNIST, Fashion-
MNIST and CIFAR-10 in both ℓ2 and ℓ∞ cases under label constraint. More specifically, for MNIST
and Fashion-MNIST, we additionally provide results of ε = 0.1 and ε = 0.2 in ℓ2 case, and ε = 0.01
and ε = 0.03 in ℓ∞ case. For CIFAR-10, we provide ε = 0.2 and ε = 0.3 for ℓ2 case, and ε = 4/255
and ε = 8/255 in ℓ∞ case. The results are presented in Tables 6 and 7. For ℓ2 constrained certifica-
tion, we also provide the modified upper bound T ′

e as in Sec. 5 since the Taylor approximations are
inaccurate occasionally (0 ∼ 6%). For all tested ε, it is noticed that the theoretical bounds bound the
sample Euclidean and cosine distance above. In some cases, the means of Te and T ′

e are the same
because Te bound T̂e well and the c in Eq. (10) equals to 1 for T ′

e. As in Sec. 5, for ℓ∞ case, we do
not present the results of T ′

e, because Te has bounded all T̂e above.

D.3 EVALUATION OF THE TIGHTNESS OF BOUNDS

In addition, we further report the minimum Euclidean gaps between samples and bounds in Table 8
to measure the tightness of the provided bounds, which is defined as

r = min
0≤i≤n

T (i)
e − T̂ (i)

e (46)

Note that the superscript (i) represents the i-th sample and T
(i)
e is replaced by T

′(i)
e in ℓ2-norm cases.

r is a straightforward measurement of the theoretical bound. We notice that although the mean of
theoretical bounds sometimes are multiple times larger than the sample mean distance, the tightest
bound can be only 10−4 greater than the sample distance. We also observe that the values of r are
all positive, which also indicates that there is no perturbed attribution that violates our theoretical
bound.

In addition, in Fig. 8, we also provide the visualizations of the distribution of the gap between
theoretical bounds and attribution differences from real data. The values are directly computed
using T

(i)
e − T̂

(i)
e . As we can observe from the figures, all values are positive, which verifies the

validity of our bounds, and most of the values are lying close to 0, which shows the tightness of the
bounds.
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Table 7: Evaluation of ℓ∞-norm certification with the label constraint on MNIST, Fashion-MNIST
and CIFAR-10 with different ε.

T̂e Te T̂c(deg) Tc(deg) T̂e Te T̂c(deg) Tc(deg)

MNIST ε = 0.01 ε = 0.03

AT 0.0556 0.1550 2.9408 7.1839 0.0888 0.4651 4.2516 22.0345
IG-NORM 0.1005 0.2409 2.8745 6.0632 0.1710 0.7228 4.4179 18.4742
AdvAAT 0.0608 0.4398 1.4264 5.0839 0.1280 1.3195 2.4883 15.4170
ART 0.0767 0.5644 2.8025 10.3833 0.3617 1.6931 9.3505 32.7312
TRADES 0.1634 0.4443 2.7539 6.3323 0.3193 1.3330 4.7523 19.3224
TRADES+IGR 0.1744 0.4077 2.7731 5.1333 0.2932 1.2232 4.2425 15.5702

Fashion-MNIST ε = 0.01 ε = 0.03

AT 0.0516 0.0560 6.5146 9.4467 0.1043 0.1680 16.4165 29.4979
IG-NORM 0.0611 0.1113 4.7737 8.3315 0.1137 0.3339 8.1315 25.7661
AdvAAT 0.0987 0.1841 5.3706 8.1184 0.1616 0.5523 7.9204 25.0658
ART 0.0660 0.1443 6.6582 9.2791 0.3946 0.4329 23.0589 28.9294
TRADES 0.0509 0.0907 7.0612 9.0233 0.0804 0.2721 10.8579 28.0672
TRADES+IGR 0.0363 0.0505 7.1214 8.0541 0.0716 0.1515 12.1090 24.8550

CIFAR-10 ε = 4/255 ε = 8/255

AT 0.0894 0.1200 6.0843 6.4041 0.1549 0.2400 10.5129 12.8901
IG-NORM 0.0388 0.0750 4.5743 5.2004 0.0700 0.1501 8.1882 10.4443
AdvAAT 0.0776 0.0817 2.2657 5.7139 0.0959 0.1635 3.8595 11.4857
ART 0.0722 0.1056 4.3010 5.2445 0.1281 0.2113 8.4555 10.5337
TRADES 0.0539 0.0784 3.6093 5.3381 0.0909 0.1569 9.3571 10.7232
TRADES+IGR 0.0589 0.0821 3.8230 5.1622 0.0978 0.1643 9.5879 10.3668

Table 8: Evaluation of tightness of the bounds in Euclidean distance for ℓ2 and ℓ∞ cases.

MNIST Fashion-MNIST CIFAR-10

ℓ2(ε =) 0.05 0.1 0.2 0.05 0.1 0.2 0.1 0.2 0.3

AT 0.0260 0.0320 0.0140 0.0078 0.0130 0.1207 0.0004 0.0045 0.0134
IG-NORM 0.0391 0.0597 0.0291 0.0121 0.0171 0.0742 0.0016 0.0210 0.0448
AdvAAT 0.0290 0.0465 0.0294 0.0103 0.0167 0.0183 0.0037 0.0090 0.0181
ART 0.0178 0.0115 0.0182 0.0029 0.0239 0.0011 0.0019 0.0031 0.0141
TRADES 0.0014 0.0032 0.0104 0.0037 0.0082 0.0723 0.0028 0.0048 0.0147
TRADES+IGR 0.0010 0.0038 0.0041 0.0064 0.0134 0.0385 0.0016 0.0100 0.0126

ℓ∞(ε =) 0.01 0.03 0.05 0.01 0.03 0.05 4/255 8/255 0.1

AT 0.0021 0.0035 0.0117 0.0004 0.0352 0.0708 0.0025 0.0053 0.1381
IG-NORM 0.0001 0.0062 0.0105 0.0010 0.0590 0.1069 0.0026 0.0145 0.0003
AdvAAT 0.0004 0.0223 0.0901 0.0136 0.0847 0.1665 0.0448 0.1513 0.2078
ART 0.0082 0.0112 0.0233 0.0424 0.1049 0.1467 0.0118 0.0412 0.0870
TRADES 0.0001 0.0046 0.0026 0.0014 0.0337 0.0634 0.0068 0.0043 0.0530
TRADES+IGR 0.0016 0.0143 0.1389 0.0014 0.0375 0.0682 0.0016 0.0090 0.0197

Table 9: Evaluation of certification with the label constraint on Flower dataset. The numbers in the
brackets indicate the percentages that attacked attribution is outside the Te.

ℓ2 ℓ∞

T̂e Te T ′
e T̂c(deg) Tc(deg) T̂e Te T̂c(deg) Tc(deg)

AT 0.0170 0.0341 [2.17%] 0.0447 1.3165 1.9806 0.0238 0.4100 2.1937 13.4811
AdvAAT 0.0295 0.1424 [0.00%] 0.1424 1.5568 2.2835 0.0472 0.1025 1.4130 11.8732
TRADES 0.0220 0.0534 [0.72%] 0.0592 1.3383 3.1567 0.0182 0.1081 3.3887 11.9829
TRADES+IGR 0.0080 0.0219 [0.72%] 0.0262 0.8870 2.1255 0.0242 0.2873 1.5930 12.5584
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(a) AT (b) IG-NORM (c) AdvAAT

(d) ART (e) TRADES (f) TRADES+IGR

Figure 8: Distributions of differences between computed bounds and attribution differences from
CIFAR-10.

D.4 CERTIFICATION OF ℓ2 AND ℓ∞ CERTIFICATION ON LARGER SIZE IMAGES.

In this subsection, we evaluate our certification methods based on label constraints on Flower 2,
which contains images of size 128 × 128 × 3. We choose ε = 0.1 for both ℓ2 and ℓ∞ cases to
compute Te and Tc, as well as the modified bound T ′

e, as introduced in Sec. 5. The sample distance
T̂e and T̂c are computed from the mean of distances between perturbed and original attributions,
where PGD-20 is used as ℓ2 attack and IFIA is used as ℓ∞ attack. The results are presented in
Table 9.

We notice that the theoretical bounds are valid for larger size images, where all angular and modi-
fied Euclidean bound are effectively certifying the maximum discrepancy of perturbed attributions.
It worths noting that the computation load of the proposed methods for ℓ2-norm constrained cer-
tification becomes heavier for high-dimensional cases due to the computation of eigenvalues for
large matrices. For ℓ∞ case, these eigenvalue computations have been avoided. We will study the
scalability of our methods in future work.

E ALTERNATIVE FORMULATION OF CERTIFIED ROBUSTNESS

The formulation of Eq. 1 can be rewritten in an equivalent form to find the maximum ε subject to
the attribution difference under certain threshold ω. Formally, the formulation can be written as

max ε

s.t. D(gy(x), gy(x+ δ)) ≤ ω

∥δ∥p ≤ ε

argmax
k

fk(x) = argmax
k

fk(x+ δ)

(47)

Under the above formulation, we can use the theoretical bound derived using Eq. 1 to find the
corresponding optimal ε. For the ℓ2-norm certification with or without the label constraint, when
D(·, ·) is the ℓ2 distance, the maximum ε can be computed using the upper bound ξmaxε derived in

2https://www.robots.ox.ac.uk/˜vgg/data/flowers/17/index.html
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Theorem 1,

max
δ

∥gy(x+ δ)− gy(x)∥2 = ξmaxε ≤ ω (48)

⇒ ε ≤ ω

ξmax
(49)

Similarly, the maximum ε when D(·, ·) is cosine distance can be derived using Corollary 2 as

max
δ

Dc(g
y(x+ δ), gy(x)) = 1−

√
1− ξmaxε

∥gy(x)∥22
≤ ω (50)

⇒ ε ≤ ∥g(x)∥22
ξmax

(
1− (1− ω)2

)
(51)

The maximum ε for the ℓ∞ constraint case with and without the label constraint can be also derived
in the same way using the relaxed upper bound in Theorem 2. Since the Kendall’s rank correlation
is discontinuous, researchers proposed to use cosine similarity and ℓp distance to measure the simi-
larity/dissimilarity between attributions from attacked samples and original samples (Wang & Kong,
2022; Chen et al., 2019; Boopathy et al., 2020). Thus, in this work, we derive the bounds for cosine
similarity and Euclidean distance.
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